
Branch-and-Bound Algorithms as Polynomial-time
Approximation Schemes
Koppány István Encz1 #

Faculty of Informatics, Università della Svizzera italiana, [CH 6962 Lugano, Switzerland]
Istituto Dalle Molle di studi sull’intelligenza artificiale (IDSIA USI-SUPSI), [CH 6962 Lugano,
Switzerland]

Monaldo Mastrolilli #

Dipartimento Tecnologie innovative, Scuola universitaria professionale della Svizzera italiana [CH
6962 Lugano, Switzerland]
Istituto Dalle Molle di studi sull’intelligenza artificiale (IDSIA USI-SUPSI) [CH 6962 Lugano,
Switzerland]

Eleonora Vercesi #Ñ

Faculty of Informatics, Università della Svizzera italiana, [CH 6962 Lugano, Switzerland]
Istituto Dalle Molle di studi sull’intelligenza artificiale (IDSIA USI-SUPSI), [CH 6962 Lugano,
Switzerland]

Abstract
Branch-and-bound algorithms (B&B) and polynomial-time approximation schemes (PTAS) are
two seemingly distant areas of combinatorial optimization. We intend to (partially) bridge the
gap between them while expanding the boundary of theoretical knowledge on the B&B framework.
Branch-and-bound algorithms typically guarantee that an optimal solution is eventually found.
However, we show that the standard implementation of branch-and-bound for certain knapsack and
scheduling problems also exhibits PTAS-like behavior, yielding increasingly better solutions within
polynomial time. Our findings are supported by computational experiments and comparisons with
benchmark methods. This paper is an extended version of a paper accepted at ICALP 2025.

2012 ACM Subject Classification Theory of computation → Branch-and-bound; Theory of compu-
tation → Numeric approximation algorithms; Theory of computation → Scheduling algorithms

Keywords and phrases Branch-and-bound algorithm, Polynomial-time approximation scheme, Par-
allel machine scheduling problem, Knapsack problem

Supplementary Material Software (Source code): https://github.com/eleonoravercesi/branch_
and_bound_as_PTAS

Funding Koppány István Encz: Supported by the Swiss National Science Foundation project n.
200021_212929 / 1 "Computational methods for integrality gaps analysis". Project code: 36RAGAP
Monaldo Mastrolilli: Supported by the Swiss National Science Foundation project n. 200021_212929
/ 1 "Computational methods for integrality gaps analysis". Project code: 36RAGAP
Eleonora Vercesi: Supported by the Swiss National Science Foundation project n. 200021_212929 /
1 "Computational methods for integrality gaps analysis". Project code: 36RAGAP

1 Introduction

Branch-and-bound algorithms (B&B) have been a central part of combinatorial optimization
for quite some time. They serve as a go-to method for several optimization problems both in
theory and in practice, and many NP-hard optimization problems are still frequently attacked
by a variant of the branch-and-bound method or solvers having it at their core. Their great

1 Corresponding author

ar
X

iv
:2

50
4.

15
88

5v
1

 [
cs

.D
S]

 2
2

A
pr

 2
02

5

mailto:enczk@usi.ch
mailto:monaldo.mastrolilli@supsi.ch
mailto:eleonora.vercesi@usi.ch
https://eleonoravercesi.github.io/
https://github.com/eleonoravercesi/branch_and_bound_as_PTAS
https://github.com/eleonoravercesi/branch_and_bound_as_PTAS

2 Branch-and-Bound Algorithms as Polynomial-time Approximation Schemes

success could partially be attributed to the generality of the framework, which allows it to be
applied to fundamentally different problems; along with the flexibility of choosing parameters
such as the branching rule or the search strategy, resulting in an extensive list of options for
exploiting the same underlying principles of the framework. For an introduction of the idea
and a thorough description, we refer to Kohler and Steiglitz [19]; whereas a survey of recent
advancements regarding best practices of parameter tuning can be found in [18].

Broadly speaking, the B&B framework consists of iteratively refining a partition of the
search space of a given combinatorial optimization problem. The process is commonly
depicted with the help of an auxiliary tree, where the leaves of the tree (often called active
nodes) correspond to the currently considered partition classes. In this context, refining the
partition by further dividing one class equates to creating child nodes for the corresponding
leaf in the tree. In addition, each node in the tree has an attributed lower or upper bound
(depending on the type of problem in consideration) on the objective value of the best solution
in that particular partition class; typically they are calculated from a linear relaxation of the
integer formulation of the problem. Occasionally, a node can be discarded from the search
process if its attributed bound is worse than an already found solution.

It is evident from the above description that the framework has various degrees of freedom.
The key components that can be adjusted independently are the following:

Branching: The process of dividing a problem into sub-problems.
Bounding: Calculating lower/upper bounds to limit the search space.
Selection/Search: Choosing the next sub-problem (active node) to explore based on
some kind of ranking.

The choice of these parameters could of course be influenced by the underlying problem.
However, when it comes to traversing the branching tree, certain heuristics might be fixed a
priori that do not depend on the nature of the problem. Common search heuristics include
breadth-first search (BFS), depth-first search (DFS), or best-first search; the latter of which
chooses the active subproblem with the best attributed lower/upper bound.

Several attempts have been made to analyze the effect of preferring one selection strategy
to another. For instance, Greenberg and Hegerich [14] compare the DFS and the best-
first methods applied to the knapsack problem. Moreover, with the increasing interest in
applications of artificial intelligence, researchers have even deployed machine learning-based
methods that try to learn an optimal selection strategy (See, e.g., [7]. See [1] for a recent
survey). However, these comparisons either rely on empirical evidence and rank strategies
according to their practical performance or argue intuitively about the dominance of one
method from a certain aspect: DFS is often considered the memory-efficient alternative,
whereas the best-first search is often regarded as the “intuitive” best choice. To the best of
our knowledge, little to no effort has been made to justify why one strategy outperforms
another, given the problem type.

Meaningful applications of the B&B framework mostly revolve around NP-hard optim-
ization problems, where a standard worst-case analysis does not illuminate the true power
of algorithms. Instead, recent results focus on the average-case analysis, and study the
performance on randomly sampled instances. Pataki, Tural, and Wong [28] analyze the
complexity of B&B for the integer feasibility problem. They show that if the magnitude of the
coefficients in the constraint matrix is sufficiently large, then, up to a reformulation technique,
almost all instances can be solved directly at the root node. Recently, [10] show that, with any
branching rule and best-first as node selection, B&B reaches the optimum with a polynomial
number of nodes on randomly sampled instances, for a fixed number of constraints. Some
“negative” results have also been proposed. Dash [9] showed an exponential lower bound on

K. I. Encz and M. Mastrolilli and E. Vercesi 3

Branch and Cut for 0-1 integer programming when just a few families of cuts are enforced.
Bell and Frieze [2] show that any B&B method for the Asymmetric Traveling Salesman
Problem via the assignment problem relaxation has an exponential number of nodes. More
recently, [11] showed that for the Vertex Cover problem, choosing full strong branching as
the variable selection rule can either perform exceptionally well or be exponentially worse
than any other rule, depending on the class of instances considered.

The efficiency of B&B appears to be strongly dependent on the problem at hand, as well
as the choice of lower bound, branching rule, and node selection strategy. This makes it
particularly interesting to investigate for which problems, under what conditions, and with
which specific choices B&B can be made to run in polynomial time.

In our current work, we endeavor to explain the intuitive advantage of the best-first search
strategy by giving a worst-case theoretical analysis from a slightly unusual point of view.
Namely, we will show that for the makespan minimization of unrelated parallel machine
scheduling problem with a fixed number of machines (denoted by Rm||Cmax following
standard three-field representation; see [5]) and the multiple knapsack problem, the best-
first strategy paired with other natural linear programming-based branching and bounding
strategies yields a polynomial-time approximation scheme. Thus, practical observations
regarding its superiority are strengthened by the guarantee that it is able to find fast a
solution arbitrarily close to the optimum.

Our contributions are as follows: first (Section 2), we consider a family of branch-and-
bound algorithms with the best-first tree traversal rule for the multiple knapsack problem, and
show that they form a polynomial-time approximation scheme, in which their execution time
is constrained to be within polynomial bounds for any fixed approximation ratio. The family
Aknap

α (parametrized by the approximation parameter α) relies on a linear programming-based
upper bound and a branching rule that exploits the specific structure of the linear program
(see Proposition 1).

▶ Theorem 1. For every fixed 0 < α < 1, the algorithm Aknap
α returns an α-approximate

solution to the multiple knapsack problem, after processing O(ncα+1 ·mcα)-many nodes in
the branching tree for some constant cα that depends on α.

Based on the same underlying idea, we provide (Section 3) similar results for the makespan
minimization of unrelated parallel machine scheduling problem with a fixed number of
machines, in which we prove that a certain B&B algorithm is an efficient polynomial-time
approximation scheme (EPTAS2) for Rm||Cmax. The family Aunrel

ϵ again relies on a linear
programming relaxation and its approximation property. The following theorem easily implies
a polynomial running time for any fixed error.

▶ Theorem 2. For every fixed ϵ > 0, the algorithm Aunrel
ϵ returns a (1 + ϵ)-approximate

solution to the unrelated machine scheduling problem, after processing at most m⌊ m2
ϵ ⌋-many

nodes in the branching tree.

Exploration and exploitation are two fundamental concepts in search and optimization
algorithms. Exploration searches diverse areas, while exploitation refines known good
solutions for efficiency. A balance is crucial in algorithms like branch-and-bound to prevent
slow convergence. In many branching points of the algorithm, there are decision ambiguities;

2 A scheme is called EPTAS when, for an arbitrary ϵ and inputs of size n, its running time is O(nc ·f(1/ϵ))
for some constant c that is independent from ϵ.

4 Branch-and-Bound Algorithms as Polynomial-time Approximation Schemes

meaning that (almost) indistinguishable subproblems keep reappearing in the process. In
Section 4, we demonstrate that if two nodes represent “similar” situations, it is not necessary
to explore all such “similar” cases to obtain an approximate solution. Given a polynomial
bound on the running time, we can put on hold the exploration of some nodes while
prioritizing others that are not similar to already explored sub-problems, resulting in an
improved exploration of the search space. Standard rounding techniques can be used to
identify “similar nodes”. For the special case of the uniform machine scheduling problem with
fixed number m of machines (denoted by Qm||Cmax, see [5]), this enhances the diversification
of the best-first search, resulting in better exploration of the search space and the achievement
of a fully polynomial-time approximation scheme (FPTAS). We will denote the enhanced
algorithm by Asim-prof

ϵ and prove the following theorem:

▶ Theorem 3. For every fixed ϵ > 0, the algorithm Asim-prof
ϵ returns a (1 + ϵ) - approximate

solution to the uniform machine scheduling problem, after processing at most n ·
(5n

ϵ

)m nodes
in the branching tree.

To prove these results, we provide structural properties of the vertices of the corresponding
polyhedra in Lemma 6. We continue with computational experiments supporting our
theoretical results in Section 5. Finally, with the hope of fueling future research, we list
(Section 6) the fundamental properties of optimization problems that made our approach
applicable.

2 A B&B PTAS for the Multi-Knapsack Problem

In the one-dimensional 0− 1 multiple knapsack problem (referred to as multiple knapsack
problem or multi-knapsack problem), we are given n items characterized by weights w =
(w1, . . . , wn) and profits p = (p1, . . . , pn). Additionally, we have m knapsacks with capacities
C = (C1, . . . , Cm), where m is a fixed constant. The goal is to select a subset of items
to maximize the total profit while ensuring that the weight constraints of each knapsack
are satisfied. We assume that all weights, profits, and knapsack capacities are nonnegative
integers.

