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As buoyancy can help drive a flow, the vertical heated-pipe arrangement is widely used
in thermal engineering applications. However, buoyancy suppresses and can even laminarise
turbulence in the flow, thereby seriously damaging the heat transfer, measured by the Nusselt
number Nu. As buoyancy, measured by the parameter 𝐶, is increased, three flow regimes
are possible: shear-driven turbulence, laminarised flow, and convective turbulence. In Chu
et al. (2024) we employed a variational optimisation method to investigate how the buoyancy
changes the structure of the minimal flow perturbation that triggers turbulence. Here, we
extend the method to find an optimal body force of limited magnitude 𝐴0 that maximises
heat transfer, and examine how time-dependence of the flow affects the optimisation in each
of the three flow regimes. Optimisations are performed at 𝑅𝑒 = 3000, and the force is found
to laminarise convective turbulence, or make it only weakly chaotic for 𝐶 up to 8. Consistent
with previous computations that assume steady flow, the optimal force induces streamwise-
independent rolls, but at larger 𝐴0 the force triggers time-dependent turbulent flow. Transition
from the laminar streamwise-independent state to turbulent flow can either enhance Nu or
reduce Nu. For highly chaotic flows, either shear turbulence at𝐶 = 1 or convective turbulence
at 𝐶 = 16, 32, optimisations place rolls closer to the wall than calculations with the steady
flow assumption. At any given 𝐴0, however, the enhanced Nu is only weakly dependent on
the number of induced rolls.
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1. Introduction
Vertical heated pipe flow is widely used in engineering applications, e.g. in geothermal
energy capture, nuclear reactor cooling systems and fossil-fuel power plants, to transfer
heat from one device to another. The important difference from iso-thermal pipe flow is
that buoyancy, caused by the expansion of the fluid near the heated wall, can partially or
even fully drive the flow, referred to as mixed or natural convection. Mixed convection has
been widely researched, due to the great effects of buoyancy on the dynamics of the flow,
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as well as heat-transfer performance. Buoyancy plays a different role in downward versus
upward flow. In the latter, buoyancy acts in the opposite direction to the flow and always
enhances heat transfer. In an upward flow, instead, buoyancy first deteriorates the heat transfer
(Ackerman 1970), then recovers only when buoyancy is strong enough. Three typical regimes
for the heat-transfer characteristics are so classified in an upward heated flow, namely shear
turbulence, laminarised flow, and convective turbulence (Parlatan et al. 1996; Yoo 2013;
Zhang et al. 2020).

Extensive research has been conducted to understand the mechanism of heat transfer
deterioration in a heated upward flow. Hall & Jackson (1969) proposed that the reduced shear
stress in the buffer layer caused by buoyancy leads to a reduction of turbulence production,
suppressing turbulence and even laminarising the flow, consequently deteriorating the
heat transfer. More recently, He et al. (2016) successfully reproduced the laminarisation
phenomenon by modelling the buoyancy with a radially dependent body force added to
the isothermal flow. They noticed that the body force causes little difference to the key
characteristics of turbulence, and proposed that laminarisation is caused by the reduction
of the ‘apparent Reynolds number’, which is calculated based only on the pressure force
of the flow (i.e. excluding the contribution of the body force). A similar laminarisation
phenomenon is also found in isothermal pipe flow, where it has attracted much attention due
to its implications for drag reduction (Hof et al. 2010; He et al. 2016; Kühnen et al. 2018;
Marensi et al. 2019). Kühnen et al. (2018) examined the phenomenon of laminarisation
from the perspective of the self-sustaining process of shear turbulence (Hamilton et al.
1995) and suggested that the decay of turbulence is caused by the reduction of transient
growth. Marensi et al. (2019) investigated this phenomenon using nonlinear stability analysis
(Pringle & Kerswell 2010), and found that nonlinear stability is enhanced in the presence of
a body force that flattens the velocity profile. Recently, Marensi et al. (2021) systematically
studied the flow regimes in a vertical heated pipe flow and found evidence that heat transfer
deterioration and laminarisation are caused by weakened rolls.

Enhanced heat transfer means more effective and efficient energy conversion or cooling.
There have been many interesting investigations aimed at improving the heat transfer of fluid
systems. Strategies can generally be classified as active, passive and compound remedies
(Webb & Bergies 1983; Liu & Sakr 2013; Kumar & Kim 2015; Suri et al. 2018). Active
methods (Ohadi et al. 1991; Wang et al. 2020; Yuan et al. 2023) require an external power
input to improve heat transfer. For example, Ohadi et al. (1991) studied the effect of corona
discharge on forced-convection heat transfer in a tube. Wang et al. (2020); Yuan et al. (2023)
proposed a method of vibrating the boundary layer to enhance the heat transfer. Passive
methods include curving or twisting flow geometry, adding extended surfaces and so on.
Compound methods (Gau & Lee 1992; Naphon et al. 2017; Kareem & Gao 2018) adopt both
active and passive techniques. These strategies have significantly improved heat transfer in
many systems.

Many techniques for heat transfer enhancement have been developed empirically. Here
we seek a strategy that is ‘optimal’ with respect to a constrained magnitude of an applied
body force. In principle, maximisation of the heat transfer can be solved by variational
methods. However, the heat-transfer, measured by the Nusselt number Nu, is a local field
variable, depending only on the gradient of the temperature evaluated at the wall, which leads
to awkward delta functions in a variational approach. A quantity is required for variational
formulations that is spatially global, but which measures the heat transfer at the wall. Guo et al.
(1998, 2007) defined the entransy quantity to describe the heat-transfer ability of a system,
using an analogy between heat conduction and electrical conduction. The entransy dissipation
rate was then derived and applied to measure the irreversibility of the heat transfer process.
Maximum and minimum entransy dissipation principles were proposed for the optimisation
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of heat transfer for fixed boundary temperature and fixed heat flux respectively. The theory
has been successfully used to optimise heat transfer in various thermal systems, e.g. in heat
exchangers (Guo & Xu 2012; Guo et al. 2010) and heat exchanger networks (Chen et al.
2009).

For pipe flow, Meng et al. (2005) have sought a steady velocity field that maximises
heat transfer. Although the Navier-Stokes equation was not prescribed as a constraint, it was
shown that the velocity field must satisfy a similar equation, subject to a particular force called
the synergy force, which produces a velocity field that tends to align with the temperature
gradient (Guo 2001). Jia et al. (2014) did a similar optimisation but set power consumption as
a constraint condition, they also found that longitudinal swirl flow with multi-vortex structure
can enhance heat transfer greatly, and the number of vortexes of the optimal velocity field
increases with a larger power consumption. Wang et al. (2015) proposed a new criterion,
exergy destruction minimisation, to optimise the heat transfer, and a similar optimal velocity
field was found. Such heat transfer optimisations in pipe flow have motivated several heat-
transfer enhancement designs, e.g. the alternating elliptical axis tube (Meng et al. 2005),
discrete double-inclined ribs tubes (Li et al. 2009) and many other interesting attempts (Liu
& Sakr 2013; Sheikholeslami et al. 2015). However, the above calculations have assumed a
steady laminar flow, while it is common to find that the flow is turbulent. There have been
efforts to construct variational equations based on the Reynolds Averaged Navier Stokes
(RANS) turbulence description (Chen et al. 2007), but this approach does not capture the
detailed dynamical characteristics of the flow under heating conditions, the self-sustaining
mechanisms of the flow and transitions between the flow regimes, that we wish to retain and
optimise here. Motoki et al. (2018) also adopted a variational method to find the optimal
steady velocity field for plane Couette flow with the largest Nusselt number. The ‘scalar
dissipation’ was set as the objective function, which coincides with the entransy dissipation.
They found the optimal flow state is composed of streamwise-independent rolls at 𝑅𝑒 ∼ 101,
but there appear smaller-scale hierarchical quasi-streamwise vortex tubes near the walls in
addition to the large-scale rolls at 𝑅𝑒 ⩾ 102. Although Motoki et al. (2018) performed
calculations up to 𝑅𝑒 = 104, their analysis assumes a time-independent velocity field.

