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The area of spheres in the Brownian plane

Jean-François Le Gall∗

Université Paris-Saclay

Abstract

We consider the area of spheres centered at the distinguished point in the Brownian
plane. As a function of the radius, the resulting process has continuously differentiable
sample paths. Furthermore, the pair consisting of the process and its derivative is time-
homogeneous Markov and satisfies an explicit stochastic differential equation.

1 Introduction

The Brownian plane (BP,D∞) is a random locally compact metric space, which is homeo-
morphic to the plane, and appears as the scaling limit of various classes of random planar
maps. In particular, the Brownian plane has been shown [3, 5] to be the scaling limit of
the infinite random lattices called the uniform infinite planar triangulation (UIPT) and
the uniform infinite planar quadrangulation (UIPQ), which have been extensily studied.
The Brownian plane comes with a distinguished point ρ and a volume measure denoted by
Vol(·), which coincides with the Hausdorff measure associated with an appropriate gauge
function (this follows from the results of [12] and the coupling between the Brownian
plane and the Brownian sphere).

In this work, we are interested in the profile of distances from ρ, which is the σ-finite
measure Γ on R+ defined by setting

Γ(A) :=

∫

BP

1A(D∞(ρ, a)) Vol(da), (1)

for every Borel subset A of R+.

Proposition 1. The measure Γ has a continuously differentiable density with respect

to Lebesgue measure on R+. We denote this density by (L∞
t )t∈R+ and its derivative by

(L̇∞
t )t∈R+ . Moreover we have L∞

0 = L̇∞
0 = 0, and L∞

t > 0 for every t > 0, a.s.

Since, for every t > 0,

L∞
t = lim

ε→0

1

ε
Vol({a ∈ BP : t ≤ D∞(ρ, a) ≤ t+ ε})

it is natural to interpret L∞
t as the area of the sphere of radius t centered at ρ in BP. It

is essentially obvious that the process (L∞
t )t≥0 is not Markovian: for t > 0, the derivative

L̇∞
t is a function of the past (L∞

s )0≤s≤t that gives more information on the future (L∞
s )s≥t

than the sole knowledge of the present L∞
t .

Theorem 2. The process (L∞
s , L̇

∞
s )s≥0 is a time-homogeneous Markov process.
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The other main contribution of the present work is to show that this Markov process
satisfies an explicit stochastic differential equation. Before stating this result, we need to
introduce some notation. For every t > 0, we let pt be the (continuous) density at time t of
the stable Lévy process with index 3/2 and no negative jumps, whose law is characterized
by its Laplace exponent ψ(λ) =

√
2/3 λ3/2. Alternatively, we can characterize pt by its

Fourier transform
∫

R

eiux pt(x) dx = exp(−c0t |u|3/2 (1 + i sgn(u))),

where c0 = 1/
√

3 and sgn(u) = 1{u>0} − 1{u<0}. Then x 7→ pt(x) is strictly positive,
infinitely differentiable and has bounded derivatives. We write p′

t for the derivative of this
function.

Let (Ft)t≥0 denote the completion of the canonical filtration of (L∞
t )t≥0. Recall that a

linear Brownian motion B is an (Ft)-Brownian motion if it is adapted and has independent
increments with respect to the filtration (Ft)t≥0.

Theorem 3. Set, for every t > 0 and x ∈ R,

h(t, x) = −8t
p′

t(−x/2)

pt(−x/2)
+

4

3

x2

t
.

Then for every t > 0 and x ∈ R, we have h(t, x) > 0 and

∫ t

0
h(L∞

s , L̇
∞
s ) ds < ∞, a.s.

There exists an (Ft)-Brownian motion (Bt)t≥0 such that (L̇∞
t )t≥0 is a semimartingale

satisfying the equation

dL̇∞
t = 4

√
L∞

t dBt + h(L∞
t , L̇

∞
t ) dt. (2)

Since we have also trivially
dL∞

t = L̇∞
t dt (3)

we can view (2) and (3) as a system of stochastic differential equations satisfied by the
pair (L∞

s , L̇
∞
s )s≥0. One may obviously ask for uniqueness of the solution of this system.

If ε > 0 is fixed, we know by Proposition 1 that L∞
ε > 0 a.s. and then the classical

uniqueness results for stochastic differential equations under Lipschitz conditions show
that the solution starting at time ε from (L∞

ε , L̇
∞
ε ) is unique up to time inf{t ≥ ε : L∞

t =
0}. However the latter hitting time of 0 is infinite a.s. (by Proposition 1 again) and so
we obtain that (L∞

t )t≥ε is the unique solution of the system (2) and (3) that starts from
(L∞

ε , L̇
∞
ε ) at time ε. On the other hand, this argument does not rule out the possibility

that there may exist other solutions starting from (0, 0) at time 0 (see [7] for examples of
very similar systems where uniqueness starting from (0, 0) may fail).

As discussed in the introduction of [14], the functions pt and p′
t have an explicit ex-

pression in terms of the classical Airy function Ai. In particular,

pt(x) = 6−1/3 t−2/3 A(6−1/3t−2/3x), (4)

where
A(x) = −2 e2x3/3

(
xAi(x2) + Ai′(x2)

)
. (5)

The function x 7→ A(−x) is the density of the so-called map-Airy distribution (see [1,
Definition 1]). From these formulas (and the Airy equation Ai′′(x) = xAi(x)), one derives
the following expression for the drift h in (2). We have

h(t, x) = −8 × 6−1/3t1/3 κ
(
6−1/3t−2/3x/2

)
, (6)
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where

κ(x) =
Ai(x2)

xAi(x2) + Ai′(x2)
.

There is an obvious similarity between Theorems 2 and 3 and results obtained in [13]
and [14] concerning local times of super-Brownian motion, or equivalently of Brownian
motion indexed by the Brownian tree. In particular, Theorem 1 in [14] gives an equation
for these local times that is analogous to (2), but with a different drift function (compare
the preceding formula for h(t, x) with the analogous formulas for g(t, x) in the introduction
of [14]). Actually, the results derived in [13] and [14] are a key ingredient of the proof of
Theorem 3. Let us briefly explain how one can relate the process (L∞

t )t∈R to the local
times of super-Brownian motion.

To this end, consider a super-Brownian motion (Xt)t≥0 with initial value X0 = δ0, and
define its local times (Lx)x∈R as the continuous density of the total occupation measure∫ ∞

0 Xr dr. Also let L̇x stand for the derivative of Lx (which exists for x 6= 0) and write
R := sup{x > 0 : Lx > 0}. Then one can couple X and the Brownian plane BP in such a
way that we have L∞

t = LR−t for all sufficiently small t ≥ 0 (see the proof of Proposition 1
and Section 2.2 below). As a consequence of this coupling, the finite-dimensional marginal
distributions of the process (λ−3LR−λx)x≥0 converge when λ ↓ 0 to the finite-dimensional
marginal distributions of (L∞

x )x≥0 (Proposition 4).
An obvious idea is then to study the time-reversed process (LR−x, L̇R−x)x≥0 from the

results of [14] providing a stochastic differential equation for (Lx, L̇x)x≥0. Unfortunately,
it does not seem easy to apply the known results for the time reversal of Markov processes
to this problem.

