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Abstract

In many change point problems it is reasonable to assume that compared to a

benchmark at a given time point t0 the properties of the observed stochastic process

change gradually over time for t > t0. Often, these gradual changes are not of interest

as long as they are small (nonrelevant), but one is interested in the question if the

deviations are practically significant in the sense that the deviation of the process

compared to the time t0 (measured by an appropriate metric) exceeds a given threshold,

which is of practical significance (relevant change).

In this paper we develop novel and powerful change point analysis for detecting

such deviations in a sequence of gradually varying means, which is compared with

the average mean from a previous time period. Current approaches to this problem

suffer from low power, rely on the selection of smoothing parameters and require a

rather regular (smooth) development for the means. We develop a multiscale procedure

that alleviates all these issues, validate it theoretically and demonstrate its good finite

sample performance on both synthetic and real data.

1 Introduction

Change point analysis is an ubiquitous topic in mathematical statistics with numerous ap-

plications in diverse areas such as economics, climatology and linguistics. In this paper we

are concerned with the detection of (gradual) changes in the univariate time series

Xi = µ(i/n) + ϵi , i = 1, . . . , n, (1.1)
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where (ϵi)1≤i≤n is a centered error process and µ : [0, 1] → R is an unknown (mean) function.

Starting with the seminal work of (Page, 1955), a large part of the literature considers the

case where the function µ is piecewise constant with at most one change and we refer to

reviews of (Aue and Horváth, 2013), (Aue and Kirch, 2023) and to the recent textbook of

(Horváth and Rice, 2024) and the reference therein. More recently the problem of detecting

multiple changes has found considerable interest as well. Among many others, we mention

(Fryzlewicz and Rao, 2013), (Frick et al., 2014), (Baranowski et al., 2019), (Dette et al., 2020),

who considered one-dimensional data and to (Chen et al., 2022; Li et al., 2023; Madrid Padilla

et al., 2022) for some recent results in the high-dimensional and multivariate case. A good

review of the current state of the art on data segmentation of a piecewise constant signal

can be found in the recent papers of (Truong et al., 2020) and (Cho and Kirch, 2024). A

common aspect of the methodology in most of these references consists in the fact that it is

based on the construction of testing procedures for the hypothesis

H0 : µ(t) = c ∀t ∈ [0, 1],

where c is an unknown constant, and the different procedures address different forms of the

piecewise constant function µ under the alternative. Here a large part of the literature has

its focus on piecewise stationary alternatives.

While there are many applications where this can be well justified, at least approximately

(see for instance Aston and Kirch, 2012; Hotz et al., 2013, for some examples), there exist

also many situations where it is not reasonable to assume that the mean function µ in

model (1.1) is piecewise constant over the full period because it is continuously smoothly

between potential jumps points. Examples include climate data (Karl et al., 1995), where it

is continuously varying with no jumps, financial data (Vogt and Dette, 2015) and medical

data (Gao et al., 2018). In this context, (Müller, 1992), (Gijbels et al., 2007) and (Gao

et al., 2008) among others, considered model (1.1) with a gradually varying mean function

and sudden jumps and developed change point analysis for determining the locations of these

jumps. (Vogt and Dette, 2015) considered the problem of detecting gradual changes in a more

general context. For the special case of the mean they assumed that µ is constant for some

time, then slowly starts to change (with no jumps), and developed a fully nonparametric

method to estimate such a smooth change point.

The present paper differs from these works. Although we consider a model of the form (1.1)

with smooth regression function and potential jumps, we are not interested in the locations

of the jump points or in the first time point where the mean functions starts to vary. Instead

we define a change differently as a practical significant deviation of µ in the interval [0, 1]

from a given benchmark, say µt0
0 . More precisely, for a constant µt0

0 and a threshold ∆ > 0
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we are interested in the hypotheses

H0(∆) : sup
t∈[t0,1]

|µ(t)− µt0
0 | ≤ ∆ vs H1(∆) : sup

t∈[t0,1]
|µ(t)− µt0

0 | > ∆, (1.2)

where t0 ∈ [0, 1) is a given point defining the time interval of interest. A prominent ex-

ample for the consideration of these hypotheses is the analysis of global mean temperature

anomalies, where one is interested in a significant deviation of the current temperatures from

a reference value µt0
0 at time t0 (such as the average temperature before time t0), and an

important problem is to investigate if these deviations exceed ∆ after the time t0 , such as

1.5 degrees Celsius as postulated in the Paris agreement. Hypotheses of the form (1.2) are

also considered in quality control (often in an online framework), where one is interested in

the “stability” of a given process. This means that the sequence of means stays within a

predefined range (as specified by the null hypothesis in (1.2)). While in change-point anal-

ysis the focus is often on testing for the presence of a change and on estimating the time at

which a change occurs once it has been detected, quality control typically has its focus more

on detecting such a change as quickly as possible after it occurs (see, for example, Woodall

and Montgomery, 1999).

Despite their importance, a test for the hypotheses in (1.2) has only been recently developed

by (Bücher et al., 2021), who used local linear regression techniques to estimate the quantity

supt∈[t0,1] |µ(t) − µt0
0 |. They proposed to reject the null hypothesis for large values of the

estimate, where critical values are either obtained by asymptotic theory (which shows that a

properly scaled version of the estimate converges weakly to a Gumbel type distribution) or by

resampling based on a Gaussian approximation. As a consequence, the resulting procedure

suffers from several deficits First, it is conservative in finite samples, particularly for small

sample sizes. Second, the mean function µ in model (1.1) has to be twice differentiable

and the difference µ(t) − µt0
0 has to satisfy some convexity properties, making the method

unreliable for less smooth or discontinuous functions. Finally, the procedure proposed in

(Bücher et al., 2021) relies on a bandwidth parameter that also prevents detection of local

alternatives at the standard parametric rate n−1/2.

Our contribution in this paper is a novel multiscale test for the hypotheses (1.2) that

does not suffer from the aforementioned problems. More precisely, we compare (an estimate

of) the benchmark with local means calculated over different scales and establish the weak

convergence of this statistic (see Theorem 2.2). The limit is not distribution free and depends

on sequences of “extremal sets”, which can only be defined implicitly due to certain properties

of the Brownian motion. Based on this result, we propose first a testing procedure that relies

on a distributional upper bound of the limiting distribution and only requires estimation of

a long-run variance. By construction, the resulting test is conservative, but it it can detect
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local alternatives at a parametric rate and already outperforms the existing methodology in

our finite sample study. By estimating the extremal sets we are able to construct a more

elaborate procedure which achieves the nominal level asymptotically. The resulting test

can detect local alternatives at a parametric rate as well and yields a further substantial

improvement of the finite sample performance.

Summarizing, both novel multiscale tests for practically relevant changes in the gradually

changing mean function can detect local alternatives converging to the null at a faster rate

than the currently available procedure. In contrast to this test, they are applicable for

piecewise smooth mean functions without further constraints on their geometry and do not

require the choice of smoothing parameters.