Optimisations need to be extended to time-dependent flows, such as turbulence. This
requires a new framework that includes the dynamical effects of the flow on the mean
heat transfer. The fully nonlinear variational method has been used in isothermal pipe flow
by Pringle & Kerswell (2010) to find initial flow perturbations that grow maximally. The
smallest perturbation which triggers transition is called the ‘minimal seed’. For a review of
wider applications, see Kerswell (2018). In the context of pipe flow, this framework has been
successfully employed to find the minimal seed under various conditions affecting the flow
(Pringle & Kerswell 2010; Pringle et al. 2012; Marensi et al. 2019) and extended to induce
transition ‘the other way’, i.e. to construct an optimal ‘baffle’ that destabilises turbulence to
cause transition to a laminar state (Marensi et al. 2020; Ding et al. 2020). The minimal seed
for transition in heated pipe flow has been calculated using the model of §2 (Chu et al. 2024).
Here, we extend this new nonlinear variational framework to maximise the heat transfer
for vertical heated pipe flow. While previous optimisations in this geometry have identified
optimal stationary velocity fields that maximise the heat transfer, here we introduce and seek
to optimise a time-independent body force that modifies the time-dependent flow. Although
hard to accurately reproduce body forces in an engineering application, this is a step towards
guiding such an approach. It should also be noted that the present study mainly focuses on
improving heat transfer and understanding the physical mechanism, without considering the
changes in pumping power.

The plan of the paper is as follows. In §2, we present our Direct Numerical Simulation
(DNS) model of vertical heated pipe flow and the variational equations for optimisation. In §3,
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we first show behaviour for preliminary optimisations, including the features of optimal force,
and the effects of target time. Optimisations are then performed in the laminarisation regime,
shear turbulence regime and convective turbulence regime. Finally, the paper concludes with
a summary in §4.

2. Formulation
2.1. The heated pipe flow model

We begin with the formulation of Chu et al. (2025), which models a vertical heated pipe with
a background streamwise temperature gradient. A particular feature of the model is that the
gradient is allowed to vary in time, reflecting the flow-dependent nature of heat transfer, e.g.
the flow can transition from the shear-driven turbulent state to the convective state causing a
significant drop in the heat flux.

Using cylindrical coordinates 𝒙 = (𝑟, 𝜙, 𝑧) for a pipe of radius 𝑅, the total temperature is
decomposed as

𝑇𝑡𝑜𝑡 (𝒙, 𝑡) = 𝑇𝑤 (𝑧, 𝑡) + 𝑇 (𝒙, 𝑡) − 2𝑇𝑏 (2.1)
where the wall temperature is given by 𝑇𝑤 (𝑧, 𝑡) = 𝑎𝑡𝑜𝑡 (𝑡)𝑧 + 𝑏, with some constant reference
temperature 𝑏, and 𝑇 (𝒙, 𝑡) carries the temperature fluctuations. Let ⟨·⟩ denote the spatial
average over the domain. Temperature fluctuations in the model have a fixed positive spatial
average 𝑇𝑏 = ⟨𝑇⟩, maintained by adjustments in the temperature gradient 𝑎𝑡𝑜𝑡 (𝑡). The factor
−2𝑇𝑏 has been inserted in (2.1) so that the fluctuations are positive and largest at the heated
wall, where 𝑇 |𝑟=𝑅 = 2𝑇𝑏.

Nondimensionalisation using the temperature scale 2𝑇𝑏, the length scale 𝑅, and velocity
scale 2𝑈𝑏, where 𝑈𝑏 is the mean flow speed, and assuming the Boussinesq approximation,
leads to the dimensionless governing equations

𝜕𝑇

𝜕𝑡
+ (𝒖𝑡𝑜𝑡 · ∇)𝑇 =

1
𝑅𝑒 𝑃𝑟

∇2𝑇 − 𝒖𝑡𝑜𝑡 · �̂� 𝑎𝑡𝑜𝑡 (𝑡) , (2.2)

𝜕𝒖𝑡𝑜𝑡
𝜕𝑡

+ (𝒖𝑡𝑜𝑡 · ∇)𝒖𝑡𝑜𝑡 = −∇𝑝𝑡𝑜𝑡 +
1
𝑅𝑒

∇2𝒖𝑡𝑜𝑡 +
4
𝑅𝑒

(1 + 𝛽′ (𝑡) + 𝐶𝑇) �̂� , (2.3)

∇ · 𝒖𝑡𝑜𝑡 = 0 , (2.4)

where 𝒖𝑡𝑜𝑡 (𝒙, 𝑡) is the velocity field. The dimensionless boundary condition for the temper-
ature is then 𝑇 = 1 and no-slip is applied to the velocity 𝒖𝑡𝑜𝑡 = 0 at 𝑟 = 1. Axial periodicity
over a distance 𝐿 is assumed for the temperature fluctuations and velocity. The dimensionless
fixed bulk temperature and flow rate are respectively ⟨𝑇⟩ = 1/2 and ⟨𝒖𝑡𝑜𝑡 · �̂�⟩ = 1/2, and
these two conditions determine values for 𝑎𝑡𝑜𝑡 (𝑡) and the excess pressure fraction 𝛽′ (𝑡) via
the spatial averages of the respective governing equation. The Reynolds and Prandtl numbers
are 𝑅𝑒 = 2𝑈𝑏𝑅/𝜈 and 𝑃𝑟 = 𝜈/𝜅, where 𝜈 and 𝜅 are the kinematic viscosity and thermal
diffusivity respectively. The third dimensionless parameter

𝐶 =
𝐺𝑟

16 𝑅𝑒
, (2.5)

measures the buoyancy force relative to the force that drives laminar isothermal shear flow,
where 𝐺𝑟 = 𝛾𝑔(𝑇 |𝑟=𝑅 − 𝑇𝑏) (2𝑅)3/𝜈2 is the Grashof number, 𝛾 is the coefficient of volume
expansion, and 𝑔 is gravitational acceleration. The observed quantity that measures the heat
flux is the Nusselt number

Nu =
2𝑅 𝑞𝑤

𝜆 (𝑇 |𝑟=𝑅 − 𝑇𝑏)
, (2.6)

where 𝜆 is the thermal conductivity of the fluid, 𝑞𝑤 = 𝜆 (𝜕𝑇/𝜕𝑟) |𝑟=𝑅 is the wall heat flux per
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unit area, and the overline denotes the time average. We sometimes plot the instantaneous
Nu(𝑡), where the time average is dropped.

