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Abstract: We investigate the consistency between bulk and boundary causalities in

static, spherically symmetric, asymptotically anti-de Sitter (AdS) spacetimes. We derive

a general formula that provides sufficient conditions for time advance, where bulk propa-

gation arrives earlier than any boundary propagation. As an application, we show that in

Reissner–Nordström–anti de Sitter spacetime, no geodesic satisfies the sufficient conditions

for time advance even in the super-extremal case. Furthermore, we demonstrate that the

Einstein–Euler–Heisenberg theory exhibits time advance when one or a linear combination

of the coupling constants is positive and below an upper bound determined by the AdS

length scale.
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1 Introduction

The anti-de Sitter/conformal field theory (AdS/CFT) correspondence [1–4] suggests

that causal processes connecting boundary points through the bulk are somehow realized in

the viewpoint of the boundary theory. Thus, the causal process through the bulk must also

be causal from the viewpoint of the boundary theory. From this perspective, comparing

the causality in the bulk and on the boundary is a significant topic. As suggested in

Refs. [5, 6], the positivity of energy for asymptotically AdS spacetimes implies that bulk

causality is consistent with that in the boundary theory. Gao and Wald [7] further showed

that, if the null energy condition 1, the null generic condition, and the global hyperbolicity

1As noted in Ref. [7], the null energy condition can be weakened to the averaged version in the sense of

Borde [8].
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of the conformally completed spacetime are satisfied in the bulk theory, such a consistency

is guaranteed. Engelhardt and Fischetti [9] later generalized the results of Gao and Wald,

deriving a condition weaker than the averaged null energy condition that still ensures this

consistency. Based on these studies, the consistency between bulk and boundary causalities

is not guaranteed if certain conditions are not satisfied. Our objective is to investigate the

conditions under which the causal relationships between the bulk and the boundary become

inconsistent, a situation which we refer to as time advance, by perturbative analysis.

The method of characteristics [10] reveals the causal structure of a given theory. For

instance, in general relativity, the fastest propagation occurs at the speed of light, which is

defined as null geodesics with respect to the spacetime metric. However, when these theories

are extended to include the derivative corrections in the effective field theory approach,

superluminal propagations, which follow spacelike curves with respect to the spacetime

metric, possibly arise as studied, for example, in Refs. [11–16] for the flat spacetime and

Refs. [17–28] for curved spacetimes. In such cases, the causal structure must be analyzed

by using the fastest propagation, which is often described by null geodesics of an effective

metric. Since time advance refers to the situation in which a bulk propagation reaches

a boundary point earlier than any boundary-constrained propagation, one can investigate

time advance by comparing the fastest propagation in the bulk and on the boundary, using

the effective metric. In Refs. [29–35], it was shown that the graviton propagation in Gauss–

Bonnet and Lovelock gravity can exhibit time advance, which is related to inconsistencies

in the boundary theory, such as violation of the viscosity bound. The requirement of

forbidding time advance imposes constraints on the parameters of these gravity theories.

See also Ref. [36] for discussions of time advance in the small impact factor limit, in the

context of effective field theory approaches to on-shell graviton scattering amplitude.

Following the direction developed in Refs. [29–35], in this paper, we examine the

bulk propagations in general static, spherically symmetric, asymptotically AdS metrics,

rather than restricting ourselves to specific effective theories such as Gauss–Bonnet or

Lovelock gravity. By comparing the fastest bulk propagation with the boundary causality,

we establish the sufficient conditions for time advance which can be applied perturvatively

to a given effective metric. Subsequently, we apply our time advance conditions to the

Einstein–Maxwell theory and the Einstein–Euler–Heisenberg theory in the presence of a

negative cosmological constant. For the Einstein–Maxwell case, specifically, the Reissner–

Nordström–Anti-de Sitter (RNAdS) spacetime, we find that no geodesic satisfies the suf-

ficient conditions for time advance, while, in the Einstein–Euler–Heisenberg theory, time

advance is shown to occur when the parameters lie within a certain range. Supposing that

the time advance is prohibited in the Einstein–Euler–Heisenberg theory, the parameters

must lie outside the region that leads to time advance, thereby imposing constraints on

this theory.

This paper is organized as follows. In Sec. 2, we introduce boundary and bulk causali-

ties in asymptotically AdS spacetime and provide the sufficient conditions for time advance.

In Sec. 3, we derive the general formulas for time advance conditions in a general static,

spherically symmetric, asymptotically AdS spacetime. Sec. 4 applies these results to the

exact examples. In Sec. 4.1, we analyze the static, spherically symmetric solutions of the
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Einstein–Maxwell theory, namely the RNAdS solution. Then we turn to the static, spher-

ically symmetric solution of the Einstein–Euler–Heisenberg theory in Sec. 4.2. Finally, we

present a summary and discussion in Sec. 5. The detailed calculations are presented in the

Appendix. Throughout the paper, the unit c = 1 is used. The notation (a, b, c, ...) denotes

(t, r), (i, j, ...) refers to the coordinates of the sphere SD−2 where D is the dimension of the

whole spacetime, and (µ, ν, ...) indicates the components of the whole spacetime.

2 Boundary/bulk causality and time advance

The main focus of this paper is to compare boundary causality and bulk causality in

asymptotically AdS spacetimes. Given a bulk field theory, the causality associated with

its field equations can be derived. In many cases, the boundary of the causally connected

region is described by null geodesics with respect to an effective metric 2. Throughout

this paper, we focus on such cases. In particular, we focus on the case where the effective

metric is a D-dimensional asymptotically AdS metric, which can be written as

ds2AAdS ≈ −
(
1 +

r2

ℓ2

)
dt2 +

dr2

1 + r2

ℓ2

+ r2dΩ2
D−2. (2.1)

Here, dΩ2
D−2 represents the metric for the unit D − 2 sphere, ℓ denotes the AdS radius,

and ≈ implies that sub-leading terms in the r → ∞ limit are ignored.

In the asymptotic region of Eq. (2.1), the foliation by the r - constantD−1 dimensional

hypersurfaces {Σr} can be taken. The induced metric on Σr, provided that r is sufficiently

large, is approximately given by

ds2Σr
≈ r2

ℓ2
ds2ESU, (2.2)

where ds2ESU is the metric of the Einstein static universe given by

ds2ESU := −dt2 + ℓ2dΩ2
D−2. (2.3)

The AdS boundary ∂M is defined by r → ∞ limit of Σr. Since a null geodesic with respect

to the boundary metric ds2∂M is also a null geodesic with respect to the conformally related

metric ds2ESU, we will define the boundary causality by that with respect to the metric of the

Einstein static universe (2.3). More precisely, we say that p, q ∈ ∂M are causally connected

in the sense of boundary causality if there exists a causal curve that connects p and q and

is contained in ∂M. In addition, we say that the boundary causality is inconsistent with

the bulk causality if there is a causal curve in M that connects the points p, q ∈ ∂M which

are not causally connected in the sense of boundary causality (see Fig. 1).

Let us analyse the causal structure in more detail. Let γ(p, q) be a null geodesic from

a point p on the boundary ∂M to another point q on the boundary ∂M. Suppose the

2If the kinetic terms of the wave equations are Klein–Gordon type, such as Einstein–Maxwell equations,

the effective metric is simply given by the spacetime metric. However, as discussed in Appendix C.3,

once the higher derivative corrections to the Einstein–Maxwell equations are included, the effective metric

generally differs from the spacetime metric.
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Figure 1. The left figure depicts the asymptotically AdS spacetime, while the right figure presents

an unfolded view of the left diagram. The red and blue curves represent null geodesics along the

boundary, whereas the purple and green curves represent null geodesics within the bulk. In the

right diagram, the gray region is causally related to p from the perspective of boundary causality,

while the white region is spacelike-separated. Consequently, the purple curve ends at q′ within the

gray region, indicating that no time advance occurs. In contrast, the green curve terminates at q̃

in the white region, leading to a time advance.

coordinates of the unit D − 2 sphere dΩ2
D−2 in Eq. (2.1) are written by the polar angles

θ1, θ2, · · · , θD−3 and the azimuthal angle ϕ ∈ (−π, π]. Without loss of generality, p and q

are on the plane defined by θ1 = θ2 = · · · = θD−3 = π/2. Moreover, we can set t = ϕ = 0

at the point p and define t′ and ϕ′ as the coordinate values of q. On the other hand, since

the boundary null geodesics on the plane defined by θ1 = θ2 = · · · = θD−3 = π/2 satisfy

dt

dϕ
= ±ℓ, (2.4)

the set of points on this plane that are causally connected to p in the sense of boundary

causality is given by

t′ ≥ ℓ|ϕ′| (ϕ′ ∈ (−π, π]). (2.5)

Therefore, if q exists outside the region (2.5), the null geodesic γ(p, q) reaches a point earlier

than the boundary causal curve. We say that such a null geodesic exhibits time advance.