For this reason, we follow a different route based on Proposition 18 in [14], which
expresses the super-Brownian local times (Lx)x≥0 in terms of a (time-changed) diffusion
process (Zt)t≥0 solving the equation

dZt = 4 dBt + b(Zt) dt, (7)

where, for every z ∈ R,

b(z) = 8
p′

1(z/2)

p1(z/2)
− 2

3
z2. (8)

More precisely, we have, for every s ≥ 0,

Lτ(s) = L0 exp
( ∫ s

0
Zr dr

)

where τ(s) is the time change τ(s) = inf{x ≥ 0 :
∫ x

0 (Ly)−1/3dy ≥ s}. The process (Zt)t≥0

is recurrent and reversible with respect to its unique invariant probability measure, which
has a negative first moment (Lemma 5). One can expect to use this reversibility property
to investigate the time-reversed process (LR−x)x≥0. Still this involves a number of tech-
nicalities, essentially due to the fact that using the preceding formula for Lτ(s) requires
reversing Z at (random) times of the form sup{s ≥ 0 :

∫ s
0 Zr dr ≥ −a} (Proposition 6).

This line of reasoning eventually leads to Proposition 8, which shows that L∞
x has the

same distribution as exp(
∫ τ∗

x
0 W ∗(s) ds), where (W ∗

t )t∈R is a version (indexed by R) of
the diffusion process Z, and (τ∗

x)x≥0 is the appropriate time change. One can then apply
standard tools of stochastic calculus to derive equation (2) in Theorem 3.

It is interesting to compare the results of the present work to the paper [6] studying
hulls in the Brownian plane. The hull of radius r > 0 is the complement of the unique
unbounded connected component of the complement of the closed ball of radius r centered
at ρ (informally, the hull is obtained by filling in the bounded holes in the ball). One
can define the boundary size Ur of the hull of radius r, and one of the main results of
[6] identifies the process (Ur)r>0 as a time-reversed continuous-state branching process
“starting from +∞ at time −∞” and conditioned to become extinct at time 0. In contrast
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with (Ur)r>0, the process (L∞
r )r>0 is not Markov. However, it is much smoother, since

(Ur)r>0 is only càdlàg with negative jumps (jumps correspond to times where the hull
“swallows” connected components of the complement of the ball).

The paper is organized as follows. Section 2 introduces our main objects of interest,
namely the Brownian plane, super-Brownian motion, and Brownian snake excursions.
We use the construction of the Brownian plane in [6] to get a coupling between the
Brownian plane and super-Brownian motion, and then to derive Proposition 1 from known
results about super-Brownian motion. Section 3 is mainly devoted to deriving certain time
reversal properties and hitting distributions for the (stationary or not stationary) solution
of (7). In Section 4, we use the results of [14] and the preceding coupling to identify the
distribution of (L∞

t , L̇
∞
t )t≥0 with that of another pair of processes that is constructed from

a solution of (7) indexed by R via a time-change transformation (Proposition 8). Finally,
in Section 5, we derive Theorems 2 and 3 from this representation.

2 Preliminaries

2.1 Brownian snake excursions and super-Brownian motion

In this section, we recall basic facts about the Brownian snake excursions and super-
Brownian motion (we refer to [11] for more details). We start by briefly introducing
the formalism of snake trajectories. A (one-dimensional) finite path w is a continuous
mapping w : [0, ζ] −→ R, where ζ = ζ(w) ∈ [0,∞) is called the lifetime of w. The space
W of all finite paths is equipped with the distance

dW(w,w′) = |ζ(w) − ζ(w′)| + sup
t≥0

|w(t ∧ ζ(w)) − w′(t ∧ ζ(w′))|.

We denote the endpoint of the path w by ŵ = w(ζ(w)). For every x ∈ R, we set Wx =
{w ∈ W : w(0) = x}. The trivial element of Wx with zero lifetime is identified with the
point x of R.

A snake trajectory with initial point x is a continuous mapping s 7→ ωs from R+ into
Wx which satisfies the following two properties:

(i) We have ω0 = x and the number σ(ω) := sup{s ≥ 0 : ωs 6= x}, called the duration of
the snake trajectory ω, is finite (by convention σ(ω) = 0 if ωs = x for every s ≥ 0).

(ii) For every 0 ≤ s ≤ s′, we have ωs(t) = ωs′(t) for every t ∈ [0, min
s≤r≤s′

ζ(ωr)] (Snake

property).

We write S for the set of all snake trajectories. If ω ∈ S, the occupation measure of ω
is the finite measure Oω on R defined by

〈Oω , ϕ〉 =

∫ σ(ω)

0
ϕ(ω̂s) ds.

We will write
R(ω) = sup(supp Oω), G(ω) = inf(supp Oω),

where supp Oω denotes the topological support of Oω.
Let x ∈ R. The Brownian snake excursion measure Nx is the σ-finite measure on

{ω ∈ S : ω0 = x} that is characterized by the following two properties: Under Nx(dω),

(i) the distribution of the lifetime function (ζωs)s≥0 is the Itô measure of positive ex-
cursions of linear Brownian motion, normalized so that Nx(sups≥0 ζωs > ε) = 1

2ε , for
every ε > 0;

(ii) conditionally on (ζωs)s≥0, the function (ω̂s)s≥0 is a Gaussian process with mean x
and covariance function K(s, s′) = mins∧s′≤r≤s∨s′ ζωr .
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We record the following formula [11, Chapter VI]. For every a > x, we have

Nx(R > a) =
3

2(a− x)2
. (9)

By results of [4] (see also [2] for a weaker version), the occupation measure Oω has
Nx(dω) a.e. a continuously differentiable density, which we denote by (ℓy(ω))y∈R. Since
Oω puts no mass on (R(ω),∞), both ℓy(ω) and its derivative vanish at y = R(ω).

Let us now turn to super-Brownian motion (we refer to [16] for more details about
this process). We let (Xt)t≥0 be a one-dimensional super-Brownian motion started at
X0 = δ0 — in view of the Brownian snake representation, we assume that the branching
mechanism of X is Ψ(λ) = 2λ2. The “total occupation measure” O is defined by

O =

∫ ∞

0
Xt dt

and the local time process (Lx)x∈R is the continuous density of the random measure
O, which exists and is continuously differentiable on (−∞, 0) ∪ (0,∞), by [18]. We set
R := sup{x ≥ 0 : Lx > 0} = sup(supp O). By results of [15], we have Lx > 0 for every
x ∈ [0, R), a.s.

By [11, Chapter IV], we can construct the process X from a Poisson point measure∑
i∈I δωi

with intensity N0, in such a way that

O =
∑

i∈I

Oωi
.