2 Multiscale detection of relevant changes

In the following we consider the location scale model

Xi = µ(i/n) + ϵi i = 1, ..., n (2.1)

where (ϵi)i∈N is a stationary centered process and µ is a bounded and piecewise Lipschitz-

continuous function. We are interested in detecting significant deviations of the function µ

on the interval [t0, 1] from its long-term average in the past

µt0
0 :=

1

t0

∫ t0

0

µ(x)dx ,

where 0 < t0 < 1 is some predefined point in time. We address this problem by testing the

hypotheses

H0(∆): d∞ ≤ ∆ vs H1(∆): d∞ > ∆ , (2.2)

where

d∞ = sup
t∈[t0,1]

|µ(t)− µt0
0 | (2.3)

denotes the maximum (absolute) deviation of the function µ from µt0
0 over the interval [t0, 1]

and ∆ > 0 is a given threshold.

A typical application for this benchmark is encountered in the analysis of temperature data

where deviations from a pre-industrial average temperature are of interest. In this case the

choice of threshold is also quite clear. For example, if we are interested in the global mean
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temperature anomalies, a reasonable choice is ∆ = 1.5 degrees Celsius corresponding to the

Paris Agreement adopted at the UN Climate Change Conference(COP21) in Paris, 2015. In

other circumstances the choice of ∆ might not be so obvious and has to be carefully discussed

for each application. We defer further discussion of this issue to Remark 2.7, where we also

propose a data based choice of the threshold ∆.

In the remainder of this section we introduce the necessary concepts and assumptions to

define and theoretically analyze a multiscale test statistic for the testing problem (2.2).

Assumption 2.1. The random variables in model (2.1) form a triangular array of real

valued random variables where (ϵi)i∈Z is a mean zero stationary sequence with existing long

run variance σ2 =
∑

i∈Z E[ϵ0ϵi]

(A1) For some 0 < p < 1/2 there exists a standard Brownian motion B, such that for all

k ∈ N

∣∣∣ k∑
i=1

ϵi − σB(k)
∣∣∣ ≤ Ck1/2−p

almost surely for some constant C > 0.

(A2) The function µ : [0, 1] → R is piecewise Lipschitz continuous with finitely many jumps.

Assumption (A1) is a high level assumption that is standard in the literature and is satisfied

by a large class of weakly dependent time series (see, for instance (Dehling, 1983) for mix-

ing, (Wu, 2005) for physically dependent and (Berkes et al., 2011) for Lp-m-approximable

processes). Assumption (A2) is a weak regularity assumption on the function µ, that can in

principle be weakened to Hölder continuity with some additional technical effort.

We now introduce the test statistic, and to that end denote for j < k by

µ̂k
j =

1

k − j

k∑
i=j+1

Xi

the (local) mean of the observations Xj+1, . . . , Xk. Note that

E
[
µ̂k
j

]
=

1

k − j

k∑
i=j+1

µ(i/n) ≃ n

k − j

∫ k/n

j/n

µ(t)dt

and therefore µ̂
⌊nt0⌋
0 − µ̂k

j (approximately) compares the integral of the function µ over the

interval [0, ⌊nt0⌋/n] with the “local” integral over the interval [j/n, k/n], which is approxi-

mately given by n
k−j

∫ k/n

j/n
µ(t)dt ≈ µ(k+j

2n
) if k− j is small. We now consider these differences
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on different scales and define for a sequence (cn)n∈N of natural numbers such that cn → ∞
and

n1−2p

cn
= o(1), (2.4)

the test statistic

T̂n,∆ = sup
cn≤c

c≤n−⌊nt0⌋
c∈N

sup
|k−j|=c

k>j≥⌊nt0⌋

(√
c
∣∣µ̂⌊nt0⌋

0 − µ̂k
j

∣∣−√
2 log

(ne
c

)
−
√
c∆

)
. (2.5)

By the discussion of the previous paragraph µ̂k
j estimates µ(k+j

2n
) for smaller scales, which

ensures that relatively short excursions of the function t → |µ(t)−µt0
0 | above ∆ are detected.

For larger scales the statistic (2.5) is able to take advantage of longer excursions of the

function t → |µ(t) − µt0
0 | above the threshold ∆, thereby increasing the power of the test

substantially. The additive factor

Γn(c) :=

√
2 log

(ne
c

)
equalizes the magnitude of the different scales which would otherwise be dominated by the

small scales. We also note that the scaling factor
√
c depends on n and is of larger and

smaller order than n1/2−p and n1/2, which leads to a non-trivial asymptotic distribution of

the statistic T̂n,∆ in the case d∞ = ∆, which we call boundary of the hypotheses. Our first

main result provides such a weak convergence result for the statistic

T̂n = sup
cn≤c≤n−⌊nt0⌋

c∈N

sup
|k−j|=c

k>j≥⌊nt0⌋

(√
c
∣∣µ̂⌊nt0⌋

0 − µ̂k
j

∣∣− Γn(c)− d∞

)
,

which reduces to the statistic T̂n,∆ in (2.5), if the centering term d∞ defined in (2.3) is

replaced by the threshold ∆.

Theorem 2.2. Grant assumptions (A1) and (A2). We then have

T̂n
d−→ Td∞ (2.6)

where

Td∞ := σ lim
ϵ↓0

sup
(s,t)∈Aϵ,d∞

{
s(s, t)

(√
t− s

B(t0)

t0
− B(t)−B(s)√

t− s

)
− Γ(t− s)

}
, (2.7)
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B denotes a standard Brownian motion and

Aϵ,d∞ =
{
(s, t) ∈ [t0, 1]

2
∣∣∣ s < t,

∣∣µt0
0 − µt

s

∣∣ ≥ d∞ − ϵ
}

(2.8)

µt
s =

1

t− s

∫ t

s

µ(x)dx

s(s, t) = sgn(
(
µt0
0 − µt

s

)
Γ(t− s) =

√
2 log

( e

t− s

)
. (2.9)

Moreover, the distribution of the random variable Td∞ is continuous. In particular,

(1) if d∞ = ∆, we have T̂n,∆
d−→ T∆,

(2) If d∞ < ∆ or d∞ > ∆ we have T̂n,∆
P−→ −∞ or T̂n,∆

P−→ ∞, respectively.

Note that the limit distribution in Theorem 2.2 is not distribution free even if the long run

variance of the error process (ϵi)i∈N would be known. In fact this distribution depends in a

rather delicate way on the regression function µ which appears in the definition Td∞ through

the set Aε,d∞ . This is contrast to many other multiscale tests proposed in the literature (see,

for example, Dümbgen and Spokoiny, 2001; Dümbgen and Walther, 2008; Schmidt-Hieber

et al., 2013; Dette et al., 2020). The difference can be explained by the fact that these and -

to the best of our knowledge - all other papers on multiscale testing do not consider relevant

hypotheses of the form (1.2) and (2.3) with ∆ > 0. In fact, transferring the hypotheses

considered in the multiscale testing literature so far to the situation considered in this paper

yields the testing problem for the “classical” hypotheses

H0 : d∞ = 0 vs H1 : d∞ > 0 ,

which corresponds to the choice ∆ = 0 in (2.2). It follows from the arguments given in the

proof of Theorem 2.2 that in the case d∞ = 0

T̂n
d−→ σM ,

where the random variable M is defined by

M = sup
t0≤s<t≤1

∣∣∣√t− s
B(t0)

t0
− B(t)−B(s)√

t− s

∣∣∣− Γ(t− s). (2.10)

As the quantiles of the distribution of M can be obtained by simulation, we can already

use this result for the construction of a valid (conservative) inference procedure for the
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hypotheses (2.2) employing the upper (distributional) bound

P(T∆ > q) ≤ P(σM > q) (2.11)

and estimating the long run variance σ2. To be specific, following (Wu and Zhao, 2007) we

define

σ̂2 =
1

⌊n/m⌋ − 1

⌊n/m⌋−1∑
j=1

(
µ̂jm
(j−1)m − µ̂

(j+1)m
jm

)2
2m

(2.12)

as an estimator of the long run variance, where the parameter m ∈ N converges to ∞ as

n → ∞ and is is proportional to n1/3. The null hypothesis is then rejected, whenever

Tn,∆ ≥ σ̂q1−α , (2.13)

where q1−α denotes the (1−α) quantile of the distribution of M . We will show in the Section

5.4 of the appendix that (under the assumptions made in this paper) the estimator σ̂2 is

consistent for σ2, that is,

σ̂2 = σ2 +OP(n
−1/3) ,

which yields the following result.