For this configuration, the laminar solution does not have a simple analytic form, and must
be computed numerically. We consider perturbations from the laminar state, subscripted with
0, and decompose variables as 𝒖𝑡𝑜𝑡 = 𝒖0 + 𝒖, 𝑝𝑡𝑜𝑡 = 𝑝0 + 𝑝, 1 + 𝛽′ (𝑡) = 1 + 𝛽0 + 𝛽(𝑡),
𝑇 = 𝛩0 + 𝛩, 𝑎𝑡𝑜𝑡 (𝑡) = 𝑎0 + 𝑎(𝑡). The perturbations then satisfy

𝜕𝛩

𝜕𝑡
+ 𝑢0

𝜕𝛩

𝜕𝑧
+ 𝑢𝑟

𝑑𝛩0
𝑑𝑟

+ (𝒖 · ∇)𝛩 =
1

𝑅𝑒𝑃𝑟
∇2𝛩 − 𝑢𝑧𝑎0 − (𝑢0 + 𝑢𝑧)𝑎(𝑡) , (2.7)

𝜕𝒖

𝜕𝑡
+ 𝑢0

𝜕𝒖

𝜕𝑧
+ 𝑢𝑟

𝑑𝑢0
𝑑𝑟

�̂� + (𝒖 · ∇)𝒖 = −∇𝑝 + 1
𝑅𝑒

∇2𝒖 + 4
𝑅𝑒

(𝐶𝛩 + 𝛽(𝑡)) �̂� , (2.8)

∇ · 𝒖 = 0 , (2.9)

where 𝒖 = (𝑢𝑟 , 𝑢𝜙, 𝑢𝑧). Further details on the numerical model can be found in Chu et al.
(2024) and Chu et al. (2025).

2.2. Variational optimisation of a body force for heat transfer
In the following, we suppose that a body force 𝑭(𝒙) is appended to the right-hand sides of
the Navier–Stokes equations (2.3) and (2.8), then seek to optimise the form of 𝑭(𝒙) such
that it maximises Nu, subject to a constraint on the magnitude of 𝑭. Following Guo et al.
(2007), we use the entransy dissipation, 1

2𝜆(∇𝑇)
2, as a proxy for the heat transfer. Here, the

time-averaged quantity

𝐽 =
1
T

∫ T

0

1
2
⟨(∇𝑇)2⟩ d𝑡. (2.10)

is used as our objective function. The way in which the entransy dissipation is used depends
upon the thermal boundary condition. As the fixed temperature boundary condition is applied,
heat flux is maximised when the entransy dissipation 𝐽 maximised. (For the fixed heat flux
boundary condition, minimal 𝐽 corresponds to minimal thermal resistance within the body,
and hence maximum heat flux.)

A Lagrangian is constructed as follows:

L =
1
𝑁

𝑁∑︁
𝑖=1

𝐽𝑖 − 𝜆0(⟨
1
2
(𝑭)2⟩ − 𝐴0) −

𝑁∑︁
𝑖=1

∫ T

0
⟨𝒗𝑖 · (NS(𝒖𝑖))⟩d𝑡

−
𝑁∑︁
𝑖=1

∫ T

0
⟨Π𝑖 (∇ · 𝒖𝑖)⟩d𝑡 −

𝑁∑︁
𝑖=1

∫ T

0
⟨𝜋𝑖 (Tem(𝛩𝑖))⟩d𝑡

−
𝑁∑︁
𝑖=1

∫ T

0
Γ𝑖 ⟨(𝒖𝑖 · �̂�)⟩d𝑡 −

𝑁∑︁
𝑖=1

∫ T

0
𝑄𝑖 ⟨(𝛩𝑖)⟩d𝑡.

(2.11)

As the initial condition for the velocity field could be turbulent, to improve the robustness
of the results we apply the optimisation to 𝑁 initial velocity fields. The variables 𝜆0, Π𝑖 ,
𝜋𝑖 (𝒙, 𝑡), Γ𝑖 (𝑡), 𝑄𝑖 (𝑡) and 𝒗𝑖 (𝒙, 𝑡) = (𝑣𝑟 ,𝑖 , 𝑣𝜙,𝑖 , 𝑣𝑧,𝑖) are Lagrange multipliers. The first term,
the ensemble average of all time-averaged entransy dissipation, is the objective function to
be maximised. The second term fixes the amplitude of the body force. Next, the velocity
perturbation 𝒖 is constrained to satisfy the Navier–Stokes equation NS(𝒖) and the continuity
equation, and the temperature perturbation satisfies the temperature equation Tem(𝛩), each
over the period from 𝑡 = 0 to 𝑡 = T . The last two terms ensure that the velocity satisfies the
fixed mass flux and fixed bulk temperature conditions.

Taking variations of L with respect to each variable and setting them equal to zero, we



6

obtain the following set of Euler–Lagrange equations. The adjoint Navier–Stokes, temperature
equation and continuity equations are

𝜕L
𝜕𝒖𝑖

=
𝜕𝒗𝑖
𝜕𝑡

+ 𝑢0
𝜕𝒗𝑖
𝜕𝑧

− 𝑣𝑧,𝑖𝑢0
′𝒓 + ∇ × (𝒗𝑖 × 𝒖𝑖) − 𝒗𝑖 × ∇ × 𝒖𝑖 + ∇Π𝑖+

1
𝑅𝑒

∇
2𝒗𝑖 − 𝜋𝑖𝛩′

0 �̂� − 𝜋𝑖∇𝛩𝑖 − 𝜋𝑖 (𝑎(𝑡) + 𝑎0(𝑡)) �̂� − Γ𝑖 �̂� = 0. (2.12)

𝜕L
𝜕𝛩𝑖

=
𝜕𝜋𝑖

𝜕𝑡
+ 𝑢0

𝜕𝜋𝑖

𝜕𝑧
+ 4
𝑅𝑒
𝑣𝑧,𝑖𝐶 + 𝒖𝑖 · ∇𝜋𝑖 +

1
𝑅𝑒𝑃𝑟

∇
2𝜋𝑖 −𝑄𝑖 −

1
T ∇

2𝑇𝑖 = 0 , (2.13)

∇ · 𝒗𝑖 = 0 . (2.14)
The compatibility condition (terminal conditions for backward integration of (2.12) and
(2.13) ) is given by

𝛿L
𝛿𝒖𝑖 (𝒙,T) = −𝒗𝑖 (𝒙,T) = 0, (2.15)

𝛿L
𝛿𝛩𝑖 (𝒙,T) = −𝜋𝑖 (𝒙,T) = 0 (2.16)

and the optimality condition is

𝛿L
𝛿𝑭

= −𝜆0𝑭 + 1
𝑁

𝑁∑︁
𝑖=1

∫ T

0
⟨𝒗𝑖⟩d𝑡 = 0. (2.17)

For an arbitrary initial 𝑭 and set of initial conditions 𝒖𝑖 , the force 𝑭 is incrementally updated
to produce a maximum in L where where 𝛿L/𝛿𝑭 should vanish. An iterative algorithm
similar to that in Pringle et al. (2012) is applied. The update for 𝑭 at ( 𝑗 + 1)th iteration is

𝑭 ( 𝑗+1) = 𝑭 ( 𝑗 ) − 𝜖0
𝛿L
𝛿𝑭 ( 𝑗 ) . (2.18)

where 𝜖0 is a small value, controlled using a procedure described in Pringle et al. (2012). 𝜆0
is adjusted to set ⟨[𝑭(𝒙) ( 𝑗+1) ]2⟩ = 2 𝐴0.

2.3. Numerical methods
Calculations are carried out using the open-source code Openpipeflow (Willis 2017).
Variables are discretised in the domain {𝑟, 𝜙, 𝑧} = [0, 1] × [0, 2𝜋] × [0, 2𝜋/𝛼], where
𝛼 = 2𝜋/𝐿, using Fourier decomposition in the azimuthal and streamwise direction and finite
difference in the radial direction, e.g.

