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Abstract
Neural operators are efficient surrogate models for
solving partial differential equations (PDEs), but
their key components face challenges: (1) in order
to improve accuracy, attention mechanisms suf-
fer from computational inefficiency on large-scale
meshes, and (2) spectral convolutions rely on the
Fast Fourier Transform (FFT) on regular grids
and assume a flat geometry, which causes accu-
racy degradation on irregular domains. To tackle
these problems, we regard the matrix-vector op-
erations in the standard attention mechanism on
vectors in Euclidean space as bilinear forms and
linear operators in vector spaces and generalize
the attention mechanism to function spaces. This
new attention mechanism is fully equivalent to the
standard attention but impossible to compute due
to the infinite dimensionality of function spaces.
To address this, inspired by model reduction tech-
niques, we propose Subspace Parameterized At-
tention (SUPRA) neural operator, which approx-
imates the attention mechanism within a finite-
dimensional subspace. To construct a subspace
on irregular domains for SUPRA, we propose us-
ing the Laplacian eigenfunctions, which naturally
adapt to domains’ geometries and guarantee the
optimal approximation for smooth functions. Ex-
periments show that the SUPRA neural operator
reduces error rates by up to 33% on various PDE
datasets while maintaining state-of-the-art com-
putational efficiency.

1. Introduction
Partial Differential Equations (PDEs) are critical in mod-
eling physical and engineering systems, such as weather
forecasting (Bonev et al., 2023), fluid dynamics (Horie &
Mitsume, 2024), and structural analysis (Li et al., 2022b).
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Preliminary Work.

Solving PDEs has historically relied on numerical methods,
such as finite element methods (Brenner & Scott, 2008),
while they often become computationally expensive, espe-
cially for large-scale meshes and irregular domains (Smith
et al., 1996). Recently, deep learning methods have shown
great potential in accelerating PDE solving (Karniadakis
et al., 2021). By learning mappings from inputs to solutions,
neural operators (Kovachki et al., 2023), such as Fourier
Neural Operators (FNOs) (Li et al., 2020), and DeepONet
(Lu et al., 2019), offer significant speed-ups compared to
traditional methods, while also being flexible and scalable.

Despite these advances, neural operators still face deficien-
cies in addressing the challenges of complex physical fields
(e.g. Navier-Stokes equations with high Reynolds number)
and irregular computational domains in multi-scale prob-
lems (e.g. NACA Airfoil). There are two main problems
with existing approaches: (1) The struggle between com-
putational complexity and expressive power of attention.
As one of the most fundamental components of deep learn-
ing, the attention mechanism (Vaswani et al., 2017) has also
been introduced in PDE-solving tasks. Fourier attention
(Cao, 2021) treats sample points as tokens, resulting in a
time complexity that is quadratic in the number of sample
points, which is computationally expensive for large-scale
meshes. Galerkin attention reduces the complexity to linear
levels, forcing dot products to be applied only in the space
spanned by the input functions (Wang & Wang, 2024) and
limiting the expressive power of the attention mechanism.
Although additional modules, such as FNOs (Rahman et al.,
2024), can be used to improve accuracy, they also introduce
additional overhead and constraints. (2) Discontinuities
in functions induced by cuts to irregular domains. (see
Figure 1). In order that FFT can be applied to conduct spec-
tral convolution (Li et al., 2020), irregular physical domains
are cut and mapped to a regular computational grid (Li
et al., 2022b). However, the cut introduces discontinuities
to smooth functions defined on the computational grid after
they are mapped back to the original physical domain. The
subsequent works extend the FFT to spheres (Bonev et al.,
2023) or point clouds (Wang et al., 2024), but there still
lacks a discussion on constructing suitable basis functions
for more general domains and complex geometries.
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Figure 1. Discontinuities induced by domain cuts. The top row
shows the mapping between a physical domain and a computation
domain in the NACA Airfoil problem. To define the continuous
map, the physical domain must be cut along the homology loop
(red dashed line). Figures in the bottom row visualize a continu-
ous function f(x, y) = sin(4πx) cos(4πy) in different domains,
where x, y are coordinates in the computational domains. After
mapping back to the physical domain, the continuity of the func-
tion does not hold because of the cut.

To address the challenges above, we consider functions as
fundamental elements in neural operators and PDE solv-
ing tasks, analogues to tokens in NLP tasks. Based on
this idea, we derive the attention mechanism on function
spaces by regarding the matrix-vector operations as bilinear
forms and linear operators on vector spaces. This atten-
tion mechanism is fully equivalent to the standard defined
on RN , aiming to capture complex relations between in-
put functions. To tackle the inefficiency of computation in
infinite-dimensional function spaces, we draw inspiration
from model reduction techniques and propose Subspace Pa-
rameterized Attention (SUPRA), which parameterizes the
attention mechanism within a finite-dimensional subspace.
SUPRA transforms function-wise attention into standard
attention operations on subspace coordinates, balancing its
expressive power and computational efficiency.

To construct a suitable subspace for SUPRA on irregular do-
mains, we leverage the subspace using the eigenfunctions of
the Laplace operator. These eigenfunctions are obtained by
solving the Laplacian eigenvalue problem defined by the ge-
ometry. They naturally encode the topology of the physical
domain, ensure continuity across irregular meshes, and have
excellent approximation properties for smooth functions.
Leveraging their continuity and approximation properties,
the SUPRA neural operator accurately captures the relations
between functions while maintaining low computational
costs on irregular domains.

In summary, our contributions are as follows:

1. We formulate the attention mechanism for infinite-
dimensional function spaces and parameterize the at-

tention between functions within finite-dimensional
subspace. To the best of our knowledge, our method
is the first to directly extend the attention to function
spaces while achieving a balance between attention’s
expressive power and computational efficiency.

2. We leverage the Laplacian eigenfunctions to construct
the subspace for irregular domains, which guarantees
both the continuity of basis functions and optimal ap-
proximation property for smooth functions.

3. Through experiments and ablation studies on vari-
ous PDE datasets, we demonstrate that our method
achieves superior accuracy and computational effi-
ciency compared to existing approaches.