3 Time advance conditions for general static, spherically symmetric asymp-

totically AdS spacetime

In this section, we derive the conditions for time advance in a general static, spherically

symmetric asymptotically AdS spacetime, by solving the geodesic equations. The spherical
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symmetry allows us to assume that the geodesic is on the plane defined by θ1 = θ2 = · · · =
θD−3 = π/2 without loss of generality. Suppose a geodesic γ(p, q) from p ∈ ∂M to q ∈ ∂M
is a null geodesic that we consider here, and we set t = ϕ = 0 at the point p. Its orbit can

be obtained by the integration of the geodesic equations. Let ∆t and ∆ϕ be the increase of

the coordinate value along the bulk null geodesic. Clearly, we obtain t′ = ∆t but ϕ′ ̸= ∆ϕ

generally because of 2π times integer difference. In this paper, we focus on the case3 with

0 ≤ ∆ϕ ≤ π. Then, since ϕ′ = ∆ϕ holds, Eq. (2.5) gives the conditions for time advance{
∆ϕ− π ≤ 0,

∆t− ℓ∆ϕ < 0.
(3.1)

We call them the time advance conditions in this paper, even though they are the sufficient

conditions for time advance.

In subsection 3.1, focusing on null geodesics in the asymptotic region, we rewrite the

time advance conditions (3.1) in terms of the metric functions. Then, we provide a more

detailed analysis of some special cases in subsections 3.2 and 3.3.

3.1 Asymptotic expansion

Let us consider the case where the effective metric is a general static, spherically

symmetric asymptotically AdS spacetime,

ĝµνdx
µdxν = −f(r)dt2 +

h(r)

f(r)
dr2 + g(r)r2dΩ2

D−2. (3.2)

Here, f(r), h(r) and g(r) are functions of the radial coordinate r. Suppose that the metric

functions are expressed as,

f(r) =
r2

ℓ2
+ 1 +

∞∑
n=1

fn
rn

, (3.3)

h(r) = 1 +
∞∑
n=1

hn
rn

, (3.4)

g(r) = 1 +

∞∑
n=3

gn
rn

, (3.5)

where fn, hn, and gn are constants4.

Let us focus on a future directed null geodesic γ(p, q) from p to q associated with this

effective metric. Due to the spherical symmetry, the null geodesic can be restricted to that

3If ∆ϕ is negative, flipping the sign of ϕ (ϕ → −ϕ) results in a positive ∆ϕ. Moreover, since we

perform a perturbative analysis to investigate time advance in this paper, time advance can only occur

when |∆ϕ| = π + O(ϵ), where ϵ is defined after Eq. (3.15). Therefore, the cases with 0 ≤ ∆ϕ ≤ π and

π < ∆ϕ < 2π cover all possibilities of the perturbative analysis. The case with π < ∆ϕ < 2π is discussed

in Appendix B and gives the same results as those with 0 ≤ ∆ϕ ≤ π.
4Note that g1 = g2 = 0 is assumed due to the asymptotic condition for asymptotically AdS spacetime

with respect to the areal radius.
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on the equatorial plane θ1 = θ2 = ... = θD−3 = π/2. Thus, the tangent vector of the null

geodesic, say kµ, possesses only the t, r, and ϕ components,

kµ∂µ = ṫ(τ)∂t + ṙ(τ)∂r + ϕ̇(τ)∂ϕ, (3.6)

where the dot denotes the derivative with respect to the affine parameter τ . Note that ṫ is

positive so that the geodesic is future directed. We focus on geodesics with ϕ̇ > 0 without

loss of generality.

We can define two conserved quantities E and L along the null geodesics by

E := −ĝµνk
µ(∂t)

ν = f(r)ṫ (> 0), (3.7)

L := ĝµνk
µ(∂ϕ)

ν = g(r)r2ϕ̇ (> 0), (3.8)

associated with the Killing vectors ∂/∂t and ∂/∂ϕ respectively. Then, the null condition

gµνk
µkν = 0 can be expressed as

ṙ = ±E

√
1

h(r)

[
1− b2f(r)

r2g(r)

]
, (3.9)

where we introduce the impact parameter b by

b :=
L

E
. (3.10)

The null geodesic γ(p, q) of interest starts at a point p on the AdS boundary ∂M and ends

at q ∈ ∂M. Since both p and q exist at infinity r → ∞, the geodesic has the minimum

value of r. We denote the minimum by rm, and refer the point that minimizes r as the

turning point λ. ṙ = 0 holds at λ, and thus, by setting r = rm in Eq. (3.9), we can express

the impact parameter b as

b = rm

√
g(rm)

f(rm)
. (3.11)

Between p and λ, r is a decreasing function of τ , with the minus sign in Eq. (3.9) corre-

sponding to this region. In contrast, the plus sign in Eq. (3.9) corresponds to the region

between λ and q.

From Eqs. (3.7) and (3.8), as well as Eq. (3.9), we obtain

dt

dr
=

ṫ(τ)

ṙ(τ)
= ±

√
h(r)

f(r)
√

1− b2f(r)
r2g(r)

, (3.12)

dϕ

dr
=

ϕ̇(τ)

ṙ(τ)
= ± b

r2g(r)

√
h(r)√

1− b2f(r)
r2g(r)

. (3.13)
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Then, ∆t and ∆ϕ along the boundary-to-boundary null geodesic γ(p, q) can be evaluated

as

∆t = 2

∫ ∞

rm

dr

√
h(r)

f(r)
√
1− b2f(r)

r2g(r)

, (3.14)

∆ϕ = 2

∫ ∞

rm

dr
b
√
h(r)

r2g(r)
√
1− b2f(r)

r2g(r)

. (3.15)

We can evaluate these integrals analytically under the approximations fn/r
n
m, hn/r

n
m, gn/r

n
m ≪

1, denoting the order of them as O(ϵ). As shown in Appendix A.1, ∆ϕ−π and ∆t/ℓ−∆ϕ

can be evaluated as5

∆ϕ− π =
∞∑
n=1

Cn

rnm
+O(ϵ2), (3.16)

∆t/ℓ−∆ϕ = −
∞∑
n=1

βn
Cn

rnm
+O(ϵ2), (3.17)

where the coefficients Cn and βn are given by

Cn :=
1

2
B

(
1

2
,
1 + n

2

)(
− (n+ 1)fn + hn + (n− 1) gn + (n+ 1)

gn+2

ℓ2

)
,

βn := 1− 2F1

(
n

2
,
1

2
,
n

2
+ 1;− ℓ2

r2m

)
. (3.18)

Here B and 2F1 are the beta function and the Gauss’s hypergeometric function respectively.

Properties of the factor βn are studied in Appendix A.2. Some of the key properties are

0 < βn < 1, (3.19)

and

1 <
βn2

βn1

< 3 for n1 < n2. (3.20)

With the results obtained above, we now present the time advance conditions in terms

of Cn. The time advance conditions for the geodesic with the turning point rm, namely,

∆ϕ− π ≤ 0 and ∆t/ℓ−∆ϕ < 0, can be summarized as

F :=
∞∑
n=1

Cn

rnm
≤ 0, (3.21)

G :=
∞∑
n=1

βn
Cn

rnm
> 0. (3.22)

5As shown in Appendix B, the results in the case with π < ∆ϕ < 2π coincide with those in the case

with ∆ϕ− π ≤ 0.
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An immediate consequence from these inequalities is that no time advance occurs when all

Cn’s are same signature, because either of these conditions is not satisfied. Additionally,

other necessary conditions can be obtained from the inequality

βF − G < 0, (3.23)

for arbitrary positive constant β. If one choose β as βn̄ ≤ β < βn̄+1, the inequality can be

expressed as

βF − G =

n̄∑
n=1

(β − βn)
Cn

rnm
−

∞∑
n̄+1

(βn − β)
Cn

rnm
< 0. (3.24)

This inequality cannot be satisfied if all Cn with n ≤ n̄ are positive and all Cn with n > n̄

are negative. This requires the existence of an integer n such that Cn is negative and an

integer n′ > n such that Cn′ > 0.

3.2 Detailed Analysis for 2-terms case

In this subsection, we focus on the case where only two of Cn, precisely Cn1 and Cn2

with n1 < n2, are nonzero. From the discussion in Sec. 3.1, the existence of a time advance

null geodesic requires Cn1 < 0 and Cn2 > 0. The functions F and G are given by

F(rm) =
Cn1

rn1
m

+
Cn2

rn2
m

, (3.25)

G(rm) = βn1

Cn1

rn1
m

+ βn2

Cn2

rn2
m

. (3.26)

A geodesic with rm is time advanced if rm satisfies F(rm) ≤ 0 and G(rm) > 0. These

conditions can be expressed as(
Cn2

|Cn1 |

) 1
n2−n1

≤ rm <

(
βn2

βn1

Cn2

|Cn1 |

) 1
n2−n1

. (3.27)

Although βn2/βn1 depends on rm in general, it always satisfies βn2/βn1 > 1. Therefore,

rm which satisfies the inequality (3.27), i.e., the time advance conditions, always exists for

any given Cn1 < 0 and Cn2 > 0.