Theorem 2.3. Under assumptions (A1) and (A2) the test defined by (2.13) is consistent

and has asymptotic level α.

We continue investigating the asymptotic power properties of the test (2.13) by considering

a class of local alternatives of the form

µn(t)− µt0
0 = ∆+ βnh(t) , (2.14)

where h is some non-negative and Lipschitz continuous function.

Theorem 2.4. Let assumptions (A1) and (A2) and be satisfied and consider local alterna-

tives of the form (2.14) with βn = n−1/2, then

T̂n,∆
d→ σ sup

t0≤s<t≤1

(√
t− s

B(t0)

t0
− B(t)−B(s)√

t− s
− Γ(t− s) +

1√
t− s

∫ t

s

h(x)dx
)

We collect some observations that follow from this result in the following remark.
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Remark 2.5.

(1) By Theorem 2.4 the test (2.13) can detect local alternatives converging to the null

hypothesis at a parametric rate n−1/2. This establishes a substantial improvement

over the results obtained in (Bücher et al., 2021), where the nonparametric rate

βn ≃
(√

nhn log(hn)
)−1

is required to obtain non-trivial power. Here hn is the bandwidth used for the local

linear estimator of the regression function µ.

(2) It is clear from the inequality (2.11) that the test (2.13) is in general conservative

even in the case that |µ(t) − µt0
0 | = ∆ for all t ∈ [t0, 1]. Comparing the definitions

of the random variables T∆ and M in (2.7) and (2.10), respectively, the difference

P(T∆ > q) − P(σM > q) will be large for those models where d∞ = ∆ and where at

the same time the set {s ∈ [t0, 1] | |µt0
0 −µ(s)| < ∆} is “large”. This indicates the need

for a test procedure that is able to take into account the structure of the sets Aε,d∞

appearing in the definition of the random variable Td∞ in (2.6).

To alleviate the issue raised in the second part of the previous remark we will develop an

alternative test which uses quantiles from a distribution which approximates the distribution

of the random variable T∆ more directly. Obviously, such an approach has to take the

estimation of the sets Aϵ,d∞ in (2.8) into account. For this purpose we define for a scale

parameter c ∈ N

Êc =
{
(j, k) ∈ {⌊nt0⌋, . . . , n}2

∣∣∣ k − j = c,
∣∣µ̂⌊nt0⌋

0 − µ̂k
j

∣∣ ≥ d̂∞,c − σ̂ log(n)/
√
c
}

as an estimator of the extremal set at scale c, where

d̂∞,c = max
k−j=c,⌊nt0⌋≤j<k≤n

|µ̂⌊nt0⌋
0 − µ̂k

j |.

Note that the sequence of sets

Ân =
⋃

cn≤c≤n−⌊nt0⌋

Êc

may heuristically be interpreted as a sequence of estimators for the sets Aϵ,d∞ for a suitable

sequence of ϵ ↓ 0. Next we introduce

ŝ(j/n, k/n) = sgn((µ̂
⌊nt0⌋
0 − µ̂k

j )
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as an estimator of the sign s(j/n, k/n) in (2.9) and consider the statistic

T̂ ∗
n = σ̂ sup

cn≤c≤n−⌊nt0⌋
c∈N

sup
(j,k)∈Êc

ŝ(j/n, k/n)
(√

c
B(⌊nt0⌋)
⌊nt0⌋

− B(k)−B(j)√
c

)
− Γn(c)

where σ̂2 is the estimator of the long run variance defined in (2.12) and suprema over empty

sets are defined as 0. We denote the (1−α)-quantile of the distribution of T̂ ∗
n by q∗1−α, which

can easily be simulated. Our second test for a practically relevant deviation from deviation

from the average µt0
0 rejects the null hypothesis in (2.2), whenever

T̂n,∆ ≥ q∗1−α (2.15)

and the following result shows that this decision rule defines a consistent asymptotic level

α, which can detect local alternatives converging to null hypothesis at a parametric rate.

Theorem 2.6. Under assumptions (A1) and (A2) the test (2.15) is consistent and has

asymptotic level α. More precisely,

P(T̂n,∆ ≥ q∗1−α) →


0 d∞ < ∆

α d∞ = ∆

1 d∞ > ∆

Remark 2.7. An important question from a practical point of view is the choice of the

threshold ∆ > 0, which has to be carefully discussed for each specific application. Essentially,

this boils down to the important question when a deviation from the reference value µt0
0 is

practically significant, which is related to the specification of the effect size (see Cohen,

1988). While in many situations, such as in the climate data example mentioned before, this

specification is quite obvious, there are other applications where this choice might be less

clear. However, for such cases it is possible to determine a threshold from the data which

can serve as measure of evidence for a deviation of µ from the long term average µt0
0 with a

controlled type I error α.

To be precise, note that the hypotheses H0(∆1) and H0(∆2) in (2.2) are nested for ∆1 < ∆2

and that the test statistic (2.5) is monotone in ∆. As the quantile q∗1−α does not depend on

∆, rejecting H0(∆) for ∆ = ∆1 also implies rejecting H0(∆) for all ∆ < ∆1. The sequential

rejection principle then yields that we may simultaneously test the hypotheses (2.2) for

different choices of ∆ ≥ 0 until we find the minimum value, say ∆̂α, for which H0(∆) is not
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rejected, that is

∆̂α := min
{
∆ ≥ 0 | T̂n,∆ ≤ q∗1−α

}
. (2.16)

Consequently, one may postpone the selection of ∆ until one has seen the data. The same

arguments of course also hold for the more conservative procedure defined by (2.13).

3 Estimating the time of the first relevant deviation

If a relevant deviation from a benchmark has been detected, it is of interest to determine

the first time where this deviation occurs, that is

t∗ = min
{
t ∈ [t0, 1]

∣∣ | µ(t)− µt0
0 | ≥ ∆

}
. (3.1)

A natural estimator for t∗ is the first time k where at least one estimated difference µ̂
⌊nt0⌋
0 −µ̂k

j

exceeds approximately ∆, and therefore we define

t̂ = min
{
k ≥ ⌊nt0⌋+ cn

∣∣∣ ∃j ∈ {⌊nt0⌋, . . . , k − cn} such that (3.2)

|µ̂⌊nt0⌋
0 − µ̂k

j | ≥ ∆− σ̂ log(n)√
k − j

}
where the constant cn satisfies (2.4) (here we define the minimum over an empty set as

∞). In the following discussion we investigate the theoretical performance of this estimator,

distinguishing the case where t∗ is a point of continuity of |µ(t)− µt0
0 | and where it is not.

