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“He who knows when he has enough is rich.” — Lao Tzu
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(a) Statistics on whether the question is answered correctly or incorrectly when exiting early at different positions.

(b) Accuracy and Generation Length Comparison of DeepSeek-R1-Distill-Qwen-32B/14B/7B/1.5B on four tasks. 

Figure 1: (a) Motivation and (b) Performance of Dynamic Early Exit in Reasoning.

ABSTRACT

Recent advances in large reasoning language models (LRLMs) rely on test-time
scaling, which extends long chain-of-thought (CoT) generation to solve complex
tasks. However, overthinking in long CoT not only slows down the efficiency of
problem solving, but also risks accuracy loss due to the extremely detailed or re-
dundant reasoning steps. We propose a simple yet effective method that allows
LLMs to self-truncate CoT sequences by early exit during generation. Instead of
relying on fixed heuristics, the proposed method monitors model behavior at po-
tential reasoning transition points (e.g.,“Wait” tokens) and dynamically terminates
the next reasoning chain’s generation when the model exhibits high confidence in
a trial answer. Our method requires no additional training and can be seamlessly
integrated into existing o1-like reasoning LLMs. Experiments on multiple reason-
ing benchmarks MATH-500, AMC 2023, GPQA Diamond and AIME 2024 show
that the proposed method is consistently effective on deepseek-series reasoning
LLMs, reducing the length of CoT sequences by an average of 31% to 43% while
improving accuracy by 1.7% to 5.7%.

∗ Equal Contribution. Work done when Chenxu Yang was an intern at Huawei.
† Corresponding Author.
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Dynamic Early Exit in Reasoning Models

1 INTRODUCTION

The emergence of large reasoning language models (Xu et al., 2025a), such as DeepSeek-R1
(DeepSeek-AI et al., 2025) and GPT-O1 (OpenAI, 2025), has marked a significant breakthrough
in natural language processing, particularly in solving complex and intricate tasks(WANG et al.,
2025). These models leverage the test-time scaling (Snell et al., 2024) law by generating a longer
chain-of-thought (CoT) (Wei et al., 2023) with rich and diverse reasoning paths, unleashing the
potential of their reasoning ability.

However, the generation of overlong CoT sequences also significantly increases computational over-
load and reasoning latency, which hinders their deployment in computationally sensitive real-life
applications. Moreover, recent research (Chen et al., 2025; Team et al., 2025a) reveals an intrinsic
overthinking problem in LRLMs: These models persistently generate verbose reasoning sequences
(Wu et al., 2025; Cuadron et al., 2025) , introducing irrelevant information and unnecessary thought
steps. Such redundant processing not only wastes computational resources but also leads to accuracy
degradation by derailing from correct reasoning paths to erroneous ones (see Questions 19 and 26 in
Figure 1(a)). This redundancy can be attributed to the design of the supervised fine-tuning (Achiam
et al., 2023; Wei et al., 2021; Ouyang et al., 2022) or Reinforcement Learning (Bai et al., 2022;
Ouyang et al., 2022; Schulman et al., 2017; Ramesh et al., 2024) stage, where the ability to dy-
namically adjust its reasoning length during generation is overlooked, leaving a gap in the inference
efficiency of LRLMs.

Intuitively, as the number of reasoning paths increases, more information is referenced when gen-
erating conclusions. If we can identify the critical point where the reasoning information becomes
just sufficient (termed Pearl Reasoning) and force the model to stop further thinking and directly
output conclusions at this point, we can achieve both accuracy and efficiency. The aim of this paper
can be viewed as finding such pearls in long CoT sequences. To validate our motivation, we forced
the model to switches from thinking to directly generating answers, at different transition points in
the thought process. If the answers obtained are correct, the existence of such pearl reasoning is ver-
ified. As shown in Figure 1(a), about 75% samples do contain such pearls (early exit yields correct
answers), even 36.7% samples required only less than half of the original reasoning paths to reach
correct conclusions. Therefore, how to find the pearl reasoning is a high potential and valuable topic
to achieve efficient reasoning.

To this end, we propose a novel, training-free approach DEER that allows large reasoning lan-
guage models to achieve Dynamic Early Exit in Reasoning. It regards the key moments when the
model switches thought chains in reasoning as chances of early exit, and prompting LRLMs to
stop thinking and generate trial answers at these moments. The confidence of each trial answer is
the decision-making reference of early exit in reasoning. Specifically, the proposed method con-
tains three actions: 1) Reasoning Transition Monitoring: Inspired by the budget forcing technique
(Muennighoff et al., 2025), which extends the reasoning chain by introducing tokens like ”Wait”
to force deeper thinking, we identify words such as ”Wait” as critical points for reasoning transi-
tions and monitoring its appearance, but repurposed them inversely to terminate the reasoning chain.
When the reasoning transition points are generated, the action of 2) Trial Answer Inducing is trig-
gered: we replace it with ”final answer” tokens to induce the model to immediately generate a trial
answer, which will be used for 3) Confidence Evaluating. If the confidence is sufficiently high,
set the model to stop further thinking and generate a conclusion based on the generated thoughts.
Otherwise, revoke the action of Trial Answer Inducing and continue reasoning along the original
path.

Our method is simple yet effective, and can be seamlessly extended to different sizes of reason-
ing models, achieving excellent results in the six most popular benchmarks, including AIME 2024
(MAA Committees), AMC 2023 (AI-MO, 2024), GPQA Diamond (Rein et al., 2023), MATH-500
(Hendrycks et al., 2021), HumanEval Chen et al. (2021) and BigCodeBench Zhuo et al. (2024).
Specifically, our method, when integrated into a series of Deepseek-distillation models, can reduce
the length of CoT sequences by an average of 31% to 43% while improving accuracy by 1.7% to
5.7% across different reasoning benchmarks. On programming benchmarks, it achieves an average
reduction of 64.9% in generation length with a 2.1 points increase in pass@1. Our DEER offers a
plug-and-play solution for improving both the efficiency and accuracy of large reasoning language
models.
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2 PRELIMINARIES

2.1 THE GENERATION PATTERN OF LARGE REASONING LANGUAGE MODELS

In contrast to traditional large language models (System 1), large reasoning language models (System
2) (Li et al., 2025) exhibit distinct generation patterns during the inference stage. (1) LRLMs use
delimiters to divide the output into two processes: slow thinking and conclusion. LRLMs conduct
systematic and thorough reasoning in the slow thinking, ultimately summarizing the thought process
and providing the final answer in the conclusion. (2) During the slow thinking process, LRLMs
engage in complex thinking actions, such as Problem Restatement & Comprehension, Approach
Exploration, and Result Verification (Luo et al., 2025b). We refer to each thinking action as a
thinking chunk, and the transitions between these chunks are often marked by action transition
points, including ”Wait”, ”Alternatively”, and ”Hmm”.

System 1: [Prompt] + [Completion],

System 2: [Prompt] + ⟨think⟩+ [Slow Thinking] + ⟨/think⟩+ [Conclusion],
where ⟨think⟩ and ⟨/think⟩ are begin-of-thinking and end-of-thinking delimiters respectively.