Let us evaluate the valid range of the approximations. The radial coordinate at the

turning point of the would-be time advance null geodesic is

rm ∼ (Cn2/|Cn1 |)
1

n2−n1 . (3.28)

In our analysis, we assume that the conditions |Cn1 |/rn1
m ≪ 1 and |Cn2 |/rn2

m ≪ 1 are

satisfied. From Eq. (3.28), these conditions require |Cn1 |
1
n1

C
1
n2
n2


n1n2
n2−n1

≪ 1. (3.29)

Thus our analysis is valid when the length scale of Cn1 is much shorter than that of Cn2 .
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3.3 Detailed Analysis for 3-terms case

In this subsection, we focus on the case where all Cn except for n = n1, n2, n3 vanish.

Without loss of generality, we set n1 < n2 < n3. In this setup, the functions F and G are

given as

F =
Cn1

rn1
m

+
Cn2

rn2
m

+
Cn3

rn3
m

,

G = βn1

Cn1

rn1
m

+ βn2

Cn2

rn2
m

+ βn3

Cn3

rn3
m

. (3.30)

We also assume Cn1 ≥ 0, which corresponds to the positivity of the mass in the applications

in the next section. Then, from the discussion in Sec. 3.1, we find that the time advance

geodesic exists only when Cn2 < 0 and Cn3 > 0.

To see the behavior of these functions, it is useful to define new variable

x := rn3−n2
m > 0, (3.31)

and rewrite the functions F , G as

F̂(x) := rn3
m F = Cn1x

N + Cn2x+ Cn3 , (3.32)

Ĝ(x) := rn3
m G = βn1Cn1x

N + βn2Cn2x+ βn3Cn3 , (3.33)

where we introduce the number N := n3−n1
n3−n2

> 1. Now the time advance conditions can be

expressed as F̂ ≤ 0 and Ĝ > 0.

Let us investigate the properties of the function F̂ . The positivity of Cn1 and N > 1

imply that F̂ is a convex downward function of x. The minimum value of F̂ is achieved at

x = xmin := (|Cn2 |/(NCn1))
1/N−1 and it can be evaluated as

F̂(xmin) := F̂min = −N − 1

N

(
1

N

|Cn2 |
Cn1

) 1
N−1

|Cn2 |+ Cn3 . (3.34)

Therefore, F̂ has zero point(s) only when the minimum F̂min is non-positive, i.e.,

NN

(N − 1)N−1

(
Cn1C

N−1
n3

|Cn2 |N

)
≤ 1. (3.35)

Then, one of the time advance condition F̂ ≤ 0 can be expressed as x1 ≤ x ≤ x2, letting

the zero points of F̂ be x1 and x2 with x1 ≤ x2.

To proceed with the analysis, we consider the case where the Cn1 terms in Eqs. (3.32)

and (3.33) are negligible6. This case reduces to the 2-terms case discussed in the previous

subsection. Then, the smaller solution of F̂(x) = 0 is x1 ≃ Cn3/|Cn2 |, and at x = x1
the first term and the other two terms in the right hand side of Eq. (3.32) are estimated

6In this approximation, the positivity of Cn1 is not essential to the result, although x2 may not exist for

Cn1 ≤ 0.
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as C1(Cn3/|Cn2 |)N and Cn3 , respectively. Hence, the condition for the first term to be

negligible is expressed by

ϵC :=
Cn1C

N−1
n3

|Cn2 |N
≪ 1. (3.36)

In this case, we can express x1 and x2 analytically. The contribution of Cn1 term is

negligible around x1, while the detailed analysis shows that the Cn3 term is negligible near

x2. Solving F̂ = 0 in this approximation, we obtain,

x1 =
Cn3

|Cn2 |
(1 +O (ϵC)) , (3.37)

x2 =

(
|Cn2 |
Cn1

) 1
N−1

(
1 +O

(
ϵ

1
N−1

C

))
. (3.38)

Similarly, Cn1 term in Ĝ is negligible near the smallest zero point, say x = x3
7. Under

this approximation, x3 can be obtained as

x3 =
βn3

βn2

Cn3

|Cn2 |
(1 +O(ϵC)). (3.39)

The condition Ĝ > 0 can be satisfied for 0 < x < x3. Since the factor βn3/βn2 satisfies

1 < βn3/βn2 < 3, we obtain x1 < x3 ≪ x2. Therefore the time advance condition can be

satisfied for a geodesic with

x1 < x < x3. (3.40)

Translating into the condition for rm, we obtain

(
Cn3

|Cn2 |

) 1
n3−n2

≤ rm <

(
βn3

βn2

Cn3

|Cn2 |

) 1
n3−n2

. (3.41)

This result is consistent with the 2-terms analysis in the previous subsection.

Before moving to the concrete applications of our formula, let us summarize the ap-

proximation used here. Since the radial coordinate of the turning point of the time advance

null geodesic is the order of (Cn3/|Cn2 |)1/(n3−n2), we can express the condition for the ap-

proximation in terms of the Cni . First, the conditions for ϵ ≪ 1, which are used to derive

Eqs. (3.16) and (3.17), can be expressed as

|Cni |
rni
m

∼ |Cni ||Cn2 |
ni

n3−n2

C
ni

n3−n2
n3

=: ϵni ≪ 1. (3.42)

7More precisely, βn1Cn1(βn3Cn3)
N−1/(βn2 |Cn2 |)N ≪ 1 is required for this approximation. Since

βn1β
N−1
n3

/βN
n2

could be enormous for large N , this approximation might be different from Eq. (3.36). How-

ever, because the analysis here is done after fixing ni’s, we denote βn1β
N−1
n3

/βN
n2

as a value of order unity.
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More explicitly, ϵni can be expressed as

ϵn1 = Cn1

(
|Cn2 |
Cn3

) n1
n3−n2

≪ 1, (3.43)

ϵn2 = ϵn3 =

(
|Cn2 |1/n2

C
1/n3
n3

) n2n3
n3−n2

≪ 1. (3.44)

Second, the condition ϵC ≪ 1, which is used to derive the analytical expressions for the

zero points for the functions F and G, is

ϵC = Cn1

CN−1
n3

|Cn2 |N
=

Cn1C
n2−n1
n3−n2
n3

|Cn2 |
n3−n1
n3−n2

≪ 1. (3.45)

One can check that the relation ϵn1 = ϵn2ϵC holds. Hence ϵn1 ≪ 1 is automatically satisfied

if ϵn2 ≪ 1 and ϵC ≪ 1 are satisfied.

4 Applications

Using the formulas which are obtained in the previous section, we investigate the

possibilities of time advance in the minimally coupled Einstein–Maxwell theory with the

negative cosmological constant (Sec. 4.1) and in the Einstein–Euler–Heisenberg theory

(Sec. 4.2).

4.1 Einstein–Maxwell Theory

In this subsection, we explore the static, spherically symmetric solution in the mini-

mally coupled Einstein–Maxwell theory with the negative cosmological constant, namely

the Reissner–Nordström anti-de Sitter (RNAdS) spacetime. The action of the Einstein–

Maxwell theory in D-dimensional spacetime is given by

S =

∫
dDx

√
−g

ΩD−2

[
1

2(D − 2)G
(R− 2Λ)− 1

4k
FµνF

µν

]
, (4.1)

where G and k are the gravitational coupling constant and the Coulomb constant respec-

tively, and ΩD−2 is the volume of the unit D − 2 dimensional sphere given by ΩD−2 :=

2π
D−1
2 /Γ

(
D−1
2

)
. The cosmological constant Λ is related with the AdS radius ℓ through

Λ = −(D − 1)(D − 2)

2

1

ℓ2
. (4.2)

As is well known, the characteristic surfaces of the Einstein–Maxwell equation are

generated by the null geodesics with respect to the spacetime metric gµν . Thus, the effective

metric ĝµν , shown in Eq. (3.2), is simply the spacetime metric gµν .

The static, spherically symmetric solution of this system is the Reissner–Nordström

anti-de Sitter (RNAdS) spacetime, which corresponds to the metric (3.2) with

f(r) = 1 +
r2

ℓ2
− 2GM

rD−3
+

1

D − 3

GkQ2

r2(D−3)
, (4.3)

h(r) = 1, (4.4)

g(r) = 1, (4.5)
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as well as the Coulomb potential,

Aµdx
µ = −Φ(r)dt, (4.6)

with

Φ(r) =
k

D − 3

Q

rD−3
. (4.7)

Since the characteristic surface is generated by the null geodesics with respect to the

spacetime metric in the Einstein–Maxwell theory, we can apply the general analysis in the

previous section by setting

fD−3 = −2GM, f2(D−3) =
kGQ2

D − 3
, (4.8)

and other fn, hn and gn vanish. Then, the parameters Cn can read as

CD−3 = (D − 2)B

(
1

2
,
D − 2

2

)
GM, (4.9)

C2(D−3) = − 2D − 5

2(D − 3)
B

(
1

2
,
2D − 5

2

)
GkQ2, (4.10)

and other Cn vanish. Since the coefficient C2(D−3) is negative, no geodesic satisfies the

time advance conditions.