For this purpose, we introduce the function

t → d(t) = |µ(t)− µt0
0 |

and consider first the smooth setting. Intuitively, a change at a point of continuity will be

harder to detect if the function µ is very flat at t∗. To quantify this property, we assume

that there exists constants κ, cκ > 0 such that

lim
t↑t∗

|d(t∗)− d(t)|
(t∗ − t)κ

→ cκ . (3.3)

To obtain an explicit convergence rate we also need an assumption to ensure that the function

d does not behave too irregularly close to the point t∗.
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(A3) For some constant γ ∈ (0, t∗) the function t → sign(d(t))d(t) is increasing on the set

Uγ(t
∗) =

{
t ∈ [t0, t

∗]
∣∣ t > t∗ − γ

}
.

Theorem 3.1. Let Assumptions (A1) - (A3) be satisified.

(a) If t∗ ∈ (t0, 1], condition (3.3) holds and c
κ+1/2
n ≲ nκ

√
log(n), then

t̂ = t∗ +OP

( log(n)
√
cn

)1/κ

.

(b) If t∗ = ∞ we have P(t̂ = ∞) = 1− o(1).

Next we discuss the case, where there is a jump at the point t∗ and assume for some ϵ > 0

that

|µ(t)− µt0
0 |


< ∆− ϵ if t < t∗

≥ ∆ if t = t∗

≥ ∆+O(t− t∗) if t̃ > t > t∗

(3.4)

where t̃ > t∗ is the smallest point with a jump of the function µ at t̃ (if there are no jumps

for t > t∗ we set t̃ = 1).

Theorem 3.2. Let Assumptions (A1) - (A3) be satisfied and let cn satisfy c
3/2
n ≲ n

√
log(n).

Then

(a) If t∗ ∈ (t0, 1] is a jump discontinuity satisfying (3.4), then

t̂ = t∗ +OP

(cn
n

)
.

(b) If t∗ = ∞, we have P(t̂ = ∞) = 1− o(1).

Comparing the Theorem 3.1 and 3.2, it is readily apparent that detecting smooth changes

profits from a large cn (i.e. the mean is only estimated over longer intervals) while abrupt

changes are easier detected if cn is chosen small (i.e. the mean is also estimated over shorter

intervals).

4 Finite sample properties

In this section we investigate the finite sample properties of the proposed methodology by

means of a simulation study and illustrate its application by analyzing a real data example.
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Figure 1: Plot of the regression function µa(x) in (4.1) for a = 2. The dotted line is given

by µ
1/4
0 = 4

∫ 1/4

0
µ2(s)ds.

For the sake of comparison we consider the same scenarios as investigated in (Bücher et al.,

2021).

4.1 Synthetic Data

We choose ∆ = 1 and the mean function

µa(x) = 10 + 1/2 sin(8πx) + a
(
x− 1

4

)2

1

{
x >

1

4

}
, (4.1)

which is displayed in Figure 1 for a = 2. We consider various choices of the parameter a

where we choose t0 = 1/4 so that the hypotheses are given by

H0(1) : d∞ ≤ 1 vs H1(1) : d∞ > 1 (4.2)

where

d∞ = sup
t∈[1/4,1]

∣∣∣µa(t)− 4

∫ 1/4

0

µa(s)ds
∣∣∣

Note that d∞ = 1 (boundary of the hypotheses) for a = 128
81

and that d∞ > 1 (alternative)

and d∞ < 1 (interior of the null hypothesis), whenever a > 128
81

and a < 128
81
, respectively.
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For the error processes (ϵi)i∈Z in model (2.1) we investigate the processes

(IID) ϵi =
1
2
ηi,

(MA) ϵi =
1√
5

(
ηi +

1
2
ηi−1

)
(AR) ϵi =

√
3
4

(
ηi +

1
2
ϵi−1

)
, (4.3)

where (ηi)i∈Z is an i.i.d. sequence of standard normally distributed random variables. In

particular, we have Var(ϵi) =
1
4
for all error processes under consideration. We will compare

the novel testing procedures (2.13) and (2.15) proposed in this paper with the most powerful

test from (Bücher et al., 2021) which is given in equation (4.6) therein. Throughout this

section we generically choose m = 5 (tuning parameter for the long run variance estimation)

and cn = 20 (lower bound for scales in the multi-scale statistic (2.5)). The results are fairly

stable under perturbation of these parameters as long as they are not chosen too small.

The empirical rejection rates are calculated by 1000 simulation runs. For the test (2.13) we

calculated the quantiles of the distribution of M by 1000 samples from a Brownian motion

sampled on a grid with width 0.001. For the test (2.15) we used 200 samples to calculate

the quantile q1−α∗ in (2.13) for each of the 1000 simulation runs.

The empirical rejection probabilities of all three tests are recorded in Table 1 and confirm

the asymptotic theory. Regarding the interpretation of the empirical findings we note that

the null hypothesis in (4.2) is true, whenever the parameter a satisfies a ≤ 128/81 ≃ 1.58

and that we expect an increasing number of rejections for larger values of a, which yield

increasing values for the difference d∞ −∆. Note that all three tests are conservative in the

sense that the empirical size is smaller than 5% at the boundary of the hypotheses (2.2)

defined by d∞ − ∆ = 0 (in boldface). However, it is worthwhile to mention that the test

(2.15) provides a better approximation of the nominal level than its competitors.
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µa test (2.13) (2.15) Bücher et al. (2021)
a d∞ −∆ 200 500 1000 200 500 1000 200 500 1000

Panel A: iid errors
1.5 -0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.58 0.00 0.0 0.1 0.2 0.2 1.5 0.2 0.0 0.0 0.2
2.0 0.13 0.6 2.5 3.2 5.5 14.1 15.4 0.0 3.3 23.1
2.5 0.29 10.4 42.6 50.3 42.1 73.6 80.2 0.0 29.9 97.8
3.0 0.45 54.3 93.8 99.7 86.6 99.4 100 0.2 57.3 100

Panel B: MA errors
1.5 -0.03 0.1 0.1 0.2 0.0 0.0 0.0 0.0 0.0 0.0
1.58 0.0 0.1 0.6 0.1 0.7 2.7 2.4 0.0 0.0 0.3
2.0 0.13 1.2 5.1 4.3 6.3 14.9 16.1 0.0 3.7 18.7
2.5 0.29 10.3 31.0 47.1 26.7 56.8 75.6 0.2 27.0 87.9
3.0 0.45 44.9 81.4 96.6 69.7 94.5 99.7 0.5 52.8 99.7

Panel C: AR errors
1.5 -0.03 0.7 1.1 1.1 0.0 0.0 0.0 0.1 0.5 1.0
1.58 0.00 0.8 1.1 2.0 2.6 5.9 6.7 0.1 1.4 1.5
2.0 0.13 3.1 9.4 10.7 7.8 22.6 27.0 0.0 7.8 23.1
2.5 0.29 15.6 36.1 51.1 29.6 60.6 75.1 0.4 27.3 77.7
3.0 0.45 43.5 81.2 95.9 67.3 91.7 99.5 1.1 53.9 98.4

Table 1: Empirical rejection rates of the tests (2.13) and (2.15) and the test proposed in
equation (4.6) of (Bücher et al., 2021) for the hypotheses (4.2). Different values for the
parameter a in the mean function (4.1), error processes, and sample sizes n = 200, 500, 1000
are considered.

