
ScaleGNN: Towards Scalable Graph Neural Networks via
Adaptive High-order Neighboring Feature Fusion
Xiang Li

Ocean University of China
Qingdao, China

lixiang1202@stu.ouc.edu.cn

Haobing Liu
Ocean University of China

Qingdao, China
haobingliu@ouc.edu.cn

Jianpeng Qi
Ocean University of China

Qingdao, China
qijianpeng@ouc.edu.cn

Yanwei Yu∗
Ocean University of China

Qingdao, China
yuyanwei@ouc.edu.cn

Yuan Cao
Ocean University of China

Qingdao, China
cy8661@ouc.edu.cn

Guoqing Chao
Harbin Institute of Technology

Harbin, China
guoqingchao@hit.edu.cn

Abstract
Graph Neural Networks (GNNs) have demonstrated strong perfor-
mance across various graph-based tasks by effectively capturing
relational information between nodes. These models rely on itera-
tive message passing to propagate node features, enabling nodes
to aggregate information from their neighbors. Recent research
has significantly improved the message-passing mechanism, en-
hancing GNN scalability on large-scale graphs. However, GNNs
still face two main challenges: over-smoothing, where excessive
message passing results in indistinguishable node representations,
especially in deep networks incorporating high-order neighbors;
and scalability issues, as traditional architectures suffer from high
model complexity and increased inference time due to redundant
information aggregation. This paper proposes a novel framework
for large-scale graphs named ScaleGNN that simultaneously ad-
dresses both challenges by adaptively fusing multi-level graph fea-
tures. We first construct neighbor matrices for each order, learning
their relative information through trainable weights through an
adaptive high-order feature fusion module. This allows the model
to selectively emphasize informative high-order neighbors while
reducing unnecessary computational costs. Additionally, we intro-
duce a High-order redundant feature masking mechanism based on
a Local Contribution Score (LCS), which enables the model to retain
only the most relevant neighbors at each order, preventing redun-
dant information propagation. Furthermore, low-order enhanced
feature aggregation adaptively integrates low-order and high-order
features based on task relevance, ensuring effective capture of both
local and global structural information without excessive complex-
ity. Extensive experiments on real-world datasets demonstrate that
our approach consistently outperforms state-of-the-art GNN mod-
els in both accuracy and computational efficiency.

∗Yanwei Yu is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Conference acronym ’XX, Woodstock, NY
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

Keywords
Scalable GraphNeural Network, Over-smoothing, Large-scale graph

ACM Reference Format:
Xiang Li, Haobing Liu, Jianpeng Qi, Yanwei Yu, Yuan Cao, and Guoqing
Chao. 2018. ScaleGNN: Towards Scalable Graph Neural Networks via Adap-
tive High-order Neighboring Feature Fusion. In Proceedings of Make sure
to enter the correct conference title from your rights confirmation email
(Conference acronym ’XX). ACM, New York, NY, USA, 10 pages. https:
//doi.org/XXXXXXX.XXXXXXX

1 Introduction
Graph Neural Networks (GNNs) have demonstrated remarkable
success in various graph-based learning tasks, such as node classifi-
cation, link prediction, and recommender systems [3, 19, 35, 36, 44].
By leveraging the inherent structure of graphs, GNNs propagate
information through iterative message passing, allowing nodes to
aggregate features from their neighbors. This mechanism enables
GNNs to effectively capture complex relationships and structural de-
pendencies. However, despite their success, existing GNNs face two
fundamental challenges when applied to large-scale graphs [39]:
over-smoothing and scalability issues.

Over-smoothing occurs as the number of message-passing layers
increases, causing node representations to become overly similar
and lose their discriminative power. This issue is particularly se-
vere when incorporating high-order neighbors [8, 10, 15, 37, 40], as
their contributions may become redundant or even introduce noise,
leading to performance degradation. Several existing techniques,
such as residual connections, skip connections, and decoupling
propagation from feature transformation, have been proposed to
alleviate over-smoothing. However, these methods either introduce
additional computational complexity or fail to effectively balance
local and global information. Scalability [1, 4, 18, 20, 30, 42, 43] is
another major challenge, as many traditional GNN architectures
struggle with high memory consumption and computational costs
when applied to large-scale graphs. The primary reason is the ex-
ponential growth in the number of high-order neighbors, which
leads to excessive information aggregation and redundant compu-
tations. Some recent works address scalability issues by adopting
pre-computation-based techniques, mini-batch training, or sam-
pling strategies. While these approaches improve efficiency, they
often sacrifice performance due to incomplete neighborhood infor-
mation.

ar
X

iv
:2

50
4.

15
92

0v
1

 [
cs

.L
G

]
 2

2
A

pr
 2

02
5

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Xiang Li, Haobing Liu, Jianpeng Qi, Yanwei Yu, Yuan Cao, and Guoqing Chao

To overcome these challenges, we propose a novel framework to-
wards scalable graph neural network via adapt high-order neighbor-
ing feature fusion named ScaleGNN, that fuses multi-hop graph fea-
tures to address the over-smoothing issue. Specifically, we introduce
a learnable mechanism to construct and refine multi-hop neighbor
matrices, allowing the model to adjust the relative importance of
different neighborhood levels through trainable weight parameters.
By regulating these weights, our approach selectively emphasizes
the most informative high-order neighbors while minimizing the in-
fluence of less useful ones. Additionally, we introduce a task-aware
feature fusion mechanism that adaptively integrates low-order and
high-order features based on their relevance to the specific task.
This ensures that our model effectively captures both local and
global information without suffering from over-smoothing. Fur-
thermore, we incorporate a selective neighbor filtering strategy
based on a Local Contribution Score (LCS), which quantifies the
relevance of high-order neighbors to the target node, ensuring that
only the most useful neighbors contribute to feature aggregation.
To validate the effectiveness of our approach, we conduct exten-
sive experiments on multiple real-world graph datasets. The results
demonstrate that our method consistently outperforms state-of-the-
art GNN models in terms of both accuracy and efficiency, providing
a scalable and robust solution to the over-smoothing problem in
deep graph learning.

The main contributions of our work are as follows:

• We introduce a trainable mechanism to construct and refinemulti-
hop neighbor matrices, allowing the model to selectively retain
informative high-order neighbors while suppressing redundant
or irrelevant ones. This ensures an effective balance between
local and global information aggregation.

• We propose a dynamic feature fusion mechanism that adaptively
combines low-order and high-order features based on their rel-
evance to the specific learning task, which allows the model to
capture both local structure and long-range dependencies while
mitigating over-smoothing.

• We incorporate a selective high-order neighbor filtering strategy
based on a local contribution score (LCS) to enhance computa-
tional efficiency, reducing unnecessary computational overhead
by focusing only on the most valuable high-order neighbors

• Extensive experiments on multiple real-world graph datasets
demonstrate that our method consistently outperforms state-of-
the-art GNN models in terms of both accuracy and efficiency,
highlighting its scalability and practical applicability.

