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Machine learning force fields (MLFFs) are powerful tools for materials modeling, but their perfor-
mance is often limited by training dataset quality, particularly the lack of rare event configurations.
This limitation undermines their accuracy and robustness in long-time and large-scale molecular
dynamics simulations. In this work, we present a hybrid MLFF framework that integrates an em-
pirical short-range repulsive potential and demonstrates improved robustness and training efficiency.
Using solid electrolyte Li7La3Zr2O12 (LLZO) as a model system, we show that purely data-driven
MLFFs fail to prevent unphysical atomistic clustering in extended simulations due to inadequate
short-range repulsion. In contrast, the hybrid force field eliminates these artifacts, enabling sta-
ble long-time simulations, which are critical for studying various properties of LLZO. The hybrid
framework also reduces the need for extensive active learning and performs well with just 25 training
configurations. By combining physics-driven constraints with data-driven flexibility, this approach
is compatible with most existing MLFF architectures and establishes a universal paradigm for de-
veloping robust, training-efficient force fields for complex material systems.

I. INTRODUCTION

Machine learning force fields (MLFFs) have demon-
strated remarkable capabilities in materials modeling
over the past decade [1–4]. Empirical force fields, which
approximate interatomic interactions through simple pre-
defined functions with built-in physical constraints, risk
underfitting in complex materials due to their limited
number of empirical parameters. In contrast, MLFFs
leverage flexible functional forms and a data-driven ap-
proach to capture complex interatomic interactions. A
few notable MLFF frameworks include Gaussian ap-
proximation potential (GAP) [5], moment tensor poten-
tial [6, 7], deep potential (DP) [8], neuroevolution po-
tential (NEP) [9], ACE [10], MACE [11], NequIP [12],
Allegro [13], CACE [14], etc. These MLFFs are trained
on datasets generated from high-accuracy quantum me-
chanical calculations, such as density functional theory
(DFT) [3, 4]. Once successfully trained, these MLFFs
achieve DFT-comparable accuracy, far exceeding empir-
ical force fields while maintaining computational costs
orders of magnitude lower than first-principles methods.
The combination of high accuracy and low computational
cost makes MLFFs well-suited for atomistic modeling in
complex material systems, particularly in molecular dy-
namics (MD) simulations over extended spatial and tem-
poral scales [3].

As in a data-driven approach, constructing a train-
ing dataset that efficiently captures representative atomic
configurations is a central challenge in the training of
MLFFs. Current strategies primarily involve two ap-
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proaches: manually perturbing near-equilibrium struc-
tures and performing short-time MD simulations inte-
grated with active learning frameworks. However, de-
spite achieving high accuracy on the training set, MLFFs
may still fail to generalize beyond the training set sporad-
ically. Consequently, during long-time and/or large-scale
MD simulations, close-distance high-energy rare events
absent from the training data may arise, exceeding the
extrapolation capability of MLFFs, potentially causing
simulation breakdown or unphysical results [15]. The
most common remedy for these issues is to extend the
training process, such as continuing the iterative active
learning loops [7, 8]. However, this comes at the cost
of longer training times and higher computational costs,
while the robustness of the retrained force field in long-
time MD simulations is still not guaranteed.

As a central component of all-solid-state batteries,
ceramic-based solid electrolytes are a class of inorganic
materials that typically exhibit fast ionic diffusion and
disordered sublattices [16]. Understanding, optimizing,
and designing these solid electrolyte materials is crucial
for advancing next-generation solid-state batteries [17–
19]. Since high ionic conductivity is the most charac-
teristic feature of these materials, force fields capable of
accurately characterizing fast ion diffusion behavior are
an essential prerequisite for reliable atomistic modeling in
these material systems [20–22]. These requirements im-
pose strict accuracy criteria on force fields. First, force
fields must be capable of accurately describing ion mi-
grations in solids, which are ‘rare events’ in MD simula-
tions. Second, disordered mobile-ion sublattices necessi-
tate force fields capable of generalizing across the diverse
atomic configurations sampled during MD simulations.