When m is fixed, that is the case we are considering in this paper, the problem is weakly
NP-hard and admits an FPTAS [17, 21]. For reference on a comprehensive theory of the
problem, we mention the Martello-Toth book [24]. A survey on recent improvements can be
found in [4, 26].

The use of branch-and-bound algorithms for the knapsack problem is well-established.
Notable early contributions include those by Kolesar [20], Greenberg and Hegerich [14], and
Horowitz and Sahni [15] for the single-knapsack case. These approaches often leverage various
heuristics, such as DFS or BFS search strategies and fractional-item pivot selection rules.
However, most of these results focus primarily on computational experiments, with little
emphasis on formal theoretical guarantees.

In this work, we demonstrate that a “standard” branch-and-bound implementation for the
multi-knapsack problem naturally yields a PTAS. Specifically, at each node, the bounding
step involves solving the linear programming relaxation known as surrogate relaxation (see
[24], Chapter 6). We then apply the standard rounding technique of Dantzig [8] to obtain
an (m + 1)-approximate feasible solution, and branch according to the most profitable
fractional item. The selection strategy is the best-first rule, where we choose the node to be
processed next whose upper bound (the fractional optimum) is the greatest; we will denote
this strategy by GUB in the experimental section. We terminate whenever the ratio between

K. I. Encz and M. Mastrolilli and E. Vercesi 5

the global upper bound and the best integer solution reaches or goes above a fixed constant
α ∈ (0, 1). The full details of our algorithm, Aknap

α , are provided in Section 2.1, along with a
proof of the following result:

▶ Theorem 1. For every fixed 0 < α < 1, the algorithm Aknap
α returns an α-approximate

solution to the multiple knapsack problem, after processing O(ncα+1 ·mcα)-many nodes in
the branching tree for some constant cα that depends on α.

For completeness, we sketch a pseudocode of Aknap
α in Appendix 7.

2.1 Proof of Theorem 1
In this section, we demonstrate that a “standard” branch-and-bound implementation for
the multi-knapsack problem naturally yields a PTAS. We will need the standard integer
programming formulation of the problem:

MKm(C, w, p) : max
n∑

j=1

m∑
i=1

pj · xj,i s.t. (1)

n∑
j=1

wj · xj,i ≤ Ci, i ∈ [m], (2a)

m∑
i=1

xj,i ≤ 1, j ∈ [n], (2b)

xj,i ∈ N, j ∈ [n], i ∈ [m], (2c)

For the Branching and Bounding components, we will rely on a relaxation of (1)–(2c).
Several such relaxations are discussed in [24]; the ones that are relevant to us are the linear
programming relaxation ((1), (2a), (2b), and non-negativity constraints instead of (2c)) and
the surrogate relaxation, which in essence merges the m knapsacks into one single knapsack
with capacity

m∑
i=1

Ci:

S-MKm(C, w, p) = MK1

(
m∑

i=1
Ci, w, p

)
(3)

Martello and Toth show in [24] that the optimum of the linear relaxation of the surrogate
relaxation coincides with the optimum of the linear relaxation of the original problem. Using
this relationship and the well-known observation of George Dantzig [8], they describe an
algorithm that returns an (m + 1)-approximate solution. They sort the n items decreasingly
by their unit profit pi

wi
, and greedily fill each knapsack in this order until an item no longer

fits inside entirely. Then they cut the excessive part and assign it to the next knapsack, and
resume the process on this new knapsack with the next item in the queue. Let x∗ denote
this optimal solution to the linear relaxation, and let s1, . . . , sm denote the (at most) m

items that are fractionally assigned in the process. Item sk is referred to as the critical item

relative to knapsack k, and is obtained as sk = min
{

j :
j∑

l=1
wl >

k∑
i=1

Ci

}
.

They conclude that the (at most) m individual critical items and the collection of integrally
assigned items yield (at most) m + 1 feasible solutions to the integer program, the best of
which has a profit of at least 1

m+1 times the fractional optimum. Let x′ denote the most
profitable of these m + 1 assignments. With these notations, we have that

6 Branch-and-Bound Algorithms as Polynomial-time Approximation Schemes

▶ Proposition 1 (Martello, Toth; [24]).

p · x′ = max

ps1 , . . . , psm ,

m∑
k=1

sk−1∑
j=sk−1+1

pj

 ≥ 1
m + 1(p · x∗).

In the analysis of the algorithm Aknap
α , we are going to need the following simple observa-

tion, which connects the profit of the best critical item j∗ (i.e. the critical item with the
highest profit) with the gap of x′ with respect to the optimal x∗:

▶ Lemma 1.
pj∗

p · x∗ ≥ min
{

1
m + 1 ,

1
m
·
(

1− p · x′

p · x∗

)}
.

For a fixed 0 < α < 1, the specifications of algorithm Aknap
α are as follows: as input, we

have a triple (C, w, p) defining an instance of the multi-knapsack problem. At each step, we
select a node v (the branching node) among the leaves (the active nodes) of a tree we build
step-by-step; each node corresponds to a subproblem in which we fix some variables that
are given by the unique path from the root to the node. The selection in our case occurs
according to the best-first strategy, where we select the node to be processed next whose
attributed upper bound (described later) is the largest of all active nodes. For convenience,
let us introduce the “dummy” variables x̄j = 1−

m∑
i=1

xj,i for j = 1, . . . , n. Suppose that in the

unique path from the root of the tree to v, we have fixed xj1,i1 = xj2,i2 = . . . = xjk,ik
= 1, and

x̄e1 = x̄e2 = . . . = x̄el
= 1. In other words, items j1, . . . , jk are set to be included in knapsack

i1, . . . , ik respectively; whereas items e1, . . . , el are completely disposed of. Consequently,
node v encodes the knapsack sub-problem on the ground set S = [n] \

(⋃k
z=1 jz ∪

⋃l
z=1 ez

)
given by (Cv, wv, pv) with Cv = (C ′

1, . . . , C ′
m) where C ′

i = Ci−
∑

z: iz=i

wjz
, i ∈ [m]; wv = w|S

and pv = p|S .
In the bounding component, a local upper and lower bound U(v) and L(v) is determined

in the following manner: we consider the appropriate integer program in (1) with parameters
(Cv, wv, pv), and its surrogate relaxation. The linear relaxation of (3) is solved to optimality
by Dantzig’s method giving x∗, and the (m + 1)-approximate integer solution x′ is obtained
according to Proposition 1. We save the subproblem optimum and feasible solution into
the variables SU(v) = pv · x∗ and SL(v) = pv · x′; and from these, we create a feasible
solution and a local upper bound to the original problem by putting items j1, . . . , jk back
in knapsacks i1, . . . , ik, respectively. Therefore, we set U(v) = pv · x∗ + (pj1 + . . . pjk

), and
L(v) = pv · x′ + (pj1 + . . . pjk

).
Next, we expand the current tree by creating m + 1 new subproblems that are going to

be represented by the children of v; this branching rule is determined by setting the best
critical item j∗ as the pivot element. For i < m + 1, the i-th new branch is identified by
fixing xj∗,i = 1, and corresponds to putting the best critical item j∗ in knapsack i while
reducing its capacity by wj∗ . The (m + 1)-th new branch corresponds to setting x̄j∗ = 1 (and
xj∗,1 = . . . = xj∗,m = 0 at the same time), and means that we exclude item j∗ from all of the
knapsacks. We calculate the pertaining upper and lower bounds of all m + 1 sub-problems.
If any of them are infeasible (including the case when item j∗ does not fit into knapsack
i for some i), or their upper bounds are lower than the value of an already found feasible
integer solution, we prune the corresponding branch. Otherwise, we add them to the set of
active nodes while removing v. We update the highest local upper bound (GU) and the best
integer solution found so far (GL). Finally, we terminate whenever the multiplicative gap

K. I. Encz and M. Mastrolilli and E. Vercesi 7

between the global upper bound and the best solution found so far reaches or goes above α;
i.e. GL

GU ≥ α.
Since processing a node v clearly takes polynomial time, a polynomial upper bound on

the number of visited nodes in the branching tree means that the above scheme is a PTAS.

Proof of Theorem 1. The proof relies on deriving an upper bound on the number of visited
nodes. Let F = F (C, w, p) denote the branching tree at termination. On a root-leaf path
in F , we call an edge right-turn if the child node of the edge is the rightmost child of the
parent out of the m + 1 potential children. In other words, the node encodes a step when
we leave an item out from all of the knapsacks. Any other step in the path will be called a
left-turn. The theorem is a simple consequence of the following lemma:

▶ Lemma 2. There exists a constant cα (that depends on α) such that in the tree F , every
root-leaf path contains at most cα-many left-turns.

This lemma indeed implies our theorem, since it implies that the number of different
root-leaf paths in F is at most

(
n
cα

)
·mcα , so we can have at most O(ncα+1 ·mcα) nodes in

F . ◀

Proof of Lemma 2. For a given α and n, let l(α, n) be the maximum number of left-turns
in F for any input of n items. Formally,

l(α, n) = sup
w,p∈Nn, C∈Nm

{max. number of left-turns in any path of F (C, w, p)}

Since the maximal number of left-turns is at most n in every possible path in every possible
branching tree with n items, we can replace the supremum with maximum. Therefore, we
can consider an infinite sequence (Cn, wn, pn) and Fn realizing the maximum for each n.
Our goal now is to prove that l(α, n) remains constant as n tends to infinity. Let us fix n,
and the corresponding triple (Cn, wn, pn) with Fn such that they realize l(α, n). For the
sake of simplicity, we will omit n from the notation, and simply consider (C, w, p) and F .

Let F ′ be the inner nodes of F (the tree we get by getting rid of all leaves). Since
|F ′| ≥ 1

m+1 · |F | (as each group of at most m + 1 sibling leaves in F has one unique parent in
F ′), it is enough to prove the upper bound on left-turns in F ′. Consider a root-leaf path in
F ′ with l(α, n)-many left-turns, and let the corresponding nodes be v1, v2, . . . , vl(α,n), with
items j1, . . . , jl(α,n) fixed to be in knapsacks i1, . . . , il(α,n) along the path.

For the node vt with 1 ≤ t ≤ l(α, n), let x∗
vt

and x′
vt

denote fractional optimum of
the sub-problem’s surrogate relaxation and its (m + 1)-approximate integer rounding, with
objective function values SU(vt) and SL(vt), respectively. Let SL(vt)

SU(vt) = rt. Recall that
rt ≥ 1

m+1 , and that
L(vt)
U(vt)

=
SL(vt) + pj1 + . . . + pjt−1

SU(vt) + pj1 + . . . pjt−1

.

The key observations are the following:
Since vt is the inner node of F , the algorithm processed it in a previous step and did not
halt. Consequently, if GL′ and GU ′ denote the back-then global lower and upper bounds,
we have that α > GL′

GU ′ .
GL′ was defined as the best of all integer solutions found previously, so GL′ ≥ L(vt).
By the choice of the tree-traversal strategy being best-first, U(vt) = GU ′.