2 Related Work
2.1 Graph Neural Network
Graph Neural Networks (GNNs) are specialized neural networks for
graph deep learning. GCN [16], an early model, performs message
passing in each layer to aggregate 1-hop neighbor information,
enriching vertex semantics. Stacking 𝐾 GCN layers allows GCNs to
integrate information from neighbors within 𝐾 hops. GAT [27] em-
ploys attention mechanisms to prioritize important neighbors dur-
ing message passing. GraphSAGE [9] enhances scalability for large
graphs with neighbor sampling for mini-batch training. SGC [29]
simplifies multilayer GNNs by removing non-linearities and weight

matrices between layers, leading to faster processing without sacri-
ficing accuracy. APPNP [7] introduces an improved propagation
scheme inspired by personalized PageRank [23], ensuring linear
complexity via PageRank approximation. S2GC [45] uses a modified
Markov Diffusion Kernel for propagation, balancing global and lo-
cal vertex contexts. However, these GNNs show limitations in many
real-world graphs due to challenges like heterophily [17, 24, 46]
and heterogeneity. In this paper, we focus on the challenge of het-
erogeneity, specifically that the aforementioned GNNs are tailored
for homogeneous graphs and overlook the characteristics of hetero-
geneous graphs, where vertices and edges can be of different types
and contribute differently. HGNNs have been developed to address
this by accommodating the properties of heterogeneous graphs.

2.2 Heterogeneous Graph Neural Networks
HGNNs can be classified into two categories: relation-wise and
representation-wise styles. Relation-wise HGNNs identify neigh-
bors based on different relations (meta-paths) and aggregate this in-
formation for vertex representations. HAN [28] uses hand-designed
meta-paths and semantic attention to enhance GAT for neighbor
aggregation. MAGNN [6] involves all vertices within a meta-path
for better semantics. HetGNN [38] samples neighbors via ran-
dom walks and aggregates same-type neighbors with Bi-LSTMs.
Representation-wise HGNNs perform multiple iterations of mes-
sage passing and vertex updates. R-GCN [26] extends GCN by
using distinct transformation matrices for each 1-hop relation.
RSHN [47] uses a coarsened line graph for global edge-type em-
beddings. HetSANN [11] extends GAT with type-specific attention
values. HGT [13] applies heterogeneous mutual attention with
type-specific parameters. Simple-HGN [21] extends GAT by in-
corporating vertex features and learnable edge-type embeddings.
HINormer [22] utilizes a Graph Transformer with a broader aggre-
gation mechanism. These HGNNs are end-to-end models, but can
be impractical for large graphs due to resource-intensive message
passing during training.

2.3 Scalable Graph Neural Networks
To address the efficiency challenges of HGNNs on large graphs,
strategies like sampling [14, 33] and pre-computation-based meth-
ods have emerged. This paper focuses on pre-computation-based
methods, which have shown superior performance and efficiency
across datasets. One approach is building deep GNNs by decou-
pling feature propagation and non-linear transformation, enabling
feature propagation without model parameter training. SGC [29]s
eliminates nonlinearity between consecutive graph convolutional
layers, improving scalability and efficiency. Following this, works
like SIGN, S2GC, GBP, and GAMLP have been proposed to fur-
ther enhance SGC’s performance while maintaining scalability.
Another direction involves pre-computation-based scalable GNNs.
NARS [34] mitigates high information loss by extracting multiple
subgraphs based on sampled relation subsets and pre-computing
on each subgraph rather than the entire graph. SeHGNN [32] ex-
emplifies the relation-wise style by separately collecting neighbor
information for target vertices across different relations within 𝐾
hops, reducing information loss but compromising efficiency. As
the number of relations grows with 𝐾 hops, SeHGNN becomes

ScaleGNN: Towards Scalable Graph Neural Networks via Adaptive High-order Neighboring Feature Fusion Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Toy Graph

Target node

Feature Metrix 𝐗

Adaptive High-order Feature Fusion

1-hop 2-hop 3-hop 4-hop

Propagation

P P P P Replace Multiple P operations

Feature Propagation

Combination

Updated 𝐇

K-hop pure information
High-order Redundant

Feature Masking

LCS-based

Masking

Low-order Enhanced Feature Aggregation

ℒ𝑡𝑎𝑠𝑘

M
o
d
el

T
ra

in
in

g

Figure 1: The overview of the proposed ScaleGNN.

inefficient, especially for 𝐾 > 2 on large graphs. RpHGNN [12]
combines the low information loss of the relation-wise style with
the efficiency of the representation-wise style.

3 Preliminary
Generally, we consider an undirected large-scale graph as G =

{V, E X}, where V is the collection of nodes, E is the collection
of edges between the nodes, and X ∈ R |V |×𝑓 is the collection
of node attributes, 𝑓 is the size of node feature vector. 𝐶 is the
number of node classes, and A denotes the adjacency matrix of
G. D = 𝑑𝑖𝑎𝑔(𝑑1, 𝑑2, . . . , 𝑑 |V |) ∈ R |V |× |V | represents the degree
matrix of A, where 𝑑𝑖 =

∑
𝑣𝑗 ∈V A𝑖 𝑗 denotes the degree of node 𝑣𝑖 .

Given the labeled node setV𝑙 , our goal is to predict the labels for
nodes in unlabeled setV𝑢 = V −V𝑙 with the supervision ofV𝑙 .

4 Methodology
In this section, we introduce ScaleGNN, an efficient end-to-end
framework designed to address the scalability and performance
challenges of GNNs. Our proposed ScaleGNN integrates several
key innovations to handle issues such as over-smoothing, compu-
tational inefficiency, and redundant high-order information. The
framework consists of three core components: (1) Adaptive High-
order Feature Fusion, (2) Low-order Enhanced Feature Aggregation,
and (3) High-order Redundant Feature Masking. These components
are designed to work in synergy, allowing ScaleGNN to efficiently
process large-scale graphs while maintaining effective informa-
tion flow across different neighborhood orders. The outline of our
ScaleGNN is shown in Fig. 1.

4.1 Adaptive High-order Feature Fusion
Traditional GNNs are based on message passing through fixed
adjacencymatrices, where the adjacency structure remains constant
throughout the layers. This approach can lead to over-smoothing,
where node representations converge and lose their distinctiveness
as the network depth increases. Furthermore, as nodes aggregate
information from higher-order neighbors, the feature similarity

across nodes can grow excessively, reducing the expressiveness of
the model.