𝒖(𝑟𝑠, 𝜙, 𝑧) =
∑︁
𝑘< |𝐾 |

∑︁
𝑚< |𝑀 |

𝒖𝑠𝑘𝑚ei(𝛼𝑘𝑧+𝑚𝜙) , 𝑠 = 1, ..., 𝑆 (2.19)

where the radial points 𝑟𝑠 are clustered towards the wall. Temporal discretisation is via
a second-order predictor-corrector scheme, with Euler predictor for the nonlinear terms
and Crank-Nicolson corrector. To keep the nonlinear optimisations manageable, a Reynolds
number 𝑅𝑒 = 3000 and 𝑃𝑟 = 0.7 are adopted with a domain of length 𝐿 = 5𝐷. We use
mesh resolution of 𝑆 = 64, 𝑀 = 48, 𝐾 = 42, and the size of the time step is Δ𝑡 = 0.01.
This resolution is sufficient to maintain a drop-off in the amplitude of the coefficients by
three to four orders magnitude, which experience has shown to be sufficient for accurate
simulation of shear-driven turbulence. For the 𝐶 considered here, the convective state is less
computationally demanding to simulate.
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(a) (b)

(c) (d)

Figure 1: (𝑎) Instantaneous Nusselt number over time as the iteration proceeds, where
Nu𝐹=0 refers to the value of the unforced case. (𝑏) Dimensionless time-averaged entransy

dissipation, (time-averaged) Nu and Nu(T ) versus iteration, normalised by their
corresponding values at the zeroth iteration. (𝑐) The residual ⟨(𝛿L/𝛿𝑭)2⟩ versus

iteration. (𝑑) Magnitude of the components of body force 1
2 ⟨𝐹

2
𝑟 ⟩, 1

2 ⟨𝐹
2
𝜙
⟩, 1

2 ⟨𝐹
2
𝑧 ⟩ versus

iteration. The optimisation is run at 𝐴0 = 5 × 10−7,T = 400, 𝐶 = 3, 𝑅𝑒 = 3000.

3. Results
We first show preliminary optimisation in §3.1. Then, we optimise the body force to
maximise the heat transfer in three typical flow regimes of vertical heated pipe flow, i.e.
the laminarisation regime (§3.2), shear turbulence regime (§3.3) and convective turbulence
regime (§3.4). (Further details on the parameter regimes for this model can be found in figure
3(a) of Chu et al. (2024).)

3.1. Preliminary optimisation
For the laminar case, the state is unique and we require only one initial velocity field, 𝑁 = 1.
We start with the unforced laminarised flow at Re = 3000, 𝐶 = 3, and take random fields for
the initial force (such as a turbulent velocity field). Results from the preliminary optimisation
with 𝐴0 = 5 × 10−7,T = 400 are shown in figure 1. The instantaneous Nusselt number,
Nu(𝑡), normalised by the mean for the unforced flow, Nu𝐹=0, is shown in figure 1(𝑎) for each
iteration. The final value increases by more than 80% over the unforced laminar case. Figure
1(𝑏) shows the objective function 𝐽 (2.10), the (time-averaged) Nusselt number (2.6) and
the final value of the instantaneous Nusselt number Nu(T ), versus iteration, normalised by
values for the unforced case. Changes in these quantities show good agreement, indicating
that the global ‘entransy dissipation’ quantity effectively captures the local (boundary) heat
transfer behaviour measured by the Nusselt number. Figure 1(𝑐) shows the residual of the
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Figure 2: Contours of the optimal body force optimised with target time horizons (a)
T = 50, (b) T = 100, (𝑐) T = 200, (d) T = 600 at 𝐶 = 3, 𝐴0 = 5𝑒 − 7, 𝑅𝑒 = 3000, 𝑁 = 1.

Contours are coloured by the streamwise body force, while arrows represent the
cross-stream components of the body force. The first colorbar is for (a, b), the second one

is for (c, d). The largest arrow has magnitude 2.38 × 10−4 in (a), 2.36 × 10−4 in (b),
2.93 × 10−4 in (c) and 3.21 × 10−4 in (d).

calculation, which drops quickly in first 50 iterations then more gradually. (Spikes are related
to the method that seeks to increase 𝜖0 as much a possible, which affects the magnitude of the
residual via 𝜆0.) Usually, the optimisation is stopped when the change in the Nusselt number
drops below 10−5. Figure 1(𝑑) tracks the amplitude of the three components of the body
force versus iteration. The amplitude of the streamwise component drops significantly, while
the amplitude of the cross-stream components increases. This suggests that the cross-stream
components of the body force play a dominant role in enhancing heat transfer, whereas the
contribution of the streamwise component is nearly negligible.

The time horizon T should be long enough such that Nu is optimised for the steady
response to the force, and figure 1(a), suggests that T should be greater than 200. Indeed,
the form of the optimal is found to change when increasing T from 50 to 100, and again
to 200, but increasing further to 600, the optimal is essentially the same up to a rotation,
as shown in figure 2. Interestingly, the optimal body force optimised for a short target time
has perfect rotational symmetry. As T increases, the azimuthal wave number 𝑚 decreases.
This is consistent with smaller-scale vortices growing more rapidly (Schmid 2007), thereby
increasing the heat transfer within a shorter time. In the longer target time, however, the
larger-scale mode is more effectively amplified for the given magnitude of force. The optimal
force in the form of rolls is consistent with the results of Meng et al. (2005), although their
force corresponds to the sum of our force and the buoyancy term itself, discussed in §4.

It is found that the distribution of the body force is almost uniform in the streamwise
direction. To simplify the form of the body force and to accelerate convergence, we constrain
the body force to be streamwise-independent in the optimisations of the following sections
by zeroing its streamwise-dependent Fourier modes.

3.2. Optimisation in the laminarisation regime
3.2.1. The optimal force for the laminar state
Having examined properties of the parameters necessary for optimisation, in this section
we consider optimisation in the laminarised regime at 𝐶 = 3,Re = 3000 in more detail. In
particular, we examine the dependence of the rotational symmetry on 𝐴0 and the presence
of local optimals (dependent on the initial guess for the force).

For the laminar initial condition, as we have assumed streamwise independence for the
force, a small streamwise-dependent perturbation must be added to the initial velocity so that
transition to turbulence may be triggered if the resulting two-dimensional flow is unstable.
We add a perturbation of magnitude 𝐸0 = 1

2 ⟨𝒖
2⟩ ≈ 10−7 and set a longer T = 600 to allow

the occurrence of transition. Figure 3 shows the instantaneous Nusselt number, Nu(𝑡), for
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Figure 3: Time evolution of instantaneous Nusselt number normalised by unforced value
for different force amplitudes, starting from a laminar initial condition at

𝐶 = 3, 𝑅𝑒 = 3000. The vertical dashed line indicates the optimisation target time T = 600.

Figure 4: Contours of optimal body force at
(a)𝐴0 = 10−8, (b)𝐴0 = 10−7, (c)𝐴0 = 5 × 10−7, (c)𝐴0 = 6 × 10−7, starting from a
laminar initial condition at 𝐶 = 3,T = 600, 𝑅𝑒 = 3000. The arrows represent the

cross-stream components of body force. The largest arrow has magnitude 4.85 × 10−5 in
(a), 1.87 × 10−4 in (b), 4.05 × 10−4 in (c) and 4.26 × 10−4 in (d). As the axial

component is at least an order of magnitude smaller, it is not shown.

several 𝐴0. Optimisation improves the heat transfer substantially: for 𝐴0 = 10−7 heat transfer
is almost 50% greater than that of the unforced flow, and for 𝐴0 = 5×10−7 is almost doubled.
When the force amplitude is 𝐴0 = 6×10−7, Nu(𝑡) experiences a sudden increase near the end
of the optimisation target time and fluctuates thereafter, indicating the onset of turbulence.
(At 𝐴0 = 5× 10−7, transition is observed very late, at around 𝑡 = 1000, and interestingly, the
transition does not lead to a larger Nu. This phenomenon will be discussed later.)

