
Machine-learned RG-improved gauge actions and classically perfect gradient flows

Kieran Holland,1, ∗ Andreas Ipp,2, † David I. Müller,2, ‡ and Urs Wenger3, §

1University of the Pacific, 3601 Pacific Avenue, Stockton, California 95211, USA
2Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10/136, A-1040 Vienna, Austria

3Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics,
University of Bern, Sidlerstraße 5, CH-3012 Bern, Switzerland

Extracting continuum properties of quantum field theories from discretized spacetime is chal-
lenging due to lattice artifacts. Renormalization-group (RG)-improved lattice actions can preserve
continuum properties, but are in general difficult to parameterize. Machine learning (ML) with
gauge-equivariant convolutional neural networks provides a way to efficiently describe such actions.
We test a machine-learned RG-improved lattice gauge action, the classically perfect fixed-point
(FP) action, for four-dimensional SU(3) gauge theory through Monte Carlo simulations. We estab-
lish that the gradient flow of the FP action is free of tree-level discretization effects to all orders
in the lattice spacing, making it classically perfect. This allows us to test the quality of improve-
ment of the FP action, without introducing additional artifacts. We find that discretization effects
in gradient-flow observables are highly suppressed and less than 1% up to lattice spacings of 0.14
fm, allowing continuum physics to be extracted from coarse lattices. The quality of improvement
achieved motivates the use of the FP action in future gauge theory studies. The advantages of
ML-based parameterizations also highlight the possibility of realizing quantum perfect actions in
lattice gauge theory.

Introduction — The Standard Model of particle
physics gives excellent agreement between experimental
measurements and theoretical predictions to very high
precision. A central element is Quantum Chromodynam-
ics (QCD), the quantum field theory of quark-gluon inter-
actions, where Monte Carlo (MC) simulations play a cru-
cial role in testing nonperturbative dynamics [1]. A nec-
essary step in lattice simulations is spacetime discretiza-
tion, which ultimately must be removed to obtain phys-
ical continuum predictions. However, the extrapolation
to the continuum limit is often the dominant source of
uncertainty in lattice studies and remains a serious chal-
lenge: reducing the lattice spacing a → 0, simulations
become less efficient [2], requiring longer Markov chains
for high statistical accuracy (critical slowing down) and
to fully explore the phase space (topological freezing).
These systematic effects are a barrier to increasing the
precision of lattice predictions for the Standard Model.
To overcome this hurdle, one can use improved lattice
actions [3–5], designed to remove the leading lattice arti-
facts, often through a perturbative expansion in a. The
efficacy of the improvement must be empirically tested
via MC simulations. The problem has also stimulated the
study of various alternatives, such as normalizing flows,
which use machine learning (ML) to transform random
samples to target distributions [6–14]. However, normal-
izing flows face significant challenges, such as achieving
high efficiency in four-dimensional quantum field theo-
ries—measured by effective sample size—and ensuring
that models trained at one lattice spacing can generalize
effectively to generate ensembles at other lattice spacings.
Combined with the persistent difficulties of extrapolating
to the continuum limit, these challenges underscore the
urgent need for new methods that can achieve accurate
results with small lattice artifacts already on coarse lat-

tices, thus evading critical slowing down and topological
freezing.
In this Letter, we employ an alternative approach,

based on fixed-point (FP) lattice actions [15] which are
implicitly and nonperturbatively defined using the prop-
erties of Wilson’s renormalization group (RG) for asymp-
totically free theories [16–18]. It is used to extract contin-
uum quantities from coarse lattices with significantly re-
duced lattice artifacts. We demonstrate the effectiveness
of the FP action in MC simulations of four-dimensional
SU(3) gauge-field theory, parameterized using a convolu-
tional neural network with exact gauge invariance [19].
This result is made possible by our new theoretical in-
sight, presented here, that FP actions yield a classically
perfect gradient flow, i.e., without tree-level lattice arti-
facts to all orders in the lattice spacing. This result also
builds on the success of our recent work [20–22], where
we demonstrated that ML-based parameterizations can
accurately capture the FP action across a wide range of
gauge-field fluctuations—from very fine to very coarse
lattice spacings. The resulting parameterization achieves
an average relative error in the action value of less than
0.2%, representing an improvement by over an order of
magnitude compared to previous approaches developed
earlier [23–25]. The ML framework also enables accu-
rate parameterization of the derivatives of the FP action
w.r.t. the gauge fields, which are crucial for both efficient
network training and the practical implementations of
MC algorithms. The FP action can be generally used
in any lattice-QCD study and provides a new way to re-
duce discretization artifacts on coarse lattices, making it
broadly useful.
Renormalization group and fixed-point actions — For