2. Related Works
2.1. PDE Solvers

Solving PDEs is critical in many scientific research and
industrial applications. Classical solvers, such as finite dif-
ference methods (Hesthaven, 2018), finite element methods
(Brenner & Scott, 2008), and spectral methods (Bernardi &
Maday, 1997), typically discretize the physical domain and
solve the resulting linear systems. While well-established,
these approaches are computationally expensive on high-
dimensional problems or fine grids, driving interest in alter-
native solutions (Smith et al., 1996).

Physics-Informed Neural Networks (PINNs) Through
defining a loss using PDEs’ residuals, PINNs use neural
networks to represent the solution function directly, taking
spatiotemporal coordinates as inputs and force the neural
network to predict solution values under given initial and
boundary conditions directly (Raissi et al., 2017; 2019).
However, training a PINN typically addresses only one set
of initial/boundary conditions and external forces and is not
cheap even on modern hardware (Rathore et al., 2024).

Neural PDE Solvers Neural operators learn to approxi-
mate the mapping from inputs to solutions (Lu et al., 2019).
Serving as surrogate models for numerical solvers. This
approach significantly reduces the computational cost of
solving PDEs approximately. As one of the pioneering
works, FNO (Li et al., 2020) and its variants (Kossaifi et al.,
2023; Wen et al., 2022) have achieved a significant leap
in solving PDEs. FNOs use the Fast Fourier Transform
(FFT) to perform efficient spectral convolution on regular
grids. Although subsequent works, such as SFNO (Bonev
et al., 2023), have extended the transformations to spherical
domains using spherical harmonic transforms, studies on
general regions remain limited. Geo-FNO (Li et al., 2022b)
utilize mappings to transform irregular domains into regular
rectangular regions, while the existence of continuous map-
pings is not guaranteed. GINO (Li et al., 2023b) propagates
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information between irregular and regular domains through
a GNO, but it does not fundamentally solve the problem of
spectral convolution on irregular grids. Although Fourier
transform can be extended to point clouds (Lingsch et al.,
2024), the Fourier basis is also unsuitable for irregular do-
mains and multi-scale problems.

2.2. Attention Mechanism in Neural PDE Solvers

As a breakthrough innovation in deep learning, the attention
mechanism and Transformer model (Vaswani et al., 2017)
have also been extensively applied to solving PDEs. In
Fourier attention (Cao, 2021), point features are regarded as
tokens, resulting in an attention weight matrix that scales
quadratically with the number of points. Many works, such
as Fact-Former(Li et al., 2023a), aim to reduce this compu-
tational complexity but are limited to regular domains. In
contrast, others (Li et al., 2022a; Xiao et al., 2023; Hao et al.,
2023) leverage linear transformers to address quadratic com-
plexity by reordering computations but restricting atten-
tion to the subspace spanned by input functions. CoDA-
NO(Rahman et al., 2024) use FNOs instead of linear combi-
nations to generate attention inputs. Transolver (Wu et al.,
2024) extracts global features by dividing the input physi-
cal field into slices to enable global information exchange.
LNO (Wang & Wang, 2024) aggregate point data into global
features to apply attention while failing to achieve high ac-
curacy on irregular domains.

2.3. Model Reduction

Model reduction reduces computational complexity by pro-
jecting high-dimensional state spaces into low-dimensional
subspaces, preserving key properties of the original system
(Benner et al., 2017). Model reduction has many real-world
applications. Proper Orthogonal Decomposition methods
(POD) (Sirovich, 1987) and Principle Component Analysis
(PCA) (Brunton et al., 2019) are standard model reduction
techniques in fluid dynamics to transform from physical
coordinates into a modal basis. In structural mechanics
problems, model reduction also helps to accelerate the sim-
ulation (Sifakis & Barbic, 2012) or optimization problems
(Choi et al., 2020; Benner et al., 2015).

3. Preliminaries
3.1. Problem Setup

As an instance, we consider a PDE with a boundary condi-
tion defined on domain Ω ⊆ Rd,

Lau = 0, x ∈ Ω,

u = 0, x ∈ ∂Ω,
(1)

where La is an operator that composed of the given function
a(x) and partial differentials of the unknown function u(x).

The role of neural operators is to define mappings between
functions. In the aforementioned problem, neural operators
learn the mapping from the parameter to the solution, i.e.
a 7→ u. To enable computation on functions, both the input
and output functions are represented by their values at M
sample points xi (1 ≤ i ≤ M).

Motivation of Generalizing Attention to Functions In the
context of neural operators, functions are naturally treated
as the fundamental ”primitives”. Generalizing the attention
mechanism to function spaces losslessly is imperative, as
it allows us to model complex relations between functions.
In NLP tasks, attention is applied to tokens, represented
as vectors in finite-dimensional space RN . To generalize
the attention mechanism from vectors to functions, we first
introduce two key concepts in this paper.

3.2. Linear Operators and Bilinear forms

Definition 3.1 (Linear Operator b(·)). Given a vector space
V, a linear operator is a mapping b(·) : V → V if it satisfies
both additivity and homogeneity (Stein & Shakarchi, 2009)

∀u, v ∈ V, α ∈ R, b(αu+ v) = αb(u) + b(v). (2)

Definition 3.2 (Bilinear Form a(·, ·)). A bilinear form is a
mapping a(·, ·) : V × V → R if for all u, v, w ∈ V and
α ∈ R

A(αu+ v, w) = αA(u,w) +A(v, w), (3)

and similarly for its second argument.

In the rest of this paper, we will focus linear operators and bi-
linear forms on V = RN or V = L2(Ω) since they are used
to define the weights and outputs of attention mechanisms.

3.3. Standard Attention

Self-attention weights between two tokens xi, xj ∈ RN ,
1 ≤ i, j ≤ C are defined with their query vectors qi, qj ∈
RN and key vectors ki, kj ∈ RN as follows (Vaswani et al.,
2017):

wij = q⊤i kj , 1 ≤ i, j ≤ C, (4)

where qi, ki, vi are linear transform of xi:

qi = WQxi, ki = WKxi, vi = WV xi. (5)

In Equation (5) WQ,WK ,WV ∈ RN×N are learnable ma-
trices. The attention weights before softmax operation can
be formulated as

wij =
1√
N

x⊤
i W

⊤
QWKxj . (6)

Finally, the outputs of attention zi are defined as

zi =

C∑
j=1

exp(wij)∑C
k=1 exp(wik)

vj . (7)
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4. Our Method
4.1. Attention Mechanisms on Function Spaces

As shown in Equation (6), attention weights are essen-
tially computed from a bilinear form wij = a(xi, xj) =
xT
i W

T
QWKxj in the vector space V = RN , while in Equa-

tion (5), vi are computed from a linear operator vi =
b(xi) = WV xi. In this case, the attention operation’s out-
puts zi with input xi ∈ RN are

zi =

N∑
j=1

exp a(xi, xj)∑N
k=1 exp a(xi, xk)

b(xj). (8)

To define attention on any vector space, only a bilinear form
a(·, ·) and a linear operator b(·) are needed. In the rest
of the paper, we will focus mainly on the function space
V = L2(Ω).