A comparison of the power properties of the different procedures shows that the conservative

multiscale test (2.13) outperforms the test in (Bücher et al., 2021) for moderates samples

sizes (n = 200, 500), but the last-named test yields larger rejection probabilities if the sample

size n = 1000, in particular if the deviation is d∞−∆ = 2. On the other hand the multi-scale

test (2.15) yields an even larger power for sample size n = 200, 500, and for n = 1000 it

shows a similar performance as the procedure in (Bücher et al., 2021).

Finally, we present a brief simulation study to investigate the performance of the estimator

(3.2) for the first time of a relevant deviation as defined in (3.1), where we use m = 5

and cn = 20 + n1/2. We consider the mean function (4.1) with a = 2, thus the time of a

first relevant deviation is t∗ = 0.791. The error process is given by (4.3) and the sample size

n = 500. In Figure 2 we display histograms of the estimator (3.2) and the estimator proposed

in equation (5.2) of (Bücher et al., 2021) based on 10.000 simulation runs. We observe that

the estimator introduced in (Bücher et al., 2021) does not detect a relevant deviation in

more than 90% of all cases for many of the considered settings while our estimator detects
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such a deviation almost always. However, due to the noise of the error process there exist

also cases where t̂ underestimates the true point t∗ and delivers an estimate for the local

maximum of the function µ at t = 0.57 which is the closest local peak to the time t = 0.8

(here the deviation is |µ(0.57)− µ
1/4
0 | ≃ 0.695 < 1.

We therefore refrain from a direct comparison of the tow estimators and display in Table 2

the empirical bias, standard deviation and the detection rate of the estimator (3.2) proposed

in this paper.
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Figure 2: Histograms for the estimator t̂ defined in (3.2) (left) and the estimator proposed
in equation (5.2) of (Bücher et al., 2021) (right).

Note that all choices of the parameter a in Table 2 correspond to a violation of the null

hypotheses. Therefore, a “good” estimator of the time point of the first relevant deviation

should be finite in as many cases as possible. We observe that the estimator (3.2) proposed

in this paper is finite almost always for all choices of a even for the sample size n = 200. The

bias and standard deviation of the estimator first increase when the sample size increases

to 500. This is due to the method sometimes detecting a change at the second highest

peak of the the curve (see Figure (2)) when the sample size becomes larger. This happens

more rarely when the sample size grows further, as is reflected by a lower bias for n = 1000

compared to n = 500. The estimator generally performs better for less dependent data but

nonetheless performs well across all settings.
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Ê[t∗] Ê[1(t∗ = ∞)]

n \ a 2.0 2.5 3.0 2.0 2.5 3.0

Panel A: iid errors
200 0.864 (0.029) 0.839 (0.036) 0.812 (0.052) 0.031 0.002 0.000
500 0.809 (0.044) 0.780 (0.069) 0.738 (0.090) 0.001 0.000 0.000
1000 0.803 (0.023) 0.783 (0.046) 0.749 (0.076) 0.000 0.000 0.000

Panel B: MA errors
200 0.854 (0.054) 0.826 (0.063) 0.794 (0.074) 0.057 0.029 0.000
500 0.788 (0.078) 0.754 (0.093) 0.711 (0.101) 0.001 0.000 0.000
1000 0.789 (0.057) 0.757 (0.080) 0.715 (0.095) 0.000 0.000 0.000

Panel C: AR errors
200 0.835 (0.084) 0.810 (0.087) 0.778 (0.090) 0.094 0.011 0.001
500 0.764 (0.108) 0.727 (0.116) 0.693 (0.111) 0.009 0.001 0.000
1000 0.767 (0.087) 0.731 (0.099) 0.692 (0.104) 0.002 0.000 0.000

t∗ 0.79 0.78 0.77

Table 2: Empirical bias, standard deviation and detection rate of the estimator t̂ defined in
(3.2). Central part: empirical mean and standard deviation (in brackets) of t̂, conditional on
t∗ ̸= ∞. Right part: proportion of cases for which t̂ = ∞. Last line: true change point t∗.

4.2 Real Data Application

We consider the mean of daily minimal temperatures (in degree Celsius) over the month of

July for different weather stations in Australia. The data set is available via the R package

fChange (see Sonmez et al., 2025) on Github and the sample size varies between 100 and 150,

depending on the weather station. For each weather station we test the hypotheses (2.2)

for different thresholds ∆ ∈ {0.5, 1, 1.5}, where t0 is chosen such that the years 1, ..., nt0

correspond to the time frame until the year 1950. In Table 3 we record the p-values of

the multi-scale test (2.15) and the test proposed in equation (4.6) of (Bücher et al., 2021).

For the test (2.15) these p-values are calculated by 1000 bootstrap repetitions, while the

parameters m and cn are chosen as in the previous section, that is cn = 20 and m = 5.
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∆ 0.5 1.0 1.5 0.5 1.0 1.5

test Bücher et al. (2021) (2.15)

Boulia/p-value 29.0 73.1 98.0 0.0 0.8 37.7
Boulia/year - - - 1950 1956 -
Cape Otway/p-value 11.4 98.0 100.0 7.4 78.8 99.9
Cape Otway/year - - - - - -
Gayndah/p-value 0.2 1.4 3.2 0.0 0.0 0.3
Gayndah/year 1952 1968 1974 1950 1950 1984
Gunnedah/p-value 0.8 2.7 10.3 0.0 0.0 1.4
Gunnedah/year 1952 1955 - 1962 1973 1984
Hobart/p-value 94.9 100.0 100.0 34.1 95.5 100.0
Hobart/year - - - - - -
Melbourne/p-value 0.0 1.1 27.3 0.0 0.0 3.7
Melbourne/year 1968 1976 - 1950 1972 1990
Robe/p-value 3.3 44.9 98.2 6.1 68.3 99.8
Robe/year 1953 - - - - -
Sydney/p-value 41.1 98.1 100 0.05 0.14 89.9
Sydney/year - - - 1950 - -

Table 3: p-values and estimates for t∗ of the test in Bücher et al. (2021) (left part) and the
bootstrap test (2.15) proposed in this paper (right part) for the hypotheses (2.2) for various
values of the threshold ∆.

Except for the Robe weather station the p values of the multi-scale test test (2.15) are either

similar or substantially smaller than the p values obtained by the test in (Bücher et al.,

2021). In particular the new test detects changes in Boulia, Melbourne and Sydney that

the procedure from (Bücher et al., 2021) was not able to identify. We also observe that in

general the new estimator t̂ proposed in this paper generally dates deviations earlier than

its counterpart from (Bücher et al., 2021). The only exception is the station Robe, where

the test from (Bücher et al., 2021) detects a difference of at least 0.5 degrees Celsius that

our method does not detect at significance level α = 0.05. However, a more precise look at

the minimum value ∆̂α, for which H0(∆) is not rejected at a controlled type I error α (see

equation (2.16) and equation (5.2) in (Bücher et al., 2021)) shows that the difference between

the two tests are small: the method proposed in (Bücher et al., 2021) gives ∆̂0.05 = 0.53,

while the estimator (2.16) yields ∆̂0.05 = 0.49.