SU(N) gauge theories, an RG transformation of a lattice
action A from a fine to a coarse lattice can be defined
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through

exp(−β′A′[V ]) =

∫
DU exp(−β{A[U ] + T [U, V ]}), (1)

where β = 2N/g2 and the fine lattice configuration U is
connected to the coarse configuration V through the RG
blocking kernel

T [U, V ] = −κ
∑
nB ,µ

{
ReTr(VnB ,µQ

†
nB ,µ[U ])−N∞

µ

}
. (2)

The variables QnB ,µ are blocked links constructed from
the fine links Un,µ and the normalization constant N∞

µ =

maxW∈SU(N)

[
ReTr(WQ†

nB ,µ)
]
guarantees the invariance

of the partition function after an RG blocking step. The
blocking details and parameter κ can be freely chosen to
maximize the compactness of the FP action [24] and in
this work we follow the RG blocking therein.

In the limit 1/g2 → ∞ of asymptotically free quantum
field theories, the FP of the RG is scale-invariant and
defines the continuum limit of the gauge theory. More-
over, the path integral on the RHS of Eq. (1) reduces to
a saddle point problem yielding the classical FP equation
[15]

AFP[V ] = min
{U}

[
AFP[U ] + T [U, V ]

]
. (3)

The resulting FP action AFP is classically perfect, i.e.,
it has no lattice artifacts at tree level and exactly re-
produces continuum classical properties at finite lattice
spacing, e.g., dispersion relation [15], topology [23, 26],
or index theorem [27], chirality [28, 29] when fermions
are included. A key theoretical result of this work is the
derivation that the gradient flow of the FP action is also
classically perfect.

Classically perfect gradient flow — To rigorously test
the quality of improvement in any lattice action, it is es-
sential to use precisely measurable observables that avoid
introducing significant cutoff effects. Observables based
on the gradient flow (GF) of gauge fields [30] are a natural
choice, given their small systematics and high statistical
accuracy. In addition, due to the renormalization prop-
erties of the GF [31], these observables are widely used
for the setting of physical scales and the measurement
of the β-function of the gauge coupling. We show here
that the GF based on the FP action has the additional
desirable property of being classically perfect: it has no
tree-level discretization effects to any order in the lattice
spacing a.

In continuum language, for an action A the GF evolves
the non-Abelian gauge field Aµ(t) along a fictitious flow
time t according to [30–33]

dAµ(t)

dt
= − δA

δAµ(t)
, (4)

where the starting value Aµ(t = 0) is the original gauge
field and the action is A = (1/g2)

∫
d4x(− 1

2TrFµνFµν),
with field strength Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ]
and gauge coupling g. The action density E(t) =
− 1

2TrFµνFµν at flow time t is a renormalized quantity,
and for SU(N) gauge theory it can be connected pertur-
batively to a renormalized coupling g in a given scheme,
e.g., the MS scheme, as [31]

t2⟨E(t)⟩ = 3(N2 − 1)g2

128π2

(
1 +O(g2)

)
, (5)

where ⟨·⟩ denotes the gauge-field average.
On the lattice, the perturbative expansion is in the

bare coupling g0 with [34]

t2⟨E(t)⟩ = 3(N2 − 1)g20
128π2

(
C(a2/t) +O(g20)