Attention on Function Spaces Let ui, uj ∈ L2(Ω), 1 ≤
i, j ≤ C be functions defined on domain Ω, suppose
B = {ek} is a basis of L2(Ω), ui can be represented by
the basis by ui =

∑
k û

k
i ek. The coefficients ûk represent

the coordinates of the function u under the basis. By substi-
tuting ui, uj into the bilinear form a(ui, uj) and the linear
operator b(ui), and using their linear properties, the bilinear
form and linear operator are represented by the basis B as

a(ui, uj) = a

(∑
k

ûk
i ek,

∑
l

ûl
jel

)
=
∑
k,l

a(ek, el)û
k
i û

l
j ,

b(ui) =
∑
k

b̂k(ui)ek =
∑
k,l

b̂k(el)û
l
iek.

(9)

In Equation (9), a(ek, el), b̂k(el) ∈ R are learnable coef-
ficients, that do not depend on the input functions ui, but
only on the basis. Equation (8) and Equation (9) are direct
generalizations of the standard attention. However, since
the function space L2(Ω) is infinite-dimensional, infinitely
many coefficients are impossible to compute.

4.2. Efficient Attention on Function Spaces

Subspace Parameterized Attention Inspired by model
reduction techniques, the bilinear form can be efficiently
approximated by truncating the basis at the N -th term if the
basis B has a good approximation property:

a(ui, uj) ≈
N∑

k,l=1

a(ek, el)û
k
i û

l
j = û⊤

i Aûj ,

b(ui) ≈
N∑

k,l=1

b̂k(el)û
l
iek, and b̂(ui) ≈ Bûi.

(10)

In Equation (10), matrix A = [a(ek, el)]N×N parameterizes
the bilinear form, B = [b̂k(el)]N×N parameterizes the lin-

ear operator within the subspace, and ûi ∈ RN are vectors
composed of the coefficients ûk

i . Plugging the parameter-
izations into the Equation (8), the final output functions
zi, 1 ≤ i ≤ C of attention are

zi =

N∑
l=1

ẑliel, where ẑi =

C∑
k=1

exp(wik)∑C
k=1 exp(wik)

Bûk,

(11)

At this point, the attention mechanism on the function space
has been defined (in Equation (8) and (9)) and parameterized
within a subspace (in Equation (10) and (11)). Therefore,
we refer to this attention mechanism as Subspace Param-
eterized Attention (SUPRA). As proved in Appendix A,
as N increases, SUPRA can approximate the attention in
function spaces with arbitrary accuracy.

Subspace Projection and Reconstruction Besides oper-
ations on coordinates, projection from function u to sub-
space coordinates û and reconstruction from û to u are also
required in SUPRA. Reconstruction is a trivial linear com-
bination of the basis functions, while projection involves
numerical integration. For common cases, such as regular
grids [0, 1]2 with resolution H ×W , the projection onto an
orthonormal basis is simply a weighted sum,

ûk =

∫
[0,1]2

u(x)ek(x)dx ≈ 1

HW

H,W∑
i,j=1

u(xij)ek(xij),

(12)
where xij = (i/H, j/W ). This operation can also be con-
ducted efficiently on GPUs.

4.3. Subspace Construction for General Domains

The subspace spanned by basis functions serves as the arena
for the attention mechanism, influencing how functions en-
gage and exchange information. On regular domains, any
orthonormal basis with promising approximation properties
can work in SUPRA, such as Chebyshev (Trefethen, 2013)
and Fourier basis (Wright et al., 2015). For irregular do-
mains, we provide a Laplacian-based method to construct
proper basis functions (?).

Laplacian Eigensubspace The Laplacian eigensubspace
is spanned by the smallest eigenfunctions of the Laplace
operator, which are the Fourier basis on regular grids and
spherical harmonics on spheres. Therefore, the Laplacian
eigensubspace can be interpreted as a natural extension of
the Fourier basis from regular grids to general domains.

The Laplacian eigensubspace guarantees optimal approx-
imation for smooth functions that adapt to the geometry
of any given domain. These eigenfunctions are naturally
orthonormal and continuous (see Figure 3), ensuring effi-
cient dimensionality reduction while reflecting the domain’s
topology (see also Appendix B).

4



SUPRA: Subspace Parameterized Attention for Neural Operator on General Domains
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Figure 2. Overall design of SUPRA neural operator. We adopt the architecture proposed in (Kossaifi et al., 2023) while replacing spectral
convolutions with SUPRA blocks. All trainable modules are colored green. LN stands for LayerNorm, WV corresponds to the matrix
B, and W⊤

QWK corresponds to the matrix A defined in Equation (10). Although LayerNorm (Ba et al., 2016) is a common choice,
InstanceNorm (Ulyanov et al., 2016) can work better since each function is treated as a token in our framework.

Figure 3. Comparison between Laplacian eigenfunctions and
Fourier basis. The eigenfunctions guarantee continuity across
the physical domain, while the Fourier basis defined on the com-
putational mesh does not.

Basis Construction For irregular domains, the eigenvectors
of the Laplace matrix resulting from FEM discretization are
precomputed once by using classical methods. For regular
grids, the basis is computed from a tensor product. See
Section 5.2 and Appendix C for their implementation details.
Typically, N = 64 to N = 256 is sufficient for SUPRA.

4.4. Further Discussions

Multiple heads in SUPRA To enhance SUPRA’s expres-
sive power, we use multiple attention heads by decompos-
ing A = WT

QWK and applying attention to subvectors

within each head. Focusing on the parameterized attention
in Equation (10), it is clear that SUPRA can directly lever-
age highly optimized multi-head attention code, as shown
in the SUPRA block in Figure 2.