To mitigate these issues, we propose a method for constructing
distinct adjacency matrices for each neighborhood order. This al-
lows us to isolate the relationships specific to each order, ensuring
that each neighborhood level contributes uniquely to the node rep-
resentation. We define the pure 𝑖-th order adjacency matrix as the
difference between the (𝑖 − 1)-th and 𝑖-th powers of the adjacency
matrix:

A𝑖 = A𝑖 − A𝑖−1, 𝑖 = 1, 2, 3, . . . , 𝐾, (1)
where A𝑖 is the 𝑛-th power of the adjacency matrix, which captures
the connections up to 𝑛 hops, and A𝑖 isolates the new relation-
ships emerging specifically at the 𝑖-th order. Specifically, A1 is the
adjacency matrix of the graph, A0 is the unit matrix.

Incorporating information from multiple orders can provide a
more comprehensive view of the graph structure. However, the
challenge lies in integrating these multiple orders in a way that
preserves their distinct contributions. To address this, we introduce
a learnable weight vector 𝜶 = [𝛼1, 𝛼2, . . . , 𝛼𝐾], where each 𝛼𝑖
represents the importance of the 𝑖-th order adjacency matrix in the
final aggregation:

Ã =

𝐾∑︁
𝑖=1

𝛼𝑖A𝑖 ,
𝐾∑︁
𝑖=1

𝛼𝑖 = 1. (2)

These weights are learned through back-propagation, ensuring
that the model dynamically adjusts the contribution of each neigh-
borhood order. The use of the softmax function to optimize these
weights ensures that the contributions across the different orders
remain balanced. Finally, we obtain the adaptive high-order fused
feature matrix H ∈ R𝑛×𝑑 as follows:

H = 𝜎 (Ã · X ·W), (3)

where 𝑑 is the hidden embedding dimension,X ∈ R𝑛×𝑓 is the input
feature matrix, andW is learnable weight matrix for the high-order
features.

We use the model obtained here as the base version named
ScaleGNNb, which is relatively simple and efficient.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Xiang Li, Haobing Liu, Jianpeng Qi, Yanwei Yu, Yuan Cao, and Guoqing Chao

4.2 Low-order Enhanced Feature Aggregation
In many GNN models, the integration of low-order (local) and high-
order (global) features is done in a single, often static, step. However,
this can lead to high-order features dominating over low-order ones,
which might diminish the model’s ability to preserve fine-grained,
local information. To address this, we propose to explicitly separate
the low-order and high-order features before fusion.

First, we obtain the low-order feature matrix Hlow and the high-
order feature matrix Hhigh:

Hlow = 𝜎 (A · X ·Wlow), Hhigh = 𝜎 (Ã · X ·Whigh), (4)

where Wlow ∈ R𝑓 ×𝑑 and Whigh ∈ R𝑓 ×𝑑 are both learnable weight
matrices for the low-order and high-order features, respectively.
The activation function 𝜎 (·) introduces non-linearity to the trans-
formation.

To ensure a balanced integration of local and global information,
we introduce a learnable balancing factor 𝛽 , which allows for dy-
namic adjustment of the contribution from each feature type. The
final node representation H is computed as a weighted sum of the
low-order and high-order features:

H = 𝛽 · Hlow + (1 − 𝛽) · Hhigh, (5)

where 𝛽 is optimized during training to ensure that the model can
adaptively balance the trade-off between local and global informa-
tion, depending on the specific task and graph structure.

This separation and fusion process enhances the model’s abil-
ity to capture both fine-grained, local details and broader, global
patterns in the graph, ultimately leading to more expressive and
robust node embeddings.

4.3 High-order Redundant Feature Masking
Higher-order neighbors introduce diverse, yet potentially redun-
dant, information to the GNN.Without an effective masking mecha-
nism, these neighbors can introduce noise, diluting the informative
signal and impairing the model’s ability to generate useful node
embeddings. To address this, we propose a novel method for se-
lecting the most relevant and masking other redundant high-order
neighbors based on their local contribution to node representations.

We introduce the Local Contribution Score (LCS) to assign im-
portance scores to high-order neighbors. The LCS is designed to
quantify the relevance of each neighbor by considering both struc-
tural similarity and feature alignment. Specifically, for a node 𝑣𝑖
and its 𝑘-th order neighbor 𝑣 𝑗 , the LCS score is computed as:

LCS(𝑣,𝑢, 𝑘) = 𝛼𝑘 (A𝑘)𝑣𝑢 · (𝑥⊤𝑣 𝑥𝑢)√
𝑑𝑣 · 𝑑𝑢

, (6)

where (A𝑘)𝑣𝑢 is the strength of the connection between nodes 𝑣
and 𝑢 in the 𝑘-hop adjacency matrix, 𝑥𝑣 and 𝑥𝑢 are the feature
vectors of nodes 𝑣 and 𝑢, respectively, and 𝑑𝑣 and 𝑑𝑢 represent the
degrees of nodes 𝑣 and 𝑢, which normalize the influence of highly
connected nodes. 𝛼𝑘 is the learnable parameter that controls the
contribution of the 𝑘-th hop’s adjacency matrix defined in Eq. 2.

The LCS allows us to mask redundant high-order neighbors
and identify the most relevant neighbors by considering both local
structure and feature similarity, enabling the model to selectively
pass information from the most meaningful high-order neighbors.

Once the LCS is computed for each neighbor, we select the top-𝐾
neighbors with the highest LCS values for each node:

Afiltered
𝑘

= Top𝐾 (A𝑘 , LCS(𝑢, 𝑣, 𝑘)) . (7)

This filtering process ensures that only the most informative
high-order neighbors contribute to the node’s final representation,
effectively reducing noise and improving the stability of the em-
beddings.

4.4 Optimization Objective
To ensure the effectiveness of our proposed ScaleGNN, we design an
optimization framework that consists of three key loss components:
the primary task loss, the local contribution score (LCS) regulariza-
tion, and the mask constraint on high-order information masking
mechanism. These losses work together to enhance model perfor-
mance, suppress noise from uninformative high-order neighbors,
and maintain computational efficiency.

For node classification, we employ the standard cross-entropy
loss as the primary task objective:

Ltask = −
∑︁
𝑖∈V

𝑦𝑖 log𝑦𝑖 , (8)

where 𝑦𝑖 represents the ground truth label for node 𝑖 , and 𝑦𝑖 is the
predicted probability distribution over classes.

To guide themodel in selectingmeaningful high-order neighbors,
we introduce an LCS-based regularization term:

LLCS =

𝐾∑︁
𝑖=2

∑︁
(𝑣,𝑢) ∈Nselected

𝑖

(1 − LCS(𝑣,𝑢))2 . (9)

where N selected
𝑖

is the selected neighboring nodes which are not
been masked. This term enforces high-order neighbors be selected
based on their LCS values, reducing the influence of noisy or re-
dundant neighbors.