We would like to emphasize that the sub-extremal condition is not assumed, as well as

the positivity of the ADM mass M . Thus, our result shows that no time advance occurs in

the spacetime region (G|M |)1/(D−3) ≪ r and (GkQ2)1/2(D−3) ≪ r even for the spacetime

with naked singularities8. This situation is beyond the general discussion by Gao and Wald

[7], where the global hyperbolicity is assumed.

4.2 Einstein–Euler–Heisenberg Theory

In this subsection, we will explore the time advance condition in the Einstein–Euler–

Heisenberg type of the effective field theory, where the Lagrangian is given by

S =

∫
dDx

√
−g

ΩD−2

[
1

2(D − 2)G
(R− 2Λ)− 1

4k
FµνFµν + α1FµνF

µνFρσF
ρσ + α2F

µνF ρσFνρFσµ

]
.

(4.11)

From the general perspective of the effective field theory approach, our analysis corresponds

to neglecting the interactions that include spacetime curvatures among the fourth-order

derivative terms in the derivative expansions, such as RµνρσF
µνF ρσ, RµνρσR

µνρσ.

Since the theory with the Lagrangian (4.11) is regarded as the leading order terms in

the derivative expansions, we treat the corrections from the α1 and α2 terms perturbatively.

8Our analysis applies to the large r region of the super-extremal solution. The presence of a naked

singularity is not required, and such configurations naturally arise, for example, when an electron is located

at the center.
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This treatment can be justified when the α1 and α2 terms are sufficiently small, compared

to the Einstein–Maxwell terms in the action. As derived in Eq. (C.7) of the appendix C.2,

this requires either

εα ∼ k2|αi|
Gr2

ϵ ≪ 1 or
ℓ2

r2
k2|αi|
Gr2

ϵ2 ≪ 1. (4.12)

In addition, the static, spherically symmetric solution includes the correction from the

Reissner–Nordstrom solution only in the order O(ϵεα). Therefore, we can use the Reissner–

Nordstrom solution as the background spacetime ḡµν in the leading order analysis in O(ϵ)

or O(εα).

Since no kinetic structures for gravitons are modified by Euler–Heisenberg correction

terms, the characteristic surface for the graviton propagation is governed by simply the

spacetime metric ḡµν . Hence the analysis for the gravitational wave is same as the Einstein–

Maxwell case. On the other hand, the characteristic surfaces of the electromagnetic wave

include the corrections due to the terms proportional to αi. In order to obtain the effective

metric of the electromagnetic wave, we perform the mode decomposition of it. The analysis

in Appendix C.3.2 shows that the effective metrics for the scalar and the vector modes are

given as

(ĝ −1)µν = ḡµν − 8kαAFρ
µF ρν , (4.13)

where A = {S, V } with αS = 4α1 + 2α2 for the scalar mode and αV = α2 for the vector

mode 9 . Then, substituting the components of the spacetime metric ḡµν and the Coulomb

potential Φ̄, we obtain

f(r) = 1 +
r2

ℓ2
− 2GM

rD−3
+

1

D − 3

GkQ2

r2(D−3)

− 8k3Q2αA

ℓ2r2(D−3)
− 8k3Q2αA

r2(D−2)
+O(ϵεα, ϵ

2, ε2α), (4.14)

h(r) = 1− 16k3Q2αA

r2(D−2)
+O(ϵεα, ϵ

2, ε2α), (4.15)

g(r) = 1 +O(ϵεα, ϵ
2, ε2α), (4.16)

where O(ϵ) denotes the order of GM/rD−3, kGQ2/r2(D−3), while εα denotes the order of

k3Q2αi/r
2(D−2). In terms of the notations in Eqs. (3.3)–(3.5), the non-zero coefficients can

be read as

fD−3 = −2GM, (4.17)

f2(D−3) =
GkQ2

D − 3
− 8ℓ−2k3Q2αA, (4.18)

f2(D−2) = −8k3Q2αA, (4.19)

h2(D−2) = −16k3Q2αA. (4.20)

9Our expression for the effective metrics reproduces the result in Ref. [16] in the case of D = 4 flat

spacetime.
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From these coefficients, we can evaluate non-vanishing Cn as

CD−3 = (D − 2)B

(
1

2
,
D − 2

2

)
GM, (4.21)

C2(D−3) = − 2D − 5

2(D − 3)
B

(
1

2
,
2D − 5

2

)
GkQ2

(
1− 8(D − 3)

k2αA

ℓ2G

)
, (4.22)

C2(D−2) = 4(2D − 5)B

(
1

2
,
2D − 3

2

)
k3Q2αA. (4.23)

Thus, the system reduces to the 3-terms case with n1 = D − 3, n2 = 2(D − 3) and n3 =

2(D − 2).

As a consequence of the discussion in the previous section, provided that M ≥ 0, the

time advance possibly occurs only when both C2(D−3) < 0 and C2(D−2) > 0 hold. These

conditions are expressed as

0 < αA <
ℓ2G

8(D − 3)k2
. (4.24)

More exactly, the conditions for the scalar and the vector modes are

0 < 2α1 + α2 <
ℓ2G

16(D − 3)k2
, (4.25)

0 < α2 <
ℓ2G

8(D − 3)k2
. (4.26)

Then, as long as the approximations (3.45) and (3.44) are valid, there is a time advance

null geodesic with the turning point

rm ∼
(

Cn3

|Cn2 |

) 1
n3−n2

=

√
2D − 5

2D − 4
ℓK

1
2 ∼ ℓK

1
2 , (4.27)

with

K :=
8(D − 3)k

2αA
ℓ2G

1− 8(D − 3)k
2αA
ℓ2G

. (4.28)

The small parameters ϵn2 , ϵn3 and ϵC of the perturbative expansion appearing in Eqs.

(3.45) and (3.44) are expressed as

ϵn2 ∼ ϵn3 ∼ GkQ2

ℓ2(D−3)

k2αA

ℓ2G
K−(D−2), (4.29)

ϵC ∼ GM

ℓD−3

(
GkQ2

ℓ2(D−3)

)−1(
k2αA

Gℓ2

)−1

K
D−1
2 . (4.30)

For the validity of the derivative expansion, εα should be small, which is written with αi

as

εα ∼ k2|αi|
Gr2m

ϵni ∼
(
1− 8(D − 3)

k2αA

Gℓ2

)
ϵni . (4.31)
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This implies that the smallness of εα is ensured by that of ϵni .

For a given theory, that is, for given parameters ℓ, α1, α2 as well as G, k and D, one

can always consider a solution which satisfies ϵn2 ≪ 1 by considering sufficiently small

Q. Then, ϵC ≪ 1 can also be satisfied if one consider sufficiently small M . For such

parameters, we can apply the analytic result given in the previous section and conclude

the existence of time advance null geodesics. Thus, we found that for any parameter αi

which satisfies the conditions (4.25) and (4.26), there always exists a choice of a solution of

the equations of motion derived from the Lagrangian (4.11) which possesses time advance

null geodesics. As a result, if one requires that the Einstein–Euler–Heisenberg type of the

effective field theory does not possess any time advance null geodesic for any solution, the

allowed parameter region for α1 and α2 should be excluded from the conditions (4.25)

and (4.26).