Comparison to Standard Attention Comparing the ma-
trix A to W⊤

QWK Equation (6) and the matrix B to WV in
Equation (5), it is clear that SUPRA transforms the atten-
tion between functions ui ∈ L2(Ω) into standard attention
between the coordinate vectors ûi ∈ RN of these functions
within the subspace.

Comparison to Galerkin Attention Given C input func-
tions ui, 1 ≤ i ≤ C, attention weights in Galerkin attention
are defined as the dot product between vi, ki, wij = ⟨vi, kj⟩,
and the output is zi =

∑N
j=1 wijqj . Here, functions

vi, ki, qi are linear combinations of input functions ui, forc-
ing attention to be applied only within the subspace spanned
by {ui}Ci=1. In contrast, SUPRA is based on bilinear forms
and linear operators in a larger function space, allowing it
to capture functions’ relations and apply transforms directly
to each function.

Complexity Analysis SUPRA is efficient compared to all
previous methods using the attention mechanism. For C
functions sampled at M points in the domain, the com-
plexity of different operations in SUPRA is: (1) projec-
tion to subspace coordinates: O(CM), (2) attention be-
tween coordinates: O(C2N), and (3) reconstruction from

5
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Test Case Relative L2 Error (×10−2) #Params (×106)
Galerkin GNOT Transolver LNO Ours Transolver LNO Ours

Darcy 0.84 1.05 0.50 0.49 0.43 2.8 0.76 1.7
Navier Stokes 14.0 13.8 7.83 8.45 6.25 11.2 5.0 3.4

Plasticity 1.20 3.36 0.08 0.29 0.04 2.8 1.4 1.3
Airfoil 1.18 0.76 0.43 0.51 0.34 2.8 1.4 0.5
Pipe 0.98 0.47 0.32 0.26 0.31 3.0 1.4 1.1

Table 1. Performance Comparison. Relative L2 error (×10−2) is recorded, and a smaller value indicates better performance. The best
recorded on each dataset is in bold, and the second best is underlined. The best configurations of our method are listed in Appendix C.2.

coordinates: O(CM). The total complexity of SUPRA is
O(C2N + CM). Correspondingly, Fourier attention con-
siders points as tokens, requiring a complexity of O(CM2),
while Galerkin attention requires a complexity of O(C2M).
The complexity of SUPRA is similar to Galerkin attention,
but achieves better expressive power.

5. Experiments
Test Cases We adopt five standard benchmark datasets pro-
vided by the community listed in Table 2. These test cases
cover most of the input types in PDE problems, including
changes to the parameters of the equation (Darcy), external
inputs (Plasticity), time advance (Navier Stokes), and irreg-
ular domains (Pipe and Airfoil). See Appendix C for their
background information and our experiment’s settings.

Test Case Input Output

Darcy Porus Medium Fluid Pressure
Navier Stokes Previous Vorticity Future Vorticity

Plasticity External Force Deformation
Airfoil Structure Mach Number
Pipe Structure Fluid Velocity

Table 2. List of our test cases and their inputs and outputs.

5.1. Accuracy Comparison

Baselines SUPRA neural operator is compared with the
most recent SOTA methods: (1) Galerkin Transformer (Cao,
2021), (2) GNOT (Hao et al., 2023), (3) Transolver (Wu
et al., 2024), and (4) LNO (Wang & Wang, 2024).

General Settings and Metrics We use the following relative
L2 error (i.e. relative root MSE) as our error metric:

relL2(u, u∗) =
∥u− u∗∥2
∥u∗∥2

, ∥f∥2 =

√∑
i

f(xi)2,

(13)
where xi are sample points, u, u∗ corresponds to the model
prediction and the ground truth.The final relative L2 error
is averaged over all test samples. The best performance of

Figure 4. Comparisons between our prediction and ground truth at
the first and last step in the Navier Stokes problem. Although the
previous input is smooth, the output can be very sharp.

each method on different test cases is shown in Table 1.

As shown, the SUPRA neural operator achieves the best
accuracy and lower computational cost in most test cases.
Our model achieves performance close to the SOTA with
lower computational cost in the Pipe case.

We visualize the prediction of the SUPRA neural operator
for the Navier Stokes and Airfoil problems in Figure 4 and
Figure 5. SUPRA neural operator accurately captures the
vortex and shock wave, demonstrating its ability to capture
complex dynamics even for sharp solutions.

Figure 5. Comparison between our prediction and ground truth in
Airfoil problem. Our method can capture the shock wave around
the wing precisely.

5.2. Ablation Study

Number of Basis The performance of SUPRA with differ-
ent number of basis functions is compared. As presented in
Table 3, it is worth noticing that SUPRA will not degenerate
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when the number of basis is small but also helps to filter out
useless high-frequency modes.

Test Case Basis #Basis Functions
small medium large

NS Fourier 6.86 6.32 6.50
Darcy Fourier 0.433 0.436 0.466
Darcy Chebyshev 0.432 0.449 0.454

Plasticity Fourier 0.062 0.056 0.044
Airfoil Laplacian 0.446 0.340 0.342

Table 3. Comparison between different numbers of basis functions:
Relative L2 error (×10−2) is recorded. The numbers of basis func-
tions range from 64 to 256: The small/medium/large corresponds
to 64/100/144 for Darcy and Plasticity, 64/144/256 for Navier
Stokes, and 64/128/192 for Airfoil.

Choice of Basis As an example to construct the basis, on
1D domain [0, 1], the Fourier basis with n modes is:

{cos(2πix), sin(2πix)}ni=1. (14)

We use a tensor product Fourier basis for the 2D domain
[0, 1]2. Assuming we have m,n modes in the x, y direction,
the basis is constructed:

{ cos(2πix) cos(2πjy), cos(2πix) sin(2πjy),
sin(2πix) cos(2πjy), sin(2πix) sin(2πjy)}m,n

i,j=1.
(15)

For a general d-dimensional structured mesh, the mesh is
first mapped to the d-dimensional unit square [0, 1]d, and the
tensor product basis on the unit square is constructed accord-
ingly. A d-dimensional basis with n modes per dimension
results in (2n)d basis functions.

As mentioned in Section Section 4.3, the choice of basis is
problem dependent. The performance of the Fourier basis
and Chebyshev basis is compared on Darcy, Navier-Stokes,
and Plasticity problems in Table 4.