Write R(ωi) = sup(supp Oωi
). Using (9), we see that a.s. there is a unique i∗ ∈ I such

that
R = sup

i∈I
R(ωi) = R(ωi∗

)

and moreover we can find a (random) ε ∈ (0, R) such that

sup
i∈I\{i∗}

R(ωi) ≤ R− ε.

As a consequence, the restriction of O to [R− ε,R] coincides with the restriction of Oωi∗

to the same interval, and we have

Lx = ℓx(ωi∗
) , ∀x ∈ [R − ε,R]. (10)

2.2 Areas of spheres in the Brownian plane

The Brownian plane was introduced in [5] and further discussed in [6] and we refer to these
two papers for additional information. It is convenient to view the Brownian plane as a
pointed measure metric space (BP,D∞,Vol, ρ) where D∞ is the distance on BP, Vol stands
for the volume measure on BP and ρ is the distinguished point. The Brownian plane enjoys
the following remarkable scale invariance property: For every λ > 0, (BP, λD∞, λ

4Vol, ρ)
has the same distribution as (BP,D∞,Vol, ρ).

Recall from (1) the definition of the profile of distances Γ in BP. The scale invariance
property entails that, for every λ > 0, the scaled measure Γ(λ) defined by Γ(λ)(A) =
λ4Γ(λ−1A) has the same distribution as Γ.

Let us prove Proposition 1 which was stated in Section 1.

Proof of Proposition 1. We rely on the construction of the Brownian plane in [6, Section
3.2]. This construction involves a nine-dimensional Bessel process X = (Xt)t≥0 started
at 0, and, conditionally on X, two independent Poisson point measures N∞ and N ′

∞ on
R+ × S with intensity

2 1{G(ω)>0}dtNXt(dω),
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in such a way that the profile of distances Γ is the sum of the occupation measures of all
atoms of N∞ and N ′

∞ (we refer to [6] for more details).
To make the connection with super-Brownian motion, we recall the notation introduced

at the end of Section 2.1 and we use the conditional distribution of ωi∗
given R(ωi∗

) = r
(for any r > 0). This conditional distribution is N0(· | R = r) and is described in [6,
Theorem 2.1]: it involves the nine-dimensional Bessel process X and, conditionally on X,
two independent Poisson point measures N and N ′ on R+ × S with intensity

2 1[0,τr ](t)1{G(ω)>0}dtNXt(dω).

where τr = sup{t ≥ 0 : Xt = r}. In this description, the measure A 7→ ∫
1A(R −

x) Oωi∗
(dx) is equal to the sum of the occupation measures of all atoms of N and N ′.

If we compare the two representations described above (using also Lemma 3.3 in [6]
to see that atoms of N∞ and N ′

∞ in [1,∞) × S do not contribute to the values of Γ
near 0), we easily get that we can couple ωi∗

and a Brownian plane (BP,D∞) in such a
way that there is a (random) ε′ > 0 such that the restriction of the profile of distances
Γ to [0, ε′] is equal to the restriction of the measure A 7→ ∫

1A(R − x) Oωi∗
(dx) to the

same interval. However, we know that the latter measure has a continuously differentiable
density (equal to ℓR−x(ωi∗

)) on [0, ε′] and that this density vanishes at 0 together with
its derivative, and is positive on (0, ε ∧ ε′] thanks to (10). This shows that the profile
of distances Γ has a continuously differentiable density on [0, ε ∧ ε′], which vanishes at 0
together with its derivative and is positive on (0, ε∧ ε′]. Proposition 1 now follows by the
scale invariance of the profile of distances.

The scale invariance of the random measure Γ readily implies a similar scale invariance
property for its density (L∞

x )x≥0: for every λ > 0 and x ≥ 0, L∞
λx has the same distribution

as λ3L∞
x . We also notice that E[

∫ 1
0 L

∞
x dx] = E[Γ([0, 1])] is equal to the mean volume of

the unit ball in the Brownian plane, which is finite (we can bound this volume by the
volume of the hull of radius 1, which has a finite first moment by [6]). It follows that
E[L∞

x ] = c x3, with a constant c ∈ (0,∞) (one can in fact compute c = 8/21, but we will
not need this).

Proposition 4. The finite-dimensional marginal distributions of the process (λ−3LR−λx)x≥0

converge when λ ↓ 0 to the finite-dimensional marginal distributions of (L∞
x )x≥0.

Proof. We use the preceding coupling obtained in the proof of Proposition 1, under which
we have

L∞
x = ℓR−x(ωi∗

) , ∀x ∈ [0, ε′].

By combining this with (10) we get

L∞
x = LR−x , ∀x ∈ [0, ε ∧ ε′]. (11)

Then, if 0 ≤ x1 < x2 < · · · < xp, and g is a bounded continuous function on R
p, we get

E[g(λ−3LR−λx1 , . . . , λ
−3LR−λxp

)] − E[g(λ−3L∞
λx1

, . . . , λ−3L∞
λxp

)] −→
λ→0

0,

by (11) and dominated convergence. On the other hand, the scale invariance of the
Brownian plane shows that, for every λ > 0,

E[g(λ−3L∞
λx1

, . . . , λ−3L∞
λxp

)] = E[g(L∞
x1
, . . . , L∞

xp
)].

The desired result follows.
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3 The time reversal argument

We consider the one-dimensional stochastic differential equation

dZs = 4 dBs + b(Zs) ds, (12)

where B stands for a linear Brownian motion and the function b(z) was defined in (8).
From [14, Section 6], we know that the solution to (12) is a recurrent diffusion process
whose unique invariant probability measure is π(dx) = θ(x) dx where

θ(x) = Cp1(x/2)2 exp(−x3

36
),

the function p1 is given by (4), and C is the appropriate normalizing constant. It will be
convenient to introduce a collection of probability measures (Px)x∈R such that, under Px,
the process (Zs)s≥0 solves (12) with initial value Z0 = x.

We also introduce another process (Ws)s∈R indexed by R, which is distributed under
the probability measure P as the stationary solution to (12): for every t ∈ R, the process
(Wt+s)s≥0 is distributed as the solution to (12) with initial distribution π. It is then well
known that (Ws)s∈R is time reversible, meaning that, for every t ∈ R, (Wt−s)s∈R has the
same distribution as (Ws)s∈R (see e.g. [9, Section 11]).

Lemma 5. We have
∫
R

|x|π(dx) < ∞ and
∫
R
xπ(dx) < 0.

Proof. The first assertion is immediate since the function x 7→ p1(x/2) is bounded. Let us
prove the second assertion. In the proof that follows, c denotes a positive constant that
may change from line to line. From formula (4), we get

p1(x/2) = cA
(
6−1/3 x

2

)
,

with A(x) = −2 e2x3/3 (xAi(x2) + Ai′(x2)). It follows that

∫

R

xπ(dx) = c

∫

R

xA
(
6−1/3 x

2

)2
exp(−x3

36
) dx

= c

∫

R

xA(x)2 exp(−4x3

3
) dx

= c

∫

R

x (xAi(x2) + Ai′(x2))2 dx

Then,
∫

R

x (xAi(x2) + Ai′(x2))2 dx

=

∫ ∞

0
x (xAi(x2) + Ai′(x2))2 dx−

∫ ∞

0
x (−xAi(x2) + Ai′(x2))2 dx

= 4

∫ ∞

0
xAi(x2) Ai′(x2) dx

which is negative since the function Ai is positive and monotone decreasing on [0,∞).