To further mitigate the over-smoothing issue, we impose a mask
constraint on high-order feature propagation:

Lmask =

𝑁∑︁
𝑘=2

∥Ã𝑘 ∥1, (10)

where Ã𝑘 is the filtered high-order adjacency matrix, and ∥ · ∥1
denotes the ℓ1 norm. Combining all components, the final optimiza-
tion objective is:

L = Ltask + 𝜆1LLCS + 𝜆2Lmask, (11)

where 𝜆1 and 𝜆2 are hyperparameters that control the balance
between regularization and the primary task.

This optimization framework ensures that ScaleGNN maintains
a balance between classification performance, robust high-order
neighbor aggregation, and computational efficiency.

4.5 Time Complexity Analysis
To evaluate the computational efficiency of ScaleGNN, we analyze
its time complexity and compare it with existing scalable GNNs.
The overall complexity consists of three main components: pre-
processing, training, and inference.

ScaleGNN: Towards Scalable Graph Neural Networks via Adaptive High-order Neighboring Feature Fusion Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Let 𝑛 be the number of nodes,𝑚 be the number of edges, and 𝑓
be the feature dimension, 𝐾 be the maximum number of hops. 𝑎
is the number of layers in MLP classifiers of SIGN, GAMLP, and
GBP. 𝑆 in NARS denotes the number of subgraphs,𝑀 in SeHGNN
denotes the number of divided groups, and 𝑅 in RpHGNN is the
number of node classes. In our proposed ScaleGNN, we perform
the following major computations:
• Multi-hop Adjacency Construction: Computing higher-order
adjacency matrices requires O(𝐾𝑚), where 𝐾 is the maximum
number of hops.

• LCS-based Neighbor Filtering: Computing the Local Contribu-
tion Score (LCS) involves pairwise feature similarity for selected
neighbors, yielding a complexity of O(𝐾𝑠𝑛𝑓), where 𝐾𝑠 is the
number of selected high-hop neighbors.

• Feature Aggregation and Training: The GNN layer updates,
including low-order and high-order feature aggregation, take
O(𝑛𝑓 2).
The final complexity per training iteration is approximately

O(𝐾𝑚 + 𝐾𝑠𝑛𝑓 + 𝑛𝑓 2). Table 1 compares the time complexity of
ScaleGNN with other scalable GNN architectures.

Table 1: Time complexity comparison of existing deep and
scalable GNN models.

Method Pre-processing Training Inference

S2GC O(𝐾𝑚𝑓) O(𝑛𝑓 2) O(𝑛𝑓 2)
SIGN O(𝐾𝑚𝑓) O(𝑎𝑛𝑓 2) O(𝑎𝑛𝑓 2)
GAMLP O(𝐾𝑚𝑓) O(𝑎𝑛𝑓 2) O(𝑎𝑛𝑓 2)
GBP O(𝐾𝑚𝑓 + 𝐾

√
𝑚 log𝑛) O(𝑎𝑛𝑓 2) O(𝑎𝑛𝑓 2)

NARS O(𝐾𝑛𝑆 𝑓 +𝑚) O(𝑛𝑓 2) O(𝑛𝑓 2)
SeHGNN O(𝐾𝑛𝑀𝑓 +𝑚) O(𝑛𝑓 2) O(𝑛𝑓 2)
RpHGNN O(𝐾𝑛𝑅𝑓 +𝑚) O(𝑛𝑓 2) O(𝑛𝑓 2)
ScaleGNN O(𝐾𝑚 + 𝐾𝑠𝑛𝑓) O(𝑛𝑓 2) O(𝑛𝑓 2)

Compared to traditional GNNs that suffer from excessive com-
putation due to repeated feature propagation, ScaleGNN optimizes
computational efficiency in two ways: (1) Sparse high-hop neigh-
bor selection: By leveraging LCS-based filtering, ScaleGNN signif-
icantly reduces the number of unnecessary high-hop neighbors in-
volved in feature propagation, improving computational efficiency.
(2) Lightweight aggregation: Since ScaleGNN explicitly separates
low-hop and high-hop features, it avoids redundant computations,
leading to lower memory and runtime costs.

Empirical results on real-world datasets demonstrate that ScaleGNN
achieves faster convergence and lower training time compared to
existing model-simplification methods while maintaining high pre-
dictive accuracy.

5 Experiments
In this section, we evaluate the performance of our proposedmethod
through extensive experiments and answer the following questions:
• (RQ1) Can ScaleGNN outperform the state-of-the-art GNNmeth-
ods regarding predictive accuracy on real-world datasets?

• (RQ2) How does the efficiency of ScaleGNN compare to other
baseline methods?

• (RQ3) How dose ScaleGNN mitigate the over-smoothing issue?
• (RQ4) What are the effects of different modules in ScaleGNN on
performance?

• (RQ5) How does ScaleGNN achieves the trade-off between effi-
ciency and accuracy?

• (RQ6) How do different hyperparameter settings affect the per-
formance?

5.1 Experimental Settings
5.1.1 Datasets. We have evaluated the effectiveness of ScaleGNN
using six real-world graph datasets, including Citeseer, Cora, Pubmed,
and ogbn-arxiv, ogbn-products, ogbn-papers100M. The first three
datasets (Citeseer, Cora, and Pubmed) are relatively small and have
been adopted by existing researches [15], while the latter three
(ogbn-arxiv, ogbn-products, and ogbn-papers100M) are large-scale
heterogeneous graphs commonly used in scalable HGNN evalua-
tions. The detailed description of these datasets is shown in the
Table 2.

5.1.2 Baselines. We compare our method with three categories of
GNN baseline methods as follows:

• TraditionalGNNmethods: R-GCN [26], HetGNN [38], HAN [28],
MAGNN [6], Simple-HGN [21], HINormer [22].

• DeepGNNmethods: SIGN [25], S2GC [45], GBP [2], GAMLP [41],
GRAND+ [5], LazyGNN [31].

• ScalableGNNmethods: NARS [34], SeHGNN [32], RpHGNN [12].

Notice that most of traditional and deep GNNmethods encounter
out-of-memory (OOM) issues when dealing with large datasets
(such as products and paper100M). As for R-GCN, while the original
version presents OOM issues with large datasets, it is often used
as a baseline for large-scale HGNNs. in an effort to adapt R-GCN
for large datasets, we follow NARS’ experimental setting and adopt
the neighbor sampling strategy used by GraphSAGE [9]. Besides,
scalable GNN methods NARS, SeHGNN, and RpHGNN, are both
pre-computation-based methods which differ from other end-to-
end models. Most of their model runtime is consumed in obtaining
the pre-computation tensor for large-scale graphs, with only a tiny
amount of time spent on training and inference.

5.1.3 Implementation Details. We implement all baseline methods
according to their provided code. For three small datasets, we set
the epoch number to 100 and select dropout rate, weight decay,
and learning rate from {0.1, 0.2, 0.3, 0.4, 0.5, 0.6}, {1e-5, 1e-4, 1e-3}
and {0.001, 0.005, 0.01, 0.05, 0.1}, respectively. For three large-scale
datasets, we set the epoch number and learning rate to 1000 and
0.001 without weight decay. The embedding dimension 𝑑 is chosen
from {32, 64, 128, 256, 512}, and ourmethod uses GCN as themessage
aggregator.