Basis Test Case
NS Darcy Plasticity

Fourier 6.32 0.466 0.044
Chebyshev 6.60 0.454 0.049

Table 4. Comparison between different orthonormal basis on reg-
ular grids. The table records the relative L2 error (×10−2). The
number of basis is set to 144 in these experiments.

The performance of the subspace spanned by Laplacian
eigenfunctions and the Fourier basis is compared on the Air-
foil problem, with experiment results listed in the Table 5.
We choose 128 Laplacian eigenfunctions and 6 modes for
the Fourier basis (i.e. (6 × 2)2 = 144 basis functions in

total). Since the eigenfunctions are computed directly on the
irregular physical domain, the Laplacian eigensubspace out-
performs a Fourier basis defined on a regular computational
grid.

Dataset Laplacian Fourier

Train 0.74 0.93
Test 3.40 4.58

Table 5. Comparison betteen Laplacian eigensubspace and Fourier
basis. Relative L2 Error (×10−3) of Airfoil on train and test set is
recorded with different subspace.

Normalization The performance of LayerNorm and Instan-
ceNorm is compared in Table 6. It is clear that, the training
process can fail without any normalization applied, while
the performance of InstanceNorm is slightly better than
LayerNorm.

Normalization Test Case
NS Airfoil Darcy Plasticity

Layer 6.92 0.340 0.433 0.046
Instance 6.50 0.350 0.463 0.044

None ↑ ↑ 0.479 ↑

Table 6. Comparison between different normalizations. Relative
L2 error (×10−2) is recorded in the table, and ↑ indicates the
optimization process blows up.

5.3. Model Scalability

Model Size The accuracy of the SUPRA neural operator is
evaluated across different numbers of learnable parameters
in Table 7. Increasing the number of hidden features in-
creases the number of functions that participate in attention
while increasing the number of hidden layers L enables the
model to learn more complex features.

Model Size Test Case
Navier Stokes Airfoil Darcy

L = 4 6.89 0.510 0.512
L = 6 6.25 0.340 0.471
L = 8 6.32 0.340 0.432
Small 11.1 0.484 0.488

Medium 7.99 0.340 0.432
Large 6.58 0.371 0.432

Table 7. Comparison between different number of hidden layers
L and hidden features. Relative L2 error (×10−2) is recorded in
the table. For hidden features, Small/Medium/Large correspond to
64/128/196 for Darcy and Navier Stokes and 32/64/96 for Airfoil.

Computational Cost The evaluation cost comparison of
SUPRA and previous methods is listed in Table 8. A 2D
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Hyper-parameters Model #Params GPU Mem (MB) Time (sec.)
#Hiddens Mesh Size Forward Backward

64 64× 64

Transolver 712K 483 0.017 0.040
LNO 334K 231 0.009 0.019

Ours (N = 128) 635K 173 0.007 0.016
Ours (N = 256) 2.2M 191 0.008 0.017

64 128× 128

Transolver 712K 1822 0.063 0.148
LNO 334K 741 0.029 0.058

Ours (N = 128) 635K 635 0.013 0.034
Ours (N = 256) 2.2M 658 0.016 0.042

256 64× 64

Transolver 11M 1469 0.062 0.169
LNO 5.0M 683 0.017 0.040

Ours (N = 128) 2.1M 662 0.015 0.040
Ours (N = 256) 3.7M 708 0.019 0.047

256 128× 128

Transolver 11M 5647 0.236 0.677
LNO 5.0M 2141 0.051 0.121

Ours (N = 128) 2.1M 2430 0.053 0.133
Ours (N = 256) 3.7M 2479 0.071 0.177

Table 8. Model efficiency. A single RTX-3060 is used for all experiments. All models and experiments use 8 hidden layers and a batch
size of 4. N represents the number of subspace basis functions in the SUPRA block.

problem defined on a structured grid, with 1 function as
input and 1 function as output, is considered in this exper-
iment. By comparing Table 7 and 8, it can be concluded
that SUPRA maintains high prediction accuracy even with
a small number of parameters and computational costs.

6. Conclusion and Future Work
This paper introduces the SUPRA neural operator for solv-
ing PDEs on general domains. SUPRA defines attention
between functions derived directly from the standard at-
tention mechanism and parameterizes attention within a
finite-dimensional subspace, achieving superior expressive
power and computational efficiency. The SUPRA neural
operator demonstrates stronger performance on irregular
domains by leveraging the Laplacian eigensubspace defined
directly on the physical domain. SUPRA achieves higher
accuracy across various standard PDE benchmarks while
maintaining low computational cost. In the future, manual
subspace construction and choice can also be replaced by
a machine learning model. Applying SUPRA to PDEs and
3D dynamics with a larger mesh is also challenging.

Impact Statement
This work aims to improve neural networks as surrogate
models for PDE solvers by introducing the attention mech-
anism directly in function space. This approach offers su-
perior efficiency and expressive power compared to current
techniques. We are confident that our method can enhance
performance in practical applications, including weather

prediction and topology optimization. In developing our
approach, we have prioritized ethical considerations and en-
sured that our work carries no foreseeable ethical concerns.

References
Ba, J., Kiros, J. R., and Hinton, G. E. Layer normalization.

ArXiv, abs/1607.06450, 2016.

Benner, P., Gugercin, S., and Willcox, K. A survey of
projection-based model reduction methods for parametric
dynamical systems. SIAM Review, 57(4):483–531, 2015.
doi: 10.1137/130932715.

Benner, P., Ohlberger, M., Cohen, A., and Willcox, K.
Model Reduction and Approximation. Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, 2017.
doi: 10.1137/1.9781611974829.

Bernardi, C. and Maday, Y. Spectral methods. In Techniques
of Scientific Computing (Part 2), volume 5 of Handbook
of Numerical Analysis, pp. 209–485. Elsevier, 1997.

Bonev, B., Kurth, T., Hundt, C., Pathak, J., Baust, M.,
Kashinath, K., and Anandkumar, A. Spherical fourier
neural operators: Learning stable dynamics on the sphere.
In International Conference on Machine Learning, 2023.

Brenner, S. and Scott, R. The Mathematical Theory of Finite
Element Method, volume 15. 01 2008. ISBN 978-1-4757-
4340-1. doi: 10.1007/978-1-4757-4338-8.