From Lemma 5 and the ergodic theorem we have P a.s.,

lim
t→∞

∫ t

0
Wu du = −∞ , lim

t→−∞

∫ 0

t
Wu du = −∞.

We set

D :=
{
s ∈ R : ∀t ∈ (−∞, s),

∫ s

t
Wu du < 0

}
,

D∗ :=
{
s ∈ R : ∀t ∈ (s,∞),

∫ t

s
Wu du < 0

}
.

7



For every x ∈ R, we also set

γ(x) := Px

(
∀t > 0,

∫ t

0
Zu du < 0

)
.

It is then easy to verify that γ(x) > 0 if and only if x < 0.
In the remaining part of this section, we fix a > 0 (many of the random quantities that

we will introduce will depend on a, although this will not be apparent in the notation).
For every t ∈ R, we set

Tt := sup
{
s ∈ [t,∞) :

∫ s

t
Wu du ≥ −a

}
.

By construction, P a.s., we have Tt < ∞,
∫ Tt

t Wu du = −a and, for every r > Tt,∫ r
t Wu du < −a, so that

∫ r
Tt
Wu du < 0, and thus Tt ∈ D∗. In particular we must have

WTt ≤ 0.
Similarly, we set, for every t ∈ R,

T ∗
t = inf

{
s ∈ (−∞, t] :

∫ t

s
Wu du ≥ −a

}
.

Then T ∗
t ∈ D and we have again WT ∗

t
≤ 0. The mapping D ∋ t 7→ Tt ∈ D∗ is a bijection

from D onto D∗, whose inverse is D∗ ∋ s 7→ T ∗
s ∈ D.

We then observe that the set D̃ := {t ∈ D : Wt < 0 and WTt < 0} is open. Indeed,
suppose that s ∈ D̃. Then, for ε > 0 small enough (such that Wr < 0 for r ∈ [s, s + ε]),
it is immediate that

∫ s+ε
t Wu du < 0 for every t < s+ ε, so that s+ ε ∈ D and Ws+ε < 0.

Furthermore, a simple argument shows that Ts+ε → Ts as ε ↓ 0, so that we have also
WTs+ε

< 0 for ε > 0 small enough. It follows that s + ε ∈ D̃ if ε is small enough. A

similar argument, left to the reader, shows that s − ε ∈ D̃ if ε is small enough, and we
have proved that D̃ is open.

We can also set D̃∗ := {s ∈ D∗ : Ws < 0 and WT ∗

s
< 0}. A symmetric argument shows

that D̃∗ is open and the mapping t 7→ Tt is a bijection from D̃ onto D̃∗.
Suppose that s ∈ D̃. Then

∫ t+ε

t
Wu du ∼

ε→0
εWt

and ∫ Tt+ε

Tt

Wu du ∼
ε→0

(Tt+ε − Tε)WTt

and since
∫ Tt

t Wu du = −a =
∫ Tt+ε

t+ε Wu du, it follows that

(Tt+ε − Tt)WTt ∼
ε→0

εWt.

Hence the mapping r 7→ Tr is differentiable at t, and its derivative is Wt/WTt .
Let g be a measurable function from R+ into R+, let Φ be a nonnegative measurable

function on the space W of all finite paths, and let F be a nonnegative measurable
function on the space C(R+,R) of all continuous functions from R+ into R+. The change
of variables s = Tt (t = T ∗

s ) shows that

E

[ ∫ ∞

−∞
dt g(t) |Wt| 1

D̃
(t) Φ(WTt−u : 0 ≤ u ≤ Tt − t)F (WTt+r : r ≥ 0)

]

= E

[ ∫ ∞

−∞
ds g(T ∗

s ) |Ws| 1
D̃∗

(s) Φ(Ws−u : 0 ≤ u ≤ s− T ∗
s )F (Ws+r : r ≥ 0)

]
. (13)

We can in fact replace 1
D̃

(t) by 1D(t) in the LHS of (13), and similarly 1
D̃∗

(s) by 1D∗(s)
in the RHS of (13). The point is that we have both a.s.

∫ ∞

−∞
1{Wt=0} dt = 0 and

∫ ∞

−∞
1{WTt

=0} dt = 0,
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where the second equality can be derived by an absolute continuity argument and prop-
erties of linear Brownian motion showing that, for every fixed t, there are a.s. no s > t
such that

∫ s
t Wr dr = −a and Ws = 0 (see e.g. Lachal [10]).

Suppose that Φ has the additional property that Φ(w) = 0 if ζ(w) > M , for some
M > 0, and take g = 1[−A,A], where A > 0. By stationarity, the LHS of (13) (with 1

D̃
(t)

replaced by 1D(t)) is equal to

2AE

[
|W0| 1D(0) Φ(WT0−u : 0 ≤ u ≤ T0)F (WT0+r : r ≥ 0)

]
.

On the other hand, our assumption on Φ implies that, if Φ(Ws−u : 0 ≤ u ≤ s − T ∗
s ) 6= 0,

we have s − M ≤ T ∗
s ≤ s and thus 1[−A,A](T

∗
s ) is bounded above by 1[−A,A+M ](s) and

bounded below by 1[−A+M,A](s). Hence, the RHS of (13) is bounded above by

(2A+M)E
[
|W0| 1D∗(0) Φ(W−u : 0 ≤ u ≤ −T ∗

0 )F (Wr : r ≥ 0)
]

and bounded below by the same quantity with (2A + M) replaced by (2A − M). If we
multiply the resulting bounds by 1/2A and let A → ∞, we arrive at the formula

E

[
|W0| 1D(0) Φ(WT0−u : 0 ≤ u ≤ T0)F (WT0+r : r ≥ 0)

]

= E

[
|W0| 1D∗(0) Φ(W−u : 0 ≤ u ≤ −T ∗

0 )F (Wr : r ≥ 0)
]
. (14)

Clearly, this formula remains valid without the extra assumption we made on Φ (replace
Φ(w) by Φ(w) 1{ζ(w)≤n} and let n → ∞). Taking F = 1 and Φ(w) = ϕ(w(0)) for a
nonnegative measurable function ϕ : R −→ R+, we get

E

[
|W0| 1D(0)ϕ(WT0 )

]
= E

[
|W0| 1D∗(0)ϕ(W0)

]
.

Note that P(0 ∈ D | (Wr)r≥0) = P(0 ∈ D∗ | (Wr)r≤0) = γ(W0), by the Markov property.
It follows that

E

[
|W0| γ(W0)ϕ(WT0)

]
= E

[
|W0| γ(W0)ϕ(W0)

]
.

Hence, under the (suitably normalized) initial distribution |y|γ(y)π(dy), WT0 has the
same distribution as W0.