8 Branch-and-Bound Algorithms as Polynomial-time Approximation Schemes

Putting these together, we have that

α >
GL′

GU ′ ≥
L(vt)
U(vt)

=
SL(vt) + pj1 + . . . + pjt−1

SU(vt) + pj1 + . . . pjt−1

=

=
rt · SU(vt) + pj1 + . . . + pjt−1

SU(vt) + pj1 + . . . pjt−1

= rt + (1− rt) ·
pj1 + . . . + pjt−1

SU(vt) + pj1 + . . . + pjt−1

=

= rt + (1− rt) ·
pj1

SU(vt) + . . . + pjt−1
SU(vt)

1 + pj1
SU(vt) + . . . + pjt−1

SU(vt)
.

As an immediate consequence, we have that α > rt, and so

1− rt > 1− α, t = 1, . . . , l(α, n). (4)

With a universal bound (in t) established in (4), we can now focus on the last left-turn
in the path, vl(α,n). Let us introduce a shorthand notation for the fraction on the right-hand
side, and repeat what we have for t = l(α, n):

fl(α,n) :=
pj1

SU(vl(α,n)) + . . . +
pjl(α,n)−1

SU(vl(α,n))

1 + pj1
SU(vl(α,n)) + . . . +

pjl(α,n)−1
SU(vl(α,n))

,

and
α > rl(α,n) + (1− rl(α,n)) · fl(α,n) = 1− (1− rl(α,n))(1− fl(α,n)). (5)

▶ Lemma 3.

fl(α,n) ≥
(l(α, n)− 1) ·min

{
1

m+1 , 1
m · (1− α)

}
1 + (l(α, n)− 1) ·min

{
1

m+1 , 1
m · (1− α)

} .

Proof of Lemma 3. First, note that

SU(vl(α,n)) ≤ SU(vl(α,n)−1) ≤ . . . ≤ SU(v2) ≤ SU(v1),

since any two consecutive nodes in the sequence vi and vi+1 encode problems where the
problem in node vi+1 is a sub-problem of the one given by node vi. Second, recall from
Lemma 1 that

pjt

SU(vt)
≥ min

{
1

m + 1 ,
1
m
· (1− rt)

}
, t = 1, . . . , l(α, n).

Last, notice that fl(α,n) is a fraction of the type x
x+1 , therefore it is monotone increasing in

the value of the nominator. Combining these observations with (4), we can write that

fl(α,n) =
pj1

SU(vl(α,n)) + . . . +
pjl(α,n)−1

SU(vl(α,n))

1 + pj1
SU(vl(α,n)) + . . . +

pjl(α,n)−1
SU(vl(α,n))

≥
pj1

SU(v1) + . . . +
pjl(α,n)−1

SU(vl(α,n)−1)

1 + pj1
SU(v1) + . . . +

pjl(α,n)−1
SU(vl(α,n)−1)

≥

≥
min

{
1

m+1 , 1
m · (1− r1)

}
+ . . . + min

{
1

m+1 , 1
m · (1− rl(α,n)−1)

}
1 + min

{
1

m+1 , 1
m · (1− r1)

}
+ . . . + min

{
1

m+1 , 1
m · (1− rl(α,n)−1)

} ≥
≥

(l(α, n)− 1) ·min
{

1
m+1 , 1

m · (1− α)
}

1 + (l(α, n)− 1) ·min
{

1
m+1 , 1

m · (1− α)
} .

◀

K. I. Encz and M. Mastrolilli and E. Vercesi 9

Now suppose for contradiction that lim
n→∞

l(α, n) =∞. Then (5) implies

α ≥ 1− lim
n→∞

(1− rl(α,n))(1− fl(α,n)) = 1,

since 1 ≥ rl(α,n) > 0 and

lim
n→∞

fl(α,n) ≥ lim
n→∞

(l(α, n)− 1) ·min
{

1
m+1 , 1

m · (1− α)
}

1 + (l(α, n)− 1) ·min
{

1
m+1 , 1

m · (1− α)
} =

= lim
x→∞

x

1 + x
= 1.

However, 1 > α > 0 was assumed. Contradiction. ◀

▶ Remark 1. With a more careful analysis, we can determine an exact bound on l(α, n) that
depends on alpha, just like we did in Theorems 2 and 3. In particular, observe that (5)
implies α > fl(α,n), and assume that in Lemma 3, the minimum is obtained by 1

m · (1− α).
It follows that

α >
(l(α, n)− 1) · 1

m · (1− α)
1 + (l(α, n)− 1) · 1

m · (1− α)
= 1− 1

1 + (l(α, n)− 1) · 1
m · (1− α)

,

and
1 + (l(α, n)− 1) · 1

m
· (1− α) <

1
1− α

,

so
l(α, n) <

(
1

1− α
− 1
)
· m

1− α
+ 1 = mα

(1− α)2 + 1.

On the other hand, if the minimum in Lemma 3 is achieved by 1
m+1 , a similar analysis shows

that
l(α, n) <

m + 1
1− α

+ 1.

3 A B&B EPTAS for the Unrelated Machine Scheduling Problem

In the unrelated parallel machine scheduling problem, n jobs are assigned to m machines to
minimize the makespan max{CS(i) : i = 1, . . . , m}, where CS(i) is the completion time of
machine i according to the schedule S. Each job j has a machine-dependent processing time
pj,i ∈ N. The problem is strongly NP-complete when m is part of the input [13], ruling out
an FPTAS unless P = NP. Furthermore, even a PTAS would imply P = NP [22]. When m

is a fixed constant, the problem is denoted by Rm||Cmax (following [5]), and an FPTAS is
possible [16, 12]. See, e.g. [27] for a survey of more recent advances. Several applications of
the B&B framework were developed for machine scheduling problems, with diverse lower
bound strategies ranging from surrogate relaxations [30] to lagrangian relaxations [23].

In this section, we study a B&B implementation for Rm||Cmax. Again, we follow a simple
and standard implementation of the B&B framework. At a given node, the corresponding
sub-problem is modeled as an integer program. Its LP-based relaxation is solved by a
Binary Search (BS) subroutine in the bounding component, followed by a common rounding
technique to determine an (m + 1)-approximate schedule (see [31], Chapter 17.3). Then,
we branch according to the fractional job that maximizes the minimal processing time
min{pj,i : i ∈ [m]}. The selection strategy is again the best-first rule, where the active node

10 Branch-and-Bound Algorithms as Polynomial-time Approximation Schemes

with the lowest fractional optimum (denoted by the acronym LLB in the experiments) is
picked for processing. We stop whenever the ratio between the global lower bound and the
best integer schedule discovered so far reaches or goes below (1 + ϵ), where ϵ > 0 is a fixed
constant. We provide exact details of the algorithm Aunrel

ϵ in Subsection 3.1, where we show
the following:

▶ Theorem 2. For every fixed ϵ > 0, the algorithm Aunrel
ϵ returns a (1 + ϵ)-approximate

solution to the unrelated machine scheduling problem, after processing at most m⌊ m2
ϵ ⌋-many

nodes in the branching tree.

3.1 Proof of Theorem 2
In this section, we consider the problem Rm||Cmax. Our analysis will rely on a self-similarity
property of the problem; that is, each node of the branching tree must correspond to the
same class of LP-formulations. For the sake of exploiting this property, we need that fixing a
job to any of the machines should yield another machine scheduling problem. This is not true
for the default description, so we introduce the concept of overheads denoting the earliest
time machines can start completing jobs. Fixing a job j to machine i now corresponds to
increasing the overhead of machine i with pj,i. Machine i with an overhead ti ∈ N has a
completion time C ′

S(i) = ti + CS(i).
Again, the bounding and branching components will heavily rely on an integer pro-

gramming formulation of the problem and its linear relaxation. The most straightforward
formulation, however, gives rise to some concerns. Instead, we opt to follow in the footsteps
of Vazirani [31] and Lenstra, Shmoys, and Tardos [22]. Their proofs rely on a technique called
parametric pruning, which consists of a binary search for a “guess” on the optimal integer
makespan while disregarding job-machine pairings that immediately exceed the current guess.
For this purpose, they define the following modification of the “standard” program: for a
given P ∈ Nn×m and “guess” T ∈ N, let ST be the set of (job, machine) pairings which do
not immediately violate the time limit T .

ST := {(j, i) : pj,i ≤ T}.

▶ Definition 2. For P ∈ Nn×m, T ∈ N and t ∈ Nm, let PARTIAL-LP -MSm(P , t, T) be
the polyhedron determined by the following set of inequalities:

∑
i:(j,i)∈ST

xj,i = 1, j ∈ [n],∑
j:(j,i)∈ST

pj,i · xj,i ≤ T − ti, i ∈ [m],

xj,i ≥ 0, (j, i) ∈ ST .

(6)

The key properties described in [22] and [31] are easily transcribed to our version with
overheads with little to no modification, since they are only dependent on the constraint
matrix describing (6) and not on the right-hand side of the inequalities. Let us recall that
for a feasible solution x, job j is called fractional if there exists i such that xj,i does not
equal 0 or 1 (and therefore has a fractional value); otherwise job j is called integral.

▶ Lemma 4 (Lenstra, Shmoys, Tardos; [22]). If the linear program described in (6) is feasible,
then each vertex x∗ has at most m fractional jobs. Furthermore, there exists an injection from
fractional jobs to the m machines such that each fractional job j is matched to a machine i

where xj,i ̸= 0. Moreover, the schedule we get by keeping integral jobs in x∗ and reassigning
fractional jobs to machines according to the injection has a makespan of at most 2T .

K. I. Encz and M. Mastrolilli and E. Vercesi 11

Lenstra et al. designed a binary search procedure (starting from an arbitrary integer
schedule) for the smallest integer value of T for which the program in (6) is feasible. They
prove that their procedure runs in polynomial time.

▶ Proposition 2 (Lenstra, Shmoys, Tardos; [22]). Let T ′ be the result of the binary search;
i.e. the smallest integer T for which (6) is feasible. Furthermore, let Topt be the fractional
optimum. Then the rounding procedure from Lemma 4 applied to a schedule with makespan
T ′ yields an integer schedule with makespan at most 2Topt.

For a fixed ϵ > 0, the specifications of algorithm Aunrel
ϵ are as follows: as input, we have

a matrix P ∈ Nn×m defining an instance of the unrelated machine scheduling problem. The
overhead at the beginning is t ≡ 0. At each step, we select a node v (the branching node)
among the leaves (the active nodes) of a tree we build step-by-step; each node corresponds to
a subproblem in which we fix some job-machine pairings identified by the unique path from
the root to the node. The selection in our case occurs according to the best-first selection
rule, where we select the node to be processed next whose attributed lower bound (described
later) is the smallest of all active nodes. Suppose that in the unique path of length k from
the root of the tree to v, we have fixed xj1,i1 = xj2,i2 = . . . = xjk,ik

= 1. In other words,
job j1 is fixed to machine i1, job j2 is fixed to machine i2, and so on. Consequently, node v

encodes the sub-problem with jobs S = [n] \
⋃k

z=1 jz given by processing times Pv = P |S×[m]
and overhead vector determined by the already fixed job-machine pairings: tv = (t1, . . . , tm)
with ti =

∑
z:iz=i

pjz,iz , i ∈ [m]. With these, the bounding takes place: a local lower and

upper bound L(v) and U(v) is determined by applying the binary search of Lenstra et al. to
find the smallest integer T (denoted by T ′) for which (6) is feasible, and by rounding a vertex
of the corresponding polyhedron PARTIAL-LP -MSm(Pv, tv, T ′) to an integer assignment
with makespan at most (m + 1) · T ′. The rounding consists of assigning each fractional job
to the machine where its processing time is minimal. We then branch according to the
fractional job j whose minimal processing time (min{pj,i : i ∈ [m]}) is maximal. Branch i

out of the m new branches fixes job j to machine i and increases its overhead by pj,i.
We calculate the local lower and upper bounds of all m new subproblems. If their lower

bounds are greater than the makespan of an already found integer solution, we prune them.
Otherwise, we add them to the set of active nodes while removing v. We update the global
lower and upper bounds GL and GU : at a given step, they are defined as the minimal local
lower bound of the active nodes and the best makespan of an integer solution found so far,
respectively. Finally, we terminate whenever the multiplicative gap between the global lower
bound and the current champion makespan, GU

GL , reaches or goes below 1 + ϵ.