2.2 BUDGET FORCING

The budget forcing method proposed by Muennighoff et al. (2025) cleverly leverages the unique
generation patterns in LRLMs to control test-time computation, thus achieving performance im-
provement without additional training or modules. They proposed a simple decoding-time interven-
tion by forcing a maximum and minimum number of slow-thinking tokens at test time. Specifically,
upon reaching the maximum token count, they appended the end-of-thinking token delimiter along
with ”Final Answer:” to early exit the thinking stage. To enforce a minimum, they suppressed
the generation of the end-of-thinking token delimiter and appended action transition points to the
LRLM’s ongoing thought process, thus encouraging the model to double-check its answer or attempt
new reasoning approaches. However, the budget forcing method they proposed is static, leaving sig-
nificant room for improvement. We further explored the unique generation patterns in LRLMs and
introduced a dynamic budget forcing method to enable early exits.

3 MOTIVATIONS AND OBSERVATIONS

In this section, we analyze the overthinking problem in LRLMs and explore the impact of static
early exits on model performance.

We selected AIME2024 (MAA Committees) as the test set for exploratory experiments to perform
a qualitative analysis and further conducted a quantitative analysis through experiments on MATH-
500 (Hendrycks et al., 2021), GPQA-Diamond (Rein et al., 2023) and AIME2024. All experiments
were conducted on DeepSeek-R1-Distill-Qwen-14B (DeepSeek-AI et al., 2025). In our experi-
ments, we first enabled the LRLM to perform a complete inference on the test set (including both
the slow thinking and conclusion contents). Then, we preserved the thinking content and divided
it into thinking chunks based on the action transition points. Samples with more than five thinking
chunks were retained. For these samples, we retained varying proportions (20%-90%) of their think-
ing chunks and appended an end-of-thinking token delimiter to each truncated reasoning sequence
to forcibly terminate the slow-thinking process. The model then generated its final conclusion based
on the partial reasoning contents. For the conclusions obtained with varying thinking contents, we
evaluated their correctness and presented the results of each sample in Figure 1(a). Furthermore, we
investigated the number of samples that remained correct after early exiting when they were orig-
inally correct, as well as the number of samples that became correct after early exiting when they
were originally incorrect, across three datasets in Figure 2.

We define the critical point where the reasoning information becomes just sufficient as the pearl
reasoning. Figure 1(a) demonstrates that approximately 75% samples contain such pearls (early
exit yields correct answers), and 36.7% of the samples exhibit pearl reasoning within the first half
of the reasoning path. Additionally, we observed that there are some samples for which the correct
answer can only be obtained through early exits (e.g., Questions 11, 19 and 26 in Figure 1(a)). These
observations validate our motivation that early exiting at the pearl reasoning position and directly
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MATH-500 GPQA-Diamond AIME24

MATH-500 GPQA-Diamond AIME24

(a) The number of originally correct samples that remain correct with early exiting across different datasets.

(b) The number of originally incorrect samples that become correct with early exiting across different datasets.

Figure 2: Quantitative experiment results on three test sets.

outputting conclusion improves accuracy while reducing computational costs. Specifically, early
exiting at the pearl reasoning position for all 30 samples can reduce inference costs by 40% while
achieving an 11% improvement in accuracy. The quantitative results in Figure 2(a) show that for
MATH-500, 60.8% of correctly answered samples remain correct with early exits using only 20%
of the reasoning steps. For GPQA, 35.1% of correctly answered samples can still be correct with
early exits after only 20% of the reasoning steps.

Figure 2(b) illustrates that exiting at different positions corrects varying proportions of wrong an-
swers. For the MATH dataset, the highest correction rate is achieved when exiting at 40% of the
reasoning steps, whereas for the GPQA dataset, the optimal correction occurs when exiting at 50%.
It seems that the optimal early exit point varies for each problem and is closely related to the inherent
difficulty of the problem itself. Therefore, it is intuitive that relying on a static early exit strategy
based on fixed heuristics is suboptimal, underscoring the necessity of designing a dynamic early
exit mechanism. This quantitative analysis further demonstrates that pearl reasoning can enhance
accuracy while reducing the length of reasoning through error correction.

4 METHOD

4.1 DYNAMIC EARLY EXIT IN REASONING

In this section, we introduce the Dynamic Early Exit in Reasoning (DEER) method to determine
optimal positions for early exits (pearl reasoning path), thereby alleviating the overthinking issue.

The core idea behind DEER is that a model’s confidence in its trial answer dynamically indicates
whether the thinking information required for LRLMs to generate the final answer is sufficient. We
observe that when the model’s reasoning process is incomplete or flawed, the trial answer tends
to exhibit significantly lower confidence. Conversely, when the reasoning is comprehensive and
logically sound, the model generates answers with higher confidence, as illustrated in Figure 10.
This suggests that while the model’s parameter space inherently encodes an implicit awareness of the
occurrence of the Pearl Reasoning, the oversight of dynamically varying lengths of reasoning chains
during training prevents it from explicitly terminating reasoning early. Our method addresses this
limitation by explicitly activating and utilizing this implicit reasoning-awareness to enable dynamic
early exits.

As shown in Figure 3, the specific design of our DEER involves three modules to determine whether
to exit early: reasoning transition monitor, answer inducer, and confidence evaluator.

As mentioned in Section 2.1, LRLM incorporates action transition points between thinking chunks,
which DEER regards as potential early exit points. The reasoning transition monitor is designed to
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𝑃 Prompt
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\sum_{k = 1}^\infty \frac{1}{( j + k)^3}$ in terms of $p$ and $q.$

Question

Original CoT

More than 5000 tokens 

DEER
𝑇!	: Okay, so I have this problem where I need to … <omitted>

</think> 𝐶  : <Conclusion> \boxed{p - q}
Only 1037 tokens 

Thought 
Stop Signal

Figure 3: An overview of the Dynamic Early Exit in Reasoning (DEER) method.

track the emergence of these points, preparing for the identification of optimal early exit opportuni-
ties.

When the LRLM pauses at a potential early exit point, the trial answer inducer module prompts the
model to generate an intermediate answer based on the reasoning content produced so far. We incor-
porated the answer delimiters (\boxed{}) into the prompt to facilitate a more precise identification
of the trial answers.

A = LRLM(P ,T , I) (1)
where P denotes the input prompt, T denotes the generated thoughts, I denotes the answer inducer
prompt, and A = [a0, a1, . . . , an] is the trial answer.

The confidence evaluator module computes the confidence of the induced trial answer. We take the
maximum predicted probability of each token as its confidence. For multi-token trial answers, the
overall confidence is computed as the mean confidence across all constituent tokens.

p(at) = softmax(M(P ,T , I,a<t)) (2)

C = 1

n

n∑
i=1

max
at∈V

p(at) (3)

whereM is the LM Head of the LRLM and its preceding components, with logits as the output.

Finally, the comparison between the obtained confidence and the empirical threshold λ determines
whether to exit early. If C > λ, we consider the reasoning information currently generated by the
LRLM to be sufficient, indicating that the model has reached the Pearl Reasoning. At this point,
DEER stops further reasoning actions and proceeds to deliver the conclusion. Otherwise, the model
reverts to the previous transition point to generate the next thinking chunk.