We set µ(dy) = c0 |y|γ(y)π(dy), where the constant c0 > 0 is chosen so that µ is a
probability measure. We introduce the probability measure Pµ under which the process
(Zs)s≥0 is a solution to (12) with initial distribution µ. We also set

ξ = sup
{
s ∈ [0,∞) :

∫ s

0
Zu du ≥ −a

}
,

and write Ξ for the event

Ξ =
{ ∫ t

0
Zs ds < 0, ∀t > 0

}
.

Proposition 6. The following properties hold under Pµ.

1. The two processes (Zξ−u)0≤u≤ξ and (Zu)0≤u≤ξ have the same distribution. In

particular Zξ is distributed according to µ.

2. The processes (Zξ−u)0≤u≤ξ and (Zξ+r)r≥0 are conditionally independent given Zξ,

and, for every x < 0, the conditional distribution of (Zξ+r)r≥0 knowing Zξ = x is the

distribution of (Zr)r≥0 under Px(· | Ξ).
3. For b > 0, let Hb := inf{t ≥ 0 :

∫ t
0 Zr dr = −b}. Then ZHb

is distributed according

to µ.

Proof. 1. By taking F = 1 in (14), and then conditioning on (Wr)r≥0 in the LHS and on
(Wr)r≤0 in the RHS, we arrive at

E

[
|W0| γ(W0) Φ(WT0−u : 0 ≤ u ≤ T0)

]
= E

[
|W0| γ(W0) Φ(W−u : 0 ≤ u ≤ −T ∗

0 )
]
. (15)
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However, since (Ws)s∈R and (W−s)s∈R have the same distribution, one easily gets that

E

[
|W0| γ(W0) Φ(W−u : 0 ≤ u ≤ −T ∗

0 )
]

= E

[
|W0| γ(W0) Φ(Wu : 0 ≤ u ≤ T0)

]
,

and thus

E

[
|W0| γ(W0) Φ(WT0−u : 0 ≤ u ≤ T0)

]
= E

[
|W0| γ(W0) Φ(Wu : 0 ≤ u ≤ T0)

]
.

The desired result follows since, by construction, the distribution of ((Zs)s≥0, ξ) under Pµ

coincides with the distribution of ((Ws)s≥0, T0) under the probability measure which has
density c0|W0|γ(W0) with respect to P.

2. Similarly, we have

Eµ

[
Φ(Zξ−u : 0 ≤ u ≤ ξ)F (Zξ+r : r ≥ 0)

]

= c0 E

[
|W0| γ(W0) Φ(WT0−u : 0 ≤ u ≤ T0)F (WT0+r : r ≥ 0)

]

= c0 E

[
|W0| 1D(0) Φ(WT0−u : 0 ≤ u ≤ T0)F (WT0+r : r ≥ 0)

]

= c0 E

[
|W0| 1D∗(0) Φ(W−u : 0 ≤ u ≤ −T ∗

0 )F (Wr : r ≥ 0)
]

= c0 E

[
|W0| γ(W0) Φ(W−u : 0 ≤ u ≤ −T ∗

0 )EW0[F (Zr : r ≥ 0) | Ξ ]
]

= c0 E

[
|W0| γ(W0) Φ(WT0−u : 0 ≤ u ≤ T0)EWT0

[F (Zr : r ≥ 0) | Ξ ]
]

= Eµ

[
Φ(Zξ−u : 0 ≤ u ≤ ξ)EZξ

[F (Zr : r ≥ 0) | Ξ ]
]
.

We used (14) in the third equality, then the Markov property of W at time 0, and (15) in
the fifth equality.

3. We may assume that b < a. We then observe that

ξ −Hb = sup
{
s ∈ [0, ξ] :

∫ s

0
Zξ−r dr ≥ b− a

}
.

Writing Z ′(u) = Zξ−u for 0 ≤ u ≤ ξ, it follows that

ZHb
= Z ′(ξ −Hb) = Z ′

(
sup

{
s ∈ [0, ξ] :

∫ s

0
Z ′

r dr ≥ b− a
})
,

which is distributed according to µ by part 1 of the proposition.

Suppose now that Z is a solution to (12) with an arbitrary initial distribution, and
keep the notation Hb = inf{t ≥ 0 :

∫ t
0 Zr dr = −b}. In view of future applications, we

would like to say that the distribution of ZHb
is close to µ in total variation when b is

large. We content ourselves with a slightly weaker result.

Proposition 7. Let Z be a solution to (12) and let ε > 0. The following holds for every

large enough c > 0. If κc is a random variable independent of Z and uniformly distributed

over [c, 2c], the total variation distance between µ and the distribution of ZHκc
is less than

ε.

Proof. We use a standard coupling argument (see [8, Lemma 23.17]). We may consider
a process Ẑ, which solves (12) with initial distribution µ, such that Z and Ẑ are coupled
in the following way: The random variable T := inf{t ≥ 0 : Zt = Ẑt} is a.s. finite, and
Zt = Ẑt for every t ≥ T . We then choose a constant M > 0 such that the probability of
the event

AM :=
{
T ≤ M,

∫ T

0
|Zs| ds ≤ M,

∫ T

0
|Ẑs| ds ≤ M

}

is at least 1 − ε/4.
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Set Ĥc = inf{t ≥ 0 :
∫ t

0 Ẑr dr = −c}, and suppose that c is large enough so that the
probability of the event

BM := {Hc ≥ 2M, Ĥc ≥ 2M}
is at least 1 − ε/4. Then, on the event AM ∩BM , for every u > 4M , we have Ĥu > T and
thus

Ĥu = inf
{
t ≥ T :

∫ t

0
Ẑs ds = −u

}
= inf

{
t ≥ T :

∫ t

0
Zs ds = −u+

∫ T

0
Zs ds−

∫ T

0
Ẑs ds

}

= Hu−X ,

where X :=
∫ T

0 Zs ds − ∫ T
0 Ẑs ds, and we note that the condition u > 4M ensures that

Hu−X > T .
Let ϕ : R −→ [0, 1] be a Borel function. Still on the event AM ∩ BM , we get, for

c > 4M ,
∫ 2c

c

(
ϕ(ZHu) − ϕ(Ẑ

Ĥu
)
)

du =

∫ 2c

c

(
ϕ(ZHu) − ϕ(ZHu−X

)
)

du ≤ 2|X| ≤ 4M.

Finally (as we may assume that κc is also independent of Ẑ), we get

|E[1AM ∩BM
(ϕ(ZHκc

) − ϕ(Ẑ
Ĥκc

))]| ≤ 4M

c
<
ε

2

when c is large, independently of the choice of ϕ. Since P(AM ∩BM ) ≥ 1 − ε/2, it follows
that

|E[(ϕ(ZHκc
)] − E[ϕ(Ẑ

Ĥκc
)]| ≤ ε,

which completes the proof since the distribution of Ẑ
Ĥκc

is µ by the preceding proposition.