5.2 Performance Comparison (RQ1)
We evaluate the performance of our ScaleGNN and all baselines
on six real-world datasets under the node classification task. The
experimental results are shown in Table 3. The best results are
highlighted in bold, and the second-best results are underlined. As
we can see, our ScaleGNN achieves the optimal performance, signif-
icantly outperforming all baselines in both micro-F1 and macro-F1

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Xiang Li, Haobing Liu, Jianpeng Qi, Yanwei Yu, Yuan Cao, and Guoqing Chao

Table 2: Statistical summaries of datasets.

Datasets #Nodes #Edges #Features #Classes #Train/Val/Test Description

Citeseer 3,327 4,732 3,703 6 120/500/1000 citation network
Cora 2,708 5,429 1,433 7 140/500/1000 citation network

Pubmed 19,717 44,338 500 3 60/500/1000 citation network

ogbn-arxiv 169,343 1,166,243 128 40 91K/30K/49K citation network
ogbn-products 2,449,029 61,859,140 100 47 196K/49K/2,204K co-purchasing network

ogbn-papers100M 111,059,956 1,615,685,872 128 172 1200k/200k/146k citation network

Table 3: Performance comparison of all models on six real-world datasets. Mi-F1 andMa-F1 are short for micro-F1 andmacro-F1.
Marker * indicates the results are statistically significant against the best-performed baselines (t-test with p-value < 0.01).

Method Citeseer Cora Pubmed ogbn-arxiv ogbn-products ogbn-paper100M
Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

Trad. GNN

RGCN 70.53 70.14 81.23 80.59 78.37 75.58 58.26 46.83 48.94 48.04 42.31 31.12
HetGNN 70.55 70.13 81.20 80.57 78.40 75.66 OOM. OOM. OOM. OOM. OOM. OOM.
HAN 71.10 70.57 81.39 80.86 78.53 75.85 54.68 31.50 OOM. OOM. OOM. OOM.

MAGNN 71.22 70.69 81.57 80.98 78.55 76.01 OOM. OOM. OOM. OOM. OOM. OOM.
Simple-HGN 71.34 70.78 81.88 81.14 78.88 76.17 69.47 58.29 OOM. OOM. OOM. OOM.
HINormer 72.75 71.91 82.19 81.67 79.35 76.60 70.71 59.68 OOM. OOM. OOM. OOM.

Deep GNN

SIGN 72.44 71.97 82.11 80.46 79.53 76.44 71.78 62.99 78.21 70.10 64.32 55.49
S2GC 72.78 72.13 82.45 82.09 79.56 76.67 71.88 63.23 77.09 69.54 64.63 55.90
GBP 72.61 72.08 83.52 82.42 80.56 79.13 71.42 62.41 77.27 69.49 64.66 56.07

GAMLP 72.59 72.06 82.31 80.32 79.11 76.15 71.88 63.15 80.34 71.37 64.53 55.90
GRAND+ 72.48 72.03 82.04 80.23 79.24 76.46 71.43 62.30 77.52 69.70 64.11 55.19
LazyGNN 72.91 72.21 82.45 80.87 79.92 77.03 71.63 62.72 77.60 69.90 64.25 55.38

Scal. GNN
NARS 72.41 71.21 81.79 80.30 78.82 75.82 70.75 59.88 78.08 70.20 63.52 54.63

SeHGNN 72.90 72.45 83.04 81.43 79.71 77.70 71.82 62.69 79.68 70.85 64.55 55.86
RpHGNN 73.12 72.54 83.27 82.37 80.60 79.22 71.98 63.11 80.65 71.34 64.97 56.50

Ours ScaleGNNb 73.11 72.59 83.60 82.41 80.54 79.24 71.95 63.23 80.78 71.34 64.95 56.51
ScaleGNN 74.22* 73.61* 84.53* 84.01* 81.95* 80.50* 73.02* 64.08* 81.64* 72.33* 65.53* 57.29*

metrics on six datasets, with specific emphasis on the improvement
relative to the SOTA methods.

Traditional GNNmethodswork flawlessly on small-scale datasets,
but most of them cannot be extended to large-scale graphs and are
prone to OOM issues. For example, R-GCN, HAN, Simple-HGN,
and HINormer can get experimental results on ogbn-arxiv, but
can’t run on larger-scale graphs such as ogbn-products and ogbn-
paper100M. For deep GNN methods, they work on learning large-
scale graph representations using deeper GNNs while mitigating
the over-smoothing problem on large-scale graphs. A common is-
sue with such methods is that they typically convolve dozens or
even tens of GNN layers. while capturing the caveat features to
some extent, it also greatly increases the computational complexity
of the model. Pre-computation-based GNN approaches are distin-
guished from end-to-end models by the fact that they consume a
significant amount of time in pre-computing the tensor of large-
scale graphs, so that the models do not need to iteratively learn
graph representations during training and inference.

It is worthmentioning that our basic model ScaleGNNb, although
retaining only the basic adaptive high-order feature fusion module,

achieves very similar performance to one of the SOTA methods,
RpHGNN, and runs efficiently in the far outperforms all baselines.
ScaleGNN gains further performance gains despite being less effi-
cient than ScaleGNNb. Therefore, ScaleGNN and ScaleGNNb pro-
vide an important reference value for us to explore the trade-off
between model accuracy and efficiency.

5.3 Efficiency Analysis (RQ2)
To evaluate the efficiency of our proposed methods, ScaleGNN and
ScaleGNNb, we compare their total runtime with several state-of-
the-art baselines, including S2GC, GBP, GAMLP, and RpHGNN,
across three benchmark datasets: ogbn-arxiv, ogbn-products, and
ogbn-papers100M. The results presented in Fig. 2 clearly demon-
strate the superior efficiency of ScaleGNN and ScaleGNNb over all
competing methods.

5.3.1 Computation Efficiency. As shown in the figure, ScaleGNNb
achieves the lowest runtime across all datasets, followed closely
by ScaleGNN. Specifically, on the large-scale ogbn-papers100M

ScaleGNN: Towards Scalable Graph Neural Networks via Adaptive High-order Neighboring Feature Fusion Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Figure 2: Efficiency comparison with SOTA GNN methods,
and speedup analysis compared with our ScaleGNNb.

dataset, ScaleGNNb completes themodel running in only 4,110.2 sec-
onds, significantly outperforming S2GC (19,914.4s), GBP (35,706.1s),
GAMLP (35,656.6s), and RpHGNN (10,399.8s). This trend is also con-
sistently observed across ogbn-arxiv and ogbn-products datasets,
where ScaleGNNb reduces runtime by at least 4.1× to 6.7× compared
to the best-performing baseline.

