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A novel approach is proposed to characterize the dynamics of perturbed many-body integrable
systems. Focusing on the paradigmatic case of the Toda chain under non-integrable Hamiltonian
perturbations, this study introduces a method based the time evolution of the Lax eigenvalues λα as
a proxy of the quasi-particles velocities and of the perturbed Toda actions. A set of exact equations
of motion for the λα is derived that closely resemble those for eigenenergies of a quantum problem
(also known as the Pechukas-Yukawa gas). Numerical simulations suggest that the invariant measure
of such dynamics is basically the thermal density of states of the Toda lattice, regardless of the form
of the perturbation.

Introduction – The solution of a physical problem
usually proceeds by identifying a solvable part and
studying the effects of perturbations. For nonlinear
systems where the solvable part is described by an in-
tegrable classical or quantum Hamiltonian, one can,
with varying degrees of mathematical difficulty, sep-
arate the independent degrees of freedom (the quasi-
particles) and analyze their interactions using, for ex-
ample, perturbation theory. In many-body problems,
a perturbation typically destroys integrability, leaving
only a few residual conserved quantities, it is important
to assess how and when thermalization, chaotic dynam-
ics, and conventional hydrodynamic behavior occur [1].
Considering that a variety of physical systems as ultra-
cold atoms, one-dimensional magnets, or optical beams
are proximate to nonlinear integrable limits [2], such
questions are of wide interests in many diverse con-
texts.
In the classical realm, a paradigmatic example is the

celebrated Toda lattice defined by the Hamiltonian [3]

HToda =

N
∑

j=1

(p2
j

2 + e−(qj+1−qj)
)

, (1)

where (qj , pj) are position and momentum of the j-th
particle ( note that the model has no free parameter).
The discovery of its full integrability [4, 5] sparkled a
vivid reseach activity. However, its thermodynamics re-
ceived only sporadic consideration [6, 7], and has only
recently garnered renewed attention due to the formu-
lation of Generalized Gibbs Ensembles (GGE), which
extend the canonical state of standard statistical me-
chanics to integrable models [8–11]. This represent a
great novelty with respect to the very many works deal-
ing with zero-temperature properties of specific solu-
tions e.g. solitons, breathers and nonlinear waves [12],
the emphasis being shifted to e.g. dynamical correla-
tions at equilibrium [13, 14].
Beyond this, insights on the effect of integrability-

breaking perturbations are relevant for nonequilib-

rium properties, ranging from the classic thermaliza-
tion problem, a lá Fermi-Pasta-Ulam-Tsingou (FPUT)
[15] to heat transport close to quasi-integrable limit
[16]. The crucial observation [17] is that, HToda is
the closest integrable approximation of a whole fam-

ily of anharmonic chains with Hamiltonian of the form
H =

∑

j [
1
2p

2
j +Φ(qj+1 − qj)]. This viewpoint has been

established only recently [18], and implies that for a
broad class of inter-particle potentials Φ, Toda’s model
is a more accurate and insightful approximation than
the standard harmonic one. For instance, the slow
chaotic motion leading to equipartition is not so much
due to the fact a models like FPUT is a discretization of
an integrable wave equation, but rather to the fact that
the dynamics is (at least at low enough energies) essen-
tially indistinguishable from Toda’s on very long time
scales [18]. This idea is corroborated by numerical ex-
periment on thermalization [17, 19, 20] and stationary
transport [16, 21–24]. In the first case, the metastable
state can be seen as a particular GGE state that slowly
relaxes to standard thermal equilibrium [19].
In this Letter, a novel point of view of the problem

is presented based on the extension of the concept of
Lax eigenvalues, which are well-known in the theory of
integrable models [25], to their perturbed versions. It
will be argued that they are insightful quantities and
that their time-evolution caused by the perturbation
has some generic features of considerable interest.
To start, it is convenient to write the equations of

motion for the Toda lattice with the Flaschka variables

aj = e−rj/2, bj = pj , (with rj ≡ qj+1 − qj) as

ȧj =
1
2aj(pj − pj+1), ṗj = a2j−1 − a2j , (2)

under periodic boundary conditions, a−1 = aN , pN+1 =
p1. One then defines the Lax matrix, L = LT , N ≥ 3,
and its pair matrix B = −BT as

Li,j = ai−1δi−1,j + piδi,j + aiδi+1,j (3)

Bi,j =
1

2
ai−1δi−1,j −

1

2
aiδi+1,j (4)

http://arxiv.org/abs/2504.15919v1


2

0 50 100 150 200
0

20

40

60

80

100

t

(a) Toda λ=1.8005532

0 20 40 60 80 100

0.0

0.5

1.0

1.5

v α
(t)

(b)

−1 0 1 2

−2

0

2

4

λ α

(c)