These values are taken from Table 4, which displays the values ∆̂0.05 for both methods (here

we have recalculated the results of the test of (Bücher et al., 2021)). The results further

confirm the previous findings. Except for the weather station in Robe the test (2.15) always

detects larger differences than the test proposed in (Bücher et al., 2021). In particular we

are able to detect changes in Boulia and Hobart where the method (Bücher et al., 2021) does
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not detect any relevant deviation. While at Hobart the difference in the value δ̂0.05 is small,

it is larger than 1 degree Celsius at Boulia.

∆̂0.05 Boulia Cape Otway Gayndah Gunnedah Hobart Melbourne Robe Sydney

BüDH 0.00 0.38 1.69 1.22 0.00 1.17 0.53 0.13
BaD 1.16 0.45 1.74 1.64 0.17 1.52 0.49 0.87

Table 4: The minimum value ∆̂0.05, for which H0(∆) is not rejected at a controlled type I
error of 5% (see equation (2.16) and equation (5.2) in Bücher et al. (2021)).
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5 Proofs

Throughout this section we use the notation k0 = ⌊nt0⌋ and define for any constant a > 0

the sets

Ec(a) =
{
(j, k) ∈ {k0, ..., n}2

∣∣∣k − j = c,
∣∣∣µt0

0 − µ
k/n
j/n

∣∣∣ ≥ d∞ − a log(n)/
√
c
}

Eco
c (a) =

{
(j, k) ∈ {k0, ..., n}2

∣∣∣k − j = c
}
\ Ec(a) . (5.1)

We will generally suppress the dependence on a in the notation except for the subsection

about the bootstrap procedure. In the following we shall assume that σ = 1, the general

case follows by simple rescaling.

5.1 Proof of Theorem 2.2

Define

µ̄k
j =

1

k − j

k∑
i=j+1

µ(i/n)

and denote by B̌(s) = n−1/2B(ns) a rescaled version of the Brownian motion B. We will

start stating four auxiliary results, which will be used in the proof of Proof of Theorem 2.2

and of other results. The proofs are given at the end of this section.

Lemma 5.1. Grant assumption (A2). It then holds that

sup
1≤j<k≤n

(k − j)(µ̄k
j − µ

k/n
j/n) = O(1)

Lemma 5.2. If d∞ > 0 and assumption (A1) and (A2) are satisfied, we have with high

probability that

T̂n ≤ sup
cn≤c≤n−k0

c∈N

sup
(j,k)∈Ec

s(j/n, k/n)
(√

c
B(k0)

k0
− B(k)−B(j)√

c

)
− Γn(c)

)

where B is a Brownian motion with variance σ2 and suprema over empty sets are defined as

as −∞.
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Lemma 5.3. If d∞ > 0 and Assumption (A1) and (A2) aresatisfied, we have

sup
cn≤c≤n−k0

c∈N

sup
(j,k)∈Ec

s(j/n, k/n)
(√

c
B(k0)

k0
− B(k)−B(j)√

c

)
− Γn(c)

≤ lim
ϵ↓0

sup
(s,t)∈Aϵ,d∞

s(s, t)
(√

t− s
B̌(t0)

t0
− B̌(t)− B̌(s)√

t− s

)
− Γ(t− s) + oa.s.(1),

where

Aϵ,d∞ =
{
(s, t) ∈ [t0, 1]

2
∣∣∣s < t,

∣∣∣µt0
0 − µt

s

∣∣∣ ≥ d∞ − ϵ
}

Lemma 5.4. If d∞ > 0 and Assumption (A1) and (A2) are satisfied, we have

lim
ϵ↓0

sup
(s,t)∈Aϵ,d∞

s(s, t)
(√

t− s
B̌(t0)

t0
− B̌(t)− B̌(s)√

t− s

)
− Γ(t− s)

≤ sup
cn≤c≤n−k0

c∈N

sup
(j,k)∈Ec

s(j/n, k/n)
(√

c
B(k0)

k0
− B(k)−B(j)√

c
−
√
c
(
µt0
0 − µ

k/n
j/n

))
− Γn(c)−

√
cd∞

)
+ oP(1)

=T̂n + oP(1)

Proof of Theorem 2.2

The weak convergence of the statistic T̂n in (2.6) follows directly from Lemma 5.2 - 5.4.

Regarding the continuity of the distribution of Td∞ we note that Td∞ is a limit of convex

functions of a Gaussian process and therefore a convex function of a Gaussian process itself.

The continutiy then follows by Theorem 4.4.1 from (Bogachev, 2015).

The statements (1) and (2) regarding the asymptotic properties of the test statistic T̂n,∆

are a direct consequence of (2.6) if d∞ ≤ ∆. In the case d∞ > ∆ we note that piecewise

Lipschitz continuity of µ yields that there exists a sequence of jn, kn with kn − jn ≃ n such

that for some ρ > 0 we have |µ(i/n)− µt0
0 | ≥ ∆+ ρ for all jn ≤ i ≤ kn. Consequently, using

Lemma 5.1, we obtain

∣∣∣ 1
k0

k0∑
i=1

µ(i/n)− 1

c

kn∑
i=jn+1

µ(i/n)
∣∣∣ ≥ ∆+ ρ−O(n−1)

which yields T̂n,∆ → ∞ by an application of the triangle inequality.
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5.1.1 Proof of Lemma 5.1 - 5.4

Proof of Lemma 5.1. Let us first assume that µ has no discontinuities, then

µ̄k
j − µ

k/n
j/n =

1

k − j

k∑
i=j+1

(
µ(i/n)− n

∫ i/n

(i−1)/n

µ(t)dt
)

=
1

k − j

k∑
i=j+1

n

∫ i/n

(i−1)/n

µ(t)− µ(i/n)dt

≲
1

k − j

k∑
i=j+1

n−1 = n−1

The general case follows by splitting up the integrals containing the discontinuities, leading

to finitely many additional terms in the sum that can be bounded only by a constant instead

of n−1.

Proof of Lemma 5.2. By Assumption (A1) and condition (2.4) we have

sup
n≥k−j≥cn

√
k − j|µ̂k0

0 − µ̂k
j | = sup

|k−j|≥cn

|B(k)−B(j)|√
k − j

+
O(n1/2−p)√

k − j

= sup
|k−j|≥cn

|B(k)−B(j)|√
k − j

+ oP(1) .