)
, (6)

where

C(a2/t) =
64π2t2

3
×∫ π/a

−π/a

d4p

(2π)4
Tr

[
e−t(Sf+G)(Sg + G)−1e−t(Sf+G)Se

]
(7)

contains the tree-level lattice artifacts as deviations from
1. Here, the action density in momentum space to
quadratic order in the fields is Aµ(p)Sµν(p)Aν(−p), and
Se,Sf ,Sg correspond to the (possibly different) choices
of the discretized action for the action-density observable
E, for the GF, and for the MC simulation, respectively,
while G is a gauge fixing term. For any choice of action
discretizations, the value of C(a2/t) can be calculated
and used to define a tree-level improved coupling at fi-
nite lattice spacing [34] (see also [35]). Using the same
lattice action for all three gives

C(a2/t) =
64π2t2

3

∫ π/a

−π/a

d4p

(2π)4
Tr

[
e−2t(S+G)

]
, (8)

since the various factors under the trace commute with
each other.
For the exact FP action AFP, the gluon propagator

has poles 1/(p + 2πl)2 for momenta −π/a ≤ pµ ≤ π/a
and all possible integers l [23], since the iterative RG
connection to finer and finer lattices extends the momen-
tum integration range to the full interval ±∞ even at
finite lattice spacing, producing precisely the continuum
dispersion relation. Hence, for SFP one obtains

C(a2/t) =
64π2t2

3
·3
(∫ +∞

−∞

dp

2π
e−2tp2

)4

=
64π2t2

(
√
8πt)4

= 1,

i.e., the exact FP action has no tree-level cutoff depen-
dence in t2⟨E(t)⟩; lattice artifacts appear in loop cor-
rections, i.e., as quantum effects, at O(a2g20). This is a
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new example of FP actions keeping continuum classical
properties intact at finite lattice spacing.

Machine learning architecture — The practical limi-
tations in using the FP action in MC simulations arise
from two factors: the size of quantum lattice artifacts,
and the inherent imperfections in the fixed-point param-
eterization for four-dimensional SU(3) gauge theory. The
latter is addressed here using a gauge-equivariant convo-
lutional neural network [19] and ML techniques. The ML
architecture designed for the FP action is described in de-
tail in [21]. In brief, the main building block of the neural
network is a bilinear convolution which computes various
products of Wilson loops, starting from 1× 1 plaquettes
and the links Un,µ of a gauge-field configuration as in-
put. Gauge covariance is exactly maintained throughout
by accounting for parallel transport in the convolution.
As the network depth increases, larger and more com-
plex closed loops are generated. The final layer is a trace
giving the action value as output. The network respects
translational symmetry and is (ultra-)local, which allows
it to be used on any lattice size. Additionally, our ar-
chitecture is set up to reproduce a perturbatively defined
FP action for smooth fields [24] in order to guarantee the
correct continuum limit.

The goal of training a model is to approximate the ac-
tion values according to the FP equation in Eq.(3). A
crucial element is that the exact derivatives of AFP with
respect to gauge links Un,µ can be easily obtained from
the FP equation, with each gauge configuration giving
8 × 4×(volume) data for learning. In the network, the
derivatives can be calculated exactly via backpropaga-
tion. The loss function for training hence contains both
action values and derivatives. The best architecture has
been obtained from a hyperparameter scan and consists
of three gauge-covariant convolutional layers. It has been
trained on equilibrated configurations for a variety of lat-
tice sizes and a large range of coupling parameters from
very smooth to coarse gauge-field fluctuations, and has
further been improved by finetuning on instanton con-
figurations. Our best model reaches an average relative
error in the action value of less than 0.2% with the exact
derivatives more accurately reproduced than in previous
parameterizations [25] across all lattice spacings. The
fidelity of the model for very smooth configurations is
particularly important for the GF because the gauge-field
fluctuations become very smooth at large flow time.