Proof of Theorem 2. Let F be the resulting branching tree, and let v be an arbitrary node
different from the one at which the algorithm terminates. Let GU ′ and GL′ denote the global
upper and lower bounds at the time of processing v. By definition, we have GU ′ ≤ U(v); and
by the best-first selection strategy, GL′ = L(v). The algorithm did not stop after processing
v; hence

1 + ϵ <
GU ′

GL′ ≤
U(v)
L(v) .

Let j∗ be the fixed job at v; i.e. the job among the at most m fractional jobs of the vertex whose
shortest processing time is maximal. For each job j′, let p′

j′ = min{pj′,1, . . . pj′,m} denote
the shortest one out of all the m processing times. Suppose that job j∗ is the k-th according
to the decreasing order of p′

j′ -s, and the first k jobs in this order are j1, j2, . . . , jk−1, j∗. It is
evident that rounding up the fractional jobs cannot increase the makespan by more than
m · p′

j∗ , so U(v) ≤ L(v) + m · p′
j∗ .

12 Branch-and-Bound Algorithms as Polynomial-time Approximation Schemes

Observe that L(v) ≥ p′
1+...p′

n

m , since the latter is a lower bound on the global fractional
optimum, whereas the first is the value of some feasible (fractional) solution to a subproblem.
Moreover,

p′
1 + . . . p′

n ≥ p′
j1

+ . . . p′
jk−1

+ p′
j∗ ≥ k · p′

j∗ .

From these, we have that

1 + ϵ <
GU ′

GL′ ≤
U(v)
L(v) ≤ 1 +

m · p′
j∗

L(v) ≤ 1 +
m2 · p′

j∗

k · p′
j∗

= 1 + m2

k
, (7)

and k ≤ ⌊m2

ϵ ⌋. On the path from the root of F to v, one job cannot be fixed more than
once; so we have that when the depth of v exceeds ⌊m2

ϵ ⌋, at least one fixed job j′ will violate
j′ ≤ ⌊m2

ϵ ⌋. Therefore, the depth of F is at most ⌊m2

ϵ ⌋ (disregarding the terminating node),
and the number of nodes in F is at most m⌊ m2

ϵ ⌋. Since processing a node takes time that is
polynomial in n, the overall running time is again polynomial. ◀

4 A B&B FPTAS for the Uniform Machine Scheduling Problem

In the identical machine scheduling setup, every job takes the same amount of time to
complete on each of the machines, and so job j is associated with a single processing time
pj . The uniform machine scheduling setup extends this by associating a speed si with each
machine i ∈ [m], and thus rendering the processing time of job j on machine i to be pj,i = pj

si
.

In this paper, we assume that the vector of processing times p and the vector of speeds s are
such that pj,i ∈ N,∀j ∈ [n],∀i ∈ [m]. The problem is frequently denoted by Qm||Cmax when
m is a constant (following [5]); it is weakly NP-hard and, being a special case of Rm||Cmax,
it admits an FPTAS.

In this section, we enhance Aunrel
ϵ for the special case Qm||Cmax by exploiting a simple

observation. During the course of the algorithm, certain repetitive patterns can be identified
based on the jobs that are fixed at a given node. Situations may arise where two or more nodes
encode sub-problems that could be classified as similar; provided that the fixed job-machine
pairings yield schedules that are sufficiently close to each other (the coordinate-wise distance
of schedules required to declare them similar is based on the error tolerance factor ϵ). When
aiming for an approximate solution, the processing of these similar nodes can be delayed
indefinitely. When the modified B&B runs its full course, the returned schedule is either
optimal or it is within a range of ϵ of the real optimal solution that we put on hold due to
similarity.

As we will see, this modified scheme Asim-prof
ϵ (which, apart from the enhanced node

selection rule, is equivalent with Aunrel
ϵ) reduces the search space by such a great factor that

the running time will be polynomial in 1/ϵ as well.

▶ Theorem 3. For every fixed ϵ > 0, the algorithm Asim-prof
ϵ returns a (1 + ϵ) - approximate

solution to the uniform machine scheduling problem, after processing at most n ·
(5n

ϵ

)m nodes
in the branching tree.

Apart from its increased efficiency, the scheme offers the additional advantage of adapt-
ability to changing requirements and time constraints. If the algorithm completes before its
designated time limit or a higher-quality solution is needed, it can resume processing the
delayed nodes, further refining the search space using a more precise similarity measure with
a smaller ϵ.

K. I. Encz and M. Mastrolilli and E. Vercesi 13

4.1 Proof of Theorem 3

In this section, we consider the problem Qm||Cmax, and we will enhance the previous
algorithm Aunrel

ϵ by exploiting common input-modifying techniques that are frequently used
for obtaining fully polynomial-time approximation schemes. In general, these techniques
consist of applying a series of transformations on the input instance, while keeping the
objective value sufficiently close to the optimum. Most often, the modifications are a mixture
of rounding down processing times to the nearest value of some finite sequence, and grouping
small jobs together to reduce the number of jobs in the input. The rounding of processing
times allows for greater control on feasible solutions and gives way to create profiles that
collect equivalent schedules. On the other hand, grouping small jobs together results in
a smaller instance for which even a complete enumeration of schedules would be feasible.
If the parameters of the modification are chosen carefully, the combination of these two
steps guarantees an algorithm that runs in polynomial time in both n and 1

ϵ . For a detailed
background, we refer to [12] and [25].

Let us fix ϵ > 0, and consider an input P ∈ Nn×m to the uniform machine scheduling
problem with m fixed machines and n jobs. For the sake of a simpler analysis, let us divide
each processing time with the global fractional optimum of the “standard” LP-relaxation.
This step does not affect the optimal integer assignment, and its new makespan Topt satisfies
that

1 ≤ Topt ≤ 2.

In our current investigation, we will solely rely on the first type of modification: rounding
down processing times to the nearest value of some sequence. But, instead of directly
modifying the input, we will design a scheme that allows us to obtain the same effect without
touching the input first, thus guaranteeing a more “natural” approach. Our method builds
on the concept of profiles: for a (partial) assignment S of some jobs, the profile of S is
the m-tuple (CS(1), . . . , CS(m)) of completion times. We call two profiles Π(S1) and Π(S2)
similar if |Π(S1)i −Π(S2)i| ≤ ϵ

n , ∀i ∈ [m]. The key observation is the following: let ϵ < 1,
and note that a (1 + ϵ)-approximate solution has a makespan of at most 2(1 + ϵ) = 2 + 2ϵ.
Consider the m-dimensional cube [0, 2 + 2ϵ]m, and consider its partition given by the set of
points [0, ϵ

n , 2ϵ
n , . . . , n(2+2ϵ)

ϵ · ϵ
n]m. If we have two profiles falling into the same partition class,

then they are similar. Conversely, any set of profiles with makespan at most 2 + 2ϵ that does
not have 2 similar profiles has at most

(
1 + n(2+2ϵ)

ϵ

)m

≤
(5n

ϵ

)m elements.
For a node v in the branching tree, its profile Π(v) is defined as the profile of the partial

schedule made up of the jobs fixed at v. In other words, the profile is simply the overhead
vector associated with the integer programming formulation corresponding to the sub-problem
at v: Π(v) = tv. The concept of similar profiles allows us to consider nodes of the branching
tree “equivalent” if they have similar profiles, and they have the same set of jobs fixed so
far. Note that we need both the same profiles and the same fixed jobs in order to declare
two nodes equivalent, as shown by the following identical instance with 2 machines given by
processing time (n, n, 1, . . . , 1) with n-many 1-jobs. We can have two partial assignments
with the same profile (n, n), but one of them is made up of one n-job and n 1-jobs while
the other is made up of two n-jobs. It is not justified to deem them equivalent as the best
extension of the first profile has a makespan of 2n, while the latter can be extended to a
schedule with makespan 3

2 n.
However, the following Lemma gives a natural way to ensure that all nodes at a given

level have the same fixed jobs in the uniform setup.

14 Branch-and-Bound Algorithms as Polynomial-time Approximation Schemes

▶ Lemma 5. Let (P , t) ∈ (N(n×m),Nm) be an instance of the uniform machine scheduling
problem with n jobs where P is given by processing times p ∈ Nn and machine speeds s ∈ Nm,
and let n be the job whose processing time is maximal. Let T ′ denote the smallest integer T

for which PARTIAL− LP −MSm(P , t, T) is feasible. If there exists a schedule x∗ with at
least one fractional job such that x∗ is a vertex of PARTIAL− LP −MSm(P , t, T ′), then
there exists a schedule x̂ in which job n is fractional and x̂ is a vertex of the same polyhedron.

In the proof of Lemma 5, we will exploit useful properties of vertices of the polytope
described in (6). Namely, in the uniform machine scheduling model, we can extend the result
of Lemma 4 and characterize vertices of the polyhedra. The basic idea of the lemma is the
following: for a feasible solution x, they construct a bipartite auxiliary graph G(x) with the
2 classes corresponding to the m machines and the at most m fractional jobs, and they add
an edge between i ∈ [m] and j ∈ [n] if xj,i > 0 and is fractional. They conclude that G(x)
must be a pseudo-forest, and use this fact to construct a matching between machines and
fractional jobs.

We can strengthen their observation in the uniform model, and use it to our advantage for
characterizing vertices of the corresponding polyhedra. Let (p, s) ∈ (Nn,Nm) denote an input
to the uniform machine scheduling problem with p being the vector of processing times, and
s being the vector of machine speeds. The corresponding input matrix is P = (pj,i)m,n

i,j=1,1
with pj,i = pj

si
. Recall that P ∈ Nn×m is assumed, although it is not explicitly used in

the proof. Let us recall that a machine’s completion time according to some schedule S

is denoted by C ′
S(i) when taking into account overhead ti as well. With a little abuse of

notation, a fractional solution x of the linear program can be interpreted as a fractional
schedule, where the completion time at machine i is denoted by C ′

x(i).

▶ Lemma 6. Let (P , t) be an input to the uniform machine scheduling problem, and let
T ′ denote the smallest integer T for which (6) is feasible; let x be a feasible solution of
PARTIAL− LP −MSm(P , t, T ′). Then x is a vertex if and only if these two conditions
hold: (i) G(x) is a forest, and (ii) each connected component of G(x) contains at most one
machine-node i for which C ′

x(i) < T ′.

Proof of Lemma 6. First, we will prove that if G(x) is a forest, then (i) and (ii) hold true.
By contradiction, assume that G(x) is a proper pseudo forest; that is, there exists a connected
component that contains a cycle. By relabeling jobs and machines, we can assume that the
edges of the cycle are given by the non-zero fractional variables x11, x21, x22, x32, . . . , xk,k, x1,k.
We will show that x is not a vertex by proving that both (x + ϵ) and (x− ϵ) are feasible
for a vector ϵ of length n ·m. Clearly, ϵij = 0 must hold every time xij = 0 or xij = 1,
so it is enough to consider variables corresponding to edges of G(x). We claim that we
can find an appropriate ϵ that is non-zero only on these edges. For this to hold, we clearly
need that ϵ11 = −ϵ1,k, . . . , ϵk,k−1 = −ϵk,k, so we can write the desired vector in the form
ϵ11 = ϵ1, ϵ1,k = −ϵ1, . . . , ϵk,k−1 = ϵk, ϵk,k = −ϵk.