The significant reduction in runtime can be attributed to the
efficient design of ScaleGNN, which optimizes neighborhood ag-
gregation and selectively samples informative neighbors, thereby
reducing computational overhead while preserving model perfor-
mance. Moreover, the enhanced scalability of ScaleGNNb further
refines this efficiency by introducing additional optimizations in
feature propagation and memory management.

5.3.2 Contrastive Speedup Analysis. To better illustrate the effi-
ciency advantage, we annotate each baseline method with its rel-
ative speedup factor compared to ScaleGNNb. It is evident that
methods like GBP and GAMLP exhibit substantially higher com-
putational costs, with runtime exceeding 6× that of ScaleGNNb
in certain cases. Even RpHGNN, which demonstrates competitive
efficiency, remains 2.5× to 3.1× slower than ScaleGNNb on large
datasets. These results highlight the capability of ScaleGNN to ef-
fectively mitigate the scalability limitations of existing methods.
By reducing redundant computations and dynamically adjusting
the information flow, our approach enables substantial efficiency
improvements without compromising accuracy. The consistent
speedup across diverse datasets further underscores the robustness
of our design, making it particularly suitable for large-scale graph
learning tasks.

In summary, ScaleGNN and ScaleGNNb achieve remarkable com-
putational efficiency, substantially reducing runtime compared to
existing approaches. The combination of selective neighbor aggre-
gation, adaptive feature diffusion, and memory-efficient propaga-
tion mechanisms enables our methods to handle large-scale graphs
with minimal computational overhead. These findings underscore
the practical applicability of ScaleGNN in real-world scenarios
where the model efficiency is a critical concern.

5.4 Mitigating Over-smoothing Issue (RQ3)
Over-smoothing is a well-known issue in deep graph neural net-
works, where node representations become indistinguishable as the
number of propagation layers increases. This problem is particularly
severe in large-scale graphs such as ogbn-papers100M, where exces-
sive feature mixing leads to performance degradation. To evaluate
the effectiveness of our approach in addressing this challenge, we
compare ScaleGNN with several SOTA baselines, including S2GC,
GBP, GAMLP, and RpHGNN, across different propagation depths.

(a) ogbn-products (b) ogbn-paper100M

Figure 3: Experimental results of our model over SOTA GNN
models w.r.t. the number of hops.

Fig. 5 shows that traditional GNNmethods experience significant
performance drops as the number of propagation layers increases.
For example, S2GC, GBP, and GAMLP achieve their peak perfor-
mance at moderate depths (around 8-12 layers) but degrade rapidly
beyond this point. This phenomenon occurs because deeper layers
cause excessive aggregation, leading to the loss of discriminative
node features. In contrast, ScaleGNN exhibits a more stable per-
formance curve. Even at greater depths (e.g., 30 layers), ScaleGNN
maintains a high micro-F1 score, outperforming all baselines. This
robustness demonstrates that ScaleGNN effectively preserves struc-
tural and feature information, preventing the collapse of node rep-
resentations.

The key to ScaleGNN’s resilience against over-smoothing lies in
its adaptive feature aggregation mechanism. Unlike conventional
approaches that uniformly aggregate neighborhood information,
ScaleGNN dynamically balances local and global features, ensur-
ing that useful information is retained while mitigating excessive
smoothing. Specifically, our ScaleGNN Selectively incorporates
higher-order neighbors with controlled influence, preventing over-
mixing of features. It employs adaptive diffusion mechanisms to reg-
ulate information propagation, ensuring a balance between short-
term and long-term dependencies. ScaleGNN utilizes a local con-
tribution score (LCS) to prioritize informative neighbors, reducing
noise and redundancy in feature aggregation. These strategies allow
ScaleGNN to maintain a richer set of node representations, even in
deep architectures, making it particularly effective for large-scale
graphs.

5.5 Ablation Study (RQ4)
To evaluate the effectiveness of each component in ScaleGNN, we
further conduct ablation studies on different variants. Specifically,
we generate three variants as follows:

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Xiang Li, Haobing Liu, Jianpeng Qi, Yanwei Yu, Yuan Cao, and Guoqing Chao

(a) ogbn-products (b) ogbn-paper100M (c) ogbn-products (d) ogbn-paper100M

Figure 4: The parameter sensitivity experimental results.

• w/o Ada removes the adaptive high-order feature fusion module
and employs the deep GNN method S2GC [45] to obtain the
graph representation.

• w/o Low eliminates the low-order enhanced feature aggregation
and only employs the adaptive high-order feature fusion.

• w/o Mask removes the high-order redundant feature masking
mechanism.

Table 4: The comparison of ScaleGNN and its variants on
micro-F1 and macro-F1 (Mi-F1 and Ma-F1 for short) metrics.

Dataset ogbn-arxiv ogbn-products ogbn-paper100M
Metrics Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

w/o Ada 71.25 62.55 80.28 70.79 64.19 55.87
w/o Low 72.07 63.27 80.30 71.57 64.97 56.56
w/o Mask 71.49 62.70 80.42 71.04 64.45 55.98

ScaleGNN 73.02 64.08 81.64 72.33 65.53 57.29

The results demonstrate that each component is vital for improving
ScaleGNN’s performance. w/o Ada variant experiences the largest
performance drop across all datasets, with reductions of 1.77% in
Micro-F1 and 1.53% in Macro-F1 on ogbn-arxiv, 1.16% and 1.54%
on ogbn-products, and 1.34% and 1.42% on ogbn-paper100M, high-
lighting the importance of adaptive high-order feature fusion for
capturing structural dependencies and preventing information loss.
w/o Low variant also shows notable degradation, especially on
ogbn-arxiv and ogbn-paper100M, with Micro-F1 dropping by 0.95%
and 0.56%, respectively, indicating that low-order enhanced fea-
ture aggregation is crucial for maintaining local information. w/o
Mask variant sees moderate degradation, with Micro-F1 decreas-
ing over 1% on ogbn-arxiv, ogbn-products, and ogbn-paper100M,
showing the effectiveness of high-order redundant feature masking
in reducing redundancy and preventing excessive feature mixing.

Overall, ScaleGNN consistently outperforms all ablated ver-
sions, confirming the significant contribution of each module to
the model’s success. Adaptive high-order feature fusion is the most
influential in improving performance, followed by low-order en-
hanced feature aggregation and high-order redundant feature mask-
ing. The combination of these mechanisms enables ScaleGNN to
achieve superior results on various large-scale graph datasets.

(a) ogbn-products (b) ogbn-paper100M

Figure 5: The trade-off between efficiency and accuracy on
large-scale graph datasets.

5.6 Trade-off Analysis: Performance vs.
Efficiency (RQ5)

In this section, we evaluate the trade-off between efficiency and
accuracy for ScaleGNN and ScaleGNNb by analyzing their runtime
and Micro-F1 scores across different hop settings.