Fixed-point action simulations — The availability of
accurate gauge-field derivatives from our ML parame-
terization model makes the Hybrid Monte Carlo (HMC)
algorithm a suitable choice for simulations, where arti-
ficial conjugate momenta are introduced to update the
gauge links through molecular dynamics [36, 37]. The
simulations can be accelerated with a coarser choice of
time step when solving the equations of motion [38] us-
ing in particular the 4MN4FP variant of Omelyan inte-
gration scheme [39]. The GF for gauge links dUµ/dt =

−i(δAFP/δUµ)Uµ is solved using the third-order Runge-
Kutta integrator [30]. The ML network is memory inten-
sive; the largest lattice volumes we simulate are 184, for
which we can generate a new HMC trajectory in ∼ 4 min-
utes on one NVidia A100 SXM6 64GB GPU. With the
FP action, a smaller lattice volume is compensated by
coarser lattice spacing to yield near-continuum-physics
results in large enough physical volume. As a consistency
check of continuum predictions with the FP action, we
also simulate four-dimensional SU(3) gauge theory us-
ing either Wilson or tree-level Symanzik improved gauge
actions, measuring with Wilson GF, using the publicly
available openqcd package [40].
Scaling tests — The GF provides several physical

quantities that can be extracted. For example, a ref-
erence scale tc/a

2 can be set through the condition
t2c⟨E(tc)⟩ = c, where a common choice is c = 0.3 [30].
An alternative scale wd/a is set through the derivative
condition

t · d

dt

[
t2⟨E(t)⟩

]
t=td

= d, wd =
√
td, (9)

where d = 0.3 is also frequently used [41]. At finite lattice
spacing, the values of tc/a

2 and wd/a are determined by
the choice of bare coupling 6/g20 at which MC simulations
are performed, as well as the action discretization used
in the GF and the action density. Ratios of scales, e.g.,
tc/w

2
d or td/tc, are physical properties, which have a well-

defined value in the continuum limit independent of the
discretizations employed. The necessary consistency in
the continuum limit is a consequence of universality and
provides a stringent test of the FP simulation results.
In addition, the renormalizability of the GF action den-

sity E(t) allows one to define a scheme for a renormalized
coupling. For SU(3) gauge theory the GF scheme is de-
fined by

t2⟨E(t)⟩ .
=

3g2GF(t)

16π2
, (10)

where the GF renormalized coupling g2GF(t) runs with
the RG scale µ = 1/

√
8t. The β-function of the gauge

coupling µ2 · dg2GF/d(µ
2) = −t · dg2GF/dt can be mea-

sured directly from the GF at the desired value of the
coupling [42, 43]. For example, the choice c = 0.3 corre-
sponds to strong coupling g2GF ≈ 15.79. In the perturba-
tive regime, it can be compared with the known 3-loop
calculation [44].
Repeating the procedure for a set of gauge ensembles

at different bare couplings, the continuum limit is taken
as a2/tc → 0. We present in Figures 1 and 2 results
for the ratios t0.3/w

2
0.3 and t0.5/t0.3, and the β-function

t · dg2GF/dt at fixed g2GF ≈ 15.79, using FP, Wilson and
Symanzik action simulations. Further examples can be
found in the Supplemental Material. The leading lattice
artifacts are expected to be O(a2) for the Wilson data,
O(a4) for the Symanzik data, and O(g2a2) for the FP
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FIG. 1. Continuum-limit extrapolations for the ratios
t0.3/w

2
0.3 and t0.5/t0.3. Results from Wilson and Symanzik

MC simulations are shown using plaquette and clover dis-
cretizations of the action density.

data, and we show various possible fits (polynomial in
a2/t0.3) describing the continuum-limit extrapolations.1

The fit curves are shaded according to their Akaike In-
formation Criterion (AIC) weight [45], cf. Supplemental
Material.

The FP data for t0.3/w
2
0.3 and the β-function show

mild variation with lattice spacing, with artifacts smaller
than 1% at a ≃ 0.14 fm, using

√
t0.3 = 0.1679 fm [46]

to convert from lattice to physical scales. The ratio
t0.5/t0.3 has essentially no lattice-spacing dependence be-
low a ≲ 0.14 fm using the FP action. By comparison,
discretization errors with the Wilson or Symanzik action

1 We note that the leading O(a4) behaviour of the Symanzik data
is masked by the O(a2) discretization effects from the flow action
(Wilson) and the action density (plaquette and clover).
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FIG. 2. The β-function of the GF renormalized coupling at
g2GF = 15.79 with highly suppressed lattice artifacts in the
results for the FP compared to the Wilson and Symanzik
gauge actions.