0 50 100 150 200
la  ice si e n

0

20

40

60

80

100

 

(d) Morse λ=1.8627312

0 20 40 60 80 100
 ime

0.0

0.5

1.0

1.5

2.0

v α
(t)

(e)

−2 −1 0 1 2
⟨vα(t)⟩

−4

−2

0

2

4

⟨λ
α⟩

(⟨)

FIG. 1. Simulations of Toda (upper panels) and Morse chains with ε = 0.1 (lower panels); (a,d): Space-time evolution of
the square modulus of a Lax eigenvector |ψα,n(t)|

2 α = 166 (b,e) quasiparticle velocities computed by Eq.(7) (solid red
line) and corresponiding Lax eigenvalue λα(t); (c,f) plots of λα(t) versus the time-averaged velocity 〈vα〉. For comparison,
in the Morse case (f) the average eigenvalue is reported. In both cases, N = 200 and initial conditions are sampled from a
thermal GGE state of the Toda model with β = 1, βP = 1.

with L1,N = LN,1 = aN , B1,N = −BN,1 = aN . It
is well known [25] that Eqs. (2) can be recasted as
L̇ = [B,L] = BL− LB.
Consider the motion of a perturbed Toda system in

the general form [26]

L̇ = [B,L] + U (5)

where U(a, p) is a N × N symmetric matrix with the
same structure as L (i.e. if Li,j = 0 then also Ui,j = 0)
whose elements are (nonlinear) functions of the Flashka
variables.
Consider the eigenvalue problem

L |α〉 = λα |α〉 , α = 1, . . . , N. (6)

where λα and |α〉 are the Lax eigenvalues and eigen-
vectors, whose components in the lattice basis |j〉 are
ψα,j = 〈α|j〉.
Integrability - For Toda (U = 0), L(t) is isospec-

tral i.e. λα do not change while eigenvectors are time-
dependent and satisfy ˙|α〉 = B |α〉 . At zero temper-
ature the spectrum is λα = 2 cos(2πα/N) and eigen-
states with |λα| > 1 are associated to solitons [27].
The physically relevant conserved charges are given by
tr
(

Ln
)

=
∑N

j=1(L
n)j,j =

∑N
α=1 λ

n
α. The first three are

the standard ones, namely the sum of the stretches rj ,
momenta pj and local energies p2j + a2j + a2j−1.
A thermodynamic state corresponds to a General-

ized Gibbs Ensemble (GGE), with finite energy density
fixed by the N independent chemical potentials [10]. In

this context, L is a random matrix sampled from each
GGE state. The simplest case would be the thermal

one where the assigned thermodynamic variables are
the stretch ℓ = 〈rj〉 = −2〈log aj〉, kinetic temperature
1/β = 〈p2j〉 and pressure P = 〈a2j 〉 [10].

Lax eigenvalues thus play a major role in the ther-
modynamics, as averages can be written as integrals
over their empirical Density Of States (DOS) ρ(λ) =

limN→∞

∑N
α=1 δ(λ−λα)/N that can be computed nu-

merically by sampling the L matrices and direct diago-
nalization or analytically via the thermodynamic Bethe
Ansatz. The thermal DOS ρth(λ) is of particular rel-
evance: in this case the Li,j are independent random
variables and the Lax spectrum can be sampled eas-
ily. Also, explicit analytical expressions of ρth(λ) are
available in some limit cases [10]. Another important
property is that the spectral gaps are proportional to
Toda actions [28].

Quasiparticles – The quasiparticle concept is insight-
ful to understand the dynamics [10, 29–31]. For inte-
grable systems quasiparticles move ballistically. Upon
collisions they retain their velocity but undergo a spa-
tial shift, the case termed interacting in Ref. [32]. This
results in an effective velocity, which for Toda is solu-
tion of suitable integral equation [9]. To visualize this
concept, one can define the quasiparticle position and
velocity xα, vα as the center of mass of the Lax eigen-
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vector [30]

vα = ẋα =
d

dt

∑

j

ψα,jqjψα,j ≡
∑

ij

ψα,iVi,jψα,j (7)

where V is symmetric, tridiagonal with diagonal ele-
ments pj and upper diagonal 1

2aj log aj [30]. At vari-
ance with λα this velocity is not constant due to the
spatial shifts.
Conservative perturbations of the Toda chain – Upon

multiplying both sides of Eq.(5) by Ln−1, and using
cyclic and linearity properties of the trace

1

n

d

dt
trLn = tr(ULn−1). (8)

So in general, the conservation laws of the eigenvalues
are destroyed except for the case n = 1 for which