The typical amplitude-dependent form of the forces obtained from optimisations are given
in figure 4(a-d). (As the axial component is at least an order of magnitude smaller, it is not
shown.) At small 𝐴0, the body force has a single pair of rolls. At increased force amplitude,
figure 4(b) illustrates how the vortex structure gradually approaches the wall, reducing the
spatial scale in both the radial and spanwise directions. This is actually found to be a local
optimal for this 𝐴0, as two pairs of rolls may be squeezed in to increase Nu a little further. At
larger 𝐴0, more rolls are seen in figure 4(c-d). For the largest 𝐴0, turbulence is triggered within
T , and the optimisation struggles to converge to a well-organised optimal force. However, a
preference for roll structures of larger 𝑚 is clear. The form and increase in wavenumber is
consistent with the calculations of Meng et al. (2005); Jia et al. (2014); Wang et al. (2015)
for steady flow.

We have observed that optimal body forces occur with rotational symmetry of different
azimuthal wave numbers 𝑚 in figures 2 and figure 4. We let 𝑂2 denote an optimal with
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Figure 5: (a) The Nusselt number of final state Nu(T ) versus iteration for different initial
forces with 𝐴0 = 10−7, 𝐶 = 3, 𝑅𝑒 = 3000. The legend indicates the initial force, and the
resulting local optimal forces are labelled on the curves. (b) The time-averaged Nusselt

numbers at 𝐶 = 3, 𝑅𝑒 = 3000 versus 𝑂𝐹𝑚 for different force amplitudes, indicated in the
legend. The global optimal is highlighted with a dashed circle. For dashed lines, the forced
flow state remains laminar. For solid lines, the forced state is turbulent and the values are

time-averages.

2-fold rotational symmetry. This optimal will have non-zero Fourier coefficients for 𝑚 =

0, 2, 4, 6, 8, ..., but note that this does not exclude a force with only non-zero modes 𝑚 =

0, 4, 8, ..., which corresponds to an optimal 𝑂4 with 4-fold rotational symmetry. To examine
the influence of the azimuthal periodicity, and to simplify the optimisation further, we
consider optimal forces restricted to azimuthal Fourier modes of wavenumbers 0 and 𝑚 only,
and denote them 𝑂𝐹𝑚. Note that rotational symmetry is imposed only on the force, and not
on the velocity field.

Optimisations have been computed for𝑂𝐹𝑚, then used as starting forces for optimisations
in the full space 𝑂1. In this way, we examine the dependence on 𝑚 to determine which
rotational symmetry is the global optimal. The Nusselt numbers of the final states, Nu(T ),
as a function of iteration are shown in figure 5(a) starting from the 𝑂𝐹𝑚 forces. Three
optimisations starting from random initial forces are also shown. Several observations can
be made. Firstly, there are multiple local optimals𝑂𝑚, of which𝑂2 (figure 4(c)) is the global
optimal for this 𝐴0. Secondly, the optimal of type 𝑂𝑚 does not produce much greater Nu
than the optimal 𝑂𝐹𝑚, of the reduced Fourier space, used as the starting force. Thirdly, if
the starting force is quite perturbed, such as for the random initial forces, it is most likely
to end up at the global optimal. Similarly, the optimisation starting from 𝑂𝐹5 (dark orange
line) appears to pass close to 𝑂1, but ends at the global optimal 𝑂2.

As we have observed that 𝑂𝑚 does not produce much greater Nu than 𝑂𝐹𝑚, for small 𝐴0
at least, we directly compare Nu of the flow forced by 𝑂𝐹𝑚 for several 𝑚 to determine the
global optimal. Figure 5(b) shows the Nusselt number, calculated using averages over 5000
time units for each simulation. For the dashed lines, the final state is still laminar and good
convergence is easily achieved. For the solid lines at larger 𝐴0, the final state is turbulent,
which renders convergence difficult. For the latter case, and for convenience in this section,
the force has been calculated using an artificially stabilised two-dimensional flow, by putting
𝐾 = 1 in (2.19) (equivalent to adding no three-dimensional perturbation, 𝐸0 = 0). The
optimal force leads to an artificially stabilised optimal velocity field, as for the optimal steady
velocity fields reported by Meng et al. (2005); Jia et al. (2014); Wang et al. (2015) . The
force is then applied, here resulting in a fully three-dimensional time-dependent turbulent

Rapids articles must not exceed this page length
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Figure 6: Enhanced Nu of forced flows at 𝐶 = 3, 𝑅𝑒 = 3000. (a) Instantaneous Nu(𝑡) for
flows forced by 𝑂𝐹1. (b) Time-averaged Nu for flows forced by 𝑂𝐹𝑚 in the turbulent state
(solid lines) and Nu(T ) for the artificially stabilised streamwise-independent state (dashed

lines).

simulation, from which Nu is calculated. (In principle, the artificial stabilisation of the flow
during optimisation may render the force no longer optimal. This is examined further for
each initial flow regime, and is found to be a good approach for intermediate 𝐶. We will
show this for the convective case in §3.4.) As 𝐴0 increases, the rotational symmetry 𝑚 of the
(global) optimal increases, from 𝑚 = 1 at 𝐴0 = 10−8, to 𝑚 = 2 at 𝐴0 = 10−7, and is 𝑚 ≈ 5 at
substantially larger 𝐴0 = 10−5. However, it should be noted that Nu is not strongly dependent
on 𝑚.

3.2.2. The path to transition and effect on heat transfer
Figure 6(a) shows the instantaneous Nusselt number Nu(𝑡) for flows forced by𝑂𝐹1 at several
force amplitudes. At small 𝐴0, the flow is reshaped into a two-dimensional forced laminar
state. With an increase of force amplitude to 𝐴0 = 6 × 10−7, the flow does not transition to
turbulence directly — instead, the two-dimensional state quickly forms, then transitions later
to a travelling wave solution. Figure 7 shows the two-dimensional reshaped laminar solution
and a travelling wave solution found in the flow forced by 𝑂𝐹1 at 𝐴0 = 6 × 10−7 (at 𝑡 ≈ 500
and 𝑡 ≈ 1500 respectively). In isothermal flow, forces have been used to find travelling wave
solutions, via homotopy (Wedin & Kerswell 2004), but were only found by this method for
higher rotational symmetry𝑚 ⩾ 2. The travelling wave solution has larger Nu compared with
the two-dimensional reshaped laminar solution. With further increase of force amplitude,
the flow transitions from the two-dimensional state to a (mildly) chaotic three-dimensional
state, and finally also converges to a travelling wave state at a later time (not shown here).
At 𝐴0 = 10−5, the flow directly transitions to a strong chaotic three-dimensional state, along
with a greatly increased Nu. However, this is not always the case, and in fact figure 6(b)
shows that at larger 𝐴0, the transition from two-dimensional flow (stabilised by setting 𝐾 = 1)
to the chaotic three-dimensional state tends to lead to a decrease in Nu.