In order for x + ϵ to have the same (or smaller) makespan as x, we need the following
conditions to be satisfied for each i = 1, . . . , k (for i = k, i + 1 is to be understood as 1):

(xi,i + ϵi) · pi,i + (xi+1,i − ϵi+1) · pi+1,1 ≤ xi,i · pi,i + xi+1,i · pi+1,i,

or equivalently,
ϵi · pi,i − ϵi+1 · pi+1,1 ≤ 0,

and
ϵi

ϵi+1
≤ pi+1,i

pi,i
.

K. I. Encz and M. Mastrolilli and E. Vercesi 15

Since we are in the uniform case, we know that pj,k = pj

sk
with a profit pj and machine speed

sk, and so we need that

ϵi

ϵi+1
≤ pi+1/si

pi/si
= pi+1

pi
, i = 1, . . . , k. (8)

Let us choose ϵ1 > 0 arbitrarily, then we recursively define

ϵi+1 := ϵi ·
pi

pi+1
.

These trivially satisfy with equality each inequality from (8) apart from the i = k case; but
since the product of all the left-hand sides, as well as the product of all right-hand sides, is
equal to 1, the remaining inequality must be satisfied (with equality) as well.

Apart from (8), the values of the parameters ϵi must adhere to the constraints{
xi,i + ϵi ≤ 1, i = 1, . . . k,

xi+1,i − ϵi ≥ 0, i = 1, . . . , k.
(9)

But these are satisfied if the values for ϵi are chosen to be small enough since 0 < xi,i, xi+1,i <

1. Notice that multiplying each ϵi with the same constant does not change the fractions in
(8); so by choosing an appropriately small constant, we can guarantee that both (8) and (9)
are satisfied.

Repeating a similar reasoning, we gather that the same ϵ satisfies the corresponding
versions of (8) for x− ϵ as well, and if 0 ≤ x− ϵ ≤ 1 is not satisfied, we can again multiply ϵ

with a small enough constant to guarantee these inequalities while maintaining the feasibility
of the makespan constraints. In conclusion, if G(x) has a cycle, x cannot be a vertex.

Now, suppose that x is a vertex and assume for contradiction that there are at least two
machines in the same component of G(x), i1, and i2, whose completion times are strictly
smaller than T ′. Consider a path connecting these two nodes, and observe that we can
construct a vector ϵ ∈ Rn×m

≥0 which is zero apart from the coordinates of the path, and for
which (x± ϵ) are feasible. To do so, notice that we can repeat the process we described for
the case of having a cycle, with the sole difference that in (8) the first and last inequalities
lack one of the variables, and (9) has two less constraints. Therefore, the solution we derived
for cycles is feasible for paths as well. This construction in fact can be seen as a special case
of having a cycle, by splitting a “dummy job” between machines i1 and i2.

Conversely, suppose that G(x) does not contain a cycle, and each connected component
has at most one machine with completion time strictly smaller than T ′. Suppose for
contradiction that there is a vector ϵ such that (x + ϵ) and (x− ϵ) are both feasible. The
coordinates of ϵ which are different from 0 and 1 must correspond to edges in G(x); and as
it does not contain a cycle, the subgraph spanned by these edges must be a forest. Consider
an arbitrary connected component of this forest having at least two nodes; this must have at
least two nodes of degree 1. If any of these nodes correspond to a job j, the constraints

n∑
i=1

xj,i = 1

would be violated by both x ± ϵ. Therefore, we have two machines, i1 and i2, that have
degree one and belong to the same connected component in the subgraph spanned by the
fractional coordinates of ϵ. Furthermore, since the connected components of this subgraph
must be part of some connected components of G(x), by assumption we have that at least
one of C ′

x(i1) = T ′ or C ′
x(i2) = T ′ holds; let us assume that it is the first one. But then

C ′
x±ϵ(i1) > T ′ would hold for exactly one of x±ϵ, and so this vector would not be feasible. ◀

16 Branch-and-Bound Algorithms as Polynomial-time Approximation Schemes

Proof of Lemma 5. If job n is fractionally assigned in x∗, we can choose x̂ = x∗. Otherwise,
assume that job n is integrally assigned to a machine; by relabeling machines, we can further
assume that it is integrally assigned to machine 1 and hence x∗

n,1 = 1. Since x∗ is fractional,
there must exist a job j which is assigned fractionally. We distinguish between two cases. If
there is a job that has a fractional part assigned to machine 1, then let j be this job. Apart
from x∗

j,1, there must be another nonzero coordinate for job j; we can assume that it is x∗
j,2.

If there is no job having a fractional coordinate at machine 1, let j be an arbitrary fractional
job and assume that x∗

j,2 ̸= 0.
Let ϵ1 and ϵ2 be parameters whose value we fix later, and consider the following vector x̂:

x̂k,i =

x∗
n,1 − ϵ1 = 1− ϵ1, if (k, i) = (n, 1),

x∗
n,2 + ϵ1 = ϵ1, if (k, i) = (n, 2),

x∗
j,1 + ϵ2, if (k, i) = (j, 1),

x∗
j,2 − ϵ2, if (k, i) = (j, 2),

x∗
k,i, else.

Let us choose the values of ϵ1 and ϵ2 such that the completion times of machines 1 and 2 are
the same in x∗ and x̂. For this to hold, we need that

−ϵ1 ·
pn

s1
+ ϵ2 ·

pj

s1
= 0,

and
+ϵ1 ·

pn

s2
− ϵ2 ·

pj

s2
= 0.

These equalities are satisfied by any ϵ1, ϵ2 for which
ϵ1

ϵ2
= pj

pn

holds. Let us choose ϵ2 = min{1− x∗
j,1, x∗

j,2} = x∗
j,2 < 1, and ϵ1 = ϵ2 · pj

pn
. With this choice,

it also holds that x̂j,2 = 0, x̂j,1 ≤ 1; and ϵ1 = ϵ2 · pj

pn
≤ ϵ2 < 1 implies that x̂n,1 > 0, x̂n,2 < 1

is also true.
In other words, the modification splits job n fractionally between machines 1 and 2, while

relocating the fractional part of job j from machine 2 to machine 1. The resulting x̂ is
feasible for the corresponding polyhedra; and by Lemma 6, it is enough to guarantee that
G(x̂) is a forest for concluding that x̂ is a vertex, since the completion times of machines are
left unchanged.

Let u1, u2, wn, wj be the nodes of G(x̂) corresponding to machine 1, machine 2, job n

and job j, respectively. We have that wnu1, wnu2, wju1 ∈ E(G(x̂)) and wju2 ̸∈ E(G(x̂)).
We also know that degG(x̂)(wn) = 2 and wn ̸∈ V (G(x∗)).

Consider the first case, when job j has a fractional part on machine 1 in x∗. Suppose for
contradiction that there is a cycle C in G(x̂). If wn ̸∈ V (C), then C ⊆ G(x∗) would hold. If
wn ∈ V (C), then P := C −{wnu1, wnu2} would be a u1−u2-path such that P ⊆ G(x∗) and
P△{wju1, wju2} would contain a cycle in G(x∗), where △ denotes the symmetric difference
of two sets.

In the second case, degG(x̂)(u1) ≤ 2, degG(x∗)(u1) = 0, wju1 ̸∈ E(G(x∗)). Assume
for contradiction that there is a cycle C in G(x̂). If C does not contain any of the edges
wju1, u1wn, wnu2, then C ⊆ G(x∗) would hold. Otherwise, since degG(x̂)(u1) ≤ 2 and
degG(x̂)(wn) = 2, C must contain all three edges. But then P := C − {wju1, u1wn, wnu2} is
a u2 − wj path in G(x∗), which together with u2wj would form a cycle in G(x∗). ◀

K. I. Encz and M. Mastrolilli and E. Vercesi 17

With this, we are ready to define our final enhanced algorithm Asim-prof
ϵ . It takes as

input an instance of the uniform machine scheduling problem (P , 0) where P is given by
(p, s) ∈ Nn+m. It rearranges the jobs such that p1 ≥ . . . ≥ pn, then creates an equivalent
instance P ′ by dividing P with the global fractional optimum. Then it proceeds as a
branch-and-bound algorithm with the following specifications: when processing a node v, it
first finds a vertex of the corresponding relaxation of the sub-problem (6) with the smallest
T for which the program is feasible. If the vertex is integer, the algorithm stops, as it has
found a globally optimal schedule (due to the best-first selection criterion). If the vertex is
fractional and the longest unfixed job is not fractional, then it follows Lemma 5 to arrive at
another optimal vertex in which the longest unfixed job is fractional. Then, it rounds up
this vertex to find an integer solution, according to an arbitrary matching between machines
and fractional jobs. The pivot element at node v will be the longest fractional job, which
by now coincides with the longest unfixed job. m new branches are created, labelled by the
machine on which the longest unfixed job is fixed at the next level. For each new node u,
the algorithm checks whether it has already found a schedule with a makespan better than
L(u), in which case u is discarded. Next, Π(u) = tu is compared with all previous profiles at
the same depth. If max{Π(u)i : i ∈ [m]} > 2 + 2ϵ, or there already exists a node at the same
depth whose profile is similar to Π(u), u is discarded. The remaining of the m new nodes
are added to the list of active nodes, the list of profiles is appended with the new ones, and
the next node to process is selected according to the best-first tree traversal rule.

The process terminates when the ratio between the makespan of the best discovered
schedule and the lowest lower bound satisfies GU

GL ≤ 1 + ϵ, at which point it returns the best
schedule found so far.

▶ Lemma 7. Let F be the final branching tree traversed by algorithm Asim-prof
ϵ . The number

of nodes in F is at most n ·
(5n

ϵ

)m.

Proof of Lemma 7. By the property that each vertex is either integral (in which case the
algorithm stops, having found the optimal integer schedule), or the longest unfixed job is
fractional in the vertex, the “longest fractional job” pivot selection rule guarantees that at
depth j, job j will be the pivot element. Furthermore, nodes at a given level in F must
have profiles such that no two of them are similar, and we have seen in the beginning of the
section that the cardinality of such a set is at most

(5n
ϵ

)m for ϵ < 1. Since the depth of F

is at most n, the total number of nodes is at most n ·
(5n

ϵ

)m. If ϵ ≥ 1, the root node will
provide a (1 + ϵ ≥)2-approximative solution. ◀

Proof of Theorem 3. What remains to be shown is the approximation property of the
algorithm. Let ϵ < 1, and let F ′ ⊇ F be the tree which we obtain by modifying Asim-prof

ϵ to
terminate only when it processed every node. It suffices to show that there is a leaf of F ′ at
level n which corresponds to a schedule with a makespan at most (1 + ϵ) times the optimal
one. Let S denote a (globally) optimal schedule, and suppose we got rid of it at level k by
discarding a node v whose profile was similar to an already found profile of another node
u. Let S′ be the schedule which we obtain from S by rearranging the first k jobs according
to the partial schedule corresponding to u. This modification incurs a change of at most ϵ

n

on each machine, since the profiles of v and u were similar, and jobs k + 1, . . . , n remained
at their original machine. Therefore, the makespan of S′ is greater than the makespan of
S by at most ϵ

n . Repeat this argument, if necessary, each time the champion schedule gets
discarded because of similarity. Note that the discarding can never happen because of a too
large makespan, since by induction each champion schedule has completion times at most
Topt + n · ϵ

n = Topt + ϵ ≤ 2 + ϵ < 2 + 2ϵ. Each time, we can find an alternative schedule

18 Branch-and-Bound Algorithms as Polynomial-time Approximation Schemes

serving as the new champion, while losing only an additive factor of at most ϵ
n . Altogether,

the final champion at level n will have a makespan at most ϵ
n ·n = ϵ greater than the optimal

one, concluding our proof. ◀

In what follows we show how the algorithm Asim-prof
ϵ generalizes a dynamic programming

approach for the machine scheduling problem. The latter consists of constructing a matrix
M , where the n rows are labeled by the n jobs in some fixed order. Column i pertains
to a representative profile Π(i) of the partition classes of the cube [0, 2 + 2ϵ]m given by
points [0, ϵ

n , . . . , n(2+2ϵ)
ϵ · ϵ

n]m. The entry at column i and row j is 1 if there exists a partial
assignment with the first j jobs whose profile is similar to Π(i); otherwise, the entry is 0.
The algorithm fills in the entries of the matrix by the best-first principle, then checks all
1-entries of the last row and determines the best makespan of the corresponding profiles. By
our above reasoning, the returned schedule will be a (1 + ϵ)-approximate solution.