The runtime analysis reveals that ScaleGNN incurs a higher
computational cost than ScaleGNNb across all hop settings. As the
number of hops increases, both methods show rising runtimes, re-
flecting the increased complexity of message passing over larger
neighborhoods. However, ScaleGNN consistently requires more
computational resources, suggesting that its modeling choices in-
troduce additional overhead.

In terms of performance, ScaleGNN consistently outperforms
ScaleGNNb in Micro-F1 scores. Both methods benefit from increas-
ing hops, as it helps capture structural and semantic relationships.
However, beyond a certain point, performance gains diminish due
to redundant or noisy information from distant nodes.

These results highlight the trade-off between accuracy and ef-
ficiency. While ScaleGNN achieves higher Micro-F1 scores, it comes
with a significantly higher computational cost. In contrast, ScaleGNNb
offers a more efficient alternative with a slight performance com-
promise. This suggests that model selection should be based on
practical constraints: ScaleGNN is ideal for accuracy-focused tasks,
while ScaleGNNb is better for resource-constrained environments.
Balancing efficiency and accuracy remains crucial in large-scale
graph learning.

5.7 Parameter Sensitivity Analysis (RQ6)
5.7.1 The effect of hyperparameters 𝛽 . We conduct a sensitivity
analysis of 𝛽 , which balances low-order and high-order feature
aggregations, by varying its value from 0.1 to 0.9 and evaluating the
Micro-F1 score (%). The results in Fig. 4 show that performance im-
proves as 𝛽 increases, peaking at 𝛽 = 0.5. Beyond this point, further

ScaleGNN: Towards Scalable Graph Neural Networks via Adaptive High-order Neighboring Feature Fusion Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

increases in 𝛽 lead to a gradual decline, likely due to overemphasiz-
ing high-order information, which may introduce noise or redun-
dancy. These findings highlight the importance of 𝛽 to strike an
optimal balance between local and global information aggregation.

5.7.2 The effect of hyperparameters 𝜆1 and 𝜆2. We investigate the
sensitivity of 𝜆1 and 𝜆2 in the final loss function by varying their
values within {0.0005, 0.001, 0.005, 0.01, 0.05, 0.1} and evaluating
the Micro-F1 score (%). As shown in Fig. 4, 𝜆1 is more sensitive,
peaking at 𝜆1 = 0.005 and 𝜆1 = 0.01, with performance declining as
𝜆1 increases. This suggests that moderate regularization improves
performance, while excessive regularization harms it. On the other
hand, 𝜆2 shows a more stable trend, optimizing at 𝜆2 = 0.01, with
minimal fluctuations, indicating that it primarily enhances model
stability. These results highlight the need for careful hyperparame-
ter tuning: 𝜆1 requires precise adjustment for optimal performance,
while 𝜆2 ensures robustness.

6 Conclusion
Wepropose a novel scalable GNNmodel named ScaleGNN, tackling
over-smoothing and scalability challenges in large-scale graphs.
ScaleGNN adaptively aggregates informative high-order neighbors
while suppressing redundancy through a Local Contribution Score
(LCS)-based masking mechanism. Extensive experiments show that
ScaleGNN outperforms state-of-the-art deep and scalable GNNs in
both accuracy and efficiency. Future work includes extending it to
heterogeneous graphs and optimizing large-scale training.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Xiang Li, Haobing Liu, Jianpeng Qi, Yanwei Yu, Yuan Cao, and Guoqing Chao

References
[1] Hao Chen, Yuanchen Bei, Qijie Shen, Yue Xu, Sheng Zhou, Wenbing Huang,

Feiran Huang, Senzhang Wang, and Xiao Huang. 2024. Macro graph neural
networks for online billion-scale recommender systems. In Proceedings of the
ACM on Web Conference 2024. 3598–3608.

[2] Ming Chen, Zhewei Wei, Bolin Ding, Yaliang Li, Ye Yuan, Xiaoyong Du, and
Ji-Rong Wen. 2020. Scalable graph neural networks via bidirectional propagation.
NeurIPS 33 (2020), 14556–14566.

[3] Zi Chen, Bo Feng, Long Yuan, Xuemin Lin, and LipingWang. 2023. Fully Dynamic
Contraction Hierarchies with Label Restrictions on Road Networks. Data Science
and Engineering 8, 3 (2023), 263–278.

[4] Mucong Ding, Tahseen Rabbani, Bang An, Evan Wang, and Furong Huang. 2022.
Sketch-GNN: Scalable graph neural networks with sublinear training complexity.
NeurIPS 35 (2022), 2930–2943.

[5] Wenzheng Feng, Yuxiao Dong, Tinglin Huang, Ziqi Yin, Xu Cheng, Evgeny
Kharlamov, and Jie Tang. 2022. Grand+: Scalable graph random neural networks.
In WWW. 3248–3258.

[6] Xinyu Fu, Jiani Zhang, Ziqiao Meng, and Irwin King. 2020. Magnn: Metapath
aggregated graph neural network for heterogeneous graph embedding. InWWW.
2331–2341.

[7] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. 2018.
Predict then propagate: Graph neural networks meet personalized pagerank.
arXiv preprint arXiv:1810.05997 (2018).

[8] Kaiqi Gong, Xiao Song, Wenxin Li, and Senzhang Wang. 2024. HN-GCCF: High-
order neighbor-enhanced graph convolutional collaborative filtering. Knowledge-
Based Systems 283 (2024), 111122.

[9] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. NeurIPS 30 (2017).

[10] Liancheng He, Liang Bai, Xian Yang, Hangyuan Du, and Jiye Liang. 2023. High-
order graph attention network. Information Sciences 630 (2023), 222–234.

[11] Huiting Hong, Hantao Guo, Yucheng Lin, Xiaoqing Yang, Zang Li, and Jieping
Ye. 2020. An attention-based graph neural network for heterogeneous structural
learning. In AAAI, Vol. 34. 4132–4139.

[12] Jun Hu, Bryan Hooi, and Bingsheng He. 2024. Efficient heterogeneous graph
learning via random projection. IEEE TKDE (2024).

[13] Ziniu Hu, Yuxiao Dong, Kuansan Wang, and Yizhou Sun. 2020. Heterogeneous
graph transformer. In WWW. 2704–2710.

[14] Xunqiang Jiang, Tianrui Jia, Yuan Fang, Chuan Shi, Zhe Lin, and Hui Wang. 2021.
Pre-training on large-scale heterogeneous graph. In SIGKDD. 756–766.

[15] Di Jin, Yingli Gong, Zhiqiang Wang, Zhizhi Yu, Dongxiao He, Yuxiao Huang,
and Wenjun Wang. 2022. Graph neural network for higher-order dependency
networks. InWWW. 1622–1630.

[16] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[17] Bingheng Li, Erlin Pan, and Zhao Kang. 2024. Pc-conv: Unifying homophily and
heterophily with two-fold filtering. In AAAI, Vol. 38. 13437–13445.