Remark. We can slightly extend Proposition 7 as follows. Suppose that Z is Markov
with respect to a filtration (Gt)t≥0, and let Y be a G0-measurable random variable. Then,
the distribution of ZHY +κc

will again be close to µ in total variation when c is large. This
follows by a minor modification of the preceding proof.

4 A representation for the process of local times

Recall that (Lx)x∈R are the local times of the super-Brownian motion X started at δ0,
and R = sup{x ≥ 0 : Lx > 0}. We have Lx > 0 for every x ∈ [0, R). We write L̇x for the
derivative of Lx (when x = 0, we define L̇0 as the right derivative at 0, see [18]).

For every t ≥ 0, set

τ(t) := inf
{
x ≥ 0 :

∫ x

0
(Ly)−1/3 dy ≥ t

}
,

which makes sense and belongs to [0, R) because

∫ R

0
(Ly)−1/3 dy = ∞,

by [14, Proposition 18]. We set L̃(t) := Lτ(t) for every t ≥ 0. Then, according to [14,
Proposition 18], we have

L̃(t) = L̃(0) exp
( ∫ t

0
Z̃(s) ds

)
, (16)

where the process (Z̃(s))s≥0 solves the equation (12) with initial value Z̃(0) = L̇0/(L0)2/3.
We also note that, for t ∈ [0,∞),

τ(t) =

∫ t

0
(L̃(s))1/3 ds,
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and in particular, by letting t → ∞,

R =

∫ ∞

0
(L̃(s))1/3 ds.

Then, for x ∈ (0, R],

LR−x = L̃
( ∫ R−x

0
(Ly)−1/3 dy

)
= L̃

(
inf

{
t :

∫ t

0
(L̃s)1/3ds ≥ R− x

})

= L̃
(

sup
{
t :

∫ ∞

t
(L̃s)1/3ds ≥ x

})
. (17)

In order to state the next proposition, we introduce a process (W ∗(t))t∈R with contin-
uous sample paths, whose law can be characterized as follows. For every b ≥ 0, if

Sb := inf
{
t ≤ 0 :

∫ 0

t
W ∗(s) ds ≥ −b

}

we have Sb > −∞ a.s., the process (W ∗(Sb + t))t≥0 is distributed (under the probability
measure P) as (Zt)t≥0 under Pµ, and moreover S0 = 0. The existence of a process
satisfying these properties is easy from Proposition 6 (to define (W ∗(Sb + t))t≥0 start
from a process (Z ′

t)t≥0 distributed as the solution of (12) with initial distribution µ, then
take Sb := − inf{t ≥ 0 :

∫ t
0 Z

′
sds = −b}, and define W ∗(Sb + u) = Z ′

u for every u ≥ 0 —
this construction can be made consistently when b varies thanks to point 3. of Proposition
6). Note in particular that the distribution of W ∗(0) is µ.

We also define, for every t ∈ R,

Λ∗(t) = exp
( ∫ t

0
W ∗(s) ds

)
.

Note that t−1
∫ t

0 W
∗
s ds converges a.s. to

∫
xπ(dx) < 0, and in particular Λ∗(t) tends to 0

exponentially fast as t → ∞, a.s.

Proposition 8. For every x > 0, set

τ∗
x = sup

{
z ∈ R :

∫ ∞

z
Λ∗(s)1/3 ds ≥ x

}
.

The process (L∞
x )x>0 has the same distribution as the process (Λ∗(τ∗

x))x>0. More precisely,

the pair (L∞
x , L̇

∞
x )x>0 has the same distribution as (Λ∗(τ∗

x),−Λ∗(τ∗
x)2/3W ∗(τ∗

x))x>0.

Proof. For every λ > 0, let θλ be a positive random variable independent of the super-
Brownian motion X and such that − log θλ is uniformly distributed over [λ, 2λ]. From
Proposition 4, we get that the finite-dimensional marginal distributions of the process
(θ−3

λ LR−θλx)x≥0 converge to those of (L∞
x )x≥0 when λ → ∞. We will use (17) to study

(θ−3
λ LR−θλx)x≥0 when λ → ∞. We fix ε > 0 and M > 0. We first choose K > 1 large

enough so that the bound

K1/3
∫ ∞

0
Λ∗(s)1/3 ds > M (18)

holds with probability at least 1 − ε.
By (17), we have for every x > 0 and λ > 0 such that θλx < R,

θ−3
λ LR−θλx = θ−3

λ L̃
(

sup
{
t :

∫ ∞

t
(θ−3

λ L̃(s))1/3ds ≥ x
})
. (19)

Define
cλ,K := inf{t ≥ 0 : θ−3

λ L̃(t) = K}
where inf ∅ = ∞. We have cλ,K < ∞ on the event {L̃(0) ≥ Kθ3

λ}, and (since L̃(0) =
L0 > 0 a.s.) we may assume that λ > 0 is large enough so that the probability of the
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event {L̃(0) ≥ θ3
λK} is at least 1 − ε. From now on we argue on this event. By (16), we

have for every r ≥ 0,

L̃(cλ,K + r) = L̃(cλ,K) exp
( ∫ cλ+r

cλ

Z̃(s) ds
)

= Kθ3
λ exp

( ∫ r

0
Z̃(cλ,K + s) ds

)
. (20)

Then (conditionally on the event {L̃(0) ≥ Kθ3
λ}), we know that (Z̃(cλ,K + s))s≥0 solves

(12) with initial value

Z̃(cλ,K) = Z̃
(

inf
{
t ≥ 0 : θ−3

λ L̃(0) exp
( ∫ t

0
Z̃(s)ds

)
= K

})

= Z̃
(

inf
{
t ≥ 0 :

∫ t

0
Z̃(s)ds = log(K/L̃(0)) + 3 log θλ

})
.

Notice that, by construction, −3 log θλ is uniformly distributed over [3λ, 6λ], and so we
know from Proposition 7 and the subsequent remark that the distribution of Z̃(cλ,K) is
close to µ in total variation when λ is large. It follows that, for λ large, we can couple
(Z̃(cλ,K + s))s≥0 with (W ∗(s))s≥0 in such a way that we have

Z̃(cλ,K + s) = W ∗(s)

for every s ≥ 0, except possibly on an event of probability at most ε. Under this coupling,
and using (20), we get that, except on an event of probability at most 2ε, we have both
cλ,K < ∞ and, for every r ≥ 0,

θ−3
λ L̃(cλ,K + r) = K exp

( ∫ r

0
W ∗(s) ds

)
= K Λ∗(r). (21)

Discarding another event of probability at most ε, we know that (18) holds, so that
∫ ∞

0
(KΛ∗(s))1/3 ds > M (22)

and then, by (21), ∫ ∞

cλ,K

(θ−3
λ L̃(s))1/3ds > M,

so that, for every x ∈ (0,M ],

sup
{
t ≥ 0 :

∫ ∞

t
(θ−3

λ L̃(s))1/3ds ≥ x
}

= cλ,K + sup
{
z ≥ 0 :

∫ ∞

cλ,K+z
(θ−3

λ L̃(s))1/3ds ≥ x
}

= cλ,K + sup
{
z ≥ 0 :