Using this and Lemma 5.1 we therefore obtain that

T̂n = sup
cn≤c≤n−k0

c∈N

sup
|k−j|=c
k>j≥k0

(∣∣∣√c
B(k0)

k0
− B(k)−B(j)√

c
−
√
c
( 1

k0

k0∑
i=1

µ(i/n)− 1

c

k∑
i=j+1

µ(i/n)
)∣∣∣

− Γn(c)−
√
cd∞

)
+ oP(1)

= sup
cn≤c≤n−k0

c∈N

sup
|k−j|=c
k>j≥k0

(∣∣∣√c
B(k0)

k0
− B(k)−B(j)√

c
−
√
c
(
µt0
0 − µ

k/n
j/n

)∣∣∣
− Γn(c)−

√
cd∞

)
+ oP(1)

Now note that it follows from the discusssion in Section 2.2 of (Frick et al., 2014) that the

random variable M defined in (2.10) is finite with probability 1, which implies

sup
cn≤c≤n−k0

c∈N

sup
|k−j|=c
k>j≥k0

∣∣∣√c
B(k0)

k0
− B(k)−B(j)√

c

∣∣∣− Γn(c) = OP(1).
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This yields

sup
cn≤c≤n−k0

c∈N

sup
(j,k)∈Eco

c

(∣∣∣√c
B(k0)

k0
− B(k)−B(j)√

c
−
√
c
(
µt0
0 − µ

k/n
j/n

)∣∣∣
− Γn(c)−

√
cd∞

)
≲− log(n)

with high probability by the definition of the set Eco
c in (5.1). Therefore,

sup
cn≤c≤n−k0

c∈N

sup
|k−j|=c
k>j≥k0

(∣∣∣√c
B(k0)

k0
− B(k)−B(j)√

c
−

√
c
(
µt0
0 − µ

k/n
j/n

)∣∣∣)
− Γn(c)−

√
cd∞

)
= sup

cn≤c≤n−k0
c∈N

sup
(j,k)∈Ec

(∣∣∣√c
B(k0)

k0
− B(k)−B(j)√

c
−
√
c
(
µt0
0 − µ

k/n
j/n

)∣∣∣)
− Γn(c)−

√
cd∞

)
+ oP(1)

= sup
cn≤c≤n−k0

c∈N

sup
(j,k)∈Ec

s(j/n, k/n)
(√

c
B(k0)

k0
− B(k)−B(j)√

c
−
√
c
(
µt0
0 − µ

k/n
j/n

))
− Γn(c)−

√
cd∞

)
+ oP(1)

≤ sup
cn≤c≤n−k0

c∈N

sup
(j,k)∈Ec

s(j/n, k/n)
(√

c
B(k0)

k0
− B(k)−B(j)√

c

)
− Γn(c)

with high probability, which yields the desired statement.

Proof of Lemma 5.3. Existence of the limit with respect to ϵ follows because the quantity

is, as a function on the probability space, pointwise monotonically non-increasing in ϵ and

bounded because the random variable M is finite almost surely. The asymptotic inequality

follows because
⋃

cn≤c≤n−k0
Ec is, for any ϵ > 0, eventually a subset of Aϵ,d∞ .

Proof of Lemma 5.4. The equality has been established in the proof of Lemma 5.2 already.

For the upper bound we proceed in three steps:
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(I) For any sequence with bn = o(n−1/2) we have

sup
(j,k)∈

⋃
cn≤c≤n−k0

Ec
s(j/n, k/n)

(√
k − j

B(k0)

k0
− B(k)−B(j)√

k − j

−
√

k − j
(
µt0
0 − µ

k/n
j/n

))
− Γn(k − j)−

√
k − jd∞

)
≥ sup

(s,t)∈Abn∩{k0/n,...,1}2
|s−t|≥cn/n

s(s, t)
(√

t− s
B̌(t0)

t0
− B̌(t)− B̌(s)√

t− s
−
√

(t− s)n
(
µt0
0 − µt

s

))
− Γ(t− s)−

√
(t− s)nd∞

)
by definition of the involved sets and of B̌.

(II) By the definition of Abn we then obtain

sup
(s,t)∈Abn∩{k0/n,...,1}2

|s−t|≥cn/n

s(s, t)
(√

t− s
B̌(t0)

t0
− B̌(t)− B̌(s)√

t− s
−
√

(t− s)n
(
µt0
0 − µt

s

))
− Γ(t− s)−

√
(t− s)nd∞

)
= sup

(s,t)∈Abn∩{k0/n,...,1}2
|s−t|≥cn/n

(
s(s, t)

(√
c
B̌(t0)

t0
− B̌(t)− B̌(s)√

t− s

)
− Γ(t− s)

)
+ o(1)

(III) Using similar arguments as in the proof of Theorem 2.1 in (Dümbgen, 2002) (use

Theorem 7.1 and Lemma 7.2 in (Dümbgen and Walther, 2008) with β(x) = 1{x ∈
[0, 1]} instead of Proposition 7.1 from (Dümbgen, 2002)) we obtain

sup
(s,t)∈Abn∩{k0/n,...,1}2

|s−t|≥cn/n

(
s(j/n, k/n)

(√
c
B̌(k0)

k0
− B̌(k)− B̌(j)√

c

)
− Γn(c)

)
(5.2)

= sup
(s,t)∈Abn

(
s(j/n, k/n)

(√
c
B̌(k0)

k0
− B̌(k)− B̌(j)√

c

)
− Γn(c)

)
+ oP(1)

To be precise we proceed as in the proof of Theorem 2.1 in (Dümbgen, 2002) to obtain, for
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any δ1 > 0, a set A1 with probability 1− δ1 on which there exists δ2 > 0 such that

sup
(s,t)∈Abn∩{k0/n,...,1}2

|s−t|≥cn/n

(
s(j/n, k/n)

(√
c
B̌(k0)

k0
− B̌(k)− B̌(j)√

c

)
− Γn(c)

)

= sup
(s,t)∈Abn∩{k0/n,...,1}2

|s−t|≥δ2

(
s(j/n, k/n)

(√
c
B̌(k0)

k0
− B̌(k)− B̌(j)√

c

)
− Γn(c)

)

holds. Exactly the same arguments also yield a set A2 with probability 1− δ1 on which

sup
(s,t)∈Abn

(
s(j/n, k/n)

(√
c
B̌(k0)

k0
− B̌(k)− B̌(j)√

c

)
− Γn(c)

)
= sup

(s,t)∈Abn
|s−t|≥δ2

(
s(j/n, k/n)

(√
c
B̌(k0)

k0
− B̌(k)− B̌(j)√

c

)
− Γn(c)

)

holds. Equation (5.2) then follows by a standard argument involving the uniform continuity

of the process (s, t) → B(t)−B(s)√
t−s

on the set {(s, t)||s− t| ≥ δ2}.

The Lemma then by the fact that

sup
(s,t)∈Aϵ,d∞

s(s, t)
(√

t− s
B̌(t0)

t0
− B̌(t)− B̌(s)√

t− s

)
− Γ(t− s)

is a decreasing function of ϵ.

5.2 Proof of Theorem 2.4

The proof follows by a straightforward modification of Lemmas 5.2 to 5.4. The key difference

is that the quantity √
k − j

((
µt0
0 − µ

k/n
j/n

)
−∆

)
is not upper bounded by (or in some cases converges to) 0 anymore. Instead on uses the

expansion

(
µt0
0 − µ

k/n
j/n

)
−∆ = ∆+

βn

k/n− j/n

∫ k/n

j/n

h(x)dx−∆

=
βn

k/n− j/n

∫ k/n

j/n

h(x)dx
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in the last inequality in the proof of Lemma 5.2 and in step (II) of the proof of Lemma

5.4.

5.3 Proof of Theorem 2.6

We define the quantity

Êc(a) =
{
(j, k) ∈ {k0, ..., n}2

∣∣∣k − j = c,
∣∣∣µ̂k0

0 − µ̂k
j

∣∣∣ ≥ ∆− a log(n)/
√
c
}
.

and prove at the end of this section the following auxiliary result.

Lemma 5.5. Let ∆ = d∞. For any fixed a > 0 we have for n large enough that

Ec(a− ϵ) ⊂ Êc(a) ⊂ Ec(a+ ϵ)

for all c ≥ cn.

