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Abstract

The n-point functions of any Conformal Field Theory (CFT) in d

dimensions can always be interpreted as spatial restrictions of cor-
responding functions in a higher-dimensional CFT with dimension
d′ > d. In particular, when a four-point function in d dimensions
has a known conformal block expansion, this expansion can be easily
extended to d′ = d+2 due to a remarkable identity among conformal
blocks, discovered by Kaviraj, Rychkov, and Trevisani (KRT) as a
consequence of Parisi-Sourlas supersymmetry and confirmed to hold
in any CFT with d > 1.

In this note, we provide an elementary proof of this identity using
simple algebraic properties of the Casimir operators. Additionally, we
construct five differential operators, Λi, which promote a conformal
block in d dimensions to five conformal blocks in d + 2 dimensions.
These operators can be normalized such that

∑

i Λi = 1, from which
the KRT identity immediately follows. Similar, simpler identities have
been proposed, all of which can be reformulated in the same way.

http://arxiv.org/abs/2504.15904v1


1 Introduction

Dimensional reduction is a property emerging in some disordered systems. In
the random-field Ising model it was observed that the correlation functions
reduced to those of the pure Ising model, without the random source, in two
fewer dimensions [1, 2]. This was understood by Parisi and Sourlas [3] to
be due to a hidden supersymmetric formulation. This dimensional reduction
holds near the upper critical dimension of six, but fails in sufficiently low
dimensions [4–12]. This failure is now believed to result from operators that
are irrelevant near six dimensions becoming relevant around five dimensions
[6, 10, 13].

Another notable example is the connection, again discovered by Parisi
and Sourlas [14], between randomly branched polymers or lattice animals
in d dimensions [15–19] and the Yang-Lee edge singularity [20] in two fewer
dimensions. In this case, dimensional reduction works not only near the
upper critical dimension of eight but continues down to two dimensions,
as rigorously demonstrated by Brydges and Imbrie [21, 22]. Even in these
instances, the correlation functions on branched polymers reduce to those of
the Yang-Lee edge singularity.

In the present note we explore such a connection across the space dimen-
sions from the point of view of conformal field theory (CFT). As a result,
we give a simple algebraic proof of a surprising exact relation discovered
by Kaviraj, Rychkov and Trevisani (KRT) as a direct consequence of the
Parisi-Sourlas (PS) supersymmetry and confirmed to hold in any CFT with
d > 1 [10]; this relation expresses any (d − 2)-dimensional conformal block
as a linear combination of five conformal blocks in dimension d. We in a
sense reverse such a relation by constructing, only utilizing some commuta-
tion properties of the Casimir operators, five differential operators, Λi, trans-
forming an arbitrary (d− 2)-dimensional conformal block g

(d−2)
∆,ℓ ( describing

the contribution to a four-point function of a primary of scaling dimension
∆ and spin ℓ) into five different conformal blocks in dimenion d,

Λi g
(d−2)
∆,ℓ ∝ g

(d)
∆i,ℓi

, (1)

where the conformal blocks in the rhs are precisely those contributing to the
KRT identity. Equation (1) can be utilized to build new conformal blocks in
higher dimensions once their form in lower dimensions is known. The Λi’s
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can be normalized so that
5

∑

i=1

Λi = 1 , (2)

therefore
∑

i Λi g
(d−2)
∆,ℓ yields at once the KRT identity. In such a form it is

clear that this identity holds for any real d > 1 under the only assumption
that the conformal blocks are eigenfunctions of the Casimir operators.

The KRT identity allows one to reconstruct the spectrum of primary
operators contributing to a four-point function of a CFT in dimension d
once this spectrum is known in a (d − 2)-dimensional CFT with the same
external scalars [23]. 1

2 Notation

In a generic CFT in d dimensions the 4pt function of arbitrary scalars Oi of
scaling dimension ∆i can be parametrized as [24, 25]

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 = K(xi) g(u, v) , (3)

where K(xi) is a kinematic factor given by

K(xi) =
1

|x12|∆1+∆2 |x34|∆3+∆4

(

x2
14

x2
24

)a (

x2
14

x2
13

)b

, (4)

with a = ∆2−∆1

2
and b = ∆3−∆4

2
; g(u, v) is a theory-dependent function of the

two cross-ratios u =
x2
12x

2
34

x2
13x

2
24

and v =
x2
14x

2
23

x2
13x

2
24

, which are linearly independent for

d > 1.
It is important to emphasize that although g(u, v) depends on the scaling

dimensions of the external scalars, it is completely independent of the space-
time dimension d:

∂d g(u, v) = 0 (5)

In principle, we can choose d to be any real number, provided that d ≥ d,
where d represents the dimension of the linear space spanned by the four
points xi (hence, 1 < d ≤ 3). Under this condition, we obtain the expansion

g(u, v) =
∑

∆,ℓ

c∆, ℓ g
(d)
∆,ℓ(u, v), (6)

1In [23] this result is obtained by assuming the PS supersymmetry.
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where the coefficients c∆, ℓ are the operator product expansion (OPE) coeffi-
cients.