Let us examine the property of the solution that possesses time advance geodesics in

more detail. First, we can find that GM2 must be much smaller than kQ2 because

(D − 3)
GM2

kQ2
= ϵ2Cϵn2

(
1− 8(D − 3)

k2αA

Gℓ2

)
≪ 1. (4.32)

This means that the solution with time advance geodesics is superextremal because

−gtt =

(
1− GM

rD−3

)2

+
r2

ℓ2
+

G

r2(D−3)

(
1

D − 3
kQ2 −GM2

)
∼
(
1− GM

rD−3

)2

+
r2

ℓ2
+

GkQ2

(D − 3)r2(D−3)
> 0, (4.33)

and hence there is no apparent horizon. Next, we can find that time advance geodesics

are passing through the region with negative quasi–local energy. To see this property, let

us investigate a generalized Misner–Sharp quasi–local energy mMS defined in Refs. [37–

43]. In the Reissner–Nordström–anti de Sitter solution (4.3)–(4.5), this local energy for an

r–constant surface is written as

mMS(r) := −
[
f −

(
1 +

r2

ℓ2

)]
rD−3

2G
= M − kQ2

2(D − 3)rD−3
. (4.34)

Using the expression for the radial coordinate rm of the time advance geodesic estimated

in Eq. (4.27), the generalized Misner–Sharp quasi–local energy for the surface with this

radial coordinate rm can be evaluated as

mMS(rm) ∼ − kQ2

2(D − 3)ℓD−3K
D−3
2

(
1− 1

4

(
1− 8(D − 3)

k2αA

Gℓ2

)
ϵC

)
. (4.35)

The smallness of ϵC implies that the last term on the right hand side of Eq. (4.35) is

negligible compared to the first term, meaning that the generalized Misner–Sharp quasi–

local energy mMS(rm) is negative. This indicates that the necessity of the negative energy,

or, in other words, the violation of the weak energy condition, to realize this solution as

the exterior solution of some matter source with the regular center, instead of the naked

singularity.
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5 Summary and Discussion

In this paper, we investigate the conditions for the existence of time advance null

geodesics in a general static, spherically symmetric, asymptotically AdS spacetime, pro-

vided that the bulk causality is characterized by the effective metric. Under the approxi-

mations fn/r
n
m, hn/r

n
m, gn/r

n
m ≪ 1, we obtain the sufficient conditions for a null geodesic

with the radial coordinate rm at the turning point to be time advance, which are given

by Eqs. (3.21) and (3.22). Then, we focus on two specific cases; one is the 2-terms case

where only two of Cn are present, and the other is the 3-terms case where only three of

Cn exist. For the former case, we demonstrate that, if the coefficients satisfy Cn1 < 0 and

Cn2 > 0, with the condition for the validity of approximation (3.29), there always exists a

time advance null geodesic whose turning point rm is located in the region (3.27). For the

latter case, assuming that Cn1 ≥ 0 holds, which corresponds to the positivity of the mass

M in Sec. 4, we find that if the other two coefficients satisfy Cn2 < 0 and Cn3 > 0 along

with the additional assumption (3.36) to simplify the analysis, as well as the condition for

the validity of the approximations (3.44), there always exists a time advance null geodesic

located in the region (3.41).

Then, we apply the general discussion above to two specific physical systems, the

Einstein–Maxwell theory and the Einstein–Euler–Heisenberg type of the effective field the-

ory. The former case is an example of the 2-terms analysis and we find that no geodesic sat-

isfies the sufficient conditions for time advance in the region where both (G|M |)1/(D−3) ≪ r

and (GkQ2)1/2(D−3) ≪ r are satisfied. Our results include the situation where the space-

time is super-extremal, or has a negative ADM mass. Hence, our results are beyond the sit-

uation included by the general discussion by Refs. [5–7], where the positivity of the mass or

the global hyperbolicity of the conformally completed spacetime is assumed. The latter case

is an application of the 3-terms case. We find that if the parameters of the Euler–Heisenberg

correction terms α1 and α2 satisfy Eq. (4.24), that is, 0 < αA < Gℓ2/(8(D − 3)k2), there

always exists a choice of a solution with a positive ADM mass that admits time advance

null geodesics, though we find that such a solution must be superextremal and the time

advance null geodesics are passing through the region with the negative quasi–local energy.

Our result indicates that if we require that the Einstein–Euler–Heisenberg type of the ef-

fective field theory prohibits time advance for any choice of the solution of the equations

of motion, the parameters α1 and α2 with the conditions (4.25) and (4.26) are excluded.

Thus, the parameters α1 and α2 must satisfy

2α1 + α2 ≤ 0, or
ℓ2G

16(D − 3)k2
≤ 2α1 + α2, (5.1)

α2 ≤ 0, or
ℓ2G

8(D − 3)k2
≤ α2. (5.2)

In the flat limit ℓ → ∞, our constraints (5.1) and (5.2) suggest that 2α1 + α2 and α2

must be negative to ensure the absence of time advance for any solution of the equations of

motion of this system. On the other hand, it is known that the positivity of 2α1 + α2 and
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α2
10 is required to maintain analyticity, unitarity, causality, and locality in the ultraviolet

quantum field theory behind the Euler–Heisenberg effective field theory, at least in the

absence of graviton exchange [44–46]11. As examined at the end of Sec. 4.2, time advance

occurs only when a geodesic passes through a region with negative quasi-local mass in a

super-extremal spacetime. Therefore, the presence of such time advance geodesics would

indicate a lack of physical reasonability of the solutions.

Finally, let us comment and outline the potential future directions. Our conditions

for the time advance, Eqs. (3.21) and (3.22), derived in the general setup can be applied

to any static, spherically symmetric, asymptotically AdS effective metric. Although we ex-

amined the application to the Einstein–Maxwell theory and the Einstein–Euler–Heisenberg

effective field theory in this paper, our general formula has a wide range of applicability.

For example, it is important including higher-curvature corrections and interactions be-

tween the electromagnetic field and gravity, such as RµνρσF
µνF ρσ, RµνρσR

µνρσ terms, or

even higher-order corrections like R3 12. In addition, our current analysis is restricted to

static, spherically symmetric cases. Therefore, it is interesting to generalize this frame-

work to more complicated circumstances, such as, static-axially symmetric spacetimes, or

dynamical spacetimes.
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A Detailed Derivations

In this appendix, we present the details of the derivations of the expression for ∆ϕ and

∆t, given by Eqs. (3.16) and (3.17) respectively. The derivation is given in appendix A.1.

The form of ∆t involves the hypergeometric function (A.23). In appendix A.2, some

properties of the hypergeometric function are shown.

A.1 Derivation of ∆ϕ and ∆t

A general static, spherically symmetric asymptotically AdS metric is given in Eq. (3.2).

Since the conformal transformation keeps each null geodesics unchanged, we factor out a

10For D = 4, our Euler–Heisenberg term can be expressed as

1

4π

(
α1(FµνF

µν)2 + α2FµνF
νρFρσF

σµ) =
2α1 + α2

8π
(FµνF

µν)2 +
α2

16π
(Fµν F̃

µν)2.

The positivity bound [44–46] requires the positivity of each coefficients in the right hand side.
11For more recent attempts to include the effect of graviton exchange, see, for example, Refs. [47, 48].
12The initial value formulation with such higher order derivative terms is discussed, for instance, in Ref.

[28].
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conformal factor such that the metric function of the spherical parts becomes simple,

ĝµνdx
µdxν = g(r)g̃µνdx

µdxν := g(r)

(
−f̃(r)dt2 +

h̃(r)

f̃(r)
dr2 + r2dΩ2

D−2

)
, (A.1)

where f̃(r) and h̃(r) are defined by

f̃(r) :=
f(r)

g(r)
= 1 +

r2

ℓ2
+

∞∑
n=1

f̃n
rn

+O
(
ϵ2
)
, (A.2)

h̃(r) :=
h(r)

g(r)2
= 1 +

∞∑
n=1

h̃n
rn

+O
(
ϵ2
)
, (A.3)

with

f̃n = fn − gn − gn+2

ℓ2
, (A.4)

h̃n = hn − 2gn. (A.5)

In the analysis of the null geodesic, we use g̃µν instead of ĝµν , which makes the analysis

simpler due to the absence of g̃(r).

Let us evaluate ∆ϕ. By using f̃(r) and h̃(r), Eq. (3.15) can be expressed as

∆ϕ = 2

∫ ∞

rm

dr
b
√
h̃(r)

r2
√
1− b2f̃(r)

r2

. (A.6)

By introducing a new variable z = rm/r and rewriting the impact parameter b by b =

rm/
√
f̃(rm), the integral can be expressed as

∆ϕ = 2

∫ 1

0
dz

√
h̃(rm/z)√

f̃(rm)− f̃(rm/z)z2
= 2I

(1)
0 +

∞∑
n=1

Cn

rnm
+O(ϵ2), (A.7)

where Cn are defined by

Cn := h̃nI
(1)
n + f̃nI

(2)
n , (A.8)

and the integrals I
(1)
n and I

(2)
n are defined by

I(1)n :=

∫ 1

0
dz

zn√
1− z2

, (A.9)

I(2)n :=

∫ 1

0
dz

(
− 1

(1− z2)3/2
+

zn+2

(1− z2)3/2

)
. (A.10)

Note that the ℓ dependence in the function f̃ is cancelled. The integral I
(1)
n can be expressed

in terms of the integral representation of the beta function B(p, q)

B(p, q) :=
Γ(p)Γ(q)

Γ(p+ q)
= 2

∫ 1

0
dz z2p−1(1− z2)q−1, (p, q > 0) , (A.11)
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as

I(1)n =
1

2
B

(
1

2
,
1 + n

2

)
. (A.12)

Note that for n = 0, we obtain I
(1)
0 = π/2. The integral I

(2)
n can be expressed by I

(1)
n , and

hence expressed by the beta function as well, through the following calculation,

I(2)n =

∫ 1

0
dz

(
− 1

(1− z2)
3
2

+ zn+1

(
1√

1− z2

)′
)