∫ ∞

z
(KΛ∗(s))1/3 ds ≥ x

}
,

using (21) again. From (19), the last display and (21), we get, for x ∈ (0,M ],

θ−3
λ LR−θλx = θ−3

λ L̃
(
cλ,K + sup

{
z ≥ 0 :

∫ ∞

z
(KΛ∗(s))1/3 ds ≥ x

})

= K Λ∗
(

sup
{
z ≥ 0 :

∫ ∞

z
(KΛ∗

s)1/3 ds ≥ x
})
.

and we can replace z ≥ 0 by z ∈ R in the last line because of (22).
At this point, set b = logK, and observe that Λ∗(Sb + t) = K exp(

∫ Sb+t
Sb

W ∗(s) ds),
from which it follows that the process (KΛ∗(t))t∈R has the same distribution as (Λ∗(Sb +
t))t∈R. It easily follows that the process

(
K Λ∗

(
sup

{
z ∈ R :

∫ ∞

z
(KΛ∗

s)1/3 ds ≥ x
}))

x∈(0,M ]

has the same distribution as the process (Λ∗(τ∗
x))x∈(0,M ].

Summarizing, for every large enough λ, except on a set of probability at most 3ε,
(θ−3

λ LR−θλx)x∈(0,M ] coincides with a process which has the same finite-dimensional marginals

as the process (Λ∗(τ∗
x))x∈(0,M ]. Since the finite-dimensional marginals of (θ−3

λ LR−θλx)x≥0

converge to those of (L∞
x )x≥0 when λ → ∞, it follows that (L∞

x )x∈(0,M ] has the same
distribution as (Λ∗(τ∗

x))x∈(0,M ], giving the first assertion of the proposition. The second
assertion follows by differentiating the mapping x 7→ Λ∗(τ∗

x).
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5 The stochastic differential equation for areas of

spheres

With a slight abuse of notation, for every w ∈ R and λ > 0, we write Pw,λ for a probability
measure under which the pair (Zs,Λs)s≥0 is such that (Zs)s≥0 is distributed as the solution
of (12) with initial value w, and

Λs = λ exp
(

−
∫ s

0
Zr dr

)
.

Proposition 9. The process (W ∗(τ∗
x),Λ∗(τ∗

x))x>0 is a time-homogeneous Markov process,

whose transition kernels (Πs)s>0 are given by

∫
Πs((w, λ),d(w′, λ′))ϕ(w′, λ′) = Ew,λ[ϕ(Zηs ,Ληs )],

where

ηs := inf
{
r ≥ 0 :

∫ r

0
(Λu)1/3 du ≥ s

}
.

Proof. We fix a > 0 and use the notation

T (a) := sup
{
s ≥ 0 :

∫ t

0
W ∗(u) du ≥ −a

}
.

Note in particular that
∫ T (a)

0 W ∗(u) du = −a. By Proposition 6, we have

(
W ∗(T (a) − s)

)

0≤s≤T (a)

(d)
=

(
W ∗(s)

)

0≤s≤T (a)
.

We can in fact extend this identity as

(
W ∗(T (a) − s)

)

s≥0

(d)
=

(
W ∗(s)

)

s≥0
. (23)

To justify this, let b > 0, and recall the notation Sb = inf{t ≤ 0 :
∫ 0

t W
∗(s) ds ≥ −b}. Us-

ing the fact that (W ∗(Sb+t))t≥0 has the same distribution as (W ∗(s))s≥0, and Proposition
6 again, we get

(
W ∗(T (a) − s)

)

0≤s≤T (a)−Sb

(d)
=

(
W ∗(T (a+b) − s)

)

0≤s≤T (a+b)

(d)
=

(
W ∗(s)

)

0≤s≤T (a+b)
.

(For the first identity, note that, if W̃ (u) := W ∗(Sb +u), we have T̃ (a+b) = T (a) −Sb, with
an obvious notation, and W̃ (T̃ (a+b) − s) = W ∗(T (a) − s).) Then we just have to let b ↑ ∞
to get (23).

We then set, for every s ≥ 0,

Λ
(a)

(s) := Λ∗(T (a) − s) = exp
( ∫ T (a)−s

0
W ∗(r) dr

)

= e−a exp
( ∫ T (a)−s

T (a)
W ∗(r) dr

)

= e−a exp
(

−
∫ s

0
W ∗(T (a) − r) dr

)

= e−a exp
(

−
∫ s

0
Z

(a)
(r) dr

)
(24)

where we have set Z
(a)

(r) := W ∗(T (a) − r) for every r ≥ 0.
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From (23), we see that (Z
(a)

(r),Λ
(a)

(r))r≥0 has the same distribution as (Zr,Λr)r≥0

under
∫
µ(dw)Pw,e−a. We then set

I(a) :=

∫ ∞

T (a)
Λ∗(s)1/3 ds.

Let x > 0. On the event where I(a) ≤ x, we have

τ∗
x = sup

{
z ≤ T (a) :

∫ ∞

z
Λ∗(s)1/3 ds ≥ x

}

and thus

T (a) − τ∗
x = inf

{
s ≥ 0 :

∫ T (a)

T (a)−s
Λ∗(u)1/3 du ≥ x−

∫ ∞

T (a)
Λ∗(u)1/3 du

}

= inf
{
s ≥ 0 :

∫ s

0
Λ

(a)
(u)1/3 du ≥ x− I(a)

}
.

Still on the same event, we have

Λ∗(τ∗
x) = Λ

(a)
(T (a) − τ∗

x) = Λ
(a)

(
inf

{
s ≥ 0 :

∫ s

0
Λ

(a)
(u)1/3 du ≥ x− I(a)

})

and, if we write η
(a)
x = T (a) − τ∗

x , we also get, for every y > x,

Λ∗(τ∗
y ) = Λ

(a)
(η(a)

y ) = Λ
(a)

(
inf

{
s ≥ 0 :

∫ s

0
Λ

(a)
(u)1/3 du ≥ y − I(a)

})

= Λ
(a)

(
η(a)

x + inf
{
s ≥ 0 :

∫ η
(a)
x +s

η
(a)
x

Λ
(a)

(u)1/3 du ≥ y − x
})

= Λ
(a)

(
η(a)

x + inf
{
s ≥ 0 :

∫ s

0
Λ

(a)
(η(a)

x + u)1/3 du ≥ y − x
})
, (25)

and similarly

W ∗(τ∗
y ) = Z

(a)
(η(a)

y ) = Z
(a)

(
η(a)

x + inf
{
s ≥ 0 :

∫ s

0
Λ

(a)
(η(a)

x + u)1/3 du ≥ y − x
})
. (26)

Let us then consider the filtration (Gt)t≥0 defined by

Gt := σ
(
Z

(a)
(r),Λ

(a)
(r) : 0 ≤ r ≤ t

)
∨ σ

(
Λ∗(T (a) + s) : s ≥ 0

)
.