The freedom in choosing d has intriguing physical consequences. For in-
stance, if g(u, v) corresponds to the four-point function of a random branched
polymer system in dimension d, then, due to dimensional reduction, its ex-
pansion in (d − 2)-dimensional conformal blocks provides insight into the
spectrum of primary operators associated with the Yang-Lee edge singular-
ity. The dimensional shift by 2 in this case is well understood in terms of
Parisi-Sourlas supersymmetry.

A natural question then arises: can this reduction by 2, or the reverse ap-
proach, the dimensional uplift, be explained purely through conformal invari-
ance? A simple example helps to clarify the issue. Consider the four-point
function 〈φ(x1)φ(x2)φ(x3)φ(x4)〉 , where φ is a scalar generalized free field
(GFF) with an arbitrary scaling dimension δ. The corresponding function
g(u, v) is given by

g(u, v) = 1 + uδ +
(u

v

)δ

. (7)

The OPE coefficients and the spectrum of contributing primaries have been
exactly evaluated in various ways [26–28]. Since δ is an arbitrary real number,
generalized free CFTs are not necessarily local CFTs. For locality, the the-
ory must have a non-vanishing coupling to the conserved energy-momentum
tensor Tµν , which is a primary operator with scaling dimension d and spin
2. The spectrum of primaries contributing to the expansion of g(u, v) is

{∆, ℓ} = {2δ + 2m+ 2n, ℓ = 2n}, (m,n = 0, 1, 2, . . . ) . (8)

Keeping δ fixed, if the equation 2δ + 2m + 2 = d has a solution, then
clearly there exist infinitely many solutions for dimensions d′ = d + 2k with
k = 1, 2, . . . .

This behaviour seems to be a general feature of local conformal field
theories. Actually, as already pointed out in [10], the KRT identity implies
that if a scalar primary of scaling dimension δ has a non-vanishing coupling
to the energy-momentum tensor in dimension d, then it describes a local

CFT in any space dimension d′ = d+ 2k , (k ∈ N) , and this property holds
for any real d > 1.
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3 The proof

The quadratic Casimir operator C2[d] can be written as [24]

C2[d] = Dz +Dz̄ + (d− 2)
z z̄

z − z̄
((1− z)∂z − (1− z̄)∂z̄) , (9)

with
Dz = z2(1− z)∂2

z − (1 + a+ b)z2∂z + ab z . (10)

The two variables z, z̄ are related to the cross-ratios as u = z z̄ and v =
(1− z)(1 − z̄).

We aim to demonstrate a special relationship between the quadratic
Casimir oprators in d and d− 2 dimensions. Specifically, we iteratively con-
struct five differential operators Yi (i = 1, . . . 5) where Y1 = 1, Y2 is first-order
in z and z̄, Y3 and Y4 are second-order, and Y5 is third-order, such that

C2[d] Yi = YiC2[d− 2] + Yj α
j
i , (11)

where the αj
i ’s are simple linear functions of the Casimir in dimension d− 2.

If we attempt to replace in the rhs C2[d − 2] with C2[d
′] with d′ 6= d − 2,

the linearity in the Yi is immediately lost, and the algebraic structure of the
equation no longer closes.

Basic linear algebra manipulations of this equation allow us to define five
operators Λi, which promote any conformal block in d − 2 dimensions to a
suitable conformal block in d dimensions - leading to the KRT identity.