8



SUPRA: Subspace Parameterized Attention for Neural Operator on General Domains

Brunton, S. L., Noack, B. R., and Koumoutsakos,
P. Machine learning for fluid mechanics. ArXiv,
abs/1905.11075, 2019.

Cao, S. Choose a transformer: Fourier or galerkin. In
Neural Information Processing Systems, 2021.

Choi, Y., Boncoraglio, G., Anderson, S., Amsallem, D., and
Farhat, C. Gradient-based constrained optimization using
a database of linear reduced-order models. Journal of
Computational Physics, 423:109787, 2020. ISSN 0021-
9991. doi: https://doi.org/10.1016/j.jcp.2020.109787.

De Witt, T., Lessig, C., and Fiume, E. Fluid simulation
using laplacian eigenfunctions. ACM Trans. Graph., 31
(1), February 2012. ISSN 0730-0301. doi: 10.1145/
2077341.2077351.

Evans, L. Partial Differential Equations. Graduate studies
in mathematics. American Mathematical Society, 2010.
ISBN 9780821849743.

Gilbarg, D. and Trudinger, N. Elliptic Partial Differential
Equations of Second Order. Grundlehren der mathematis-
chen Wissenschaften. Springer Berlin Heidelberg, 2013.
ISBN 9783642963797.

Hao, Z., Wang, Z., Su, H., Ying, C., Dong, Y., Liu, S.,
Cheng, Z., Song, J., and Zhu, J. Gnot: A general neural
operator transformer for operator learning. In Interna-
tional Conference on Machine Learning, ICML 2023,
23-29 July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pp. 12556–
12569. PMLR, 2023.

Hesthaven, J. S. Numerical Methods for Conservation Laws.
Society for Industrial and Applied Mathematics, Philadel-
phia, PA, 2018. doi: 10.1137/1.9781611975109.

Horie, M. and Mitsume, N. Graph neural PDE solvers with
conservation and similarity-equivariance. In Salakhut-
dinov, R., Kolter, Z., Heller, K., Weller, A., Oliver, N.,
Scarlett, J., and Berkenkamp, F. (eds.), Proceedings of the
41st International Conference on Machine Learning, vol-
ume 235 of Proceedings of Machine Learning Research,
pp. 18785–18814. PMLR, 21–27 Jul 2024.

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris,
P., Wang, S., and Yang, L. Physics-informed machine
learning. Nature Reviews Physics, 3:422 – 440, 2021.

Kossaifi, J., Kovachki, N. B., Azizzadenesheli, K., and
Anandkumar, A. Multi-grid tensorized fourier neural op-
erator for high-resolution pdes. ArXiv, abs/2310.00120,
2023.

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural

operator: Learning maps between function spaces with
applications to pdes. Journal of Machine Learning Re-
search, 24(89):1–97, 2023.

Lévy, B. and Zhang, H. R. Spectral mesh processing. In
ACM SIGGRAPH 2010 Courses, SIGGRAPH ’10, New
York, NY, USA, 2010. Association for Computing Ma-
chinery. ISBN 9781450303958. doi: 10.1145/1837101.
1837109.

Li, Z., Meidani, K., and Farimani, A. B. Transformer for
partial differential equations’ operator learning. Trans.
Mach. Learn. Res., 2023, 2022a.

Li, Z., Shu, D., and Barati Farimani, A. Scalable trans-
former for pde surrogate modeling. In Oh, A., Naumann,
T., Globerson, A., Saenko, K., Hardt, M., and Levine, S.
(eds.), Advances in Neural Information Processing Sys-
tems, volume 36, pp. 28010–28039. Curran Associates,
Inc., 2023a.

Li, Z.-Y., Kovachki, N. B., Azizzadenesheli, K., Liu, B.,
Bhattacharya, K., Stuart, A. M., and Anandkumar, A.
Fourier neural operator for parametric partial differential
equations. ArXiv, abs/2010.08895, 2020.

Li, Z.-Y., Huang, D. Z., Liu, B., and Anandkumar, A.
Fourier neural operator with learned deformations for
pdes on general geometries. J. Mach. Learn. Res., 24:
388:1–388:26, 2022b.

Li, Z.-Y., Kovachki, N. B., Choy, C., Li, B., Kossaifi,
J., Otta, S. P., Nabian, M. A., Stadler, M., Hundt, C.,
Azizzadenesheli, K., and Anandkumar, A. Geometry-
informed neural operator for large-scale 3d pdes. ArXiv,
abs/2309.00583, 2023b.

Lingsch, L. E., Michelis, M. Y., De Bezenac, E., M. Per-
era, S., Katzschmann, R. K., and Mishra, S. Beyond
regular grids: Fourier-based neural operators on arbitrary
domains. In Salakhutdinov, R., Kolter, Z., Heller, K.,
Weller, A., Oliver, N., Scarlett, J., and Berkenkamp, F.
(eds.), Proceedings of the 41st International Conference
on Machine Learning, volume 235 of Proceedings of
Machine Learning Research, pp. 30610–30629. PMLR,
21–27 Jul 2024.

Loshchilov, I. and Hutter, F. Decoupled weight decay reg-
ularization. In International Conference on Learning
Representations, 2017.

Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G. E.
Learning nonlinear operators via deeponet based on the
universal approximation theorem of operators. Nature
Machine Intelligence, 3:218 – 229, 2019.

9



SUPRA: Subspace Parameterized Attention for Neural Operator on General Domains

Rahman, M. A., George, R. J., Elleithy, M., Leibovici, D.,
Li, Z., Bonev, B., White, C., Berner, J., Yeh, R. A., Kos-
saifi, J., Azizzadenesheli, K., and Anandkumar, A. Pre-
training codomain attention neural operators for solving
multiphysics pdes. Advances in Neural Information Pro-
cessing Systems, 37, 2024.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics
informed deep learning (part i): Data-driven solutions of
nonlinear partial differential equations. arXiv preprint
arXiv:1711.10561, 2017.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
Physics, 378:686–707, 2019.

Rathore, P., Lei, W., Frangella, Z., Lu, L., and Udell, M.
Challenges in training PINNs: A loss landscape perspec-
tive. In Salakhutdinov, R., Kolter, Z., Heller, K., Weller,
A., Oliver, N., Scarlett, J., and Berkenkamp, F. (eds.),
Proceedings of the 41st International Conference on Ma-
chine Learning, volume 235 of Proceedings of Machine
Learning Research, pp. 42159–42191. PMLR, 21–27 Jul
2024.