=

[
− z√

1− z2
+

zn+1

√
1− z2

]1
0

− (n+ 1)I(1)n

= −n+ 1

2
B

(
1

2
,
1 + n

2

)
. (A.13)

By substituting the expressions (A.12) and (A.13) into Eq. (A.7) with Eq. (A.8), we obtain

∆ϕ = π +
∞∑
n=1

Cn

rm
+O(ϵ2), (A.14)

with

Cn =
1

2
B

(
1

2
,
1 + n

2

)(
h̃n − (1 + n)f̃n

)
(A.15)

=
1

2
B

(
1

2
,
1 + n

2

)(
−(1 + n)fn + hn + (n− 1)gn +

1 + n

ℓ2
gn+2

)
. (A.16)

Next, let us calculate ∆t/ℓ and derive Eq. (3.17). By using the functions f̃ and h̃, the

expression for ∆t/ℓ, Eq. (3.14), can be written as

∆t = 2

∫ ∞

rm

dr

√
h̃(r)

f̃(r)

√
1− b2f̃(r)

r2

. (A.17)

Again, by using the variable z = rm/r, ∆t/ℓ can be expressed as

1

ℓ
∆t = = 2J

(1)
0 +

∞∑
n=1

Dn

rnm
+O(ϵ2). (A.18)

Here we define the coefficients Dn by

Dn = h̃nJ
(1)
n + f̃nJ

(2)
n , (A.19)

and the integrals J
(1)
n and J

(2)
n by

J (1)
n (w) :=

∫ 1

0
dz

zn

1− wz2

√
1− w

1− z2
, (A.20)

J (2)
n (w) :=

∫ 1

0
dz

(
− 1√

1− w

1

(1− z2)3/2
+ zn+2

√
1− w

(1− z2)
3
2

(1 + 2w − 3wz2)

(1− wz2)2

)
. (A.21)
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Also we introduce the variable w < 0 by

w := − ℓ2

r2m
. (A.22)

The integral J
(1)
n (w) can be expressed by the integral representation for the hypergeometric

function,

2F1(a, b, c;w) =
2

B(a,−a+ c)

∫ 1

0
dz z2a−1(1− z2)c−a−1(1− wz2)−b, (A.23)

which holds for complex parameters {a, b, c} satisfying Re c > Re a > 0. Applying this

expression with the parameters a = 1+n
2 , b = 1 and c = n

2 + 1, one can express J
(1)
n (w) as

J (1)
n (w) =

1

2
B

(
n+ 1

2
,
1

2

)√
1− w 2F1

(
1 + n

2
, 1,

n

2
+ 1;w

)
. (A.24)

In addition, w dependence can be simplified by using the Kummer’s relation,

2F1(a, b, c;w) = (1− w)c−a−b
2F1(c− b, c− a, c;w). (A.25)

The result is

J (1)
n (w) =

1

2
B

(
n+ 1

2
,
1

2

)
2F1

(
n

2
,
1

2
,
n

2
+ 1;w

)
. (A.26)

Note that for n = 0, the integral can be evaluated as J
(1)
0 (w) = π/2. The integral J

(2)
n

can be expressed by J
(1)
n through the integration by part, and hence expressed by the

hypergeometric function, as follows:

J (2)
n (w) =

∫ 1

0
dz

(
− 1√

1− w

1

(1− z2)3/2
+ zn+1

(
1

1− wz2

√
1− w

1− z2

)′)

=

[
− 1√

1− w

z√
1− z2

+
zn+1

1− wz2

√
1− w

1− z2

]1
0

− (n+ 1)J (1)
n (w)

= −(n+ 1)
1

2
B

(
n+ 1

2
,
1

2

)
2F1

(
n

2
,
1

2
,
n

2
+ 1;w

)
. (A.27)

Then, by substituting the expressions (A.26) and (A.27) into Eq. (A.18) with the definition

(A.19), we obtain

1

ℓ
∆t = π +

∞∑
n=1

Dn

rnm
+O

(
ϵ2
)
, (A.28)

with

Dn =
1

2
B

(
n+ 1

2
,
1

2

)
2F1

(
n

2
,
1

2
,
n

2
+ 1;w

)(
h̃n − (n+ 1)f̃n

)
= 2F1

(
n

2
,
1

2
,
n

2
+ 1;w

)
Cn. (A.29)
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Hence, we obtain

1

ℓ
∆t−∆ϕ = −

∞∑
n=1

βn
Cn

rnm
+O

(
ϵ2
)
, (A.30)

with

βn(w) = 1− 2F1

(
n

2
,
1

2
,
n

2
+ 1;w

)
. (A.31)

A.2 Properties of βn(w)

In the analysis of time advance conditions, we need to understand the properties of

βn(w). In this appendix, we investigate it. Note that n and w satisfy n ≥ 1 and w ≤ 0,

respectively.

From the integral expression of the hypergeometric function (A.23), βn can be repre-

sented as

βn(w) = 1 + n

∫ 1

0
dz

−zn−1√
1 + |w|z2

. (A.32)

Since the integrand is negative and an increasing function of |w|, we obtain βn(w) < 1 and

βn(w) > βn(0) = 0 respectively, and thus 0 < βn(w) < 1. In addition, by the integration

by part, βn(w) can be expressed as

βn(w) = 1−
∫ 1

0
dz

(zn)′√
1 + |w|z2

= 1−

[
zn√

1 + |w|z2

]1
0

− |w|
∫ 1

0
dz

zn+1

(1 + |w|z2)
3
2

= 1− 1√
1 + |w|

− |w|
∫ 1

0
dz

zn+1

(1 + |w|z2)
3
2

. (A.33)

This expression implies the monotonic increase of βn(w) with respect to n, i.e.,

βn1(w) < βn2(w), (A.34)

for any 1 ≤ n1 < n2, because −zn1 < −zn2 holds in 0 < z < 1. Therefore, for a given

w < 0, the lower and upper bounds for βn(w) are given by β1(w) and β∞(w) respectively,

which are explicitly written as

β1(w) = 1−
sinh−1

√
|w|√

|w|
, (A.35)

β∞(w) = 1− 1√
1 + |w|

. (A.36)

Thus, we can strengthen the inequality 0 < βn(w) < 1 to

0 < 1−
sinh−1

√
|w|√

|w|
< βn(w) < 1− 1

1 + |w|
< 1. (A.37)
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We also evaluate the ratio of βn as 13

1 <
βn2(w)

βn1(w)
<

β∞(w)

β1(w)
=

1− 1√
1+|w|

1− sinh−1
√

|w|√
|w|

< 3, (A.38)

for n1 < n2. Thus, the ratio βn2/βn1 can be regarded as O(1) quantity.

B Time advance analysis of the case π < ∆ϕ < 2π

In the main section, we focus only on the case 0 < ∆ϕ ≤ π. In this appendix, we

investigate the case with π < ∆ϕ < 2π and show that the conditions on the metric functions

for the time advance are the same as in the case with 0 ≤ ∆ϕ ≤ π.

For π < ∆ϕ < 2π, the coordinate of the end point q of the boundary–to–boundary

null geodesic (see Sec. 2 for the details) is

ϕ′ = −(2π −∆ϕ) (< 0). (B.1)

Then, the time advance conditions, that is, the violation of Eq. (2.5) is written as{
π < ∆ϕ < 2π,

∆t− ℓ(2π −∆ϕ) < 0.
(B.2)

In the general static, spherically symmetric asymptotically AdS metric (3.2), ∆t− ℓ(2π −
∆ϕ) is written as

∆t/ℓ− (2π −∆ϕ) = ∆t/ℓ−∆ϕ+ 2(∆ϕ− π)

=
∞∑
n=1

(2− βn)
Cn

rnm
+O(ϵ2). (B.3)

Therefore, the time advance conditions are written in

0 <
∞∑
n=1

Cn

rnm
< π, (B.4)

∞∑
n=1

(2− βn)
Cn

rnm
< 0. (B.5)

Since the condition ϵ ≪ 1 can be expressed as |Cn|/rnm ≪ 1,
∑∞

n=1Cn/r
n
m cannot attain a

value close to π, and thus, Eq. (B.4) can be simply written as

∞∑
n=1

Cn

rnm
> 0. (B.6)

13The function
(
1− 1/

√
1 + |w|

)
/
(
1− sinh−1

√
|w|/

√
|w|

)
is decreasing function of |w| and the value

in the limit |w| → 0 is 3.
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After performing the transformation

β′
n :=

1

2− βn
, C ′

n := (2− βn)Cn, (B.7)

Eqs. (B.5) and (B.6) can be rewritten as

F ′ :=

∞∑
n=1

C ′
n

rnm
< 0, (B.8)

G′ :=
∞∑
n=1

β′
n

C ′
n

rnm
> 0. (B.9)

With the properties of βn given in Eqs. (3.19) and (3.20), we can derive the corresponding

properties of β′
n as follows:

1

2
< β′

n < 1, (B.10)

1 <
β′
n2

β′
n1

<
β′
∞
β′
1

<
1

1/2
= 2, for n2 > n1. (B.11)

Therefore, by replacing F , G, Cn and βn with F ′, G′, C ′
n and β′

n respectively, the analysis

conducted in Sec. 3 applies in parallel.