We begin with Y1 = 1 and write

C2[d] Y1 = Y1C2[d− 2] + Y2 , (12)

where Y2 =
2z z̄
z−z̄

((1− z) ∂z − (1− z̄) ∂z̄). We proceed with

C2[d] Y2 = Y2 (C2[d− 2]− d+ 2) + 2 Y1C2[d− 2] + 2 Y3 − 2 Y4 , (13)

where Y3 =
z z̄
z−z̄

(Dz −Dz̄) and Y4 =
z+z̄
zz̄

Y3.
Now we have

C2[d] Y3 = Y3 (C2[d− 2]− d+ 2) ; (14)

this remarkable relation, first discovered by Dolan and Osborn [24] and re-
cently reobtained by Trevisani [23] as a consequence of the PS supersymme-

try, tells us that Y3 g
(d−2)
∆,ℓ is proportional to g

(d)
∆+1,ℓ−1.
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Next we obtain

C2[d] Y4 = Y4 (C2[d− 2] + 2) + Y3 (2(a+ b)− d) + 2 Y5 , (15)

where Y5 = ((z − 1) ∂z + (z̄ − 1) ∂z̄)Y3.
Finally we find

C2[d] Y5 = Y5 (C2[d− 2]− 3d+ 8) + Y4 (C2[d− 2]− (d− 2)2)− Y1C4[d− 2]

+Y3 (2ab− 2(d− 3)(a+ b) + (d− 2)2 − C2[d− 2]) , (16)

where C4 is the quartic Casimir operator defined by Dolan and Osborn in [24]
:

C4[d] =

(

zz̄

z − z̄

)d−2

(Dz −Dz̄)

(

zz̄

z − z̄

)−d+1

Y3 . (17)

Clearly, when we apply the C2[d] Yi’s to an arbitrary conformal block in
d − 2 dimensions, these differential operators span a five-dimensional space
where the action of C2[d] is represented by a 5× 5 matrix:

C2[d]Y =













c2 1 0 0 0
2c2 c2 − d+ 2 2 −2 0
0 0 c2 − d+ 2 0 0
0 0 2(a+ b)− d c2 + 2 2

−c4 0 κ c2 − (d− 2)2 c2 − 3d+ 8













Y

(18)
where Y is the column-vector formed by the Yi’s, κ is the coefficient of Y3 in
Eq.(16) and c2, c4 are the eigenvalues of the quadratic and quartic Casimir
operators in d− 2 dimensions:

c2 = ℓ(ℓ+ d− 4)/2 + ∆(∆− d+ 2)/2 ; (19)

c4 = −ℓ(ℓ + d− 4)(d−∆− 3)(∆− 1) . (20)

One can check at once that the five eigenvectors Vi, (i = 1, 2, .., 5) of the
transposed of such a matrix define five differential operators Λi = Vi · Y
which transform g

(d−2)
∆,ℓ into a suitable conformal block in d dimensions.

Λi g
(d−2)
∆,ℓ ≡ Λαβ g

(d−2)
∆,ℓ ∝ g

(d)
∆+α,ℓ−β , α, β ∈ {0, 1, 2}, α + β even (21)
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Precisely we obtain

Λ00 = n00

[

Y5 + (3d− 8 + ℓ−∆) Y4 + (a+ b+ 2a b
d−2+ℓ−∆

− 3d−8+ℓ−∆
2

) Y3+

+ (d−4+ℓ)(3−d+∆)
2

Y2 +
(d−4+ℓ)(3−d+∆)(d+ℓ−∆+2)

2

]

,

Λ20 = n20

[

Y5 +
2d−6+ℓ−∆

2
Y4 + (3 + a + b+ 2a b

ℓ+∆
− ∆+ℓ

2
) Y3−

− (∆−1)(d−4+ℓ)
2

Y2 −
(d−4+ℓ)(∆−1)(∆+ℓ)

2

]

,

Λ11 = n11 Y3 , (22)

Λ02 = n02

[

Y5 + (d− 2− ℓ+∆
2
) Y4 + (a+ b− 2a b

ℓ+∆−2
+ 4−2d+ℓ+∆

2
+ ℓ+∆− 2) Y3+

+ ℓ(d−3−∆)
2

Y2 +
ℓ(d−3−∆)(∆+ℓ−2)

2

]

,

Λ22 = n22

[

Y5 +
d−2−ℓ+∆

2
Y4 +

2(a+b+1)+ℓ−∆−d− 4a b

d−4+ℓ−∆

2
Y3+

+ ℓ(∆−1)
2

Y2 −
ℓ(∆−1)(d−4+ℓ−∆)

2

]

.

The normalization coefficients nαβ can be chosen in such a way that
∑

i Λi = 1, which implies of course five linear equations for the nαβ’s. Thier
solution yields

n00 =
−2

(d−4+2ℓ)(d−2∆)(d−3+ℓ−∆)
,

n20 =
−2

(d−4+2ℓ)(d−2−2∆)(ℓ+∆−1)
,

n11 =
−8a b

(d−4+ℓ−∆)(d−2+ℓ−∆)(ℓ+∆−2)(ℓ+∆)
, (23)

n02 =
2

(d−4+2ℓ)(d−2−2∆)(d−3+ℓ−∆)
,

n22 =
2

(d−4+2ℓ)(d−2−2∆)(ℓ+∆−1)
.