Sheng, C., Cao, D., and Shen, J. Efficient spectral meth-
ods for pdes with spectral fractional laplacian. Journal
of Scientific Computing, 88, 07 2021. doi: 10.1007/
s10915-021-01491-2.

Sifakis, E. and Barbic, J. Fem simulation of 3d deformable
solids: a practitioner’s guide to theory, discretization
and model reduction. In ACM SIGGRAPH 2012 Courses,
SIGGRAPH ’12, New York, NY, USA, 2012. Association
for Computing Machinery. ISBN 9781450316781. doi:
10.1145/2343483.2343501.

Sirovich, L. Turbulence and the dynamics of coherent struc-
tures. i. coherent structures. Quarterly of Applied Mathe-
matics, 45:561–571, 1987.

Smith, B. F., Bjørstad, P. E., and Gropp, W. D. Domain de-
composition: parallel multilevel methods for elliptic par-
tial differential equations. Cambridge University Press,
USA, 1996. ISBN 052149589X.

Smith, L. N. and Topin, N. Super-convergence: very fast
training of neural networks using large learning rates. In
Defense + Commercial Sensing, 2018.

Stein, E. and Shakarchi, R. Real Analysis: Measure Theory,
Integration, and Hilbert Spaces. Princeton University
Press, 2009. ISBN 9781400835560.

Trefethen, L. N. Approximation theory and approximation
practice. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 2013. ISBN 978-1-611972-
39-9.

Ulyanov, D., Vedaldi, A., and Lempitsky, V. S. Instance
normalization: The missing ingredient for fast stylization.
CoRR, abs/1607.08022, 2016.

Vaswani, A., Shazeer, N. M., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
Attention is all you need. In Neural Information Process-
ing Systems, 2017.

Wang, H., Jiaxin, L., Dwivedi, A., Hara, K., and Wu, T.
BENO: Boundary-embedded neural operators for ellip-
tic PDEs. In The Twelfth International Conference on
Learning Representations, 2024.

Wang, T. and Wang, C. Latent neural operator for solving
forward and inverse pde problems. In Advances in Neural
Information Processing Systems, 2024.

Wen, G., Li, Z., Azizzadenesheli, K., Anandkumar, A.,
and Benson, S. M. U-fno—an enhanced fourier neural
operator-based deep-learning model for multiphase flow.
Advances in Water Resources, 163:104180, 2022. ISSN
0309-1708. doi: https://doi.org/10.1016/j.advwatres.
2022.104180.

Wright, G. B., Javed, M., Montanelli, H., and Trefethen,
L. N. Extension of Chebfun to periodic functions.
SIAM J. Sci. Comput., 37(5):C554–C573, 2015. ISSN
1064-8275,1095-7197. doi: 10.1137/141001007. URL
https://doi.org/10.1137/141001007.

Wu, H., Luo, H., Wang, H., Wang, J., and Long, M. Tran-
solver: A fast transformer solver for PDEs on general
geometries. In Salakhutdinov, R., Kolter, Z., Heller, K.,
Weller, A., Oliver, N., Scarlett, J., and Berkenkamp, F.
(eds.), Proceedings of the 41st International Conference
on Machine Learning, volume 235 of Proceedings of
Machine Learning Research, pp. 53681–53705. PMLR,
21–27 Jul 2024.

Xiao, Z., Hao, Z., Lin, B., Deng, Z., and Su, H. Im-
proved operator learning by orthogonal attention. ArXiv,
abs/2310.12487, 2023.

10

https://doi.org/10.1137/141001007


SUPRA: Subspace Parameterized Attention for Neural Operator on General Domains

A. Approximation property of SUPRA
In this section, we examine SUPRA will converge under the assumption of boundness of the linear operator b(·) and bilinear
form a(·, ·). In a Banach space, we call a linear operator bounded if there is a constant C such that for all u ∈ V,

∥b(u)∥ ≤ C · ∥u∥. (16)

A bilinear form is bounded if there is a constant C such that for all u, v ∈ V,

a(u, v) ≤ C · ∥u∥ · ∥v∥. (17)

The boundness property of linear operators and bilinear forms are identical to continuity in Banach spaces: Suppose ui and
vi converge to u and v in space V, for linear operator b(·),

lim
i→∞

∥ui − u∥ = 0 =⇒ 0 ≤ lim
i→∞

∥b(ui)− b(u)∥ = lim
i→∞

∥b(ui − u)∥ ≤ C lim
i→∞

∥ui − u∥ = 0. (18)

Therefore, limi→∞ b(ui) = b(u). Similarly, we have limi,j→∞ a(ui, vj) = a(u, v) as well. Suppose we use N basis
functions {ei}Ni=1 to approximate u, v, as N goes to infinity:

lim
N→∞

N∑
k=1

ûkek = u, lim
N→∞

N∑
k=1

v̂kek = v. (19)

Substituting the summation into Equation (10), we have:

lim
N→∞

a

(
N∑

k=1

ûkek,

N∑
k=1

v̂kek

)
= a(u, v),

lim
N→∞

b

(
N∑

k=1

ûkek

)
= b(u).

(20)

Therefore, as N increases, SUPRA’s outputs will converge to the attention of the vector space.

Subspace Basis Here, we list some common basis. These basis share a property that, as the number of basis functions N
increases, the approximations uN =

∑N
i=1 û

kek will converge to u. These properties guarantee the existence of ui, vi in the
proof above.