It is interesting that the more chaotic state does not necessarily lead to an improvement
in heat transfer. The instantaneous Nusselt number Nu(𝑡) and the roll energy 𝐸𝑟𝑜𝑙𝑙 (𝑡) =

𝐸 (𝑢𝑟 ) + 𝐸 (𝑢𝜙) are shown in figure 8 for the flow forced by 𝑂𝐹4 at two amplitudes. At
𝐴0 = 10−6 heat transfer increases after transition, but at 𝐴0 = 10−5 it is reduced after
transition. In both cases, the energy of rolls increases, but in the latter case by not as
much. Stronger rolls are typically associated with enhanced heat transfer, but this shows
that higher roll energy alone does not necessarily correspond to more efficient heat transfer.
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Figure 7: The isosurface of streamwise velocity at (a) 𝑡 = 500 and (b) 𝑡 = 1500 when the
flow is forced by 𝑂𝐹1 with 𝐴0 = 6 × 10−7. Red/yellow are 20% of the min/max

streamwise velocity.

(b)(a)

Figure 8: Time evolution of (a) instantaneous Nu(𝑡) and (b) instantaneous energy of rolls
𝐸𝑟𝑜𝑙𝑙 = 𝐸 (𝑢𝑟 ) + 𝐸 (𝑢𝜙), 𝐸 (𝑢𝑟 ) = 1

2 ⟨𝑢
2
𝑟 ⟩, 𝐸 (𝑢𝜙) = 1

2 ⟨𝑢
2
𝜙
⟩, when the flow is forced by

𝑂𝐹4 at 𝐶 = 3, 𝑅𝑒 = 3000 with different forcing amplitudes. Solid lines are for the forced
turbulent state, and dashed lines are for the artificially-stabilised streamwise-independent

state.

Figure 9 shows the contours of the radial temperature gradient 𝜕𝑇/𝜕𝑟 evaluated at the
boundary, for the forced laminar and forced turbulent states, normalised by the mean radial
temperature gradient of the unforced flow. When the flow is forced by 𝑂𝐹4 with 𝐴0 = 10−6,
the laminar state (figure 9(a)) exhibits distinct regions of strong and weak heat transfer. After
the transition (figure 9(b)), these regions are not fixed, and the regions of higher heat flux
widen and intensify a little. At 𝐴0 = 10−5 (figure 9(c-d)), the regions of higher heat flux
also widen after the transition, but are less organised and weaker than for the steady flow,
despite the slightly increased roll energy. This suggests that the streamwise vortices in the
forced turbulent states are not as efficient as those in the forced laminar states. The rolls are
unsteady in forced turbulent states and move further from the wall intermittently due to the
waving of low-speed streaks, leading to a nonuniform heat transfer distribution. Heat transfer
is enhanced on the sides where the rolls are positioned close to the wall, but weakens as the
rolls move further away from the wall.

Overall, the transition to the forced turbulent state involves two main competing effects on
heat transfer: the first is the enhancement of rolls, which increases heat transfer by facilitating
better mixing, the second is the unsteady rolls, which can reduce heat transfer efficiency as the
rolls are not consistently positioned near the wall, where they are most effective at transferring
heat. At 𝐴0 = 10−6, the enhancement of rolls wins and heat transfer is enhanced, while for
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Figure 9: Contours of the radial temperature gradient 𝜕𝑇
𝜕𝑟

at the boundary at
𝐶 = 3, 𝑅𝑒 = 3000, normalised by the unforced laminar radial temperature gradient. The

flow is forced by 𝑂𝐹4 with (a,b) 𝐴0 = 10−6 and (c,d) 𝐴0 = 10−5, the flow states are taken
in (a,c) from the forced laminar state (𝑡 = 1000) and (b,d) forced turbulent state

(𝑡 = 1000).

𝐴0 = 10−5 the rolls are not much stronger than in forced laminar state and so the reduction
of heat transfer due to unsteady rolls prevails. The case 𝑂𝐹1 is an exception in figure 6(b),
where the transition to a chaotic state leads to an increase in Nu for both amplitudes. In this
case, only one pair of rolls is inefficient and the unsteadiness can lead to the creation of
additional rolls.

3.3. Optimisation in the shear turbulence regime
Returning to smaller 𝐶, the shear-turbulence case is the most challenging, as the flow state
remains highly chaotic. As turbulence is already effective in enhancing heat transfer relative
to the laminarised case, it is not obvious that optimisation should be able to improve heat
transfer substantially.

We focus on the case 𝐶 = 1 at Re = 3000. For the highly chaotic flow, it is difficult to
apply the method with a large target time (Pringle & Kerswell 2010; Pringle et al. 2012;
Marensi et al. 2019), and convergence was found to fail for T even as low as 100. However,
reasonably good convergence was found for T = 50. Although this is not sufficient time to
capture the statistics of the end state, it is sufficient time for a response to be observed, so that
it is reasonable to examine whether the heat transfer has been pushed in the right direction.

Figure 10(𝑎) shows the instantaneous Nusselt number Nu(𝑡) for flows forced by the
optimised force in the full space 𝑂1 from a random initial force, with 𝐴0 = 10−6. The
optimisation, although with a short target time, still increases the Nusselt number significantly.
Surprisingly, table 1 shows that the (subsequent time-averaged) Nu/Nu𝐹=0 does not change
significantly with more initial conditions 𝑁 , despite that the short T might suggest greater
dependence on the initial condition, nor does Nu vary significantly with rotational symmetry.
The structures of the optimised forces are shown in figure 11. Although Nu varies very little
with 𝑁 , for𝑂1, the structure of the optimal force does change – going from 𝑁 = 1 to 9 initial
conditions, the force develops towards a structure more like the 𝑂3 optimal, but larger 𝑁
would probably improve convergence. Optimising for𝑂3 itself, the structure clearly becomes
more regular as 𝑁 is increased. For𝑂𝐹3,𝑂5 (third and fourth columns) and𝑂𝐹5 (not shown),
the structure of the force does not change for larger 𝑁 , so that only one initial velocity field
is sufficient. This is reasonable for larger 𝑚, as the angular section [0, 2𝜋/𝑚] of the force is
determined by 𝑚 angular subsections of the rotationally unconstrained velocity field.

Although we have computed optimals only for a short T , our results strongly suggest
that inducing rolls remain optimal even for flow already in the shear-turbulence regime.
As before, it is interesting to examine whether or not there is a strong dependence on the



14

Figure 10: The time evolution of instantaneous Nusselt number of the flow forced by
different optimal forces in full space 𝑂1 with 𝐴0 = 10−6 and time horizon T = 50

(marked by the vertical dashed line). The legend indicates the number of initial conditions
used in the optimisation.

N 𝑂1 𝑂3 𝑂5 𝑂𝐹3 𝑂𝐹5
1 1.22 1.16 1.25 1.18 1.27
3 1.22 1.18 1.27 1.18 1.26
9 1.20 1.18 1.27 1.17 1.25

Table 1: The time-averaged Nusselt number Nu/Nu𝐹=0 when the flow is forced by
different optimal forces. 𝑁 = 1, 3, 9 means the optimal force is optimised from 𝑁 initial

conditions.

rotational symmetry 𝑚. Figure 12(a) shows the Nusselt number for flows forced by 𝑂𝐹𝑚
(solid) and 𝑂𝑚 (dashed) for several 𝑚, using 𝑁 = 1 for 𝑂𝐹𝑚 and 𝑁 = 3 for 𝑂𝑚. For small
𝑚 = 1, 2, the force 𝑂𝑚 appears to produce larger Nu than 𝑂𝐹𝑚, but this is because the
optimisation for 𝑂1 actually found a structure closer to that for 𝑂3, previously seen in figure
11(cf. (i) and (j)), and similarly, the𝑂2 optimal is structurally more like𝑂4, seen in figure 13
(cf. (a) and (c)). Constraining the number of rolls strictly, by using the single Fourier mode,
the rolls of 𝑂𝐹3 are a little stretched (figure 13(f )) relative to those of 𝑂3 (figure 13(b)), but
for 𝑚 > 3 there is essentially no visible difference between 𝑂𝑚 and 𝑂𝐹𝑚. For 𝑚 ⩾ 3, Nu is
relatively insensitive to the wavenumber (figure 12(a)).