4.2 BRANCH-PARALLEL DECODING ACCELERATION

Intuitively, the computation of Answer Inducer and Confidence Evaluator in DEER introduces
additional latency during inference, especially for the code generation task where the trial answers
are still long. This further reduces the efficiency gains we’ve earned by greatly shortening the gener-
ated CoT sequences. To solve this problem, we integrate DEER with a branch-parallel acceleration
strategy (Figure 4) to further address these efficiency limitations: (1) Multiple branches are lin-
earized into a single sequence and generated in parallel using a special causal attention mask; (2)
Dynamic KV cache management through confidence-based pruning. This strategy enables temporal
overlap between the trial answer evaluation and the ongoing reasoning-chain generation, thus opti-
mizing overall inference efficiency. More discussion about end-to-end latency will be added in the
forthcoming version.
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step 1

step 2

step 3

step 4

✔ ✔
···
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

t t+1 t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+2 t+8 t+3 t+9 t+4 t+10

[last token] Wait \n ** Final Answer : ** \n , The that final seems answer

Okay, so I have this problem where I 
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me check ... <omitted>

\n**Final Answer**\n\nThe final answer 
is \\boxed{... <omitted>
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✔ ✔ ️ ✔ ✔
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✔ ✔ ️ ✔ ✔ ✔
✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

Ongoing reasoning-chain generation

Trial answer evaluation

Figure 4: Branch-parallel decoding and dynamic KV cache management.

Algorithm 1 Dynamic Early Exit in Reasoning (DEER)
1: Initialization: Large Reasoning Language Model LRLM(·), zero-shot-CoT zs cot, question,

answer inducer prompt I , set of action transition points P, end-of-thinking delimiter ⟨/think⟩,
maximum length max len, and confidence threshold λ.

2: x← zs cot + question, r ← []
3: while len(x) < max len do
4: y ← LRLM(x)
5: if y ∈ P then ▷ Generate thoughts until meets action transition points
6: A← LRLM(x+ I) ▷ Prompt LRLM to generate trial answer tokens
7: Get C according to Equation 2 & 3 ▷ Calculate the confidence of the trial answer
8: if C > λ then
9: x← x + ⟨/think⟩, r ← r + ⟨/think⟩ ▷ Exit when thinking is sufficient

10: end if
11: else
12: x← x + y, r ← r + y
13: end if
14: end while
15: return r

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Benchmarks. To thoroughly evaluate the models’ performance across various reasoning capabili-
ties, we have chosen four representative reasoning benchmarks widely used in the field: MATH-500
Hendrycks et al. (2021) is a challenging benchmark comprising competition-level problems drawn
from diverse high school mathematics domains, including Prealgebra, Algebra, and Number Theory.
For consistency with previous research, we adopt the same 500-problem subset originally curated
by OpenAI for evaluation (Lightman et al., 2023). AMC 2023 (AI-MO, 2024) contains 40 math-
ematical problems, covering algebra, geometry, number theory, and combinatorics. The American
Mathematics Competitions (AMC), organized by the Mathematical Association of America (MAA),
are prestigious contests designed to develop problem-solving skills and identify mathematical talent.
AIME 2024 (MAA Committees) comprises 30 challenge problems selected from the 2024 Ameri-
can Invitational Mathematics Examination (AIME). This prestigious contest evaluates participants’
mathematical reasoning abilities across diverse domains, including arithmetic, algebra, counting,
geometry, number theory, probability, and other secondary school math topics. Beyond these three
math problems, we also conducted evaluations on scientific questions. GPQA (Rein et al., 2023) is a
PhD-level benchmark consisting of high-quality questions spanning physics, chemistry, and biology
subdomains. Notably, domain experts with PhDs in these fields achieved only 69.7% accuracy on
this dataset OpenAI (2024). For our experiments, we specifically select the highest quality subset,
known as GPQA Diamond (composed of 198 questions). We also used two programming bench-
marks to validate our method: HumanEval Chen et al. (2021) is proposed by OpenAI, containing
164 hand-crafted (to avoid data leakage) Python programming tasks focusing on basic algorithms,
each with function signatures, docstrings, canonical solutions, and unit tests. BigCodeBench Zhuo
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Size Method MATH-500 AMC 2023 GPQA Diamond AIME 2024 Overall
ACC ↑ LEN ↓ ACC ↑ LEN ↓ ACC ↑ LEN ↓ ACC ↑ LEN ↓ ACC ↑ LEN ↓

32B
Vanilla 89.2 2036 87.5 2992 48.5 4293 56.7 5818 70.5 3785
DEER 88.6-0.6 942-54% 87.5+0.0 2256-25% 59.1+10.6 2553-41% 63.3+6.6 3839-34% 74.6+4.1 2398-37%

14B
Vanilla 86.0 1747 82.5 3505 52.0 3842 50.0 6307 67.6 3850
DEER 87.0+1.0 1001-43% 77.5-5.0 1799-49% 52.5+0.5 2281-41% 60.0+10.0 3639-42% 69.3+1.7 2180-43%

7B
Vanilla 86.0 1731 70.0 2513 24.8 3453 26.7 3787 51.9 2871
DEER 87.4+1.4 975-44% 82.5+12.5 1622-35% 27.3+2.5 2265-34% 33.3+6.6 3235-15% 57.6+5.7 2024-30%

1.5B
Vanilla 68.4 2188 42.5 3312 5.6 4128 20.0 4200 34.1 3457
DEER 73.2+4.8 1118-49% 47.5+5.0 2384-28% 6.6+1.0 2752-33% 20.0+0.0 3302-21% 36.9+2.8 2389-31%

Table 1: Experimental results on the open-source DeepSeek-R1-Distill series of models (DeepSeek-
R1-Distill-Qwen models with different sizes).

et al. (2024) is designed as a real-world-oriented benchmark, which includes 1,140 tasks requiring
interactions with 139 libraries and diverse function calls.

Reasoning Models. We conducted experiments on the open-source DeepSeek-R1-Distill-Qwen
series of models (DeepSeek-AI et al., 2025), including models with sizes of 1.5B, 7B, 14B, and
32B parameters. All the distilled models are supervised fine-tuned with reasoning data generated
by DeepSeek-R1 model. In addition, we also use the popular and competitive reasoning QwQ-32B
(Team, 2025; Qwen et al., 2025), to further verify the robustness of our method.

Metrics. The goal of DEER is to maintain the correctness performance of LRLMs while avoid-
ing the redundant token overhead caused by overthinking. To this end, we selected Accuracy
(ACC) and Generation Length (LEN) as the evaluation metrics. Accuracy (ACC) is calculated
as follows: Accuracy = 1

N

∑N
i=1 I{M(LRLM(xi)) = yi}, where xi is the question and yi is

the ground-truth answer from the dataset. M(·) extracts the answer from the LRLM’s response.
I{·} is an indicator function that determines whether the inside given condition is valid. The
accuracy evaluation is based on the evaluation framework publicly released by Ye et al. (2025)
(LIMO). Intuitively, the longer the generated text, the greater the inference cost for LRLMs.
Therefore, we calculate the average generation length per sample to evaluate the cost as follows:
Generation Length(LEN) = 1

N

∑N
i=1 |LRLM(xi)|, where | · | measures the number of generated

words. For the two programming benchmarks, we use the Pass@1 metric to measure generated code
correctness.

Implementation details. All evaluations are conducted in a Zero-shot Chain-of-Thought (CoT)
setting with the following prompt: ”Please reason step by step, and put your final answer within
\boxed{}.” For the decoding strategy, we employ greedy decoding with a single sample for the
correctness evaluation. The ground-truth answers to the evaluation problems in our experiments are
all well-structured numerical values or options. Therefore, we apply rule-based evaluations directly
to verify mathematical equivalence. We set the maximum generation length at 16,384 to ensure that
the evaluation captures complete problem-solving attempts.