∑

α λα
is maintained in the class of momentum-conserving per-
turbations such that trU = 0. In the following, the
energy-conserving case will be considered for which the

phase-space divergence,
∑

ij,j≥i
∂L̇ij

∂Lij
≡ div L̇ = divU ,

vanishes. Thus, the condition divU = 0 ensures that
the perturbation is conservative.
Examples – In principle, for any Hamiltonian H one

can recast the equation of motion in the form (5). How-
ever, for a generic perturbation, U may have a compli-
cated dependence on the Li,j : for instance, terms like
rpj in Φ would yield entries proportional to logp−1 aj
[26]. It is thus useful to examine some simpler cases.
The first is the Morse chain Φ(x) = (e−x/2 − ε)2 [33]
then (up to a constant)

HMorse = HToda + 2ε
∑

j

e−
1
2
(qj+1−qj), (9)

corresponding to a perturbation matrix Ui,j =
2ε(aj−1−aj) δij in Eq. (5). The second example is the
Toda model with non-uniform couplings 1 + εj among
neighbors, namely

HC = HToda +
∑

j

εje
−(qj+1−qj) (10)

for which Ui,j =
(

εj−1a
2
j−1 − εja

2
j

)

δij . For both ex-
amples, U is diagonal (with trU = 0) and its elements
are, respectively, linear and quadratic in the aj . Thus
Eqs.(5) can be integrated directly, which has some com-
putational advantage since only evaluation of algebraic
functions is required [34].
Lax dynamics – The main idea is now to look at the

time evolution of the λα that, under the effect of the
perturbation U , are no longer constant [35]. For illus-
tration, let us compare simulations of the Toda and
Morse chains. In agreement with intuition, the space-
time evolution of a Lax eigenvector |ψα,n(t)|

2 [Fig.
1(a)] looks soliton-like in the integrable case, propa-
gating ballistically with random space shifts, see Fig.
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FIG. 2. Lax dynamics for the Morse chain, Eq. (9): time
evolution of (a) a subset of eigenvalues λα(t) and (b) a cou-
ple of neighboring ones λα(t), λα+1(t) illustrating the strong
repulsion that yields almost elastic collisions ; (c,d): phase

portraits (λα, λ̇α) for α = 102, 103. The chain is initialized
with random initial conditions sampled from the Toda ther-
mal GGE state with β = P = 1, N = 200, ε = 0.1.

1(b) where the quasi-particle velocity vα(t) is reported
along with the corresponding (constant) λα. Plotting
λα versus the time-averaged velocity 〈vα〉 [Fig. 1(c)]
confirms an approximate correspondence between the
two quantities, indicating that one can be used as a
proxy of the other. Also, they become almost exactly
proportional for soliton modes located closer to the Lax
spectrum band edges.

Remarkably, the above picture remains similar also
in presence of the perturbation. The main difference is
that the almost-ballistic propagation is interrupted by
huge scattering shifts, where the center of mass of the
eigenvector very rapidly ”jumps” to another site [Fig.
1(d)]. Also, Fig. 1(e,f) confirms that there is a close
correspondence between the Lax eigenvalues and the
effective velocities [36] .

The eigenvalues trajectories for the Morse chain [Fig.
2(a,b)] manifestly behave as a one-dimensional ”gas”
of particles. In the simulation, the gas remains con-
fined in a bounded region, with no escape, at least on
the considered time-scale. A remarkable feature is that
two neighboring eigenvalues undergo almost elastic col-
lisions, in which they approximately exchange their val-
ues, as clearly seen in Fig. 2(b). Accordingly, this in-
duces relatively large changes in the velocity vα which
accounts for the large scattering shifts observed in Fig.
1(d). In the phase portraits this yields abrupt changes
in λ̇α, Fig. 2(c,d).

For an analytical formulation of Lax dynamics, one
proceeds by computing d(L |α〉)/dt from Eq. (6) and
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FIG. 3. The DOS ρ(λ) obtained from the Lax dynamics
of the Morse (blue) and the Toda chain with alternating
(staggered) coupling εj = (−1)jε (orange lines), (N = 200,
ε = 0.1), starting with initial thermal GGE initial condi-
tions with three different βP , β = 1. Magenta lines are the
thermal DOS ρth for the unperturbed Toda chain, obtained
by sampling and diagonalizing the equilibrium Lax matrix.
The dashed green line in (a) is the approximate Gaussian
DOS expected predicted in the limit of small βP [10].

using Eq. (5), yielding

U |α〉+ (L− λα)
( ˙|α〉 −B |α〉

)

= λ̇α |α〉 . (11)