An interesting observation is the occurrence of laminarisation of the shear turbulence when
forced by 𝑂𝐹1 at low amplitudes 𝐴0 = 10−7. A very similar observation was reported by
Willis et al. (2010), where there the roll-force was beneficial for drag reduction in isothermal
flow. Here, as the turbulent flow enhances heat transfer, the laminarisation can lead to a
reduction in the heat transfer, i.e. Nu/Nu𝐹=0 < 1, see figure 12(b).

Optimisation for a steady laminar flow can be imposed by setting 𝐾 = 1 in (2.19), as
applied in §3.2. Figure 12(b) compares optimisation with the short T (solid lines) with
steady laminar optimisation (dashed lines) with T = 600. Particularly for larger 𝐴0, it should
be noted that including the time dependence of the flow in the optimisation does improve the
resulting Nu over the steady assumption, despite the short T . There is an exception for the
𝑚 = 1, 2 case at the largest 𝐴0, however, where the short-time optimal results in an unusual
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Figure 11: The optimal force 𝑂𝑚 and 𝑂𝐹𝑚 optimised for an increasing number of initial
conditions at 𝐴0 = 10−6, 𝐶 = 1. The largest arrow has magnitude 6.95 × 10−4 in (a),

7.52 × 10−4 in (b), 5.76 × 10−4 in (c), 5.38 × 10−4 in (d), 8.14 × 10−4 in (e),
6.60 × 10−4 in (f), 5.76 × 10−4 in (g), 5.46 × 10−4 in (h), 8.45 × 10−4 in (i), 7.12 × 10−4

in (j), 5.89 × 10−4 in (k), 5.55 × 10−4 in (m).

force structure, see, e.g., figure 13(e). For the structure of the optimal forces, when optimised
for the steady two-dimensionalised state (figure 13(i-m)) these forces are expected to be close
to those of previous calculations (Meng et al. 2005; Jia et al. 2014; Wang et al. 2015). When
optimised for the time-dependent shear-turbulent flow (figure 13(e-h)) the rolls are notably
closer to the wall. Such a difference may be linked to the flattened turbulent mean velocity
profile in the shear turbulence state, which leads to a more localised lift-up process towards
the near-wall region.

3.4. Optimisation in the convective turbulence regime
Here, optimisation was first considered for a weakly convective turbulent state at 𝐶 = 4.
As the velocity fields in the convective state is time-dependent, optimisations were initially
performed using several initial velocity fields (𝑁 > 1) at this 𝐶 and random initial forces.
However, even for small 𝐴0 = 10−7 it was found that the flow is rapidly laminarised by the
force, so that, like at 𝐶 = 3 for the laminarisation regime, 𝑁 = 1 is sufficient. Also like the
laminarised case, the optimal Nusselt number shows substantial improvement compared to
the unforced case, 50% at 𝐴0 = 10−7, and the structure of the optimal, although calculated
for 𝑂1, looks very similar to that of figure 13(i), close to 𝑂𝐹2 symmetry. Optimisations for
𝑂𝐹𝑚 for other 𝑚 exhibits similar behaviour to those for the laminarised case at 𝐶 = 3, this
time due to the laminarisation by the new force, therefore, further detailed results at 𝐶 = 4
are omitted.
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Figure 12: Time-averaged Nusselt number for flows at 𝐶 = 1, 𝑅𝑒 = 3000 subject to
optimal forces in the full and reduced rotational symmetries. (a) Comparison between
𝑂𝐹𝑚 (solid lines) and 𝑂𝑚 (dash lines). (b) Comparison between 𝑂𝐹𝑚 optimised for
shear turbulence (solid line) and a steady two-dimensional laminar state (dashed line).

Figure 13: Optimal forces at 𝐴0 = 10−6, 𝐶 = 1, comparing calculations including
time-dependence with stabilised two-dimensional calculations. The largest arrow has
magnitude 6.01 × 10−4 in (a), 6.60 × 10−4 in (b), 5.50 × 10−4 in (c), 5.46 × 10−4 in
(d),5.15 × 10−4 in (e), 5.76 × 10−4 in (f), 5.40 × 10−4 in (g), 5.45 × 10−4 in (h),

6.34× 10−4 in (i), 5.55× 10−4 in (j), 5.99× 10−4 in (k), 6.34× 10−4 in (m). 𝑁 = 1 initial
velocity condition is used for 𝑂𝐹𝑚 and 𝑁 = 3 initial velocity conditions are used for 𝑂𝑚.
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Figure 14: Instantaneous Nusselt number for 𝑂1 optimisations at several 𝐶, conditions
with 𝐴0 = 10−7. The vertical dashed line indicates the optimisation target time T = 600.

We therefore optimise heat transfer at larger 𝐶 to examine how far this laminarisation
phenomenon occurs. Time evolutions for Nu(𝑡) optimised at𝐶 = 4−8,T = 600, 𝐴0 = 10−7,
for 𝑂1 are shown in figure 14. With increased buoyancy force, laminarisation by the force
still occurs at 𝐶 = 5, 6, but disappears at 𝐶 = 7, 8. Although the turbulence does not decay,
the Nusselt number at 𝐶 = 7 only fluctuates slightly. At 𝐶 = 8, the amplitude of fluctuations
in Nu(𝑡) are similar to those of the unforced flow, but with a higher mean value.

Due to the laminarisation, the optimisations at 𝐶 = 5− 7 were found to be well converged,
but as turbulence remained stronger for 𝐶 = 8, convergence was poor. Following the
success of the short-time optimisation in the shear turbulence regime, we performed a
short-T optimisation at 𝐶 = 8. In this case, an intermediate value of T = 200 was sufficient
to achieve good convergence. Based on the observations for optimisations in the shear
turbulence regime, we consider optimisation in the reduced space 𝑂𝐹𝑚. Figure 15(a) shows
Nu(𝑡) for𝑂𝐹4 as an example. The target time T is not sufficient to capture the statistics of the
endstate, but is sufficient to capture the initial response to the force. With an increase in force
amplitude, the Nusselt number gradually increases. Figure 15(b) compares 𝑂𝐹𝑚 optimised
for the unsteady convective turbulence versus optimisation for the artificially stabilised steady
two-dimensional laminar state (setting 𝐾 = 1 as before). Unlike for shear-turbulence, this
time they show little difference, and the optimal forces are close in structure, similar to figure
13(i-m). For the convective flow case, as long as it does not become too chaotic, including
time dependence in the optimisation does not improve the Nusselt number further.