Since (2− β′
n) is of order unity, the order of C ′

n is the same as that of Cn. Then, the

conditions for the perturbative expansion written in Cn directly apply to this case. Thus,

supposing Eq. (3.29) holds for the 2-terms case, and Eqs. (3.44) and (3.45) are satisfied

for the 3-terms case, time-advance null geodesics exist in each case. As a result, the time

advance conditions are the same as those in the case with 0 ≤ ∆ϕ ≤ π.

C Einstein–Euler–Heisenberg theory and Effective Metrics

In this appendix, we present the detailed analysis about the Einstein–Maxwell theory

with the higher derivative corrections. The action is given in Eq. (4.11). A goal of this

appendix is to derive the effective metrics for the electromagnetic wave.

C.1 Equations of Motion

The modified Einstein equation derived from the action (4.11) is written as

1

(D − 2)G

(
Rµν −

1

2
Rgµν + Λgµν

)
− Tµν = 0, (C.1)

where Tµν is the energy momentum tensor of electromagnetic field with Euler–Heisenberg

correction terms given by

Tµν :=
1

k

(
FµαF

α
ν − 1

4
F 2gµν

)
+ α1

(
(FρσF

ρσ)2gµν − 8FρσF
ρσF β

µ Fνβ

)
+ α2

(
FαβFρβF

σρFσαgµν − 8F λ
µ F δ

ν F ρ
λ Fδρ

)
. (C.2)
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Similarly, the modified Maxwell equation derived by the variation of the action (4.11) with

respect to the Maxwell field Aµ, is written as

1

k
∇νF

µν − Sµ = 0, (C.3)

where

Sµ := 8α1(2Fρσ∇νF
ρσFµν + F 2∇νF

µν)

+ 8α2(∇νFσρF
σνFµρ + Fσρ∇νF

σνFµρ + FσρF
σν∇νF

µρ). (C.4)

C.2 Static Spherically Symmetric Solutions

Let us derive the static, spherically symmetric solution of the modified Einstein–

Maxwell equations, considering the linear perturbations around the Reissner–Nordstrom–

anti de Sitter solution with respect to the coupling constants αi. Such treatments are

valid when the corrections with αi are not the leading order contributions in the equations

of motion. This is satisfied if the terms with αi are much smaller than (at least) one

of the terms in the Einstein–Maxwell Lagrangian. The leading-order contribution of the

Einstein–Maxwell Lagrangian is the order of

|Λ|
G

∼ 1

Gℓ2
, or

1

k
F 2 =

kQ2

r2(D−2)
∼ ϵ

Gr2
. (C.5)

Here, the parameter ϵ represents ϵ ∼ GM/rD−3, GkQ2/r2(D−3) ≪ 1, which we assumed

in the analysis of the time advance (see above Eq. (3.16)). Since the terms with αi are

expressed as

αiF
4 = αi

k4Q4

r4(D−2)
∼ αik

2
( ϵ

Gr2

)2
, (C.6)

for the smallness of the αi terms, either

εα ∼ k2|αi|
Gr2

ϵ ≪ 1 or
ℓ2

r2
k2|αi|
Gr2

ϵ2 ≪ 1 (C.7)

is required to be satisfied.

Under these assumptions, the spacetime metric

ḡµνdx
µdxν = −f̄(r)dt2 +

h̄(r)

f̄(r)
dr2 + r2ḡ(r)dΩ2

D−2, (C.8)

and the electrostatic potential

Āµdx
µ = −Φ̄(r)dt, (C.9)
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are obtained as

f̄(r) = 1 +
r2

ℓ2
− 2GM

rD−3
+

1

D − 3

GkQ2

r2(D−3)

− 4

3D − 7

k2(2α1 + α2)

Gr2

(
GkQ2

r2(D−3)

)2

+O
(
ε2α
)

= 1 +
r2

ℓ2
− 2GM

rD−3
+

1

D − 3

GkQ2

r2(D−3)
+O

(
ϵεα, ε

2
α

)
, (C.10)

h̄(r) = 1, (C.11)

ḡ(r) = 1, (C.12)

and

Φ̄(r) =
k

D − 3

Q

rD−3

(
1− 8(D − 3)

3D − 7

k2(2α1 + α2)

Gr2
GkQ2

r2(D−3)
+O

(
ε2α
))

. (C.13)

These results are obtained in a manner analogous to studies in the context of nonlinear

electrodynamics [49–56] and effective field theory [46, 57–62], where the analysis has been

limited to the cases with D = 4, without the cosmological constant, or both. As long

as we focus on the leading order contributions of order O(ϵ, εα), the contribution from

the order O(ϵεα) can be neglected. Therefore, the expression (C.10) indicates that we

can use Reissner–Nordstrom solution as the background metric even in the analysis of the

Einstein–Euler–Heisenberg theory.

C.3 Effective Metrics for Photon Propagations

In the Einstein–Euler–Heisenberg theory, the kinetic terms of the Maxwell field are not

in the canonical form. Therefore, the orbits of the fastest propagation are not described

by the null geodesics with respect to the spacetime metric. Causality can be understood

through the characteristics [10], and is often expressed in terms of the effective metric.

We present the characteristics of the Einstein–Euler–Heisenberg theory in appendix C.3.1,

and subsequently derive the effective metrics for the scalar and the vector modes of the

Maxwell field in appendix C.3.2. Note that the effective metrics for gravitons are the same

as those in the Einstein–Maxwell theory, that is, they match the spacetime metric.

C.3.1 Characteristic Matrix

Here we investigate the characteristics of the modified Einstein–Maxwell equation in

the Einstein–Euler–Heisenberg theory. Let us consider the first-order perturbations around

the static, spherically symmetric solution presented above,

gµν = ḡµν + hµν , (C.14)

Aµ = Āµ + δAµ, (C.15)

and read the structures of the kinetic terms.

Since the highest-order derivative terms of the perturbations are essential for the causal

structure, as discussed in the context of characteristic hypersurfaces [10], we focus only on
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these terms. The equation for the characteristics is obtained by replacing the partial

derivative ∂µ with the normal vector ζµ of the characteristic surface in the highest-order

derivative terms. We adopt the notation commonly used in the analysis of characteristics,

specifically using the symbol =̇ to denote the operation where only the terms containing

the highest-order derivatives are shown, specifically those with second-order derivatives in

our case.

Since the second order derivatives are included only by the following quantities,

∇µFνρ =̇ (ζµζνδAρ − ζµζρδAν) , (C.16)

Rµν =̇
1

2

(
2ζαζ(µh

α
ν) − ζ2hµν − ζµζνh

)
, (C.17)

R =̇ ζµζνh
µν − ζ2h, (C.18)

the highest derivative terms in the modified Einstein–Maxwell equations (C.1) and (C.3)

can be expressed as

1

(D − 2)G
(Rµν −

1

2
Rgµν + Λgµν)− Tµν =̇

1

(D − 2)G
Pµν

ρσhρσ, (C.19)

and

1

k
∇νF

µν − Sµ =̇
1

k
Pµ;ρδAρ, (C.20)

where Pµν;ρσ and Pµ;ρ are given by

Pµν;ρσ = ζσζ(µḡν)ρ −
1

2
ζ2ḡµ(ρḡσ)ν −

1

2
ζµζν ḡρσ − 1

2
ζρζσ ḡµν +

1

2
ḡµν ḡρσζ

2, (C.21)

and

Pµ;ρ =
(
ζµζρ − ζ2ḡµρ

)
+ 8kα1

(
F̄ 2ζ2ḡµρ − F̄ 2ζµζρ + 4F̄µνF̄ ρτζνζτ

)
+ 8kα2

(
F̄µνF̄ ρσζνζσ + F̄µτ F̄ ρ

τζ
2 + F̄τ

νF̄ τβζνζβ ḡ
µρ − F̄στ F̄

µτζρζσ − F̄στ F̄
ρτζµζσ

)
.

(C.22)

Since the characteristic matrix for both gravitational waves and electromagnetic waves is

block-diagonal, we can discuss each wave separately. The characteristic matrix for grav-

itational waves (C.21) is the same as that in the Einstein–Maxwell theory, and thus the

causality for gravitational waves is expressed by the spacetime metric as usual. Therefore,

we will focus only on analyzing the characteristic matrix for the electromagnetic waves.