In this work, we demonstrate that a hybrid frame-
work integrating physical constraints from empirical po-
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tentials with the flexible fitting capability of data-driven
MLFFs exhibits significant advantages in both model
robustness and training efficiency. Specifically, by in-
corporating empirical short-range potentials, such as
Ziegler-Biersack-Littmark (ZBL) potential [23], enhances
MLFFs robustness by preventing unphysical atomic clus-
tering and catastrophic breakdowns in long-time MD
simulations. Besides, this hybrid approach significantly
improves training efficiency and lowers the training cost.
Using a solid electrolyte material Li7La3Zr2O12 (LLZO)
as our model system, we comprehensively demonstrate
why MLFFs obtained through the conventional data-
driven training process fail to prevent unphysical atomic
clustering in long-time MD simulations. In contrast,
MLFF integrated with ZBL potential [24] effectively mit-
igates this issue, in which the empirical ZBL potential
provides a physically driven short-range interaction bar-
rier that prevents unphysical atomic clustering. We show
that when ZBL potential is incorporated, even for LLZO,
a quaternary system with complex phase transitions and
long-range ionic diffusion behaviors, a training set with
as few as 25 configurations suffices to achieve reliable
performance. Moreover, the integration of ZBL poten-
tial reduces the iterative loop of active learning from 13
iterations to 3, significantly improving training efficiency.
These performances are difficult or impossible to achieve
using the standard MLFF frameworks with conventional
training approaches.

By thoroughly studying the performance and training
of MLFFs within the LLZO system, we unveil the crit-
ical role of incorporating physics constraints on short-
range interactions using empirical potentials. Our ap-
proach provides a simple yet broadly applicable strategy
to enhance MLFF robustness and training efficiency and
can potentially be applied across diverse material sys-
tems and reduce computational costs. Our work paves
the way for the development of more efficient and robust
MLFF training, providing guidance for applying MLFFs
to the study of complex material systems.

II. METHODS

MLFF frameworks We employ the neuroevolution po-
tential (NEP) generation four [25] as our baseline frame-
work to construct MLFF for LLZO. NEP is a highly ef-
ficient MLFF framework with sufficient simulation accu-
racy, as demonstrated in our prior studies in the LLZO
system [22].

Short range Li+-Li+ interactions play a critical role
in the concerted ion migration and phase transition be-
haviors in LLZO [26, 27] However, configurations con-
taining short interatomic distances are rarely sampled
during the short-time MD simulations that are typically
used in active learning iterations. As we demonstrate
below, the insufficient sampling of atomic configurations
with short Li+-Li+ pairs in the training dataset can result
in poor extrapolation capability of the trained MLFFs,

which eventually leads to few but disastrous events or
simulation breakdown in long-time MD simulations.
To account for short-range repulsive interactions, we

adopted the universal ZBL potential to describe the
short-range part, as implemented in the hybrid NEP-ZBL
model [24]. The empirical ZBL potential was originally
proposed and has been extensively validated for mod-
eling high-energy atomic collisions between atoms [23].
Hybrid MLFF frameworks combined with ZBL poten-
tial have been demonstrated successful to simulate the
irradiation damage processes of materials in a few pre-
vious works [24, 28, 29]. For example, Wang et al. pro-
posed using the DP-ZBL model to simulate irradiation
damage processes in a face-centered cubic aluminum sys-
tem [28]. Byggmästar et al. combined GAP with ZBL
potential to study the radiation damage and defects in
tungsten [29]. Recently, Liu et al. developed a hybrid
NEP-ZBL framework and demonstrated its performance
in large-scale MD simulation of primary radiation dam-
age in tungsten [24]. Since we chose NEP as our baseline
model, here we adopted the hybrid NEP-ZBL framework
to account for the interatomic interactions in the LLZO
system.
The ZBL potential for a pair of atoms i and j takes

the form:

UZBL(rij) =
1

4πϵ0

ZiZje
2

rij
ϕ (rij/a) fc (rij) , (1)

where Zi and Zj are the atomic numbers of the inter-
acting atoms, e is the elementary charge, and rij is the
interatomic distance.
The universal screening function ϕ(x) is given by:

ϕ(x) = 0.18175e−3.19980x + 0.50986e−0.94229x

+ 0.28022e−0.40290x + 0.02817e−0.20162x,
(2)

with x = rij/a, where a is the screening length (in units
of Angstrom) defined as:

a =
0.46848

Z0.23
i + Z0.23

j

, (3)

The smooth cutoff function, fc (rij), implemented in
NEP-ZBL takes the form:

fc (rij) =


1 rij < rac
1
2

[
1 + cos

(
π

rij−rac
rbc−rac

)]
rac ≤ rij ≤ rbc ,

0 rij > rbc

(4)

where rac and rbc are the inner and outer cutoff radii of
ZBL potential, respectively. Herein, we use inner and
outer cutoff radii of 0.9 Å and 1.8 Å, respectively. Within
the inner cutoff, the interactions are fully described by
the ZBL potential. Between the inner and outer cutoffs,
the interactions gradually transit from the ZBL potential
to the NEP description. Outside the outer cutoff, the
interactions are fully described by the NEP potential.
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Note that since our goal is to prevent catastrophic MD
simulation breakdowns using an empirical short-range re-
pulsive potential, the empirical parameters of the ZBL
potential, or even the functional form itself, are not par-
ticularly critical.

Machine learning force fields training. We uti-
lized a validated MLFF for LLZO from our previous
work [22] as the standard reference, termed NEPstd. A
control MLFF model NEP802 was redeveloped via an ac-
tive learning strategy and converged within 13 iterations,
resulting in a training set of 802 structures. To opti-
mize computational efficiency, the energies, forces, and
stresses for the NEP802 dataset were predicted by the val-
idated NEPstd model using calorine package [30], thereby
avoiding costly DFT calculations while maintaining ac-
curacy. Based on this dataset, we also trained another
model NEP802-ZBL, incorporating the ZBL potential to
improve short-range interactions. Moreover, we tried to
reduce this training set by applying the farthest point
sampling method implemented in PyNEP package, and
selected a representative subset of 25 structures, which
was used to train the NEP25-ZBL model. The entire ac-
tive learning process was completed through the workflow
implemented in GPUMDkit.

Molecular dynamics simulations. MD simulations
were performed to investigate the phase transition, ra-
dial distribution function (RDF), and mean squared dis-
placement (MSD) in LLZO by using Graphics Processing
Units Molecular Dynamics (GPUMD) [31]. All simula-
tions were performed using 4×4×4 supercell containing
12288 atoms under the isothermal-isobaric (NPT) en-
semble with Martyna-Tuckerman-Tobias-Klein integra-
tors and a timestep of 1 fs. To study the tetragonal-to-
cubic phase transition, the system was first equilibrated
for 100 ps, followed by cycling the temperature between
600 K and 1200 K over a total simulation time of 2 ns.
During the heating process, the system started from 600
K and was heated up to 1200 K at a rate of 300 K/ns.
The cooling process went through three stages, with a
slower cooling rate near the critical temperature to ob-
tain more accurate results (1200–950 K at a rate of 500
K/ns; 950–850 K at a rate of 100 K/ns; 850–600 K at a
rate of 500 K/ns). For the RDF calculations, a 100 ps
NPT simulation was performed at each temperature, as
the system was gradually heated up. MSDs were calcu-
lated at 800 K and 1000 K for 1 ns under NPT ensemble.

III. RESULTS AND DISCUSSION

We first established a standard force field NEPstd for
LLZO as our baseline model. This model was trained
on 2024 structures (containing 1978 stoichiometric cu-
bic and tetragonal structures and 46 non-stoichiometric
structures with Li-O Schottky defects). This NEPstd