and either plaquette or clover version of the action den-
sity E are much larger, hence finer lattice spacings and
larger lattice volumes are necessary to reach a scaling
window of O(a2) behavior while simultaneously keeping
finite-volume effects small.
To estimate systematic effects in the continuum ex-

trapolation, such as choosing the lattice-spacing range
over which to fit or the order of the fit polynomial in
a2/t0.3, we use a procedure based on the AIC, cf. Sup-
plemental Material.
The advantageous features of the FP action are visi-

ble in other choices of c and d, cf. Supplemental Mate-
rial for further examples. In each case, FP lattice arti-
facts are small, and in absolute value the FP continuum
predictions are accurate to per mille level. We summa-
rize a comparison of our continuum results using the FP,
Wilson or Symanzik action in Figure 3, for values of c
and d employed by other groups [47–54]. There is clear
consistency between FP, Wilson and Symanzik results.
Simulating on smaller coarser lattices, one can measure
precisely the continuum properties of the gauge theory
with the FP approach.
Conclusions and outlook — The explicit form of the

exact RG-improved FP action is unknown and must be
parameterized as a solution of the nonperturbative FP
equation. Our previous study [21] demonstrated that ML
networks can describe the FP action for four-dimensional
SU(3) gauge theory to much higher accuracy than pre-
viously possible [24, 25, 55]. In this work, we show that
the FP action defines a classically perfect gradient flow,
i.e., without tree-level lattice artifacts to all orders in
the lattice spacing. As a consequence, the FP action
successfully reduces lattice artifacts in gradient-flow ob-
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FIG. 3. The comparison of continuum predictions for four-
dimensional SU(3) gauge theory from MC simulations using
either the FP, Wilson or tree-level Symanzik improved lattice
action shows very good consistency. The β-function results
are rescaled by a factor of 50 for visibility.

servables, paving the way for various future applications.
As an RG-improved lattice action, it can be used in any
lattice-QCD study. One application is a new measure-
ment of the Λ-parameter of SU(3) pure gauge theory,
as a consistency check of recent results [51, 52, 56] which
differ from the older literature average [1], and as quanti-
tative input for the determination of the strong coupling
αS(MZ) through the decoupling of quarks [57]. Another
possibility is using ML to parameterize the FP Dirac op-
erator [28, 58, 59] and reduce cutoff effects in lattice-
QCD simulations with dynamical quarks. A third is us-
ing ML to construct quantum perfect actions [15], where
all lattice artifacts are removed. As a general lesson, our
study shows a new way in which ML can enhance particle
physics simulations.
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SUPPLEMENTAL MATERIAL

Simulation details and gradient-flow measurements

Here we provide information on the ensembles gen-
erated using MC simulations of the FP action. The
HMC integrator evolves up to trajectory length τ = 3.0
using Nτ = 32 steps for all ensembles. We use the
4MN4FP variant of Omelyan integration scheme as de-
scribed in [39], generating Ntraj trajectories.

In Table I we provide for each ensemble the linear lat-
tice size Nlatt, the FP action β-value, and the number of
thermalized trajectories Ntraj. We use symmetric lattice
volumes N4

latt throughout. In addition, we list the mea-
sured gradient-flow observables t0.3, t0.4, t0.5 and w0.3 in
lattice units. For the gradient flow we use the third-order
Runge-Kutta scheme [30] with timestep ∆tf = 0.01 on
all ensembles. We also list in Table I the lattice volume
L and lattice spacing a in physical units, computed using√
t0.3 = 0.1679 fm [46].

In Table II we compile the FP measurements of flow-
time ratios tc/t0.3 and tc/w

2
c for c = 0.3, 0.4, 0.5 and the

β-function at renormalized coupling g2GF = 15.79 which
corresponds to a flow time of t0.3.