5.2 EXPERIMENTAL RESULTS

Main Results. DEER consistently and significantly reduces the reasoning length while enhancing
accuracy across reasoning models of different scales and four challenging reasoning benchmarks.
As shown in Table 1, DEER reduces the length of CoT sequences by an average of 31% to 43%
while improving accuracy by an average of 1.7% to 5.7% across different reasoning benchmarks.
These consistent and significant improvements highlight the robustness and effectiveness of DEER.

Notably, when integrated into DeepSeek-R1-Distill-Qwen-1.5B, DEER outperforms vanilla CoT
by 4.8 points in accuracy while utilizing only 51% of the inference tokens on MATH-500. On
the larger DeepSeek-R1-Distill-Qwen-32B model, DEER achieves a 10.6 point improvement on
GPQA-Diamond and a 6.6 point improvement on AIME 2024. Overall, for the reasoning models
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MATH-500 GPQA-Diamond AIME24AMC23

32B

14B

7B

1.5B

DEER ✅ & Vanilla COT ❌ DEER ✅ & Vanilla COT ✅ DEER ❌ & Vanilla COT ❌DEER ❌ & Vanilla COT ✅

461 (92.2%)

446 (89.2%)

37 (92.5%)

35 (87.5%)

129 (65.2%)

96 (48.5%)

20 (66.7%)

17 (56.7%)

Figure 5: More detailed experimental results of DEER compared to Vanilla CoT.

DeepSeek-R1-Distill-Qwen-1.5b and -7b, DEER is more effective than vanilla CoT on the simpler
MATH-500 and AMC 2023. Conversely, the larger DeepSeek-R1-Distill-Qwen-14B and -32B saw
the greatest benefits on the harder GPQA-Diamond and AIME24. This indicates that LRLMs also
exhibit overthinking phenomenon when tackling challenging problem, while such phenomenon is
more obvious when the model reasoning capability matches the benchmark difficulty.

Fine-Grained Analysis. As shown in Figure 5, we have divided the samples into four categories,
each of which is represented by four colors. Green bars indicate samples that can only be answered
correctly by early exit, red bars indicate samples that are only answered correctly without early exit,
blue bars indicate samples that can always be answered correctly by early exit or not, and gray bars
indicate samples that would be answer incorrectly anyway. It can be seen that DEER corrects more
answers (green bars) than it alters incorrectly (red bars) through early exits.

The difficulty of the two datasets on the left side (MATH-500 and AMC23) of the figure is lower
than that of the two datasets on the right side (GPQA-Diamond, AIME24). The gray bars in Figure
5 are considered as samples whose difficulty exceeds the capability of the model itself, so the sum of
the green, blue, and red samples can be considered as the upper limit of the capability of DEER. The
higher the proportion of green bars in these three colors (namely green-in-correct ratio), the more
severe the overthinking phenomenon. By comparing horizontally from left to right, we observe that
green-in-correct ratio decreases, indicating that LRLMs are more likely to experience overthinking
on difficult problems than on simple ones. By comparing vertically from top to bottom, green-in-
correct ratio increases, indicating that smaller models are more prone to overthinking compared to
larger models.

Performance Ceiling of DEER. In addition, we found that there is still room for further improve-
ment in DEER. The red and gray numbers in the figure represent the ceiling of DEER for smaller
models and the accuracy of vanilla CoT for larger models, respectively. If DEER could avoid early
exits on the samples marked by the red bars, the performance of the 7B model on MATH-500 and
AMC23 could surpass that of the 32B model. Similarly, on GPQA-Diamond and AIME24, the 14B
model’s performance could exceed that of the 32B model. This suggests that more precisely iden-
tifying the pearl reasoning, for better decisions on whether and when to early exit, is a meaningful
direction for future research.

Performance on Programming Tasks. Figure 6(b) presents the experimental results of DEER
using DeepSeek-R1-Distill-Qwen-14B as the backbone on two programming datasets. When the
threshold is set to 0.97, compared to vanilla CoT, DEER achieves a 62.7% reduction in reasoning
length while improving pass@1 by 4.3 points on HumanEval. On BigCodeBench, it reduces the
reasoning length by 67.1% with only a 0.2-point decrease in pass@1. These results demonstrate
that our method effectively addresses overthinking in programming tasks.

5.3 DISCUSSION

Impact of threshold λ. Figure 6(a) shows the performance of DEER (DeepSeek-R1-Distill-
Qwen-7B) on the MATH-500 dataset with different threshold λ. In the left subplot of Figure 6(a),
we present the experimental results for λ values set to 0.9 (too early), 0.95, and 1.0 (too late). The
results indicate that when the threshold is set too low, a minor additional reduction in reasoning
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(b) Experimental results on programming tasks(a) Hyperparameter exploration experiments on MATH-500

Vanila CoT: 89.0 (HumanEval)

Vanila CoT: 40.9 (BigCodeBench)
Vanila CoT: 2692 (HumanEval)

Vanila CoT: 3204 (BigCodeBench)

Vanila CoT ACC: 86.0

Figure 6: More experimental results.

Dataset Method ACC LEN Chunk Size Chunk Num Early Exit Ratio
MATH-500 Vanilla 86.0 1747 1747 1.0 0.0%

DEER(W) 87.0+1.0 1001-43% 118.8 14.7 97.4%
DEER(A) 88.6+2.6 1354-22% 329.6 5.3 95.6%

AMC 2023 Vanilla 82.5 3505 3505 1.0 0.0%
DEER(W) 77.5-5.0 1799-49% 193.6 18.1 95.0%
DEER(A) 82.5+0.0 2299-34% 687.3 5.1 87.5%

GPQA Diamond Vanilla 52.0 3842 3842 1.0 0.0%
DEER(W) 52.5+0.5 2281-41% 77.9 49.3 73.2%
DEER(A) 52.5+0.5 2749-28% 205.5 18.7 46.0%

AIME 2024 Vanilla 50.0 6307 6307 1.0 0.0%
DEER(W) 60.0+10.0 3639-42% 113.4 55.6 90.0%
DEER(A) 66.7+16.7 4209-33% 548.4 11.5 70.0%

Overall Vanilla 67.6 3850 3850 1.0 0.0%
DEER(W) 69.3+1.7 2180-43% 125.9 34.4 88.9%
DEER(A) 72.6+5.0 2653-31% 442.7 10.2 74.8%

Table 2: Experimental results on the DeepSeek-R1-Distill-Qwen-14B model with different action
transition points are presented. In DEER(W), the action transition point is denoted by ”Wait”,
whereas in DEER(A), it is denoted by ”Alternatively”.

length leads to a significant drop in accuracy, reflecting an overcorrection of overthinking. Con-
versely, when the threshold is set too high, the model exits reasoning too late, resulting in prolonged
reasoning lengths with a decline in accuracy. In the right subplot of Figure 6(a), we present the
experimental results for λ values set to 0.94, 0.95, 0.96, and 0.97. It indicates that our method is
robust to hyperparameters, as minor fluctuations in the parameters have little impact on the results.

The results on the programming task in Figure 6(b) demonstrate that as λ increases, DEER’s pass@1
improves while the generation length also becomes longer. We attribute this to the extended length
of trial answers in programming tasks, wherein the probabilities of many subsequent consecutive
tokens tend to approach 1 due to the presence of fixed pattern segments (e.g., the last line often
being ”return variables”). The entropy differences among critical tokens are diluted when averaged.
To address this, we plan to explore a design that compares the probabilities of key tokens against a
threshold for optimization.