[18] Jianxin Li, Hao Peng, Yuwei Cao, Yingtong Dou, Hekai Zhang, S Yu Philip, and
Lifang He. 2021. Higher-order attribute-enhancing heterogeneous graph neural
networks. IEEE TKDE 35, 1 (2021), 560–574.

[19] Yiming Li, Yanyan Shen, Lei Chen, and Mingxuan Yuan. 2023. Zebra: When
temporal graph neural networks meet temporal personalized PageRank. VLDB
16, 6 (2023), 1332–1345.

[20] Zhijun Liu, Chao Huang, Yanwei Yu, Baode Fan, and Junyu Dong. 2020. Fast
attributed multiplex heterogeneous network embedding. In CIKM. 995–1004.

[21] Qingsong Lv, Ming Ding, Qiang Liu, Yuxiang Chen, Wenzheng Feng, Siming
He, Chang Zhou, Jianguo Jiang, Yuxiao Dong, and Jie Tang. 2021. Are we really
making much progress? revisiting, benchmarking and refining heterogeneous
graph neural networks. In SIGKDD.

[22] Qiheng Mao, Zemin Liu, Chenghao Liu, and Jianling Sun. 2023. Hinormer:
Representation learning on heterogeneous information networks with graph
transformer. In WWW. 599–610.

[23] Lawrence Page. 1999. The PageRank citation ranking: Bringing order to the web.
Technical Report.

[24] Erlin Pan and Zhao Kang. 2023. Beyond homophily: Reconstructing structure for
graph-agnostic clustering. In ICML. PMLR, 26868–26877.

[25] Emanuele Rossi, Fabrizio Frasca, Ben Chamberlain, Davide Eynard, Michael
Bronstein, and Federico Monti. 2020. Sign: Scalable inception graph neural
networks. arXiv preprint arXiv:2004.11198 7 (2020), 15.

[26] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In ESWC. Springer, 593–607.

[27] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[28] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S
Yu. 2019. Heterogeneous graph attention network. In WWW. 2022–2032.

[29] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying graph convolutional networks. In International
conference on machine learning. PMLR, 6861–6871.

[30] Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. 2022. Node-
former: A scalable graph structure learning transformer for node classification.
NeurIPS 35 (2022), 27387–27401.

[31] Rui Xue, Haoyu Han, MohamadAli Torkamani, Jian Pei, and Xiaorui Liu. 2023.
Lazygnn: Large-scale graph neural networks via lazy propagation. In ICML.
PMLR, 38926–38937.

[32] Xiaocheng Yang, Mingyu Yan, Shirui Pan, Xiaochun Ye, and Dongrui Fan. 2023.
Simple and efficient heterogeneous graph neural network. In AAAI, Vol. 37.
10816–10824.

[33] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In SIGKDD. 974–983.

[34] Lingfan Yu, Jiajun Shen, Jinyang Li, and Adam Lerer. 2020. Scalable graph neural
networks for heterogeneous graphs. arXiv preprint arXiv:2011.09679 (2020).

[35] Le Yu, Leilei Sun, Bowen Du, Tongyu Zhu, and Weifeng Lv. 2022. Label-enhanced
graph neural network for semi-supervised node classification. IEEE TKDE 35, 11
(2022), 11529–11540.

[36] Pengyang Yu, Chaofan Fu, Yanwei Yu, Chao Huang, Zhongying Zhao, and Junyu
Dong. 2022. Multiplex heterogeneous graph convolutional network. In SIGKDD.

[37] Zeyuan Zeng, Qinke Peng, Xu Mou, Ying Wang, and Ruimeng Li. 2023. Graph
neural networks with high-order polynomial spectral filters. IEEE TNNLS (2023).

[38] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V
Chawla. 2019. Heterogeneous graph neural network. In SIGKDD. 793–803.

[39] Fanjin Zhang, Xiao Liu, Jie Tang, Yuxiao Dong, Peiran Yao, Jie Zhang, Xiaotao
Gu, Yan Wang, Evgeny Kharlamov, Bin Shao, et al. 2022. Oag: Linking entities
across large-scale heterogeneous knowledge graphs. IEEE TKDE 35, 9 (2022),
9225–9239.

[40] Heng-Kai Zhang, Yi-Ge Zhang, Zhi Zhou, and Yu-Feng Li. 2024. HONGAT: Graph
Attention Networks in the Presence of High-Order Neighbors. In AAAI, Vol. 38.
16750–16758.

[41] Wentao Zhang, Ziqi Yin, Zeang Sheng, Yang Li, Wen Ouyang, Xiaosen Li, Yangyu
Tao, Zhi Yang, and Bin Cui. 2022. Graph attention multi-layer perceptron. In
SIGKDD.

[42] Ziwei Zhang, Peng Cui, Haoyang Li, Xiao Wang, and Wenwu Zhu. 2018. Billion-
scale network embedding with iterative random projection. In ICDM. IEEE, 787–
796.

[43] Weichen Zhao, Tiande Guo, Xiaoxi Yu, and Congying Han. 2023. A learnable
sampling method for scalable graph neural networks. Neural Networks 162 (2023),
412–424.

[44] Shanna Zhong, Jiahui Wang, Kun Yue, Liang Duan, Zhengbao Sun, and Yan Fang.
2023. Few-shot relation prediction of knowledge graph via convolutional neural
network with self-attention. Data Science and Engineering 8, 4 (2023), 385–395.

[45] Hao Zhu and Piotr Koniusz. 2021. Simple spectral graph convolution. In ICLR.
[46] Jiong Zhu, Ryan A Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K Ahmed,

and Danai Koutra. 2021. Graph neural networks with heterophily. In AAAI,
Vol. 35. 11168–11176.

[47] Shichao Zhu, Chuan Zhou, Shirui Pan, Xingquan Zhu, and Bin Wang. 2019.
Relation structure-aware heterogeneous graph neural network. In ICDM. IEEE,
1534–1539.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Graph Neural Network
	2.2 Heterogeneous Graph Neural Networks
	2.3 Scalable Graph Neural Networks

	3 Preliminary
	4 Methodology
	4.1 Adaptive High-order Feature Fusion
	4.2 Low-order Enhanced Feature Aggregation
	4.3 High-order Redundant Feature Masking
	4.4 Optimization Objective
	4.5 Time Complexity Analysis

	5 Experiments
	5.1 Experimental Settings
	5.2 Performance Comparison (RQ1)
	5.3 Efficiency Analysis (RQ2)
	5.4 Mitigating Over-smoothing Issue (RQ3)
	5.5 Ablation Study (RQ4)
	5.6 Trade-off Analysis: Performance vs. Efficiency (RQ5)
	5.7 Parameter Sensitivity Analysis (RQ6)

	6 Conclusion
	References