C.3.2 Effective Metric for Photons

Let us derive the effective metric for photons. Subscripts and superscripts i, j represent

the coordinates of SD−2 in Eq. (3.2), while subscripts and superscripts a, b correspond to

those of the other two coordinates in gabdx
adxb = −fdt2 + (h/f)dr2. Let Di denote the

covariant derivative with respect to the metric on SD−2. Due to the symmetry of SD−2, δAµ

can be decomposed into scalar and vector modes of SD−2. The components of δAa behave

as scalars, while δAi includes one scalar and several vector modes. This decomposition
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utilizes the proposition that outlines the decomposition of vectors and symmetric tensors

on compact manifolds, as demonstrated in Ref. [63]. The decomposition of δAµ is given by

δAa = δA(0)a, (C.23)

δAi = DiδA(0) + δA(1)i, (C.24)

with

DiδA
(1)i = 0, (C.25)

where the labels (0) and (1) denote the scalar and vector components, respectively.

Vector mode First, we focus on the vector mode δA(1)i. The vector components satisfy

Eq. (C.25), which means that, in terms of ζµ the basis e(1,I)µ of vector mode satisfies

ζµe(1,I)µ = 0, (C.26)

where I is for the label of the orthonormal basis of vector modes, that is, gµνe
(1,I)µe(1,J)ν =

δIJ . Since the t- and r-components of the vector modes vanish, any vector mode is com-

posed of (D − 3) basis vectors e
(1,I)
µ . Operating the vector bases e

(1,I)
µ and e

(1,J)
ρ on the

characteristic equation (C.22), we obtain

Pµ;ρe(1,I)µ e(1,J)ρ =

(
ḡµν − 8kα1F̄

2ḡµν − 8kα2F̄
µρF̄ ν

ρ

)
ζµζνδ

IJ . (C.27)

Then, the characteristic surface for every vector mode is given by(
ḡµν − 8kα1F̄

2ḡµν − 8kα2F̄
µρF̄ ν

ρ

)
ζµζν = 0. (C.28)

By applying this equation recursively, one can see that the α1 term is higher order in εα.

Thus, we obtain (
ḡµν − 8kα2F̄

µρF̄ ν
ρ

)
ζµζν = 0, (C.29)

and we can read the inverse of the effective metric as

(ĝ −1)µν = ḡµν − 8kα2F̄
µρF̄ ν

ρ. (C.30)

Scalar mode Now, we derive the effective metric of the scalar mode. The scalar degrees

of freedom of δAµ are δA(0)a and δA(0) in Eqs. (C.23) and (C.24), the number of which is

three. Since the theory is invariant under the U(1)-gauge transformation Aµ → Aµ + ∂µΛ,

Aµ includes the gauge degree of freedom, which appears in the scalar sector. In the analysis

of the characteristic matrix, the components corresponding to the gauge degrees of freedom

should be removed. In this paper, the directions of the propagations that we consider have
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the angular directions14, and thus, t- and r-components and ζµ can be the basis of scalar

mode. Since ζµ corresponds to the gauge mode, the characteristic matrix should only be

constructed using the t- and r-components.

Using the fact that in our analysis F̄µν has only the (t, r)-component, the (t, t)-, (r, r)-

and (t, r)-components of Eq. (C.22) are calculated as

Pt;t =
(
−
[
1− 4k(2α1 + α2)F̄

2
]
(ζ2 − ζtζt) + 8k(2α1 + α2)F̄

2ζrζr
)
ḡtt, (C.31)

Pr;r =
(
−
[
1− 4k(2α1 + α2)F̄

2
]
(ζ2 − ζrζr) + 8k(2α1 + α2)F̄

2ζtζt
)
ḡrr, (C.32)

Pt;r = Pr;t =
[
1− 12k(2α1 + α2)F̄

2
]
ζtζr. (C.33)

The determinant of the characteristic matrix

Ms :=

(
Pt;t Pt;r

Pr;t Pr;r

)
(C.34)

for the scalar mode is

detMs =
[
1− 4k(2α1 + α2)F̄

2
]2

ζiζiḡ
ttḡrr

[
ζ2 − 8k(2α1 + α2)F̄

2

1− 4k(2α1 + α2)F̄ 2

(
ζtζt + ζrζr

)]
≃
[
1− 4k(2α1 + α2)F̄

2
]2

ζiζiḡ
ttḡrr

[
ζ2 − 8k(2α1 + α2)F̄

2
(
ζtζt + ζrζr

)]
. (C.35)

Then, detMs = 0 is satisfied when(
ḡµν − 16k(2α1 + α2)F̄

µρF̄ ν
ρ

)
ζµζν = 0 (C.36)

holds, implying that the inverse of the effective metric is

(ĝ −1)µν = ḡµν − 8k (4α1 + 2α2) F̄
µρF̄ ν

ρ. (C.37)
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[53] N. Bretón and L.A. López, Birefringence and quasinormal modes of the

Einstein-Euler-Heisenberg black hole, Phys. Rev. D 104 (2021) 024064 [2105.12283].

[54] K. Nomura and D. Yoshida, Quasinormal modes of charged black holes with corrections from

nonlinear electrodynamics, Phys. Rev. D 105 (2022) 044006 [2111.06273].

[55] Y. Abe, T. Noumi and K. Yoshimura, Black hole extremality in nonlinear electrodynamics: a

lesson for weak gravity and Festina Lente bounds, JHEP 09 (2023) 024 [2305.17062].

[56] Y. Zhao and H. Cheng, The thermodynamic stability and phase structure of the

Einstein-Euler-Heisenberg-AdS black holes, Chin. Phys. C 48 (2024) 125106 [2501.11075].

[57] Y. Kats, L. Motl and M. Padi, Higher-order corrections to mass-charge relation of extremal

black holes, JHEP 12 (2007) 068 [hep-th/0606100].

[58] C. Cheung, J. Liu and G.N. Remmen, Proof of the Weak Gravity Conjecture from Black Hole

Entropy, JHEP 10 (2018) 004 [1801.08546].

[59] C.R.T. Jones and B. McPeak, The Black Hole Weak Gravity Conjecture with Multiple

Charges, JHEP 06 (2020) 140 [1908.10452].

[60] B. Chen, F.-L. Lin, B. Ning and Y. Chen, Constraints on Low-Energy Effective Theories

from Weak Cosmic Censorship, Phys. Rev. Lett. 126 (2021) 031102 [2006.08663].

[61] K. Izumi, T. Noumi and D. Yoshida, Gedanken experiments to destroy a black hole by a test

particle: Multiply charged black hole with higher derivative corrections, Phys. Rev. D 110

(2024) 044008 [2403.11488].

[62] F.-L. Lin, B. Ning and Y. Chen, Weak cosmic censorship and the second law of black hole

thermodynamics in higher derivative gravity, Phys. Rev. D 108 (2023) 044025 [2211.17225].

[63] A. Ishibashi and R.M. Wald, Dynamics in nonglobally hyperbolic static space-times. 3.

Anti-de Sitter space-time, Class. Quant. Grav. 21 (2004) 2981 [hep-th/0402184].

– 31 –

https://doi.org/10.1007/JHEP11(2020)054
https://arxiv.org/abs/2007.15009
https://doi.org/10.1103/PhysRevD.63.064007
https://doi.org/10.1103/PhysRevD.63.064007
https://arxiv.org/abs/gr-qc/0005016
https://doi.org/10.1103/PhysRevD.88.085004
https://arxiv.org/abs/1307.4951
https://doi.org/10.1103/PhysRevD.102.084011
https://doi.org/10.1103/PhysRevD.102.084011
https://arxiv.org/abs/2009.05904
https://doi.org/10.1103/PhysRevD.102.104054
https://doi.org/10.1103/PhysRevD.102.104054
https://doi.org/10.1103/PhysRevD.104.024064
https://arxiv.org/abs/2105.12283
https://doi.org/10.1103/PhysRevD.105.044006
https://arxiv.org/abs/2111.06273
https://doi.org/10.1007/JHEP09(2023)024
https://arxiv.org/abs/2305.17062
https://doi.org/10.1088/1674-1137/ad79d4
https://arxiv.org/abs/2501.11075
https://doi.org/10.1088/1126-6708/2007/12/068
https://arxiv.org/abs/hep-th/0606100
https://doi.org/10.1007/JHEP10(2018)004
https://arxiv.org/abs/1801.08546
https://doi.org/10.1007/JHEP06(2020)140
https://arxiv.org/abs/1908.10452
https://doi.org/10.1103/PhysRevLett.126.031102
https://arxiv.org/abs/2006.08663
https://doi.org/10.1103/PhysRevD.110.044008
https://doi.org/10.1103/PhysRevD.110.044008
https://arxiv.org/abs/2403.11488
https://doi.org/10.1103/PhysRevD.108.044025
https://arxiv.org/abs/2211.17225
https://doi.org/10.1088/0264-9381/21/12/012
https://arxiv.org/abs/hep-th/0402184