model, thoroughly validated in our previous work [22] for

accurately describing various properties of LLZO includ-
ing lattice parameters, phase transition behaviors, ther-
mal expansion coefficients, and ion transport properties,
served as the surrogate model for DFT and the refer-
ence point for our performance benchmark. Herein, par-
tial training hyperparameters were adjusted due to ver-
sion dependencies and practical considerations to achieve
higher training and simulation efficiency (Tab. S1). The
root-mean-square errors (RMSE) of energies, forces, and
stresses for the training set are 0.74 meV/atom, 80.31
meV/Å, and 0.089 GPa for NEPstd (Fig. S1).
Next, we try to redevelop an LLZO force field us-

ing conventional data-driven active learning strategies.
The seed training set includes 100 structures, which were
generated through random perturbation of the original
tetragonal LLZO structure using the dpdata package [32]
with a 5% cell variation, 0.2 Å atomic displacement, and
a ‘uniform’ perturbation style. Afterwards, an active
learning strategy was employed to expand the training
set and obtain more representative structures. Four sam-
ples based on different initial structures were employed to
perform MD simulations at different temperatures (100–
1200K) and durations (20–500ps) (see Tab. S2 for de-
tails). In this process, we performed descriptor-based far-
thest point sampling to obtain representative structures,
and the final training set contains 802 structures. To op-
timize computational efficiency, the energies, forces, and
stresses for these 802 structures were predicted by the
validated NEPstd model, thereby avoiding costly DFT
calculations while maintaining accuracy. The RMSE of
energies, forces, and stresses for the training set are 0.22
meV/atom, 24.96 meV/Å, and 0.037 GPa for NEP802

(Fig. S2). The reduced RMSE in NEP802 likely results
from the reduced noise in NEPstd compared to the orig-
inal DFT data.
To evaluate the performance of our NEP models, we

conducted a comprehensive comparison between NEPstd

and NEP802. Figure 1 presents their comparative per-
formance in describing phase transitions, atomic local en-
vironments, and ionic diffusion properties of LLZO. The
NEPstd model successfully captured the tetragonal-to-
cubic phase transition behavior, as shown in Fig. 1(a).
During the heating process, the phase transition occurred
around 900 K, where the tetragonal structure trans-
formed into a cubic structure, consistent with previous
literature reports [22, 33, 34]. During the cooling process,
the transition temperature shifted to approximately 880
K due to a small thermal hysteresis.
RDF calculations, presented in Fig. 1(b), reveal the

temperature-dependent evolution of local atomic struc-
tures. As temperature increases, we observed a gradual
broadening and height reduction of the first RDF peak,
indicating increasing thermal vibration and an order-
disorder transition in the Li sublattice. These RDF
trends align well with previous reports [35]. The MSD
calculations, shown in Fig. 1(c), reflect the Li+ diffu-
sion properties. Using a 4 × 4 × 4 supercell contain-
ing 3584 Li+ ions over a 1 ns simulation period, we

https://github.com/bigd4/PyNEP
https://github.com/zhyan0603/GPUMDkit
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FIG. 1. (a-c) show the various properties calculated using NEPstd, including (a) the lattice evolution of LLZO during heating
and cooling processes, (b) the radial distribution function of Li+-Li+ at 600 – 1200 K, and (c) the mean square displacements
of Li+ ions over correlation times at 800 K and 1000 K, while (d-f) show the corresponding results calculated using NEP802.

obtained statistically robust time-averaged results. The
MSD curves rapidly reached convergence, yielding slopes
of 0.025 Å2/ps and 0.575 Å2/ps at 800 K and 1000 K,
respectively.

In contrast, while NEP802 accurately describes the
phase transition during the heating process, it showed
notable deficiencies in other aspects. As illustrated in
Fig. 1(d), during the cooling process, the cubic phase
transforms into the tetragonal phase at about 740 K,
and the lattice of the tetragonal phase is discernibly dif-
ferent from that in the heating process. The origin of
this discrepancy becomes apparent in the RDF anal-
ysis (Fig. 1(e)), where abnormal peaks appear at dis-
tances less than 1 Å (about 0.13 Å and 0.65 Å) in high-
temperature simulations (above 900 K). These peak in-
dicate unphysical Li+-Li+ clustering, a phenomenon ab-
sent in the NEPstd simulations. Meanwhile, the MSD
calculations (Fig. 1(f)) show slight difference compared
to NEPstd results. These findings demonstrate that while
NEP802 partially captures the behaviors of LLZO, its ten-
dency to produce unphysical Li+-Li+ clustering at high
temperatures leads to discrepancies in phase transition
behavior. Such unphysical clustering, although statisti-
cally rare, can still occur in long-time MD simulations,
leading to unphysical predictions on various properties.