The embedding of the dynamic programming in Asim-prof
ϵ can be described as follows:

each level of the branching tree F has the same job fixed at every node, therefore level j

contains nodes where the fixed jobs are 1, . . . , j. Moreover, we only prune a node when
either its profile is similar to another one already found (implying that at most one profile
is considered from each partition class), or its lower bound is worse than an already found
integer solution. Therefore, nodes at depth j in F have a one-to-one correspondence with cells
of the j-th row of M whose entry is 1, except for some profiles that were discarded for having
a too-high lower bound. In other words, Asim-prof

ϵ can be seen as the dynamic programming
algorithm embedded in the branch-and-bound framework, where M is traversed according to
the best-first logic, and some entries are disregarded when even the best possible extension
of their profile is worse than an already found feasible solution. In the worst case, each cell
of M is visited before a (1 + ϵ)-approximate solution is found; but it happens no later than
the processing of the last entry, according to Theorem 3.

The embedding becomes even more evident if we replace the best-first node selection rule
with BFS. Then, traversing level j of the tree is nothing else but processing the j-th row of
M except for some entries that are stepped over because of their lower bound.

To conclude our work, we point out the infeasibility of repeating our results for the
unrelated machine scheduling problem and the multiple knapsack problem. The notion of
profiles and the ϵ

n -partition of their space can be extended without changing anything. The
difficulty lies in guaranteeing the highly structured property of the branching tree, in which
the same job is fixed at all nodes of a given level. Of course, one can simply hard-code this
into the algorithm, but giving a pivot rule that achieves this naturally seems infeasible. In
particular, the following example shows that the “maximal shortest processing time” selection
rule does not have this guarantee: let m = 3 and consider the following input with n = 2k + 2
jobs: p1,1 = p1,2 = p1,3 = 3k + 2, pj,2 = pj,3 = 3, j = 2, . . . , n− 1 and pn,2 = pn,3 = 2. The
rest of the processing times are chosen such that pj,1 ≤ 3k + 1, j = 2, . . . , n. It is easy to
check that in the second iteration, there is no vertex in the polyhedron where the job with the
maximal shortest processing time is fractional. This instance also serves as a counterexample
for a bunch of other pivot selection strategies, such as “maximal average completion time” or
“maximal longest processing time”.

A similar phenomenon takes place in the case of the (multiple) knapsack problem, with
the exception that we know the infeasibility of having a structure where each node in the
same level has the same job fixed. In particular, for the single knapsack problem, the two
children of a given node have different pivot elements (provided that they are both feasible).

▶ Lemma 3. Let (C, w, p) denote an input to the single knapsack problem. Assume that

K. I. Encz and M. Mastrolilli and E. Vercesi 19

the items are such that p1
w1

> . . . > pn

wn
, and the pivot element is j∗. Let (C − wj∗ , w′, p′)

and (C, w′, p′) denote the two subproblems corresponding to including and excluding item j∗

from the knapsack, with w′ = w|[n]−j∗ and p′ = p|[n]−j∗ . Assume that both subproblems are
feasible, and the corresponding pivot elements are j1 and j2. Then j1 < j∗ < j2.

Proof. Items 1, . . . , j∗ − 1 do not fit inside the knapsack with reduced capacity C − wj∗

(because items 1, . . . , j∗ − 1, j∗ did not fit inside the knapsack with original capacity C), but
they do fit inside the original capacity C. Hence, j1 < j∗ < j2. ◀

5 Computational Experiments

In this section, we aim to assess the performance of our proposed algorithm on some ran-
domly generated instances. Specifically, we compare our proposed strategies, which gave us
theoretical guarantees, with other ones commonly used. The goal is to assess whether our
theoretical guarantees are also observable in practice. We also provide a detailed runtime
analysis. For the instances under study, a carefully optimized B&B implementation, such
as SCIP [3], outperforms our naive implementation. However, we chose to reimplement
everything from scratch, focusing on simplicity rather than efficiency.

Experimental Setting. All experiments were conducted on a Linux computer equipped
with Intel Xeon E5-2650 v3 CPUs, each running at 2.3 GHz, and 64 GB of RAM. Our main
code was implemented in Python 3.10.14, and all optimization routines were carried out
using SCIP [3]. The code is provided as supplementary material.

5.1 Multiple knapsack problem
To test our algorithm, we generate 30 random instances for each pair (n, m) ∈ {(5, 2), (10, 2),
(10, 5), (50, 2), (50, 5), (50, 15), (100, 2), (100, 5), (100, 10), (100, 15)}. Capacities are uniformly

sampled integers from the range [cmin, cmax], where cmin = minj wj and cmax =
⌈∑

wj

n

⌉
−cmin.

The lower bound ensures that each item fits inside at least one of the knapsacks, while the
upper bound ensures that (on average) half of the items fit in the union of the knapsacks, as
discussed in [6].

As baselines for node selection, we test DFS and BFS alongside the proposed GUB rule.
For branching rules, we evaluate two approaches in addition to the previously introduced
“critical element” (CE) strategy. In one strategy, we branch on the items among the fractional
ones with the largest profit-to-weight ratio (PPW). In the other strategy, as suggested by [20],
we branch on the item among the unfixed ones with the largest profit-to-weight ratio (K).
We test these strategies for different values of α and collect various metrics, including the
number of nodes explored, the gap to the optimum, the maximum depth reached, the number
of nodes after finding the optimum, and the number of left turns. Here, we report partial
results, while a more extensive set of experiments is available in the interactive notebook.

Figure 1a shows the number of nodes explored to get an α = 0.97 approximation. Since
our implementation is a proof of concept and not fully optimized, we encountered memory
issues. To address this, we imposed a threshold of 104 nodes explored, beyond which
we return the best solution found so far. We observe that, in terms of number of nodes
explored, the Greatest Upper Bound (GUB) strategy consistently outperforms the others.
This is particularly evident in the “hard” instances (100, 10), (100, 15), (50, 15), where all
successful methods in at least one instance involve the GUB strategy. Our proposed strategy
(yellow box) frequently achieves the best overall performance. Interestingly, in several cases,

20 Branch-and-Bound Algorithms as Polynomial-time Approximation Schemes

5,
2

10
, 2

10
, 5

50
, 2

50
, 5

50
, 1

0
50

, 1
5

10
0,

2
10

0,
5

10
0,

10

10
0,

15

number of items, number of knapsacks

101

102

103

104
No

de
s e

xp
lo

re
d

DFS - CE
DFS - PPW
DFS - K
BFS - CE
BFS - PPW
BFS - K
GUB - CE
GUB - PPW
GUB - K

(a) Multi knapsack, α = 0.97

5,
2

10
, 2

10
, 5

50
, 2

50
, 5

50
, 1

0
10

0,
2

number of jobs, number of machines

101

102

103

104

No
de

s e
xp

lo
re

d

LLB - LR - MMP - BM
LLB - LR - MMP - AS
LLB - BS - MMP - BM
LLB - BS - MMP - AS
DF - LR - MMP - BM
DF - LR - MMP - AS
DF - BS - MMP - BM
DF - BS - MMP - AS
BF - LR - MMP - BM
BF - LR - MMP - AS
BF - BS - MMP - BM
BF - BS - MMP - AS

(b) Unrelated Machine Scheduling, ϵ = 0.01

Figure 1 Performance of different strategies in the branch-and-bound method for the Multi-
Knapsack and Unrelated Machine Scheduling problems. The number of nodes explored before
termination (or reaching the stopping condition) is reported on a logarithmic scale.

branching using the PPW rule yields better results compared to branching based on the
Critical Element (CE) criterion.

In our analysis, we also record the optimality gap of the returned solution, defined as

|z − z∗|
max(z, z∗)

where z is the solution as returned by our algorithms and z∗ is the optimal solution we
computed using state-of-art Google OR-Tools [29] with SCIP [3] as a linear solver.

Figure 2a presents this information, clearly showing that GUB is often a winning strategy
in terms of producing high-quality solutions. In this case, we do not observe any significant
difference between CE and PPW.

5.2 Unrelated machine scheduling problem
In this case, we generate 30 random instances for each pair (n, m) ∈ {(5, 2), (10, 2), (10, 5),
(50, 2), (50, 5), (50, 10), (100, 2)}. Job lengths are uniformly sampled integers from the range
[1, 100]. Note that, in this case, the analysis of the (50, 5) instance could not be completed
within our 48-hour time frame. Hence, we report only the average over the instances that
were successfully solved. We attempt to understand why this occurred, given that the
Multi-Knapsack framework initially seemed more tractable. In this case, the binary search
involves repeatedly solving LPs, significantly increasing computational overhead. We have
12 different B&B-like algorithms to evaluate, whereas, in the Multi-Knapsack setting, there
were only 9. Lastly, unlike Multi-Knapsack, there is no pruning by infeasibility, making it
harder to discard unpromising nodes quickly.