Autocorrelation times τc of the action density for
c = 0.3, 0.4, 0.5 are estimated through single exponential
fits of the autocorrelation function of t2cE(tc), combining
Nchains independent runs of unequal length, the shortest
of which has length N∗

s , cf. Table III. Gradient-flow mea-
surements are made every Nskip = 32 trajectories, except
for the ensemble marked † with more frequent measure-
ments at Nskip = 4. The measurements in ensembles
at β = 2.80, 2.75, 2.65 show no significant autocorrela-
tions, which is why the corresponding entries are missing
from the Table. Finally, the autocorrelation times, as

tabulated in Table III, are reexpressed in units of HMC
trajectories.
The autocorrelation times are in general short, growing

somewhat towards finer lattice spacing, but are signifi-
cantly less than 32 trajectories. In the statistical analy-
sis, gradient-flow measurements are further blocked with
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TABLE I. Overview of parameters for the FP ensembles used in this work together with a selection of gradient-flow scales in
lattice units. The linear lattice extent L and the lattice spacing a are obtained using

√
t0.3 = 0.1679 fm [46].

Nlatt β Ntraj t0.3/a
2 w0.3/a t0.4/a

2 t0.5/a
2 L/fm a/fm

10 2.65 51232 1.2321(27) 1.1455(15) 1.6526(37) 2.0342(49) 1.5126(16) 0.15126(16)

10 2.75 76128 1.5709(35) 1.2848(19) 2.1000(50) 2.5843(68) 1.3396(15) 0.13396(15)

16 2.75 68256 1.5702(13) 1.28442(67) 2.0989(18) 2.5822(24) 2.1438(9) 0.13399(6)

14 2.80 79392 1.7655(19) 1.3606(10) 2.3594(30) 2.9034(39) 1.7690(10) 0.12636(7)

14 2.85 74400 1.9798(26) 1.4394(13) 2.6448(39) 3.2553(51) 1.6706(11) 0.11933(8)

14 2.90 82368 2.2028(31) 1.5171(14) 2.9417(46) 3.6211(62) 1.5837(11) 0.11312(8)

16 2.90 81600 2.2085(25) 1.5192(12) 2.9493(37) 3.6299(48) 1.8077(10) 0.11298(6)

14 2.95 81312 2.4687(44) 1.6067(19) 3.2980(65) 4.0604(87) 1.4960(14) 0.10686(10)

16 2.95 70336 2.4667(33) 1.6062(15) 3.2954(51) 4.0579(65) 1.7104(11) 0.10690(7)

16 3.00 69696 2.7433(43) 1.6923(19) 3.6631(67) 4.5082(87) 1.6219(13) 0.10137(8)

16 3.05 69600 3.0379(48) 1.7809(19) 4.0571(76) 4.995(10) 1.5413(13) 0.09633(8)

18 3.05 76896 3.0435(38) 1.7828(16) 4.0651(59) 5.0050(81) 1.7323(11) 0.09624(6)

18 3.10 79808 3.3840(52) 1.8799(20) 4.5197(80) 5.565(11) 1.6429(13) 0.09127(7)

18 3.15 66688 3.7456(76) 1.9777(28) 5.003(11) 6.162(16) 1.5615(16) 0.08675(9)

18 3.20 68608 4.1508(83) 2.0811(30) 5.542(13) 6.823(18) 1.4834(14) 0.08241(8)

TABLE II. FP results for gradient-flow observables. The β-function in the last column is given at the renormalized coupling
g2GF = 15.79 which corresponds to a flow time of t0.3.

Nlatt β t0.3/w
2
0.3 t0.4/w

2
0.4 t0.5/w

2
0.5 t0.4/t0.3 t0.5/t0.3 β−fn

10 2.65 0.93909(81) 1.02812(89) 1.07663(97) 1.34137(46) 1.6511(10) 14.401(15)

10 2.75 0.9518(11) 1.0319(12) 1.0769(12) 1.33682(59) 1.6451(12) 14.740(21)

16 2.75 0.95177(35) 1.03223(38) 1.07802(43) 1.33672(19) 1.64455(43) 14.7399(69)

14 2.80 0.95372(56) 1.03181(61) 1.07686(66) 1.33635(30) 1.64453(66) 14.798(11)

14 2.85 0.95556(66) 1.03158(68) 1.07618(72) 1.33592(34) 1.64428(75) 14.847(13)