When encountering unexpected predictions or failure
in long-time and/or large-scale MLMD simulations, the
most conventional remedy is to continue the iterative ac-
tive learning strategy and expand the training set. How-
ever, as we reveal in the LLZO system, catastrophic fail-
ures can stem from the deficiency of short-range config-
urations, which are typically rare events in MD simula-

tions. Unfortunately, sampling rare events in MD sim-
ulations is extremely difficult and takes a lot of effort.
In a large system like the 4 × 4 × 4 supercell of LLZO,
1 ns simulation captures states similar to a single unit
cell over 64 ns. Running such a long-time simulation re-
quires significant training resources and time, which is
impractical to achieve in the training process. Also, with
a 10 fs output interval, a 64 ns trajectory produces about
6.4 million frames, making the descriptor-based sampling
method very difficult. Saving frames less, however, might
neglect rare events entirely. Therefore, running very long
simulations in active learning just to catch a few rare
events would be expensive and impractical.
Our observation reveals that the under-fitted short-

range repulsion interaction in the trained MLFF is due
to the lack of close-distance high-energy structures, which
are intrinsically difficult to be captured by conventional
MD sampling strategies in the active learning process.
In fact, the RDF analysis reveals that, apart from
the unphysical Li+-Li+ clustering at distances below 1
Å, NEP802 produces results remarkably similar to the
NEPstd at larger distances. This observation suggests
that NEP802 could potentially achieve performance com-
parable to NEPstd through a simple addition of appro-
priate short-range repulsive interactions.
To overcome the deficiency, a remedial approach is to

use an empirical potential to handle the short-range in-
teractions below a certain cutoff distance, while leaving
MLFF to learn the interactions outside the cutoff dis-
tance. Herein, we use a general ZBL potential to de-
scribe the short-range repulsive interaction. This hybrid
NEP-ZBL model has been implemented in the GPUMD
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FIG. 2. The potential energy (upper panel) and force (lower
panel) as functions of Li-Li dimer distance, with the inset
showing a zoom-in of the short-range region. The gray dashed
lines indicate the cutoff positions of ZBL-inner = 0.9 Å and
ZBL-outer = 1.8 Å. The blue and yellow dashed lines cor-
respond to the breakdown distances. The energy and force
values were shifted to zero at a dimer distance of 6 Å for bet-
ter comparison.

and NEP program [36] and has been successfully applied
to simulate the large-scale radiation damage in tung-
sten [24]. In fact, we find that this hybrid framework
can improve the robustness of MLFFs, even though it
was originally proposed for the simulation of radiation
damage [24, 28, 29].

We retrained a NEP-ZBL model using the dataset of
NEP802, called NEP802-ZBL, and compared the perfor-
mance of NEPstd, NEP802, and NEP802-ZBL. To evalu-
ate the short-range interactions, we placed two Li atoms
forming a dimer in a cubic box with a box length of
30 Å. Figure 2 illustrates the potential energy (upper
panel) and force (lower panel) as functions of Li-Li dimer
distance, with the inset focusing on the short-range re-
gion. For comparative purposes, both the energy and
force values were shifted to zero at a distance of 6 Å.
It is important to note that none of these force fields
were explicitly trained on isolated Li-Li dimer configu-
rations; rather, they learned Li+-Li+ interactions within
the LLZO framework. Therefore, while these results may
not be directly comparable to DFT calculations of iso-
lated dimers, they provide valuable insights into the ca-
pability of each model to capture short-range interac-
tions.