As baselines for node selection, we test DFS and BFS along with the proposed rule LLB.
For the lower bound, we chose both the proposed BS scheme and the Linear Relaxation
(LR) of Integer Linear Programming minimizing the makespan that is commonly used in
unrelated parallel machine scheduling. As the branching rule, we test only the one we propose:
branching on the variable with the largest minimum processing time across machines (MMP).
Both BS and LR return a solution that may contain fractional components, which we need to

K. I. Encz and M. Mastrolilli and E. Vercesi 21

5,
2

10
, 2

10
, 5

50
, 2

50
, 5

50
, 1

0
50

, 1
5

10
0,

2
10

0,
5

10
0,

10

10
0,

15

number of items, number of knapsacks

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
Ga

p

DFS - CE
DFS - PPW
DFS - K
BFS - CE
BFS - PPW
BFS - K
GUB - CE
GUB - PPW
GUB - K

(a) Multi knapsack, α = 0.97

5,
2

10
, 2

10
, 5

50
, 2

50
, 5

50
, 1

0
10

0,
2

number of jobs, number of machines

0.000

0.001

0.002

0.003

0.004

0.005

Ga
p

LLB - LR - MMP - BM
LLB - LR - MMP - AS
LLB - BS - MMP - BM
LLB - BS - MMP - AS
DF - LR - MMP - BM
DF - LR - MMP - AS
DF - BS - MMP - BM
DF - BS - MMP - AS
BF - LR - MMP - BM
BF - LR - MMP - AS
BF - BS - MMP - BM
BF - BS - MMP - AS

(b) Unrelated Machine Scheduling, ϵ = 0.01

Figure 2 Performance of different strategies in the branch-and-bound method for the Multi-
Knapsack and Unrelated Machine Scheduling problems. The optimality gap is measured before
termination (either upon reaching the stopping condition or exiting). The y-axis has been limited to
highlight the most relevant portion of the plot.

round to obtain an upper bound on the optimal solution. We compare two different rounding
strategies (i) The one we prove leads to a PTAS, which assigns All fractional jobs to the
machine where their processing time is Shortest (AS); (ii) An alternative approach based
on Best Matching (BM) of the at most m fractional jobs, where we find a matching that
minimizes the total makespan. Even in this case, we observe a similar trend: LLB results in
fewer nodes explored. However, on average, BM appears to be a better rounding strategy
compared to AS. Regarding the optimality gap, interestingly, BFS slightly outperforms LLB
in some instances (e.g., n = 100, m = 5). This is not surprising, as our theoretical results
(Proposition 3) suggest that BFS also guarantees a PTAS. Overall, we observe a significant
difference in the order of magnitude of the average gap between the two problems. In the
first case, a gap of 0 is rarely achieved, whereas, in the Unrelated Job Scheduling problem,
the algorithm reaches the optimal solution for n ∈ {5, 10} and for the instance (100, 2),
regardless of the choice of branching, bounding, and selection strategy.

5.3 Analysis of the runtime of the proposed algorithm
In Figure 3, we report the runtime of our proposed algorithm for the Multi-Knapsack problem
(left) and the Unrelated Machine Job Scheduling problem (right).

5.3.1 Multiple Knapsack
First, we observe that the runtime is quite long, even for relatively small instances in
both cases. As previously mentioned, our implementation is not highly optimized. To
put this into perspective, solving the benchmark instance (100, 15) in the Multi-Knapsack
framework typically requires 7.82± 4.40 seconds with the B&B implemented in SCIP3, which
is significantly shorter than our results.

3 In this case, for fairness, we disable presolve, cutting plane, heuristics, restarts, and propagation, and
set a branching nodes limit equal to 104

22 Branch-and-Bound Algorithms as Polynomial-time Approximation Schemes

5,
2

10
, 2

10
, 5

50
, 2

50
, 5

50
, 1

0
50

, 1
5

10
0,

2
10

0,
5

10
0,

10

10
0,

15

number of items, number of knapsacks

10 3

10 2

10 1

100

101

102

103

Ru
nt

im
e

DFS - CE
DFS - PPW
DFS - K
BFS - CE
BFS - PPW
BFS - K
GUB - CE
GUB - PPW
GUB - K

5,
2

10
, 2

10
, 5

50
, 2

50
, 5

50
, 1

0
10

0,
2

number of jobs, number of machines

10 2

10 1

100

101

102

103

104

Ru
nt

im
e

LLB - LR - MMP - BM
LLB - LR - MMP - AS
LLB - BS - MMP - BM
LLB - BS - MMP - AS
DF - LR - MMP - BM
DF - LR - MMP - AS
DF - BS - MMP - BM
DF - BS - MMP - AS
BF - LR - MMP - BM
BF - LR - MMP - AS
BF - BS - MMP - BM
BF - BS - MMP - AS

Figure 3 Performance of different strategies in the branch-and-bound method for the Multi-
Knapsack and Unrelated Machine Scheduling problems. The runtime (in seconds) is reported on a
logarithmic scale.

However, an interesting pattern emerges from the analysis of our strategies. For the
Multi-Knapsack problem, we observe that when the number of knapsacks is ≥ 10, DFS
outperforms GUB in terms of speed. We suspect this is because, in the Multi-Knapsack
setting, the DFS strategy consistently reaches the node exploration limit, set to 104. As a
result, it likely prunes many nodes quickly due to infeasibility or bounding, avoiding complex
computations on the explored nodes. Hence, we arrive at the node limit faster.

5.3.2 Unrelated machine scheduling problem

As in the previous section, we compare our approach with SCIP for the case (50, 10), where
we observe a runtime of 10.051± 1.63, which is again shorter than the observed runtime of
our algorithm.

In this case, we find that the LLB strategy results in faster solutions. This outcome is
expected: since all nodes are explored and pruning by infeasibility is not possible (as every
subproblem remains feasible), the time required per node remains roughly the same.

Since the LLB strategy achieves better solutions with fewer node explorations, we can
conclude that our theoretical expectations align with the experimental results.

6 Concluding Remarks

Let us collect general observations about our methods. Most importantly, we note that the
best-first rule can be replaced by BFS in Aunrel

ϵ without losing the theoretical worst-case
guarantee (while keeping the other parameters fixed). The key element of our proof was to
limit the depth of the final tree of the algorithm (F) at ⌊m2

ϵ ⌋. Let F ′ be the B&B tree of
the alternative with BFS, limited to depth ⌊m2

ϵ ⌋. Since F ⊆ F ′, the lowest lower bound in
F ′ (denoted by GL′) is greater or equal than the lowest lower bound in F (denoted by GL),
and the best integer solution found in F ′ (denoted by GU ′) is better than the best integer
solution we found with Aunrel

ϵ (denoted by GU). Hence,

GU ′

GL′ ≤
GU

GL
≤ 1 + ϵ,

K. I. Encz and M. Mastrolilli and E. Vercesi 23

and it follows that with BFS as the search strategy (denoted by ABFS-unrel
ϵ), we terminate

no later than processing F ′. Since |F ′| ≤ m⌊ m2
ϵ ⌋, we have that

▶ Proposition 3. For every fixed ϵ > 0, the algorithm ABFS-unrel
ϵ returns a (1+ϵ)-approximate

solution to the unrelated machine scheduling problem, after processing at most m⌊ m2
ϵ ⌋-many

nodes in the branching tree.

However, according to our experiments, best-first seems empirically better in terms
both of optimality gap and number of nodes explored. For Aknap

α , we do not have similar
guarantees as there we only have bound on the number of left-turns in the branching tree
and the depth of F can potentially be as large as n. For the algorithm Asim-prof

ϵ , the bound
on the number of visited nodes was independent of the tree traversal strategy, since our proof
only relies on the limited number of different nodes at each level. Therefore, any alternative
strategy can be used to replace the best-first one with the same worst-case guarantee.

Next, we note that for the machine scheduling problem, the results and algorithms can
be modified to work with the “standard” LP-formulation lower bound instead of the binary
search one, but the lower bound itself is trivially worse. Last, we mention that for the
special case of identical parallel machines, Aunrel

ϵ can be improved with a slight change in the
rounding method. This version visits m⌊ m

ϵ ⌋ nodes in the worst case, by keeping the exact
same argument. Furthermore, there are fast and intuitive heuristics for finding vertices of
the polyhedra, thus the time spent in individual nodes can also be reduced.

We conclude by collecting the most essential properties of the knapsack and machine
scheduling problems that were exploited during the investigation, intending to set the ground
for generalizing the results to a larger class of problems.

Perhaps the most paramount property the two problems have in common is the notion
of self-similarity. To repeatedly apply the same argument for each node of a path in the
branching tree, we needed the sub-problems encoded by these nodes to fall into the same
category as the original problem. In other words, fixing one variable to 1 or 0 should
result in a problem that is in the same class as the original one. This property was by
default true for the knapsack problem: setting xj,i = 1 in MKm(C, w, p) yields the sub-
problem MKm(C′, w|[n]−j , p|[n]−j) with C′ = (C1, . . . , Ci−1, Ci − wj , Ci+1, . . . , Cm), while
the rightmost branch corresponds to MKm(C, w|[n]−j , p|[n]−j). For the machine scheduling
problem, on the other hand, the default description was not sufficient. If we fix a binary
variable to 1 in the standard linear programming formulation, the resulting LP will not
correspond to a machine scheduling problem of the same type. However, introducing
overheads ensures the desired property, since now setting a variable to 1 corresponds to
increasing the appropriate machine’s overhead by the processing time of the fixed-job.

Strongly related to this property, we relied on the monotonicity of subproblems: for
maximization problems, the local upper bound of a node is greater than the local upper
bound of any of its children (for minimization problems, a similar property holds). However,
this is a direct consequence of using the same objective function on subsequently smaller sets.

We also exploited that there was a quantifiable relationship between a node’s lower/upper
bounds and the job/item that was fixed at the node. For the knapsack problem, this
relationship is guaranteed by Lemma 1, whereas for the machine scheduling problem, the
inequality

p′
j

L(v) ≤
m

k

provided the connection.

24 Branch-and-Bound Algorithms as Polynomial-time Approximation Schemes

Finally, the least demanding requirement we need to pose is that of approximability.
When rounding a fractional solution of a sub-problem at a node, an (m + 1)-approximation
algorithm was used for both the knapsack problem and the machine scheduling problem.
However, for the machine scheduling problem, the proof did not rely upon this local rounding
guarantee, and hence the necessity of a constant-factor approximation rounding is unclear.

It is important to acknowledge the limitations and drawbacks of our approach. During
the last couple of decades, several approximation schemes have been described for both
the knapsack and the machine scheduling problem. In fact, both problems are known to
admit a fully polynomial-time approximation scheme (FPTAS), which is far superior to the
PTAS framework in which the desired proximity ratio (ϵ or α) appears in the exponent of
the running time. Furthermore, as we see in Subsection 4.1, our arguments are not directly
repeatable or extendable for some of the cases. Nevertheless, we believe that the connection
between B&B and approximation algorithms explored in the paper adds a surprising flavor
to the theory of branch-and-bound algorithms, and sheds some light on their good behavior
observed in practice.

For future research directions, we mention the possibility of a B&B yielding an FPTAS
for the unrelated machine scheduling problem (or even more complex scheduling paradigms
such as the job shop problem), with a possibly different choice of parameters and additional
rounding tricks.

References

1 Karen Aardal, Andrea Lodi, Neil Yorke-Smith, and Lara Scavuzzo. Machine learning augmented
branch and bound for mixed integer linear programming. Mathematical Programming, 2024.

2 Tolson Bell and Alan Frieze. Solving a Random Asymmetric TSP Exactly in Quasi-Polynomial
Time w.h.p. 2023. Publisher: arXiv Version Number: 12. URL: https://arxiv.org/abs/
2308.02946, doi:10.48550/ARXIV.2308.02946.

3 Suresh Bolusani, Mathieu Besançon, Ksenia Bestuzheva, Antonia Chmiela, João Dionísio, Tim
Donkiewicz, Jasper van Doornmalen, Leon Eifler, Mohammed Ghannam, Ambros Gleixner,
Christoph Graczyk, Katrin Halbig, Ivo Hedtke, Alexander Hoen, Christopher Hojny, Rolf
van der Hulst, Dominik Kamp, Thorsten Koch, Kevin Kofler, Jurgen Lentz, Julian Manns,
Gioni Mexi, Erik Mühmer, Marc E. Pfetsch, Franziska Schlösser, Felipe Serrano, Yuji Shinano,
Mark Turner, Stefan Vigerske, Dieter Weninger, and Liding Xu. The SCIP Optimization Suite
9.0, 2024. URL: https://arxiv.org/abs/2402.17702, arXiv:2402.17702.