14 2.90 0.95706(70) 1.03175(75) 1.07602(76) 1.33550(38) 1.64385(79) 14.885(14)

16 2.90 0.95696(54) 1.03216(59) 1.07645(60) 1.33542(30) 1.64354(64) 14.882(11)

14 2.95 0.95640(79) 1.03112(84) 1.07544(89) 1.33586(41) 1.64458(91) 14.875(15)

16 2.95 0.95615(65) 1.03066(69) 1.07436(74) 1.33601(34) 1.64522(77) 14.870(13)

16 3.00 0.95784(76) 1.03229(83) 1.07644(82) 1.33520(41) 1.64330(88) 14.907(15)

16 3.05 0.95780(82) 1.03129(86) 1.07502(95) 1.33550(43) 1.64425(94) 14.911(16)

18 3.05 0.95749(67) 1.03108(69) 1.07495(73) 1.33562(34) 1.64446(75) 14.904(13)

18 3.10 0.95747(75) 1.03109(80) 1.07496(81) 1.33559(40) 1.64445(88) 14.904(15)

18 3.15 0.95750(92) 1.0303(10) 1.0739(10) 1.33581(49) 1.6451(11) 14.909(18)

18 3.20 0.95841(99) 1.0316(11) 1.0755(12) 1.33519(53) 1.6437(12) 14.927(19)
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TABLE III. Statistics and autocorrelation times τc of t2cE(tc)
in units of HMC trajectories for the FP ensembles with
a < 0.12 fm. The ensembles are assembled from Nchains in-
dependent chains of unequal length, the shortest of which
has length N∗

s . Gradient-flow measurements are done every
Nskip = 32 trajectories, except for the ensemble marked †
with Nskip = 4. Autocorrelation times for ensembles with
β ≤ 2.800 are too short to be measured accurately.

β Nlatt Nchains N∗
s τ0.3 τ0.4 τ0.5

2.650 10 2 25536 - - -

2.750 10 3 25280 - - -

2.750 16 24 2656 - - -

2.800 14 8 9408 - - -

2.850† 14 1 10844 7.1 7.6 7.8

2.850 14 8 2496 6.9 6.4 6.2

2.900 14 8 10176 9.3 9.7 9.9

2.900 16 16 3776 8.8 9.3 9.4

2.950 14 8 9888 12.8 13.3 13.4

2.950 16 16 2496 9.4 9.9 10.2

3.000 16 16 3520 14.7 15.2 15.5

3.050 16 16 3168 11.3 12.0 12.5

3.050 18 28 2688 14.2 15.1 15.6

3.100 18 29 2720 16.4 17.0 17.6

3.150 18 32 1632 19.8 20.7 21.3

3.200 18 32 2112 17.3 19.2 20.7
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Continuum limits and AIC averaging procedure

We perform the continuum limit for each dimensionless
quantity z by fitting the results from the simulations with
polynomials of order n in a2/t0.3. For the FP results
we use n = 0, 1, and 2, while for the results from the
Wilson and tree-level Symanzik improved action we use
n = 1, 2, and 3. The results obtained with the plaquet-
te and clover discretization of the action density E are
treated as independent and we do not perform combined
continuum limits.

The continuum limits are illustrated in Figures 1, 2,
and 4 where we show the results of the simulations to-
gether with a selection of (bootstrapped) polynomial fits
indicating the included data points by the extent of the
lines and shaded according to their Akaike Information
Criterion (AIC) weight [45] calculated as follows. For
each possible fit i given ntot data of which n are fitted
using k parameters, the weight ωi for the continuum limit
zi is given by

AICi = χ2
i + 2k + 2(ntot − n), (11)

ωi = exp(−AICi/2). (12)

The AIC weights are also used to estimate systematic
effects in the continuum extrapolation as follows. The
probability distribution function (PDF) of z is built from
a weighted combination of each distribution of zi parame-
terized as a normal distribution N (zi, σi). The median of
the resulting PDF is taken as the final result, and the 16th

and 84th percentiles of the cumulative distribution func-
tion as (possibly asymmetric) uncertainty ranges. This
procedure combines both statistical and systematic er-
rors in the extrapolation. In Figures 5 and 6 we show
the PDFs for each continuum limit and quantity. The
multipeak structures seen in the PDFs reflect the fact
that at the given high statistical accuracy the continuum
extrapolations in general depend on the order of the fitted
polynomial. As a consequence, the total error is domi-
nated by the systematics of the continuum extrapolation
as pointed out in the introduction. The final results from
the continuum extrapolations are collected in Table IV.