Taking advantage of this normalization we finally obtain the KRT iden-
tyty

g
(d−2)
∆,ℓ ≡

5
∑

i=1

Λi g
(d−2)
∆.ℓ =

∑

α,β∈{0,1,2}, α+β even

kαβ g
(d)
∆+α,ℓ−β . (24)

The kαβ’s depend of course on the normalization of the conformal blocks. In
accordance with [10] we have
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k20 = − (∆−1)∆(∆−∆12+ℓ)(∆+∆12+ℓ)(∆−∆34+ℓ)(∆+∆34+ℓ)
4(d−2∆−4)(d−2∆−2)(∆+ℓ−1)(∆+ℓ)2 (∆+ℓ+1)

,

k11 = − (∆−1)∆12∆34ℓ

(∆+ℓ−2)(∆+ℓ)(d−∆+ℓ−4)(d−∆+ℓ−2)
, (25)

k02 = − (ℓ−1)ℓ
(d+2ℓ−6)(d+2ℓ−4)

, k00 = 1,

k22 =
(∆−1)∆(ℓ−1)ℓ(d−∆−∆12+ℓ−4)(d−∆+∆12+ℓ−4)(d−∆−∆34+ℓ−4)(d−∆+∆34+ℓ−4)

4(d−2∆−4)(d−2∆−2)(d+2ℓ−6)(d+2ℓ−4)(d−∆+ℓ−5)(d−∆+ℓ−4)2 (d−∆+ℓ−3)
.

Similar, simpler dimensional uplift identities for two-point and three-point
functions of CFT with boundary [29, 30] and for two-point functions in real
projective space [31] have been found. All of them can be reformulated in
terms of differential operators transforming a conformal block in dimension
d−2 into a conformal block in dimension d. For instance, in the case of CFT
with boundaries, the boundary conformal blocks f

(d)
bdy[∆, ξ] are eigenfunctions

of the following quadratic Casimir

C[d] = −ξ(ξ + 1)∂2
ξ − d(ξ +

1

2
)∂ξ , C[d] f

(d)
bdy[∆, ξ] = ∆ (d− 1−∆) f

(d)
bdy[∆, ξ]

(26)
This operator acts linearly on {y1 = 1, y2 = −(1 + 2ξ) ∂ξ}, namely

C[d] y1 = y1 C[d− 2] + y2 (27)

C[d] y2 = y2 (C[d− 2] + 2(d− 3))− 4y1 C[d− 2] . (28)

By applying the same approach as before we build two differential operators,
λ0 and λ2,

λ0 =
y2 + 2(∆− d+ 3)

2(2∆− d+ 3)
, λ2 =

−y2 + 2∆

2(2∆− d+ 3)
, λ0 + λ2 = 1 . (29)

such that 2

λ0 f
((d−2)
bdy [∆, ξ] = f

(d)
bdy[∆, ξ] , λ2 f

(d−2)
bdy [∆, ξ] = k f

(d)
bdy[∆ + 2, ξ] , (30)

where k is a normalization-dependent coefficient. If for ξ → ∞ f
(d)
bdy[∆, ξ] ≃

1/ξ∆, we have k = ∆(∆+1)
4(d−2∆−5)(d−2∆−3)

.

2Since it has been noticed [32] that the three-dimensional boundary conformal blocks
are expressible as elementary algebraic functions, the mere existence of λ0 and λ2 allows
us to conclude that this property holds for any odd d.
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4 Conclusions

We provided a straightforward algebraic proof of a remarkable identity dis-
covered some time ago by Kaviraj, Rychkov, and Trevisani (KRT). This
identity expresses a conformal block contributing to the four-point function
in (d−2) dimensions as a linear combination of five conformal blocks in d di-
mensions. The key mechanism involved the iterative construction of five dif-
ferential operators that transform linearly under the action of the quadratic
Casimir. This, in turn, enabled us to define five differential operators, de-
noted by Λi, which transform any conformal block in (d−2) dimensions into
five conformal blocks in d dimensions. These operators can be normalized
such that

∑

i Λi = 1, from which the KRT identity follows immediately. Sim-
ilar, simpler identities have been proposed in recent literature, all of which
can be reformulated using the present approach. As an example, we explic-
itly worked out the case of boundary conformal blocks contributing to the
two-point functions of boundary conformal field theories.
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