4 Valentina Cacchiani, Manuel Iori, Alberto Locatelli, and Silvano Martello. Knapsack problems
- an overview of recent advances. part ii: Multiple, multidimensional and quadratic knapsack
problems. Computers & Operations Research, 143(C):1–13, 2022.

5 Bo Chen, Chris N. Potts, and Gerhard J. Woeginger. A Review of Machine Scheduling:
Complexity, Algorithms and Approximability, pages 1493–1641. Springer US, Boston, MA,
1998. doi:10.1007/978-1-4613-0303-9_25.

6 Vasek Chvátal. Hard knapsack problems. Operations Research, 28(6):402–411, 1980.
7 Grégoire Danoy and Gwen Maudet. Search strategy generation for branch and bound using

genetic programming, 2024. URL: https://arxiv.org/abs/2412.09444, arXiv:2412.09444.
8 George B. Dantzig. Discrete variable extremum problems. Operations Research, 5(2):266–277,

1957.
9 Sanjeeb Dash. Exponential Lower Bounds on the Lengths of Some Classes of Branch-and-Cut

Proofs. Mathematics of Operations Research, 30(3):678–700, 2005. Publisher: INFORMS.
URL: https://www.jstor.org/stable/25151677.

https://arxiv.org/abs/2308.02946
https://arxiv.org/abs/2308.02946
https://doi.org/10.48550/ARXIV.2308.02946
https://arxiv.org/abs/2402.17702
https://arxiv.org/abs/2402.17702
https://doi.org/10.1007/978-1-4613-0303-9_25
https://arxiv.org/abs/2412.09444
https://arxiv.org/abs/2412.09444
https://www.jstor.org/stable/25151677

K. I. Encz and M. Mastrolilli and E. Vercesi 25

10 Santanu S. Dey, Yatharth Dubey, and Marco Molinaro. Branch-and-bound solves random
binary IPs in poly(n)-time. Mathematical Programming, 200(1):569–587, June 2023. doi:
10.1007/s10107-022-01895-4.

11 Santanu S. Dey, Yatharth Dubey, Marco Molinaro, and Prachi Shah. A theoretical and
computational analysis of full strong-branching. Mathematical Programming, 205:303–336,
2023.

12 Aleksei V. Fishkin, Klaus Jansen, and Monaldo Mastrolilli. Grouping techniques for scheduling
problems: simpler and faster. Algorithmica, 51:183–189, 2008.

13 Michael R. Garey and David S. Johnson. Complexity result for multiprocessor scheduling
under resource constraints. SIAM Journal on Computing, 4(4):397–411, 1975.

14 Harold Greenberg and Robert L. Hegerich. A branch search algorithm for the knapsack
problem. Management Science, 16(5):327–332, 1970.

15 Ellis Horowitz and Sartaj Sahni. Computing partitions with applications to the knapsack
problem. Journal of the ACM, 21(2):277–292, 1974.

16 Ellis Horowitz and Sartaj Sahni. Exact and approximate algorithms for scheduling nonidentical
processors. Journal of the ACM, 23(2):317–327, 1976.

17 Oscar H. Ibarra and Chul E. Kim. Fast approximation algorithms for the knapsack and sum
of subset problems. Journal of the ACM, 22(4):463–468, 1975.

18 Sheldon H. Jacobson, David R. Morrison, Jason J. Sauppe, and Edward C. Sewell. Branch-
and-bound algorithms: A survey of recent advances in searching, branching and pruning.
Discrete Optimization, 19:79–102, 2016.

19 Walter H. Kohler and Kenneth Steiglitz. Characterization and theoretical comparison of
branch-and-bound algorithms for permutation problems. Journal of the ACM, 21(1):140–156,
1974.

20 Peter J. Kolesar. A branch and bound algorithm for the knapsack problem. Management
Science, 13(9):723–735, 1967.

21 Eugene L. Lawler. Fast approximation algorithms for knapsack problems. Mathematics of
Operations Research, 4(4):339–356, 1979.

22 Jan K. Lenstra, David B. Shmoys, and Éva Tardos. Approximation algorithms for scheduling
unrelated parallel machines. In 28th Annual Symposium on Foundations of Computer Science,
pages 217–224, 1987.

23 Silvano Martello, Francois Soumis, and Paolo Toth. Exact and approximation algorithms
for makespan minimization on unrelated parallel machines. Discrete Applied Mathematics,
75(2):169–188, 1997.

24 Silvano Martello and Paolo Toth. Knapsack Problems: Algorithms and Computer Implementa-
tions. John Wiley & Sons, Inc., 1990.

25 Monaldo Mastrolilli. Efficient approximation schemes for scheduling problems with release
dates and delivery times. Journal of Scheduling, 6:523–531, 2003.

26 Monaldo Mastrolilli and Marcus Hutter. Hybrid rounding techniques for knapsack problems.
Discret. Appl. Math., 154(4):640–649, 2006.

27 Ethel Mokotoff. Parallel machine scheduling problems: A survey. Asia-Pacific Journal of
Operations Research, 18(2):193–242, 2001.

28 Gábor Pataki, Mustafa Tural, and Erick B. Wong. Basis Reduction and the Complexity
of Branch-and-Bound. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1254–1261. Society for Industrial and Applied Mathematics,
January 2010. URL: https://epubs.siam.org/doi/10.1137/1.9781611973075.100, doi:
10.1137/1.9781611973075.100.

29 Laurent Perron and Vincent Furnon. Or-tools. URL: https://developers.google.com/
optimization/.

30 Steef van de Velde. Duality-based algorithms for scheduling unrelated parallel machines. ORSA
Journal on Computing, 5(2):192–205, 1993.

https://doi.org/10.1007/s10107-022-01895-4
https://doi.org/10.1007/s10107-022-01895-4
https://epubs.siam.org/doi/10.1137/1.9781611973075.100
https://doi.org/10.1137/1.9781611973075.100
https://doi.org/10.1137/1.9781611973075.100
https://developers.google.com/optimization/
https://developers.google.com/optimization/

26 Branch-and-Bound Algorithms as Polynomial-time Approximation Schemes

31 Vijay V. Vazirani. Approximation Algorithms, pages 1493–1641. Springer-Verlag, Berlin,
Heidelberg, 2001.

7 Pseudocodes

7.1 The branch-and-bound framework
As already discussed in Section 1, any B&B methods run some basic functions that can
be highly customized. Algorithm 1 details a general B&B framework for a minimization
problem, but a similar argument can occur with a maximization one.

Algorithm 1 Branch and Bound Algorithm. The steps denoted with ∗ must be changed when
switching from minimization to maximization.

1: Input: Problem instance, a threshold that we wish to guarantee to our solution quality
2: Output: High-quality solution
3: Do any necessary preprocessing
4: Initialize global lower bound (GLB) and global upper bound (GUB) (best feasible

solution)
5: Compute initial lower bound using a relaxation method
6: if is integer then return
7: end if
8: Initialize priority queue (heap) with root node
9: while queue is not empty do

10: Extract the most promising node from the queue
11: if node is integral then
12: Update GUB∗ if a better solution is found
13: continue
14: end if
15: Select a branching item/job
16: for each possible branch (child node) do
17: Apply feasibility check
18: Compute new upper bound and lower bound
19: if new lower bound < GUB∗ then
20: Add new node to the queue
21: end if
22: end for
23: Update GLB∗ as max remaining lower bound in queue
24: if A relation between GUB, GLB and the threshold is satisfied then
25: return
26: end if
27: end while

7.2 A specific implementation
Now we describe how Algorithm 1 is specified to obtain Aknap

α . The other algorithms can be
derived similarly.

Let Solve-LP denote the subroutine that on input (C, w, p), returns the triple (x∗, x′, j∗)
as described in Proposition 1 and Lemma 1: x∗ is the fractional optimum of the knapsack

K. I. Encz and M. Mastrolilli and E. Vercesi 27

instance, x′ is the best assignment among ⌊x∗⌋ and the critical elements, and j∗ is the most
profitable critical element.

We describe the branch-and-bound algorithm Aknap
α in detail below. Each node v will be

identified by the unique sets (I, E) with I = {(j1, i1), . . . , (jk, ik)} being the (item, knapsack)
inclusions fixed so far, and E = {(e1, m + 1), . . . , (el, m + 1)} being the excluded items.

28 Branch-and-Bound Algorithms as Polynomial-time Approximation Schemes

Algorithm 2 Aknap
α

1: Input: A knapsack instance (C, w, p) with a fixed number of knapsacks.
2: Output: An integer assignment whose profit is at least α times the optimum.
3: r := (∅, ∅)
4: (x∗

r , x′
r, j∗

r) := Solve-LP(C, w, p)
5: U(r) := p · x∗

r , L(r) := p · x′
r

6: GU := U(r), GL := L(r)
7: queue := {r}
8: while GL

GU < α do
9: v := arg max{U(node) : node ∈ queue}

10: (I, E)← v, {(j1, i1,) . . . , (jk, ik)} ← I, {(e1, m + 1), . . . , (el, m + 1)} ← E

11: queue := queue \ {v}
12: S := [n] \

(⋃k
z=1 jz ∪

⋃l
z=1 ez

)
13: wv := w|S , pv := p|S
14: for i = 1, . . . , m do
15: Cv

i := Ci −
∑

z:iz=i

wz

16: end for
17: Cv := (Cv

1 , . . . , Cv
m)

18: (x∗, x′, j∗) := Solve-LP(Cv, wv, pv)
19: for i = 1, . . . , m do
20: vi := (I ∪ (j∗, i), E)
21: end for
22: vm+1 := (I, E ∪ (j∗, m + 1))
23: for i = 1, . . . , m do
24: Cvi := (Cv

1 , . . . , Cv
i−1, Cv

i − wj∗ , Cv
i+1, . . . , Cv

m)
25: end for
26: Cvm+1 := Cv,
27: for i = 1, . . . , m + 1 do
28: wvi

:= w|S∪{j∗}, pvi
:= p|S∪{j∗}

29: (x∗
vi

, x′
vi

, j∗
vi

) := Solve-LP(Cvi , wvi , pvi)
30: SU(vi) := pvi

· x∗
vi

, SL(vi) := pvi
· x′

vi

31: U(vi) := SU(vi) +
∑

(j,t)∈I∪{(j∗,i)},t̸=m+1
pj

32: L(vi) := SL(vi) +
∑

(j,t)∈I∪{(j∗,i)},t̸=m+1
pj

33: if U(vi) > GL then
34: queue := queue ∪ {vi}
35: end if
36: end for
37: GU = max{U(node) : node ∈ queue}, GL = max{L(node) : node ∈ queue}
38: end while
39: v := arg max{U(node) : node ∈ queue}
40: (I, E)← v

41: return I ∪ {(j, i) : (x′
v)j,i = 1}.

	1 Introduction
	2 A B&B PTAS for the Multi-Knapsack Problem
	2.1 Proof of Theorem 1

	3 A B&B EPTAS for the Unrelated Machine Scheduling Problem
	3.1 Proof of Theorem 2

	4 A B&B FPTAS for the Uniform Machine Scheduling Problem
	4.1 Proof of Theorem 3

	5 Computational Experiments
	5.1 Multiple knapsack problem
	5.2 Unrelated machine scheduling problem
	5.3 Analysis of the runtime of the proposed algorithm
	5.3.1 Multiple Knapsack
	5.3.2 Unrelated machine scheduling problem

	6 Concluding Remarks
	7 Pseudocodes
	7.1 The branch-and-bound framework
	7.2 A specific implementation