Impact of Thought Switch Signals. In the main experiments, we achieved promising results by
using ”Wait” as the signal for early exit, denoted as DEER(W). Considering that LRLMs may
generate different action transition points, we added a set of comparative experiments using ”Al-
ternatively” as the checkpoint token, denoted as DEER(A). Table 2 shows that DEER(A) achieves
a higher accuracy, surpassing DEER(W) by an average of 3.7 points. However, its reduction in
inference length is 12% less. We collect statistics on the length and number (namely Chunk Size
and Chunk Num) of reasoning chunks obtained by dividing the original thought chain with the
two thought switch signals, respectively. As shown in Table 2, the average length of each rea-
soning chunk of DEER(A) is 3.5 larger than that of DEER(W), which makes the reasoning chains
referenced when DEER(A) generates a trial answer more complete, thereby improving accuracy.
Correspondingly, the number of reasoning chunks of DEER(A) is significantly smaller than that of
DEER(W), which makes DEER(A) less likely to attempt early exit. Therefore, DEER(A) has 14.1%
fewer samples than DEER(W) to implement early exit. This also explains why the average infer-
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Figure 8: Experimental results on the QwQ-32B model.

ence length of DEER(A) is higher than that of DEER(W). This phenomenon inspires us that a better
reason chunk segmentation can further improve early exit in reasoning, which we leave for future
discussion.

-47.3%

-42.7%
-48.7%

-43.4%

Figure 7: Generation latency

Efficiency Improvement. To accurately verify the gains brought
by DEER in end-to-end inference efficiency, we measured the av-
erage latency on MATH and AMC datasets based on huggingface
Wolf et al. (2020) without any inference acceleration frameworks
such as vllm Kwon et al. (2023)). As shown in Table 7, our method
still reduces the latency by 43.4% to 47.3% when the proposed
branch-parallel decoding acceleration are not used. Considering
that multiple actions of trial answer inducing and the confidence
evaluation will introduce a large amount of calculation delay, once
the DEER uses the parallel acceleration strategy, all actions’ extra
delays except the last one can be overlapped, and the efficiency is
expected to be further improved. This result and the efficiency gain
analysis combined with the inference framework vllm will be pre-
sented in the next version.

Performance on QWQ-32B. Figure 8 presents the results on the QwQ-32B model. Compared to
vanilla CoT, DEER reduces the generation length by 24% but makes three additional errors. This
result is slightly weaker compared to the DeepSeek-R1-Distill series of models. Through observa-
tion, we found that appending the end-of-thinking delimiter does not reliably control QwQ-32B to
exit reasoning, which makes QwQ-32B unable to fully absorb the gains of DEER. To explore the
causes of this phenomenon, we compare the CoTs generated by QwQ-32B and the DeepSeek-R1-
Distill models in Figure 11. It can be seen that ⟨/think⟩ token is not the only one in the QwQ-32B’s
CoT, which indicates that QwQ-32B itself cannot strictly follow the effect of terminating thinking
brought by ⟨/think⟩. This further leads to a slightly less effective mitigation of the overthinking
problem compared to other models, but overall, DEER remains effective. We conjecture that this
behavior may be related to the format reward setting during the RL training phase of the QwQ-32B
model.

5.4 CASE STUDY

In Figure 9, we provide examples of results on MATH-500 to visually demonstrate the effectiveness
of DEER. The design of DEER ensures that it follows the same reasoning process as the vanilla CoT
method before early exiting. Both methods arrive at the correct answer during the first reasoning
step, as shown in the green box. The difference lies in the fact that our method exits early after
evaluating the confidence of the trial answer as sufficiently high, thus producing the correct result.
In contrast, the vanilla CoT method proceeds to the next reasoning action. After double-checking
and switching reasoning approaches, the model becomes trapped in an endless cycle of verification
due to inconsistent answers from the two approaches, ultimately failing to provide a final answer.

Table 10 shows the detailed process of DEER applied on a mathematical example. It can be observed
that, at each reasoning switch point (”Wait” token), DEER generates a trial answer and evaluates
its confidence. The change in confidence is consistent with the reliability of the current reasoning
chunks and trial answers. This shows that LRLMs implicitly know when to leave early, and our
method is simple and effective to realize such potential of the model itself.
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6 RELATED WORK

The advent of Open-AI o1 (OpenAI, 2025) established test-time scaling (Snell et al., 2024) as a
pivotal research direction in the LLM community. This approach enhances LLMs’ slow think-
ing capabilities, enabling breakthroughs in complex problem solving. The recent open-sourcing of
DeepSeek-R1 (DeepSeek-AI et al., 2025) has further intensified interest in locally deployed reason-
ing models. However, two critical challenges have emerged: 1) excessively long CoT generated
significantly degrades inference efficiency, and 2) growing empirical evidence (Chen et al., 2025;
Team et al., 2025a) reveals their susceptibility to overthinking – a phenomenon where models con-
tinue reasoning beyond the point of optimal output. Following the taxonomy of efficient reasoning
established in (Sui et al., 2025; Wang et al., 2025), we categorize related work into three classes:
post-traning based, prompt-based, and output-based efficient reasoning methods.

Post-training based efficient reasoning methods use supervised fine-tuning (Yu et al., 2024; Kang
et al., 2025; Xia et al., 2025; Ma et al., 2025b; Munkhbat et al., 2025; Liu et al., 2024; Han et al.,
2024) with variable-length CoT data or incorporate length rewards (Team et al., 2025b; Luo et al.,
2025a; Aggarwal & Welleck, 2025; Arora & Zanette, 2025; Yeo et al., 2025; Shen et al., 2025b; Qu
et al., 2025; Cui et al., 2025) in reinforcement learning to enable the model to adaptively generate
chains of thought of different lengths. However, these methods often require a large amount of com-
putational resources and face challenges in dataset construction. Recently, some work (Hao et al.,
2024; Shen et al., 2025c; Cheng & Van Durme, 2024; Shen et al., 2025a; Su et al., 2025; Saunshi
et al., 2025) has shown that using latent representations to replace explicit textual reasoning steps
allows reasoning models to be more efficient. However, such methods often require extensive-epoch
SFT on carefully curated datasets(Hao et al., 2024; Xu et al., 2025c), leading to overfitting on the
output format and consequently compromising the model’s inherent expressiveness and generaliza-
tion ability.

Prompt-based efficient reasoning methods (Han et al., 2024; Xu et al., 2025b; Lee et al., 2025;
Renze & Guven, 2024; Chen et al., 2024) use varying prompts to enforce reasoning models to
generate concise CoT with less unnecessary reasoning steps. Especially, (Aytes et al., 2025; Chuang
et al., 2024; 2025; Ong et al.) assign different prompts to queries based on their difficulty, thereby
adjusting the length of the CoT generated by reasoning models. We also explored the performance
of our method combined with prompt design in Table X, demonstrating further reductions in the
length of reasoning chains while maintaining considerable accuracy.

Most of the Output-based efficient reasoning methods focus on optimizing the best-of-N sampling
for LLMs, such as pruning low-quality samples (Xie et al., 2023; Liao et al., 2025) and implementing
early stopping (Li et al., 2024; Manvi et al., 2024; Aggarwal et al., 2023) when multiple samples
achieve self-consistency. However, following the introduction of advanced reasoning models like
R1, there is less reliance on best-of-N sampling methods, as these models exhibit strong reasoning
capabilities independently. Very recently, two concurrent works share similar motivations with ours.
Zhang et al. (2025) also proposes to terminate early based on trial answers, but requires an additional
probe model to determine the correctness. They focus on enhancing the verification capabilities of
the probe model, whereas our method explore how to enable the model to self-determine when to
exit early and integrate seamlessly into existing reasoning logic. Ma et al. (2025a) prompts reasoning
models to directly output final answers during decoding, but only achieves better performance in the
low-budget regime or being adapted to best-of-N methods compared to baselines, which limits the
applicability and generalization.