1. Fourier/Trigonometric representations have uniform properties across the interval of approximation, which is also the
Laplacian eigenfunctions on regular grids such as [0, 1]d,

2. Chebyshev polynomials are nonuniform, with greater resolution at the ends of [−1, 1] than at the middle,

3. Spherical harmonics are the natural extension of the Fourier series to functions defined on the surface of a sphere,
which are also the Laplacian eigenfunctions on that surface,

B. Eigensubspace of Laplace Operator
Benefits of the Eigensubspace Laplace operator (Laplace-Beltrami operator, or Laplacian) is defined as the divergence of
gradient ∆f = div(∇f). The spectrum of the Laplacian consists of all eigenvalues λ and eigenfunctions f with:

−∆f = λf. (21)

This is also known as Helmholtz Equation. If the domain ω is bounded in Rn, then eigenfunctions of the Laplacian are an
orthonormal basis for Hilbert space L2(Ω) (Gilbarg & Trudinger, 2013). Every eigenfunction is infinitely differentiable,
guaranteeing continuity across any irregular domain. Besides, the theorem below describes the smallest eigenfunctions
as the most smooth functions on Ω (Evans, 2010):
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Theorem B.1. The infimum is achieved if and only if φ is an eigenfunction of eigenvalue λk:

λk = inf

{
∥∇φ∥2L2

∥φ∥2L2

: s.t.φ ∈ H1(Ω) ∩ Ek

}
(22)

where Ek := {φ1, φ2, · · · , φk−1}⊥.

Theory and application of the discrete version of Laplacian eigensubspace are also well-established in spectral mesh
processing (Lévy & Zhang, 2010). This eigensubspace is used to perform effective and information-preserving model
reduction while revealing global and intrinsic structures in geometric data, enabling efficient PDE solving (Sheng et al.,
2021) and simulation (De Witt et al., 2012).

C. Experiments Setups
C.1. PDEs Descriptions and Data Preprocessing

Consider the boundary-value problem given by:

Lu = f, in Ω,

u = g, on ∂Ω.
(23)

Our experiments cover most variables in the form: (1) coefficients in L, describing the property of the material at different
positions, (2) external force f , (3) domain shape Ω, and (4) boundary shape ∂Ω. Our experiments also consider time-
dependent problems, which occur when previous states determine future states. We list our experiments in Table 9.

Test Case Geometry #Dim Mesh Size Dataset Split Input TypeTrain Test

Darcy (Li et al., 2020) Regular Grid 2 85× 85 1000 200 Coefficients
Navier Stokes (Li et al., 2020) Regular Grid 2+1 64× 64 1000 200 Previous States

Plasticity (Li et al., 2022b) Structured Mesh 2+1 101× 31 900 80 External Force
Airfoil (Li et al., 2022b) Structured Mesh* 2 221× 51 1000 200 Boundary Shape
Pipe (Li et al., 2022b) Structured Mesh 2 129× 129 1000 200 Domain Shape

Table 9. Datasets and their split used in our experiments. Although the Airfoil case is structured, the mesh is cut to map from an
annulus-like domain to a regular grid. To construct the Laplacian eigensubspace, we regard it as an irregular mesh.

Darcy The equation in Darcy describes the flow of fluid through a porous medium:

−∇ · (a(x)∇u(x)) = f(x), x ∈ (0, 1)2,

u(x) = 0, x ∈ ∂(0, 1)2,
(24)

where a(x) is the diffusion coefficient of a porous medium, which is the input of neural operators and is stored by a regular
grid. The output is the solution u on the same grid. In this dataset, the original resolution is 421× 421. We perform a 5×
downsample on the original one as previous works do. We further enhance the dataset by applying randomly flip horizontally
or vertically to both input and output since the equation guarantees the operation.

Navier Stokes This equation models incompressible and viscous flow with periodic boundary conditions:

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∇w(x, t) + f(x), x ∈ (0, 1)2, t ∈ (0, T ],

∇ · u(x, t) = 0, x ∈ (0, 1)2, t ∈ (0, T ],

w(x, 0) = w0(x), x ∈ (0, 1)2,

(25)

where u is the velocity and w = ∇× u is the vorticity of the flow. We choose ν = 10−5 in this case. Each sample in the
dataset has the vorticity field in 20 time steps. The neural operator takes 10 steps as input and predicts the next 1 step. It
advances in time by dropping the first step in history and appending the prediction of the neural operator.
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Plasticity In this task, neural operators need to predict future deformation of a given plasticity material under the different
impacts from above. Since the initial state of the plasticity does not change, the neural operators take time t, boundary
condition on the top as input, and directly predict the deformation field in the domain.

Pipe In this task, neural operators need to predict the x-component of the velocity field of the fluid in pipes with different
shapes. The input is the structured mesh’s physical position under the pipe’s deformation, and the output is the x-component
of the velocity field on the same structured mesh.

(a) Plasticity (b) Pipe

Figure 6. Comparison between ground truth in Plasticity and Pipe test set.

Airfoil Euler equation models the transonic flow over an airfoil. The input is mesh point locations, and the output is the Mach
number on a structured mesh. We extract the average shape as the mean mesh to precompute the Laplacian eigensubspace.
We compute the eigensubspace for only one mesh (i.e. the mean mesh), not for each sample.

(a) Comparison between mean shape and
one example.

(b) Finite Element discretization on mean
mesh.

Figure 7. Laplacian eigensubspace construction in Airfoil.

We use input/output normalizers in each case, which is a common strategy to guarantee the stability of training progress. We
use AdamW optimizer(Loshchilov & Hutter, 2017) and a OneCycle scheduler(Smith & Topin, 2018) for all the test cases.
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C.2. Configurations for optimal records

We list the configuration of optimal records in Table 10. In the table, H1 loss corresponds to the Sobolev seminorm in the
function space, which measures the regularity of the function. In our experiments on Darcy, |u|H1

= ∥∇u∥L2
. Besides, all

the losses in the table are relative. Different time steps in a data sample are considered multiple samples in training.

Test Case Loss Fn Basis #Basis Normalization #Layers #Hiddens

Darcy L2 + 0.1H1 Chebyshev 100 Layer 8 128
Navier Stokes L2 Fourier 144 Instance 8 256

Plasticity L2 Fourier 144 Instance 8 128
Airfoil L2 Eigensubspace 64 Layer 6 64
Pipe L2 Fourier 144 Layer 8 96

Table 10. The optimal configuration of SUPRA neural operator in Table 1.

The following L2 norm on domain Ω is used to compute our error metric:

∥u∥22 =

∫
Ω

(u(x))2dx ≈ 1

M

∑
i∈mesh

u(xi)
2, (26)

where M is the number of sample points. We assume a structured or regular grid is [0, 1]2. For the relative L2 error used in
accuracy comparison, coefficient M is canceled:

Relative L2 Error(u, u∗) =
∥u− u∗∥2
∥u∗∥2

=

√∑
i∈mesh(u(xi)− u∗(xi))2√∑

i∈mesh u
∗(xi)2

. (27)
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