As the Li-Li distance decreases, the energy curves show

different behavior. While all three NEP models show an
increase in initial energy as the dimer distance decreases,
NEP802 exhibits a significant energy drop when the dimer
distance is below 1.32 Å. We call this the breakdown dis-
tance, that is, the dimer distance when Li-Li undergoes
unphysical short-range attractive interaction. At a closer
dimer distance, it exhibits two local minima of potential
energy, located at about 0.15 Å and 0.7 Å, which ex-
plains why the abnormal Li+-Li+ aggregation peaks at
about 0.13 Å and 0.65 Å appeared in the previous RDF
analysis (Fig. 1(e)). In contrast, NEPstd maintains the
repulsive trend until a shorter distance of 1.15 Å, be-
fore showing a similar decreasing trend. This explains
why the NEPstd model does not exhibit Li+-Li+ aggre-
gation in the simulations. However, NEPstd also exhibits
unphysical short-range Li-Li attractive interactions, indi-
cating that at higher temperatures or longer simulation
times, NEPstd may also experience unphysical atomic ag-
gregation similar to NEP802. Both NEPstd and NEP802

models give unreliable results in the short-range region,
where the potential energy surface becomes arbitrary. In
contrast, NEP802-ZBL, augmented with the empirical re-
pulsive potential, consistently maintains the expected re-
pulsive behavior throughout the short-range region. The
force curves further highlight these differences. NEP802

exhibits a decrease in repulsive force when the dimer dis-
tance is below 1.62 Å, while NEPstd shows a decrease
in repulsive force at a dimer distance below 1.55 Å. The
NEP-ZBL model, on the other hand, exhibits complete
repulsion in the short-range region.

The arbitrary behavior of NEP802 in the short-range
region introduces a very interesting question: how do
barriers and breakdown distances evolve during active
learning? Figure 3 shows that with the progress of ac-
tive learning iteration, the energy barriers show an in-
creasing trend, while the breakdown distances show a
decreasing trend. These trends suggest that the iterative
MD sampling processes encounter some structures with
close atomic distances, thereby gradually enhancing the
learning of short-range interactions. However, this learn-
ing process is extremely inefficient. After 13 rounds of
active learning, the energy barrier only rises from 1.31
eV to 2.05 eV, and the breakdown distance decreases
from 1.51 Å to 1.32 Å. This inefficiency stems from the
rarity of such structures in the MD sampling process;
achieving higher energy barriers and lower breakdown
distances may require longer simulations to capture a suf-
ficient number of short-range interaction configurations.
It is worth noting that our NEPstd training set contains
some high-pressure structures achieved by compressing
the lattice, which may explain its better ability to learn
repulsive interactions. Even so, it still exhibits a break-
down distance of 1.15 Å, only 0.17 Å shorter than that
of NEP802. This highlights the significant challenges of
learning short-range interactions through active learning
iterations.

To prevent the arbitrary behavior of MLFFs in the
short-range region, we can integrate the empirical repul-
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FIG. 3. Evolution of energy barriers, breakdown distances,
and training set size over active learning iterations. Grey
hollow squares indicate that the force field was not updated
in this iteration and used data from the previous round.

sive potential into the MLFFs to take over the short-
range interactions. NEP-ZBL resolves the limitations of
describing short-range interactions by introducing an in-
surmountable barrier, thus avoiding unphysical atomic
aggregation. Figure 4(a-c) presents the performance of
NEP802-ZBL, evaluated using the same metrics as pre-
viously discussed: phase transitions, RDF, and MSD.
The results demonstrate significant improvements after
incorporating the ZBL repulsive potential. The NEP802-
ZBL model accurately captures the tetragonal-to-cubic
phase transition, with the critical temperature occurring
around 900 K during the heating process and around
880 K during the cooling process, matching the behav-
ior of the NEPstd model. The RDF analyses show that
the NEP802-ZBL model successfully maintains proper
short-range repulsion, effectively eliminating the unphys-
ical Li+-Li+ clustering observed in the NEP802 model.
The MSD calculations reveal that NEP802-ZBL achieves
nearly identical diffusion behavior to the NEPstd model,
with slopes of 0.025 Å2/ps and 0.572 Å2/ps at 800 K and
1000 K, respectively.