7 CONCLUSION

This paper empirically verifies the rationale behind the early exit motivation in reasoning models
during chain-of-thought generation through pilot experiments. Based on this, we propose a training-
free dynamic early exit algorithm, which makes the reasoning model withdraw from subsequent
thinking when the thinking amount is just enough. Our method comprehensively evaluated across
reasoning models of varying model sizes and demonstrates superior performance with fewer tokens
on six classical reasoning benchmarks (including math, science, and programming tasks), which
offers a win-win solution to the trade-off between accuracy and efficiency commonly encountered
in test-time scaling.
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A APPENDIX

A Senate committee has 5 Democrats, 5 Republicans, and 1 Independent. In how many ways can they 
sit around a circular table if all the members of each party all sit next to each other?  (Two seatings 
are considered equivalent if one is a rotation of the other.)

Okay, so I have this problem about a Senate committee with 5 Democrats, 
5 Republicans, and 1 Independent. They need to sit around a circular table, 
and all the members of each party have to sit next to each other. I need to 
figure out in how many different ways this can happen. The problem also 
mentions that two seatings are considered the same if one is just a rotation 
of the other. Hmm, okay, let me break this down.

First, since it's a circular table, the number of arrangements is usually less 
than a straight line because rotations are considered the same.
<omitted>

So, let me think. There are three parties: Democrats, Republicans, and 
Independents. Each party is a group that needs to be seated together. So, 
instead of thinking of 11 individuals, I can think of three blocks: 
D (Democrats), R (Republicans), and I (Independent). Each block has to 
be seated together, so the problem reduces to arranging these three blocks 
around the table.
<omitted>
So, for three blocks, it's 2! = 2 distinct arrangements.

But now, within each block, the members can be arranged among 
themselves. For the Democrats, there are 5 people, so they can be 
arranged in 5! ways. Similarly, the Republicans can be arranged in 5! 
ways. The Independent is just one person, so there's only 1 way to arrange 
that block.

Therefore, the total number of arrangements is the number of ways to 
arrange the blocks multiplied by the number of ways to arrange the 
people within each block. So, that would be 2! * (5! * 5! * 1!) = 2 * (120 
* 120 * 1) = 2 * 14400 = 28800.

</think>

Okay, so I have this problem about a Senate committee with 5 Democrats, 5 
Republicans, and 1 Independent. They need to sit around a circular table, and 
all the members of each party have to sit next to each other. 
<omitted>

Therefore, the total number of arrangements is the number of ways to arrange 
the blocks multiplied by the number of ways to arrange the people within each 
block. So, that would be 2! * (5! * 5! * 1!) = 2 * (120 * 120 * 1) = 2 * 14400 = 
28800.

Wait, hold on. Is that all? Let me double-check. So, we have three blocks: D, R, 
I. Arrange them around the table: (3-1)! = 2. Then, within each block, arrange 
the members: 5! for D, 5! for R, and 1! for I. So, yes, 2 * 5! * 5! * 1! = 2 * 120 
* 120 = 28800.

But wait, another thought: since the table is circular, does the direction matter? 
Like, clockwise vs. counterclockwise. In circular permutations, sometimes 
arrangements that are mirror images are considered different unless specified 
otherwise. 
<omitted>

But let me think again. Is there another way to approach this problem? Maybe 
by considering the circular arrangement as a linear arrangement where we fix 
one person's position to eliminate rotational symmetry.
<omitted>
But since we've fixed the Democrats, the remaining seats are in a line, so the 
number of ways to arrange the Republican block and the Independent is 2! 
(since there are two blocks: R and I). Then, within the Republican block, they 
can be arranged in 5! ways, and the Independent is just 1.

So, the total number of arrangements would be 1 (for the fixed Democrat) * 2! 
* 5! * 1! = 2 * 120 = 240. 

Wait, that's different from the previous answer. Hmm, so which one is correct? 
Wait, no, actually, if we fix one Democrat's seat, we're not just fixing that one 
seat, but the entire block of Democrats. So, the number of ways to arrange the 
blocks is 2! (for R and I), and within each block, it's 5! for R and 1! for I. So, 2! 
* 5! * 1! = 2 * 120 = 240. But that seems too low because earlier we had 28800.

Wait, so which approach is correct? Let me think. 

<omitted>

Wait, so which approach is correct? Let me think. 

<omitted>

Wait, so which approach is correct? Let me think.  ......

Question: 

Answer: DEER Vanilla CoT

Token number: 870 Token number: 16384

Repetition

The Senate committee consists of three parties: Democrats (D), Republicans 
(R), and an Independent (I). Since they must sit together, we treat each party 
as a single block. 

1. **Arranging the Blocks**: Around a circular table, the number of ways 
to arrange 3 blocks is \\((3-1)! = 2!\\).

2. **Arranging Within Blocks**: \n - Democrats can be arranged in \\(5!\\) 
ways.\n - Republicans can be arranged in \\(5!\\) ways.\n - The Independent 
is a single person, so there's \\(1!\\) way.

3. **Total Arrangements**: Multiply the arrangements of the blocks by the 
arrangements within each block:\n \\[\n 2! \\times 5! \\times 5! \\times 1! = 2 
\\times 120 \\times 120 \\times 1 = 28,800\n \\]

**Answer**: \\boxed{28800}"

Early Exit !

[Slow thinking]

[No Conclusion]

[Conclusion]

[Slow thinking]

Figure 9: Comparison of generated content samples on MATH-500. Blue represents the conclusion,
while other colors represent different reasoning actions.
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Question: 

Answer: 
Okay, so I have this problem where I need to find the coordinates of the fourth vertex of a parallelogram. The given points are (5, 3), (6, 8), (7, 4), and 
(x, y) with the condition that x > 7. Then, I need to find the value of x + y. Hmm, let me think about how to approach this.
First, I remember that in a parallelogram, opposite sides are equal and parallel. That means the midpoints of the diagonals should be the same. So, if I 
can find the midpoint of one diagonal, it should be equal to the midpoint of the other diagonal.
Let me label the points to make it clearer. Let's say point A is (5, 3), point B is (6, 8), point C is (7, 4), and point D is (x, y). Now, I need to figure out 
which points are connected to each other. Since it's a parallelogram, the order of the points matters. I think the points should be connected in order, so 
A to B to C to D and back to A. But I'm not entirely sure, so maybe I should consider different possibilities.
Alternatively, another way to approach this is by using vectors. In a parallelogram, the vector from one point to another should be equal to the vector 
from another point to the next. So, for example, vector AB should be equal to vector DC, and vector AD should be equal to vector BC.
Let me try that. First, let's find vector AB. Point A is (5, 3) and point B is (6, 8). So, vector AB is (6 - 5, 8 - 3) = (1, 5). If vector AB is equal to vector 
DC, then vector DC should also be (1, 5). Point D is (x, y) and point C is (7, 4). So, vector DC is (7 - x, 4 - y). Setting this equal to (1, 5), we get:\n\n7 
- x = 1 and 4 - y = 5.
Solving the first equation: 7 - x = 1 => x = 7 - 1 = 6.
Solving the second equation: 4 - y = 5 => y = 4 - 5 = -1.