Proof of Theorem 2.6. Let us first consider the case d∞ = ∆. By the consistency of the

long run variance estimate σ̂2 (see Section 5.4 for a proof) we have that

Êc(2σ) ⊂ Êc ⊂ Êc(σ/2)

with high probability. Lemmas 5.5 and 5.3 then yield the desired statement if we can

show that ŝ(j/n, k/n) = s(j/n, k/n) holds with high probability uniformly over k, j with

(j/n, k/n) ∈ Aϵ,d∞ for some ϵ < ∆. This is an easy consequence of Lemma 5.1 and equation

(5.3).

For the other cases we note that the statistic T̂ ∗
n is stochastically bounded because the

random variable M defined in (2.10) is almost surely finite. As T̂n,∆ → −∞ (∞) if d∞ < ∆

(> ∆) the assertion follows.

Proof of Lemma 5.5. By Assumption (A1) and a union bound it follows that the inequal-

ity

|µ̄k
j − µ̂k

j | =
∣∣∣(k − j)−1

k∑
i=j+1

ϵi

∣∣∣ (5.3)

≲
∣∣∣(k − j)−1(B(k)−B(j))

∣∣∣+ n1/2−p/(k − j)

≲

√
log(n)√
k − j

+ n1/2−p/(k − j)
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holds uniformly with respect to 1 ≤ k − j ≤ n with high probability. As a consequence we

have

P
(
|µ̄k

j − µ̂k
j | < ϵ log(n)/

√
k − j, cn ≤ k − j ≤ n

)
(5.4)

≥P
(√log(n)√

k − j
+ n1/2−p/(k − j) < ϵ log(n)/

√
k − j, cn ≤ k − j ≤ n

)
.

Now condition (2.4) implies uniformly with resepect to cn ≤ k − j ≤ n that

n1/2−p

k − j
≤ n1/2−p

√
cn
√
k − j

≲
o(1)√
k − j

which then implies that the probability in (5.4) is of order 1− o(1). This yields the desired

set inclusions as they are true whenever

|µ̄k
j − µ̂k

j | < ϵ log(n)/
√
k − j , cn ≤ k − j ≤ n .

5.4 Consistency of the long run variance estimate

Lemma 5.6. Under assumption (A1) and (A2) we have

σ̂2 = σ2 +OP(n
−1/3) .

Proof. By assumption (A1) we have that

σ̂2 =
1

⌊n/m⌋ − 1

⌊n/m⌋−1∑
i=1

(
2B(im)−B((i− 1)m)−B((i+ 1)m) + Ai

)2

2m
+ oP(n

−1/3)

where

Ai := µ̄im
(i−1)m − µ̄

(i+1)m
im .

By Lemma 5.1 we have

|Ai| =
n

m

∣∣∣µim/n
(i−1)m/n − µ

(i+1)m/n
im/n

∣∣∣+O(m−1)

≲ O(1)
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where the inequality follows by the Lipschitz continuity of µt
s in s and t. Standard arguments

then yield

σ̂2 =
1

⌊n/m⌋ − 1

⌊n/m⌋−1∑
i=1

(
2B(im)−B((i− 1)m)−B((i+ 1)m)

)2

2m
+OP(n

−1/3)

which in turn yields the desired statement by noting that Zim = B(im) − B((i − 1)m) is a

triangular array of independent N (0, σ2) variables.

5.5 Proof of Theorem 3.1 and 3.2

Proof of Theorem 3.1 We only consider the case t∗ < ∞, the case t∗ = ∞ follows by

easier and analogous arguments. We give an upper and a lower bound which establish the

desired result upon combining them.

Upper bound: We first note that it follows by Assumption (A1), condition (2.4) and the

fact that the random variable M is almost surely finite that

sup
cn≤|k−j|≤n

∣∣∣|µ̂k0
0 − µ̂k

j | − |µ̄k0
0 − µ̄k

j |
∣∣∣ = OP

(√ log(n)

cn

)
. (5.5)

We also note that the identity

µ(t∗)− µt0
0 = ∆

implies

µ̄kn
jn

− µt0
0 ≥ 1

kn − jn

kn∑
i=jn+1

(∆− C(t− i/n)κ) = ∆− C

kn − jn

kn∑
i=jn+1

(t− i/n)κ

for kn = ⌊nt⌋ and jn = kn − cn, where C is some constant that only depends on µ and cκ.

We thus obtain

µ̄kn
jn

− µt0
0 ≳ ∆− (cn/n)

κ , (5.6)

and a similar argument is valid when µ(t)− µt0
0 = −∆. Combining (5.5) and (5.6) therefore

yields

|µ̂k0
0 − µ̂kn

jn
| ≳ ∆− (cn/n)

κ −OP

(√ log(n)

cn

)
, (5.7)

28



which implies that t̂ ≤ t∗ holds with high probability.

Lower bound: We give the argument for µ(t∗)−µt0
0 = ∆, the other case follows analogously.

By (3.3) we know that

µ(t∗ − x) = ∆− cκx
κ + o(xκ) .

Thereby, choosing x =
(

3σ log(n)
cκ

√
cn

)1/κ

, we have

µ(t∗ − x)− µt0
0 = ∆− 3σ log(n)/

√
cn + o

(√
log(n)/cn

)
Consequently, using the continuity of µ(t)− µt0

0 and Assumption (A3) we obtain

max
t∈[t0,t∗−x]

|µ(t∗ − x)− µt0
0 | ≤ ∆− 2σ log(n)/

√
cn

when n is sufficiently large. Using similar arguments as in the derivation of the upper bound

we therefore obtain

sup
k/n∈[t0,t∗−x]

sup
j<k,k−j≥cn

|µ̂k0
0 − µ̂k

j | ≤ ∆− 2σ log(n)/
√
cn +OP(

√
log(n)/cn) . (5.8)

Now suppose that there exists jn < kn, satisfying kn − jn ≥ cn, kn/n ∈ [t0, t
∗ − x], such that

|µ̂k0
0 − µ̂kn

jn
| ≥ ∆− σ̂ log(n)√

kn − jn

holds. By (5.8) this would imply

∆− 2σ log(n)/
√
cn +OP(

√
log(n)/cn) ≥ ∆− σ̂ log(n)

√
cn

which happens only with probability o(1) by Lemma 5.6. Consequently we have that t̂ ≥
t∗ − x with high probability, i.e.

t̂ ≥ t∗ −OP

( log(n)
√
cn

)1/κ

.

as desired.
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5.5.1 Proof of Theorem 3.2

Again we only consider the case t∗ < ∞ and note that the case t∗ = ∞ follows by easier

and analogous arguments. We give an upper and a lower bound which establish the desired

result upon combination.

Lower bound:

Consider any t < t∗ and assume WLOG that µ(t∗)− µt0
0 = ∆. Then, by (3.4), we have

µ̄k
j − µt0

0 < ∆− ϵ

Equation (5.5) then yields that t̂ ≥ t∗ with high probability.

Upper bound:

Assume WLOG (last inquality of (3.4)) that for some δ > 0 we have for any t∗ ≤ t ≤ t∗ + δ

that

µ(t)− µt0
0 ≥ ∆+O(t− t∗) .

Consequently, by the same arguments leading to (5.7), we have

|µ̂k0
0 − µ̂k0+cn

k0
| ≳ ∆− cn/n−OP

(√ log(n)

cn

)
,

which yields t̂ ≤ t∗ + cn/n.
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