In comparing the results, we calculate the weighted
average PDFavg from the individual PDFs using

PDFavg =

∑
k ωkPDFk∑

k ωk
, (13)

where the index k runs over the five cases: FP, Wilson
(plaquette), Wilson (clover), Symanzik (plaquette), and
Symanzik (clover). PDFk denotes the respective individ-
ual PDF. Since the data from the plaquette and the clover
definition of the action density for either the Wilson or
the Symanzik action are highly correlated, we follow a
conservative approach and suppress these contributions
by a factor of ωk = 1/2, while ωFP = 1. Finally, Figure 3
shows the deviation zk−zavg, where zavg is the median of
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FIG. 4. Continuum-limit extrapolations of FP, Wilson and
Symanzik action measurements, for the ratios t0.4/t0.3 (top),
t0.4/w

2
0.4 (middle), and t0.5/w

2
0.5 (bottom). Lattice artifacts

are small with the FP action and gradient flow. The Wil-
son and Symanzik actions have much larger cutoff effects for
both the clover and plaquette discretizations of E. A vari-
ety of polynomial fits with different ranges and highest power
(a2/t0)

n are shown, shaded according to their respective AIC
weight.



11

14.70 14.75 14.80 14.85 14.90 14.95 15.00 15.05
 (g2 = 15.79)

0

5

10

15

20

25

30

35
PD

F
FP
Wilson (plaquette)
Wilson (clover)
Symanzik (plaquette)
Symanzik (clover)
Weighted average

1.640 1.642 1.644 1.646 1.648
 t0.5/t0.3

0

500

1000

1500

2000

PD
F

FP
Wilson (plaquette)
Wilson (clover)
Symanzik (plaquette)
Symanzik (clover)
Weighted average

1.332 1.333 1.334 1.335 1.336 1.337 1.338 1.339
 t0.4/t0.3

0

200

400

600

800

1000

1200

PD
F

FP
Wilson (plaquette)
Wilson (clover)
Symanzik (plaquette)
Symanzik (clover)
Weighted average

FIG. 5. Comparison of various PDFs for the quantity β(g2 =
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PDFavg, for all five cases, together with their respective errors.
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TABLE IV. Continuum values of gradient-flow observables using AIC model averaging with fits up to a6-terms (Wilson and
Symanzik) and up to a4-terms (FP).

Observable FP Wilson clover Wilson plaquette Symanzik clover Symanzik plaquette Weighted average

t0.3/w
2
0.3 0.9553(+46

−32) 0.9567(+13
−7) 0.9582(+12

−13) 0.9594(+21
−12) 0.9595(+18

−22) 0.9579(+24
−35)

t0.4/w
2
0.4 1.0305(+11

−9) 1.0277(+19
−11) 1.0274(+20

−10) 1.0293(+29
−15) 1.0302(+36

−17) 1.0297(+19
−25)

t0.5/w
2
0.5 1.0726(+25

−11) 1.0715(+20
−21) 1.0700(+24

−11) 1.0718(+30
−15) 1.0718(+40

−17) 1.0719(+28
−21)

t0.4/t0.3 1.3356(+15
−12) 1.3352(+10

−12) 1.3360( +7
−11) 1.3345(+16

−8) 1.3358(+12
−23) 1.3356(+12

−15)

t0.5/t0.3 1.6443(+3
−3) 1.6456(+20

−30) 1.6464(+10
−20) 1.6440(+26

−21) 1.6457(+19
−46) 1.6445(+25

−18)

β(g2 = 15.79) 14.853(+130
−71) 14.906(+26

−12) 14.928(+20
−22) 14.960(+40

−21) 14.972(+20
−26) 14.933(+48

−92)
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