<Induced trial answer>: \boxed{6 + (-1)}. 

Wait, but the problem states that x > 7, and here x is 6, which is less than 7. That can't be right. So, maybe I assigned the points incorrectly.
Perhaps the order of the points isn't A, B, C, D. Maybe it's a different order. Let me try another approach.
Another property of a parallelogram is that the diagonals bisect each other. So, the midpoint of diagonal AC should be the same as the midpoint of 
diagonal BD.
Let me calculate the midpoint of AC first. Point A is (5, 3) and point C is (7, 4). The midpoint formula is ((x1 + x2)/2, (y1 + y2)/2). So, midpoint of AC 
is ((5 + 7)/2, (3 + 4)/2) = (12/2, 7/2) = (6, 3.5).
Now, the midpoint of BD should also be (6, 3.5). Point B is (6, 8) and point D is (x, y). So, midpoint of BD is ((6 + x)/2, (8 + y)/2). Setting this equal 
to (6, 3.5):\n\n(6 + x)/2 = 6 and (8 + y)/2 = 3.5.
Solving the first equation: (6 + x)/2 = 6 => 6 + x = 12 => x = 6.\n\nSolving the second equation: (8 + y)/2 = 3.5 => 8 + y = 7 => y = -1.
Again, I get x = 6 and y = -1, but x is supposed to be greater than 7. Hmm, that's conflicting. Maybe I need to consider a different pair of points as the 
diagonal.

<Induced trial answer>: \boxed{10}. 

Wait, perhaps I assumed the wrong diagonal. Maybe the diagonals are AD and BC instead of AC and BD. Let me try that.
Midpoint of AD: Point A is (5, 3) and point D is (x, y). Midpoint is ((5 + x)/2, (3 + y)/2).
Midpoint of BC: Point B is (6, 8) and point C is (7, 4). Midpoint is ((6 + 7)/2, (8 + 4)/2) = (13/2, 12/2) = (6.5, 6).
Setting midpoints equal:\n\n(5 + x)/2 = 6.5 and (3 + y)/2 = 6.
Solving the first equation: (5 + x)/2 = 6.5 => 5 + x = 13 => x = 8.\n\nSolving the second equation: (3 + y)/2 = 6 => 3 + y = 12 => y = 9.
Okay, this gives x = 8 and y = 9, which satisfies x > 7. So, the fourth point is (8, 9), and x + y = 8 + 9 = 17.

<Induced trial answer>: \boxed{17}.  

</think>

To find the coordinates of the fourth vertex of the parallelogram, we use the property that the diagonals of a parallelogram bisect each other. 
1. **Calculate the midpoint of diagonal BC:**\n - Points B (6, 8) and C (7, 4).\n - Midpoint formula: \\(\\left(\\frac{6 + 7}{2}, \\frac{8 + 4}{2}\\right) 

= \\left(\\frac{13}{2}, 6\\right) = (6.5, 6)\\).
2. 2. **Set the midpoint of diagonal AD equal to the midpoint of BC:**\n - Let D be (x, y).\n - Midpoint of AD: \\(\\left(\\frac{5 + x}{2}, \\frac{3 + 

y}{2}\\right)\\).\n - Equate to (6.5, 6):\n - \\(\\frac{5 + x}{2} = 6.5 \\Rightarrow 5 + x = 13 \\Rightarrow x = 8\\).\n - \\(\\frac{3 + y}{2} = 6 
\\Rightarrow 3 + y = 12 \\Rightarrow y = 9\\).

3. 3. **Calculate \\(x + y\\):**\n - \\(x + y = 8 + 9 = 17\\).
4. **Answer:** \\(\\boxed{17}\\)

The coordinates of a parallelogram are (5, 3), (6, 8), (7, 4) and $(x, y)$ and $x > 7$. 
What is the value of $x + y$?

Confidence: 0.7344

Confidence: 0.5312

Exit!

Continue thinking

Continue thinking

Confidence: 0. 9993

Figure 10: An example demonstrating LRLM’s implicit ability to sense the emergence of pearl
reasoning.
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Question: 

Answer: 

Okay, so I need to find a way to express the double sum \\(\\sum_{j = 1}^\\infty \\sum_{k = 1}^\\infty \\frac{1}{(j + k)^3}\\) in terms of \\(p\\) and 
\\(q\\), where \\(p\\) is the sum of \\(1/k^2\\) and \\(q\\) is the sum of \\(1/k^3\\). Hmm, let me think about how to approach this.\n\nFirst, I 
remember that double sums can sometimes be simplified by changing variables or switching the order of summation. Maybe I can let \\(n = j + k\\), 
so that for each \\(n\\), the terms where \\(j + k = n\\) contribute to the sum. That might help me rewrite the double sum as a single sum over \\(n\\), 
with each term multiplied by the number of pairs \\((j, k)\\) that add up to \\(n\\).\n\nLet me try that. Let's set \\(n = j + k\\). Then for each \\(n \\geq 
2\\) (since \\(j\\) and \\(k\\) are at least 1), the number of pairs \\((j, k)\\) such that \\(j + k = n\\) is \\(n - 1\\). For example, when \\(n = 2\\), there's 
only one pair (1,1); when \\(n = 3\\), there are two pairs (1,2) and (2,1), and so on. So the double sum can be rewritten 
as:\n\n\\[\n\\sum_{n=2}^\\infty \\frac{n - 1}{n^3}\n\\]\n\nWait, is that right? Let me check. Each term \\(\\frac{1}{(j + k)^3}\\) for each pair \\((j, 
k)\\) would be grouped by \\(n = j + k\\), so each \\(n\\) contributes \\((n - 1)\\) terms each of \\(\\frac{1}{n^3}\\). Therefore, the total contribution 
for each \\(n\\) is \\(\\frac{n - 1}{n^3}\\). So the entire double sum becomes:\n\n\\[\n\\sum_{n=2}^\\infty \\frac{n - 1}{n^3}\n\\]\n\nHmm, okay. 
Now I need to express this in terms of \\(p\\) and \\(q\\). Let me see. Let's first write out the sum:\n\n\\[\n\\sum_{n=2}^\\infty \\frac{n - 1}{n^3} = 
\\sum_{n=2}^\\infty \\left( \\frac{n}{n^3} - \\frac{1}{n^3} \\right ) = \\sum_{n=2}^\\infty \\left( \\frac{1}{n^2} - \\frac{1}{n^3} 
\\right )\n\\]\n\nAh, that simplifies to the difference between two sums. Let's split that into two separate sums:\n\n\\[\n\\sum_{n=2}^\\infty 
\\frac{1}{n^2} - \\sum_{n=2}^\\infty \\frac{1}{n^3}\n\\]\n\nNow, notice that these are just the tails of the series for \\(p\\) and \\(q\\). Since \\(p = 
\\sum_{k=1}^\\infty \\frac{1}{k^2}\\), then \\(\\sum_{n=2}^\\infty \\frac{1}{n^2} = p - \\frac{1}{1^2} = p - 1\\). Similarly, \\(q = 
\\sum_{k=1}^\\infty \\frac{1}{k^3}\\), so \\(\\sum_{n=2}^\\infty \\frac{1}{n^3} = q - \\frac{1}{1^3} = q - 1\\).\n\nTherefore, substituting back 
into the expression:\n\n\\[\n(p - 1) - (q - 1) = p - 1 - q + 1 = p - q\n\\]\n\n
</think>
Let's summarize the above thought process and provide the result. The double sum can be rewritten by considering the sum over \\(n = j + k\\). For 
each \\(n \\geq 2\\), there are \\(n - 1\\) pairs \\((j, k)\\) such that \\(j + k = n\\). This transforms the double sum into a single 
sum:\n\n\\[\n\\sum_{j=1}^\\infty \\sum_{k=1}^\\infty \\frac{1}{(j + k)^3} = \\sum_{n=2}^\\infty \\frac{n - 1}{n^3}\n\\]\n\nBreaking this into two 
separate sums:\n\n\\[\n\\sum_{n=2}^\\infty \\left( \\frac{1}{n^2} - \\frac{1}{n^3} \\right ) = \\left( \\sum_{n=2}^\\infty \\frac{1}{n^2} \\right ) - 
\\left( \\sum_{n=2}^\\infty \\frac{1}{n^3} \\right )\n\\]\n\nRecognizing these as the tails of the series for \\(p\\) and \\(q\\), we subtract the first 
terms:\n\n\\[\n\\left( p - 1 \\right ) - \\left( q - 1 \\right ) = p - q\n\\]\n\nThus, the double sum simplifies to \\(\\boxed{p - q}\\).\n\n**Final 
Answer**\n\\boxed{p - q}\n\n
</think>
\n\nTo express the double sum \\(\\sum_{j = 1}^\\infty \\sum_{k = 1}^\\infty \\frac{1}{(j + k)^3}\\) in terms of \\(p\\) and \\(q\\), we start by 
changing variables. Let \\(n = j + k\\). For each \\(n \\geq 2\\), the number of pairs \\((j, k)\\) such that \\(j + k = n\\) is \\(n - 1\\). This allows us to 
rewrite the double sum as:\n\n\\[\n\\sum_{n=2}^\\infty \\frac{n - 1}{n^3}\n\\]\n\nNext, we split this into two separate 
sums:\n\n\\[\n\\sum_{n=2}^\\infty \\left( \\frac{1}{n^2} - \\frac{1}{n^3} \\right )\n\\]\n\nRecognizing these as the tails of the series for \\(p\\) and 
\\(q\\), we have:\n\n\\[\n\\sum_{n=2}^\\infty \\frac{1}{n^2} = p - 1 \\quad \\text{and} \\quad \\sum_{n=2}^\\infty \\frac{1}{n^3} = q - 
1\n\\]\n\nSubstituting these into the expression gives:\n\n\\[\n(p - 1) - (q - 1) = p - q\n\\]\n\nThus, the double sum simplifies to \\(\\boxed{p - q}\\). 