Towards more chaotic convective turbulence, a further optimisation was carried out at
𝐶 = 16. Due to the stronger chaos, the target time was again reduced to T = 100. Comparison
between 𝑂𝐹𝑚 optimised with the short T (solid line) and a steady two-dimensional laminar
state (dash line) is shown in figure 16(a). At 𝐴0 = 10−7 and 𝐴0 = 10−6, the Nu of the chaotic
forced flows do not show a difference resulting from the way the force was optimised, but
greater improvement for the short-T optimisation starts to be seen at 𝐴0 = 10−5. The roll
structures of the force optimised with the short T at all amplitudes are found to be located
closer to the wall than for the corresponding steady calculation. An example for 𝑂𝐹5 at
𝐴0 = 10−5 for the two optimisations are shown in figure 16(b,c). Such roll structures can
improve Nu more at a larger force amplitude, similar to the observation in the optimisation
of shear turbulence. Similar conclusions were drawn at 𝐶 = 32.
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Figure 15: (a) Time evolution of instantaneous Nusselt number optimised at different force
amplitude for 𝑂𝐹4 at 𝑅𝑒 = 3000, 𝐶 = 8. A vertical dashed line indicates the optimisation

target time T = 200. (b) Comparison between 𝑂𝐹𝑚 optimised in unsteady convective
turbulence (solid line) and a steady two-dimensional laminar state (dash line).

(a) (b) (c)

Figure 16: (a) Comparison between 𝑂𝐹𝑚 optimised in unsteady convective turbulence
(solid line) and a steady two-dimensional laminar state (dash line) at

𝐴0 = 10−5, 𝐶 = 16, 𝑅𝑒 = 3000. (b) The optimal force 𝑂𝐹5 optimised for a steady laminar
state.(c) The optimal force 𝑂𝐹5 optimised for the convective turbulence state with target
time T = 100. The largest arrow has magnitude 1.4 × 10−3 in (b) and 1.9 × 10−3 in (c).

4. Conclusions
In this work we have developed a heat transfer optimisation method, based on a variational
technique (Pringle & Kerswell 2010; Marensi et al. 2020), designed to identify the optimal
body force that maximises heat transfer, in particular, in the presence of time-dependent
flow states, and limited ability to influence the flow, measured by the amplitude of the force.
Focussing primarily on the feasibility and practicality of the method, optimisations have
been conducted only at 𝑅𝑒 = 3000 with the constant temperature boundary condition, but
the method has been applied to flows initially in each of the typical states of heated pipe flow,
i.e. laminarised flow (𝐶 = 3), shear turbulence (𝐶 = 1) and convective turbulence (𝐶 ⩾ 4).

Preliminary optimisations reveal that the optimal body force is predominantly governed by
near-wall vortex structures that are uniform in the streamwise direction, consistent with results
for optimised steady flows, e.g. Meng et al. (2005). The target time is an extra parameter
here, and forces optimised with different target times exhibit different rotational symmetry.
Specifically, the short-time optimal forces correspond to larger azimuthal wave numbers,
while long-time optimal forces have smaller azimuthal wave numbers. This flow pattern
aligns with linear optimal perturbations that aim to maximise flow perturbation growth in
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isothermal flow (Schmid 2007). Forcing such modes efficiently modifies the flow, and may
lead to either turbulence or laminarisation.

In the laminarisation regime of vertical pipe flow (𝐶 = 3), heat transfer increases with force
amplitude 𝐴0, as expected, then increases significantly at the point at which time-dependent
flow is triggered by the force. Different initial guesses for the body force were tested to
examine convergence behaviour and revealed that forces characterised by the azimuthal wave
numbers of rotational symmetry are local optimals of the method. To reduce computational
costs considerably, we opted to compare the Nusselt number of flows forced by optimals
constrained in the Fourier space,𝑂𝑚 and𝑂𝐹𝑚 (the former keeping modes 0, 𝑚, 2𝑚, ... and the
latter only keeping modes 0 and 𝑚). This method is found to be efficient, since a comparison
between the optimal forces𝑂𝑚 and𝑂𝐹𝑚 reveals that𝑂𝑚 only provides significantly larger Nu
than𝑂𝐹𝑚 when that of a subspace, e.g.𝑂3 within𝑂1, has greater Nu. Results indicate that the
global optimal force is not static but varies with changes in force amplitude:𝑂𝐹1 is the global
optimal force at the lowest amplitude (𝐴0 < 10−8), then 𝑂𝐹2, and 𝑚 increases further with
𝐴0. However, rather than the enhancement in Nu spiking for a particular 𝑚, the enhancement
is similar over a broad range in 𝑚. Nu increases when turbulence is first triggered, but at
larger 𝐴0 turbulence does not necessarily lead to an increase in Nu. Visualisations of heat
flux reveal that the streamwise vortices in forced turbulent states are not as efficient for heat
transfer as those in forced laminar states. At larger force amplitude, unsteadiness of the rolls
inhibits heat transfer. Three-dimensional travelling wave solutions were also identified for
𝑂𝐹1 forcing.

Optimisation in the shear-turbulence regime (𝐶 = 1) is most challenging, as the flow is
highly time-dependent and chaotic, preventing long target times. However, the method is
found to still be effective for much shorter times, with T = 50. Despite the short T , the
number of initial velocity conditions 𝑁 was found to have little effect on the resulting Nusselt
number. Comparing the𝑂𝐹𝑚 for different 𝑚, the heat transfer is again only relatively weakly
dependent on 𝑚, at least for sufficiently large 𝑚 (i.e. 𝑚 ⩾ 3). Comparing optimisations
with the short T and optimisations with the artificial steady flow assumption (and the same
rotational symmetry𝑂𝐹𝑚), it is found that including time-dependence results in a force with
rolls located closer to the wall, which lead to flows with greater Nu.

For weak convective turbulence states (𝐶 = 4 − 6), the flow is rapidly laminarised by the
force, even for small 𝐴0 = 10−7. Optimisations at 𝐶 = 4 − 7 are well converged within a
target time T = 600, and show similar behaviour to optimisation for laminar state at 𝐶 = 3.
The forced flow is only weakly chaotic at 𝐶 = 8, so that optimisations still show similar
results to those for a steady laminar state. In the more chaotic convective state at 𝐶 = 16 and
C=32, optimisations with short T show roll structures closer to the wall than with the steady
assumption, similar to optimisations in the shear-turbulent state, leading to larger Nu.

An important consideration is that the optimisation presented in this study primarily
focuses on feasibility of the method and maximising heat transfer, without factoring in
the associated pumping power required for the flow, nor the power expended by the force.
However, the fundamental form of the force, dominated by the rolls, has been shown to extend
beyond time-independent laminar flows to the turbulent convective and shear turbulent states,
and is expected to extend also to higher Reynolds numbers. While it is acknowledged that
accurately inducing the desired flow in practice is challenging, optimisations under the
laminar steady state assumption, such as those by Meng et al. (2005), have inspired designs
like the alternating elliptical axis tube, discrete double-inclined ribs tubes (Li et al. 2009)
and many other applications (Liu & Sakr 2013; Sheikholeslami et al. 2015). Our results
suggest that additional factors are worthy of consideration – the distance of the rolls from
the wall affects the heat transfer, the triggering or potential laminarisation of turbulence does
not necessarily have the expected result on heat transfer, and here, the vertical orientation of
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the flow affects also the laminarisation. On the other hand, enhancement of Nu is found to
be relatively robust to the selection of the azimuthal symmetry 𝑚 of induced rolls, at a fixed
value of Re. For a pipe of shorter length, however, supposing that this corresponds to shorter
T , our results suggest that larger 𝑚 might be favoured. Dependence of 𝑚 on Re is another
parameter worthy of future consideration.
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