Based on our experience with the LLZO system and
in handling short-range interactions, we further explored
the possibility of reducing the training set size while
maintaining the performance of the force field. We
refined the training set of NEP802 into a smaller one
with only 25 configurations and trained another NEP25-
ZBL model (See SI for the training errors of NEP25-
ZBL model). As shown in Fig. 4(d-f), despite using

a tiny training set, the NEP25-ZBL model successfully
reproduces various properties of LLZO, including the
tetragonal-to-cubic phase transition during both heating
and cooling processes, as well as RDF and MSD results.
While the MSD from NEP25-ZBL shows slight devia-
tions, with slopes of 0.026 Å2/ps and 0.583 Å2/ps at the
corresponding temperatures, these values remain remark-
ably close to those from the NEPstd model. The success
of the NEP25-ZBL model, trained on only 25 structures,
suggests that the local atomic environments in the qua-
ternary LLZO system may be less complex than previ-
ously assumed.
The remarkable performance of NEP25-ZBL also raises

another intriguing question: how can a force field trained
on such a tiny dataset with just 25 configurations ac-
curately reproduce the results of the NEPstd model?
To address this question, we performed Uniform Man-
ifold Approximation and Projection (UMAP) analysis
on the Li+ descriptors from three datasets: the NEPstd

dataset containing 1978 stoichiometric LLZO configu-
rations, NEP802 dataset with 802 configurations, and
NEP25 dataset with 25 configurations. In the NEP
framework, these descriptors are high-dimensional vec-
tors comprising radial and angular components that char-
acterize the local atomic environments. The construction
details of these descriptors can be found in reference [36].
Based on our hyperparameter choice, we generated a

30-dimensional description vector for each atom. Us-
ing the nonlinear unsupervised UMAP method, a widely
adopted technique for analyzing high-dimensional data,
we discovered that the datasets of NEP802 and NEP25

cover nearly the entire descriptor space sampled in the
datasets of NEPstd (Figure 5). This substantial cover-
age indicates that most Li+ local environments are suc-
cessfully captured even with significantly fewer training
configurations. The small regions of uncovered Li+ de-
scriptor space (blue scatters) likely correspond to high-
pressure configurations present in the NEPstd dataset but
absent in both NEP802 and NEP25 datasets. The linear
algorithm, Principal Component Analysis, yields results
similar to those of UMAP (Fig. S7).
The performance of NEP25-ZBL (Fig. 4) and the anal-

ysis of UMAP (Fig. 5) demonstrate that once the short-
range interactions are properly handled, the atomic in-
teractions in LLZO can be easily captured in a limited
training set. This observation implies that by incorpo-
rating an empirical short-range repulsive potential, it not
only improves the robustness of the trained MLFF, but
can also significantly improve the training efficiency and
reduce the training set size.
We performed a comparative analysis on the training

efficiency of MLFFs, with and without empirical short-
range potential. Table I lists the performance of NEP and
NEP-ZBL models during exploration iterations of active
learning. Both models underwent three loops of active
learning, with MD sampling performed for 500 ps at tem-
perature ranges of 100–400 K, 500–800 K, and 800–1200
K, respectively. Structures were selected from the MD
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FIG. 4. (a-c) show the various properties calculated using NEP802-ZBL, including (a) the lattice evolution of LLZO during
heating and cooling processes, (b) the radial distribution function of Li+-Li+ at 600 – 1200 K, and (c) the mean square
displacements of Li+ ions over correlation times at 800 K and 1000 K, while (d-f) show the corresponding results calculated
using NEP25-ZBL.

trajectories using the farthest point sampling method to
augment the training dataset.

For the model trained with the ZBL potential, a to-
tal of 207 structures were obtained after three itera-
tions, resulting in the NEP207-ZBL model. As expected,
this model successfully reproduced the phase transition,
RDF, and MSD of the LLZO system (Fig. S8). In con-
trast, the model trained without the ZBL potential ex-
hibited significant instability. In the second iteration, it
showed a failure rate of 19.9%, meaning that 19.9% of
the structures in the simulated trajectories exhibited un-

FIG. 5. Uniform Manifold Approximation and Projection of
Li+ high-dimensional descriptors in different training sets.