Define\n\\[p = \\sum_{k = 1}^\\infty \\frac{1}{k^2} \\quad \\text{and} \\quad q = 
\\sum_{k = 1}^\\infty \\frac{1}{k^3}.\\]Find a way to write\n\\[\\sum_{j = 1}^\\infty 
\\sum_{k = 1}^\\infty \\frac{1}{(j + k)^3}\\]in terms of $p$ and $q.$

Okay, so I have this problem where I need to express the double sum \\(\\sum_{j = 1}^\\infty \\sum_{k = 1}^\\infty \\frac{1}{(j + k)^3}\\) in terms of 
\\(p\\) and \\(q\\), where \\(p = \\sum_{k = 1}^\\infty \\frac{1}{k^2}\\) and \\(q = \\sum_{k = 1}^\\infty \\frac{1}{k^3}\\). Hmm, let me think about 
how to approach this.\n\nFirst, I know that \\(p\\) is the famous Basel problem, which equals \\(\\frac{\\pi^2}{6}\\), and \\(q\\) is the Riemann zeta 
function at 3, which is known as Apery's constant, approximately 1.202... But I don't think I need the exact values; instead, I need to relate the double 
sum to these series.\n\nLooking at the double sum, it's over all positive integers \\(j\\) and \\(k\\), and the term is \\(\\frac{1}{(j + k)^3}\\). Maybe I 
can change variables to simplify this. Let me set \\(n = j + k\\). Then, for each fixed \\(n\\), \\(j\\) can range from 1 to \\(n - 1\\), and \\(k = n - j\\). So, 
perhaps I can rewrite the double sum as a single sum over \\(n\\), where each term is the sum over \\(j\\) from 1 to \\(n - 1\\) of 
\\(\\frac{1}{n^3}\\).\n\nLet me write that down:\n\n\\[\n\\sum_{j = 1}^\\infty \\sum_{k = 1}^\\infty \\frac{1}{(j + k)^3} = \\sum_{n = 2}^\\infty 
\\sum_{j = 1}^{n - 1} \\frac{1}{n^3}\n\\]\n\nYes, that makes sense because the smallest \\(n\\) can be is 2 (when \\(j = 1\\) and \\(k = 1\\)), and it goes 
to infinity. Now, for each \\(n\\), the inner sum is just adding \\(\\frac{1}{n^3}\\) a total of \\(n - 1\\) times. So, the inner sum simplifies to \\(\\frac{n - 
1}{n^3}\\).\n\nSo now, the double sum becomes:\n\n\\[\n\\sum_{n = 2}^\\infty \\frac{n - 1}{n^3}\n\\]\n\nHmm, that seems manageable. Let me 
write this as:\n\n\\[\n\\sum_{n = 2}^\\infty \\left( \\frac{n}{n^3} - \\frac{1}{n^3} \\right) = \\sum_{n = 2}^\\infty \\left( \\frac{1}{n^2} - 
\\frac{1}{n^3} \\right)\n\\]\n\nYes, that's correct. So, this is equal to:\n\n\\[\n\\left( \\sum_{n = 2}^\\infty \\frac{1}{n^2} \\right) - \\left( \\sum_{n = 
2}^\\infty \\frac{1}{n^3} \\right)\n\\]\n\nBut I know that \\(p = \\sum_{n = 1}^\\infty \\frac{1}{n^2}\\) and \\(q = \\sum_{n = 1}^\\infty 
\\frac{1}{n^3}\\). So, if I subtract the \\(n = 1\\) terms from both series, I can express the sums starting from \\(n = 2\\).\n\nLet's compute that:\n\nFor 
the first sum:\n\n\\[\n\\sum_{n = 2}^\\infty \\frac{1}{n^2} = p - \\frac{1}{1^2} = p - 1\n\\]\n\nSimilarly, for the second sum:\n\n\\[\n\\sum_{n = 
2}^\\infty \\frac{1}{n^3} = q - \\frac{1}{1^3} = q - 1\n\\]\n\nSo, substituting back into our expression:\n\n\\[\n\\left( p - 1 \\right) - \\left( q - 1 \\right) 
= p - 1 - q + 1 = p - q\n\\]\n\n
</think>
\n\nSo, the double sum simplifies to \\(p - q\\). Therefore, the answer is:\n\n\\[\n\\boxed{p - q}\n\\] 

408

387

260

15

128

DeepSeek-R1-Distill-Qwen-32B

QwQ-32B

Length 

Figure 11: An example demonstrating the presence of more than one ⟨/think⟩ tokens in QwQ-32B.
For both models, the green thinking chunk is sufficient to draw the correct conclusion. However,
QwQ-32B proceeds with an additional summary (red chunk) and generates its own ⟨/think⟩ token.
Based on all the above content, it arrives at the conclusion.
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