Upon left-multipying by 〈β|, using 〈α|β〉 = δα,β, and
letting 〈α|U |β〉 ≡ Uαβ one obtains from the diagonal

elements that λ̇α = Uαα and from the non-diagonal
elements the evolution equation for the eigenvectors

|α̇〉 = B |α〉 +
∑

β 6=α

Uαβ

λα − λβ
|β〉 (12)

which reduces to the unperturbed Toda evolution for
U = 0, and is reminiscent of a quantum Hamiltonian
with hopping terms induced by the perturbation.
Finally, one computes U̇αβ and, using Eq.(12),

dλα
dt

= Uαα ≡ πα

dπα
dt

= Fαα + 2
∑

β 6=α

U2
αβ

λα − λβ
(13)

dUαβ

dt
= Fαβ + Uαβ

Uββ − Uαα

λα − λβ
+

+
∑

γ 6=α,β

UαγUγβ

[

1

λα − λγ
+

1

λβ − λγ

]

(α 6= β)

where Fαβ ≡ 〈α|
(

U̇ + [U,B]
)

|β〉. Eqs. (13) are exact

and hold whatever the form of U . Also, using the in-
variance of the trace with respect to change of basis,
if momentum conservation holds for also in presence of
perturbation trU = 0, the the ”momentum”,

∑

α πα is
conserved too.
If Fαβ would vanish, Eqs. (13) would be identical to

the so-called Pechukas-Yukawa (PY) equations ruling
the evolution of the eigenenergies of a quantum Hamil-
tonian of the form H = H0 + tH1, as a function of the

fictitious ”time” parameter t [37, 38]. Also, Eq. (12)
would formally correspond to those for quantum eigen-
states [39]. The PY equations are closed and define a
2N +N(N − 1)/2-dimensional dynamical system (U is
symmetric) with generalized coordinates (λα, πα, Uαβ).
It has the remarkable features to be both Hamiltonian
and fully integrable. Indeed, the change of variable
Vαβ = Uαβ(λα − λβ) (α 6= β) transforms the PY equa-
tions in a generalized version of the famous Calogero-
Moser model [39, 40].

Yet, the presence of the terms Fαβ hinders an ex-
act analysis as in the PY case: indeed, Eqs. (13)
are not closed and, in general, are also explicitly time-
dependent [41]. Despite those difficulties, some inter-
esting physical consequences can be envisaged.

First, ignoring for the moment the terms Fαα, the
first two of Eqs.(13) describe a one-dimensional Dyson-
Coulomb gas coupled through the fluctuating ”charges”
U2
αβ provided by the remaining N(N − 1)/2 degrees of

freedom that act as a ”heat bath” [42]. Indeed, for a fi-
nite number of levels, the DOS is approximatively given
by the the invariant measure of the Coulomb gas un-
der an external quadratic potential [38]. On the other
hand, for the Toda chain, such measure coincides also
with the thermal DOS ρth [10]. Indeed, based on the
above heuristic consideration, one may surmise that the
Lax dynamics naturally provides a general thermaliza-
tion pathway towards the thermal DOS for any per-
turbation in the class of the above examples. In other
words, the fluctuations of the charges provide the chaos
(noise) source needed to thermalize the Dyson gas. It
may be argued, that the generic mechanism leading to
thermalization is provided by level repulsion and quasi-
elastic scattering seen in Fig.2.

To support this idea, the data in Fig. 3, show
the DOS ρ(λ) for models (9) and (10) are basically
independent of the choice of U . Moreover, for all
the simulations considered here, the equilibrium DOS
ρ(λ) ≈ ρth(λ), within statistical fluctuations. So, the
thermal DOS of the unperturbed Toda accurately de-
scribes the DOS of the non-integrable models.

As a final remark about integrability, a numeri-
cal simulation of the Lax dynamics in simplest case
N = 3 indicate that the trajectories are compatible
with quasiperiodic motion on invariant tori, a hint that
some form of integrability may occur also here. This
certainly deserve a closer mathematical analysis.

Conclusions – Lax dynamics is a novel and insight-
ful approach to describe the effect of perturbations on
a many-body integrable system at finite energy den-
sity. Its implementation is computationally straight-
forward, and it has the potential to be extended to
other systems, such as perturbations of integrable dis-
cretizations of the nonlinear Schrödinger equation [43],
among others. It offers a physically appealing interpre-
tation in terms of quasi-particle collisions as avoided
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eigenvalue crossings. Furthermore, in the case of weak
perturbations, Lax dynamics is expected to evolve on
a slower timescale compared to the natural timescale
of the Flashka variables. Therefore, it could be an
effective approach for studying the slow evolution of
Toda actions in the context of thermalization prob-
lems [16, 19]. Finally, the analogy with the PY gas
is highly suggestive and warrants a more detailed in-
vestigation. Equations (13) may allow for an effective,
reduced dynamical description of the relevant quanti-
ties. The ’universal’ evolution described by PY dynam-
ics is one of the arguments used to justify the universal
spectral statistics of quantum chaos. Could a similar
consideration also apply in the present context? This
could be one of the many possible research routes orig-
inating from the present work.
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