TABLE I. Exploration iterations during the training of LLZO
force fields with NEP and NEP-ZBL frameworks. The Failure
Ratio (FR) represents the fraction of unphysical structures
within the trajectory relative to the total structure counts.
Unphysical structures are filtered out during the sampling
process.

Iter. t (ps) Temperature
NEP-ZBL NEP

Nsamp FR (%) Nsamp FR (%)

1 500 100-400K 12 0% 10 0%
2 500 500-800K 51 0% 22 19.9%
3 500 800-1200K 44 0% 29 57.9%

physical atomic clustering. In the third iteration, this
failure rate even rose to 57.9%. These results indicate
that the default data-driven MLFF framework (without
ZBL repulsive potential) cannot sustain such an aggres-
sive training strategy involving rapid temperature in-
crease and extended simulation times, as it will generate
a substantial number of unphysical trajectory structures.
The hybrid framework of MLFF and empirical repul-

sive potential proves to be a low-cost yet powerful tool
for preventing simulation catastrophes, particularly when
training datasets are not yet comprehensive. It enables
us to use more aggressive sampling strategies, reduce
active learning iteration loops, accelerate force field de-
velopment, and help avoid unnecessary expansion of the
training sets. By providing a robust repulsive wall, the
empirical short-range repulsive potential effectively ad-
dresses the challenge of short-range interactions. Al-
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though events involving strong repulsive forces are rel-
atively rare during simulations, the absence of adequate
energy barriers can lead to significant simulation catas-
trophes. These results highlight the critical importance
of proper short-range repulsion in MD simulations.

IV. CONCLUSION

In this work, we introduce a hybrid framework that in-
tegrates the empirical ZBL potential into MLFFs, signif-
icantly enhancing their robustness and training efficiency
for complex material systems like the quaternary LLZO
solid electrolyte. Our systematic analysis reveals that
purely data-driven MLFFs, such as the NEP802 model,
often fail to capture short-range repulsive interactions
due to the rarity of close-distance configurations in train-
ing datasets, leading to erroneous extrapolations of short-
range interactions and unphysical atomic clustering dur-
ing long-time MD simulations. By incorporating the ZBL
potential, which is grounded in the physical principles
of atomic repulsion, our hybrid NEP-ZBL models effec-
tively eliminate these unphysical configurations, ensuring
robust simulations in predicting phase transitions, local
atomic environments, and ionic transport properties of
LLZO. Remarkably, the NEP25-ZBL model, trained on
only 25 configurations, achieves performance compara-
ble to the NEPstd model trained on nearly 2000 config-
urations, demonstrating that strategic inclusion of phys-
ical constraints can drastically reduce training data re-
quirements. UMAP analysis further confirms that even a
small dataset can cover the essential Li+ descriptor space,
which explains the decently well performance of NEP25-
ZBL model. The physical constraints introduced by the
ZBL repulsive potential compensate for the extrapola-
tion limitations of data-driven approaches, particularly
in handling data-sparse parts, such as rare events or ex-
treme configurations. Moreover, this hybrid approach
reduces active learning iterations from 13 to 3, greatly
improving the training efficiency of MLFFs.

Our work provides valuable insights for the develop-
ment of robust and efficient machine learning potentials
for complex materials. It suggests that careful considera-
tion of fundamental physical constraints can significantly
improve the robustness of MLFFs and reduce the data
requirements without compromising accuracy. By unify-

ing physics-driven constraints with data-driven flexibil-
ity, our framework offers a generalizable paradigm for de-
veloping robust, training-efficient MLFFs. The method-
ology demonstrated here, while focused on LLZO as a
case study, offers a promising strategy for developing ro-
bust and efficient force fields for other solid-state elec-
trolytes and complex materials. Future work could ex-
plore the applicability of this approach to incorporate
other physical constraints, such as long-range dispersion
corrections, that might also enhance the robustness and
training efficiency of MLFFs in different material sys-
tems.
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