By convention, we set η
(a)
x = ∞ if I(a) > x. Note that the event {I(a) ≤ x} is G0-

measurable.
By (23), (Z

(a)
(t))t≥0 has the same distribution as (W ∗(t))t≥0 and is thus distributed as

the solution of (12) with initial distribution µ. It follows that (Z
(a)

(t),Λ
(a)

(t))t≥0 is (time-
homogeneous) Markov with respect to the filtration (Gt)t≥0, and its transition kernels Θs,
s ≥ 0, are specified by saying that Θs((w, λ), ·) is the distribution of (Zs,Λs) under Pw,λ.

Moreover (Z
(a)

(0),Λ
(a)

(0)) is distributed according to µ(dw)δe−a(dλ), by (24).

Observe that η
(a)
x is a stopping time of the filtration (Gt)t≥0, and that, on the event

where I(a) ≤ x, (25) and (26) express (Z
(a)

(η
(a)
y ),Λ

(a)
(η

(a)
y )) in terms of η

(a)
x and the

shifted process

(Z
(a)

(η(a)
x + u),Λ

(a)
(η(a)

x + u))u≥0.

An application of the strong Markov property shows that, on the event {I(a) ≤ x}, condi-

tionally on the σ-field G
η

(a)
x

, the distribution of the pair (Z
(a)

(η
(a)
y ),Λ

(a)
(η

(a)
y )) is the law

of (Zηy−x
,Ληy−x

) under P
Z

(a)
(η

(a)
x ),Λ

(a)
(η

(a)
x )

, which by definition is

Πy−x

(
(Z

(a)
(η(a)

x ),Λ
(a)

(η(a)
x )), ·

)
.
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Consider now 0 < x1 < x2 < · · · < xk = x and y > x. By the preceding observations,
we have

E

[
ϕ

(
W ∗(τ∗

y ),Λ∗(τ∗
y )

)
F

(
(W ∗(τ∗

xj
),Λ∗(τ∗

xj
))1≤j≤k

)
1{I(a)≤x1}

]

= E

[
ϕ

(
Z

(a)
(η(a)

y ),Λ
(a)

(η(a)
y )

)
F

(
(Z

(a)
(η(a)

xj
),Λ

(a)
(η(a)

xj
))1≤j≤k

)
1{I(a)≤x1}

]

= E

[
Πy−xϕ

(
Z

(a)
(η(a)

x ),Λ
(a)

(η(a)
x )

)
F

(
(Z

(a)
(η(a)

xj
),Λ

(a)
(η(a)

xj
))1≤j≤k

)
1{I(a)≤x1}

]

= E

[
Πy−xϕ

(
W ∗(τ∗

x),Λ∗(τ∗
x)

)
F

(
(W ∗(τ∗

xj
),Λ∗(τ∗

xj
))1≤j≤k

)
1{I(a)≤x1}

]

and we just have to let a ↑ ∞ to get the Markov property as stated in the proposition.

We can now easily derive Theorem 2.

Proof of Theorem 2. Recall that L∞
x > 0, for every x > 0, a.s. From Propositions 8 and

9, we readily obtain that (L∞
x , L̇

∞
x )x>0 is Markov with transition kernels given by

Πs((ℓ, z), A) =

∫
Πs((−ℓ−2/3z, ℓ),d(w′, λ′)) 1A(λ′,−λ′2/3w′),

for every ℓ > 0, z ∈ R and every Borel subset A of (0,∞) × R. Since we have also
L∞

0 = L̇∞
0 = 0, this suffices to get the desired Markov property.

Recall the notation (Ft)t≥0 for the (completion of the) canonical filtration of (L∞
t )t≥0.

For ε > 0, we also set Fε
t := Fε+t for every t ≥ 0.

Proposition 10. Let ε > 0. Then the process (L∞
ε+t, L̇

∞
ε+t)t≥0 satisfies the stochastic

differential equation

L̇∞
ε+t = L̇∞

ε + 4

∫ t

0

√
L∞

ε+s dBε
s +

∫ t

0
h(L∞

ε+s, L̇
∞
ε+s) ds,

where Bε is an (Fε
t )-Brownian motion started at 0, and

h(t, y) = −8t
p′

t(−y/2)

pt(−y/2)
+

4

3

y2

t
.

Proof. If w ∈ R and λ > 0, the process (Zηs ,Ληs)s≥0 is under Pw,λ time-homogeneous
Markov with the transition kernels Πs of Proposition 9. We can thus combine Propositions
8 and 9 to get that (L∞

ε+t, L̇
∞
ε+t)t≥0 has the same distribution as

(
Ληs ,−(Ληs )2/3Zηs

)

s≥0

under PW ∗(τ∗

ε ),Λ∗(τ∗

ε ). By construction, under the probability measure PW ∗(τ∗

ε ),Λ∗(τ∗

ε ), the
pair (Zs,Λs) satisfies the equation

dZs = 4 dBs + b(Zs) ds

dΛs = −ZsΛs ds.

If Xs := −(Λs)2/3Zs, an application of Itô’s formula gives

dXs = −4(Λs)2/3 dBs − (Λs)2/3 b(Zs) ds+
2

3
(Λs)−1/3 (Zs)2 Λs ds

= −4 (Λs)2/3 dBs + (Λs)1/3 h(Λs,Xs) ds,

where we used the scaling relations

pt(z) = t−2/3p1(t−2/3z) , p′
t(z) = t−4/3p′

1(t−2/3z)
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to verify that, for every z ∈ R and t > 0,

−t1/3b(z) +
2

3
t1/3z2 = −8t1/3 p

′
1(z/2)

p1(z/2)
+

4

3
t1/3z2 = h(t,−t2/3z).

We then use a standard time change argument. If

Mt := −
∫ t

0
(Λs)1/6 dBs,

the Dubins-Schwarz theorem [17, Theorem V.1.6] shows that βt := Mηt is a linear Brow-
nian motion (in the appropriate time-changed filtration). Moreover,

−
∫ ηt

0
(Λs)2/3 dBs =

∫ ηt

0

√
Λs dMs =

∫ t

0

√
Ληu dβu,

where the last equality follows from the formal change of variables s = ηu, which is easily
justified (we omit the details). Since we have also

∫ ηt

0
(Λs)1/3 h(Λs,Xs) ds =

∫ t

0
h(Ληu ,Xηu) du,

we conclude that

Xηt = X0 + 4

∫ t

0

√
Ληu dβu +

∫ t

0
h(Ληu ,Xηu) du. (27)

It is now easy to see that the pair (L∞
ε+t, L̇

∞
ε+t)t≥0 satisfies the equation stated in

the theorem. To justify this, recall that E[L∞
x ] = c x3 with a constant c < ∞, Since

(L∞
ε+t, L̇

∞
ε+t)t≥0 has the same distribution as (Ληt ,Xηt)t≥0, it follows from (27) that

L̇∞
ε+t − L̇∞

ε −
∫ t

0
h(L∞

ε+s, L̇
∞
ε+s) ds

is a continuous martingale in the filtration (Fε
t )t≥0, with quadratic variation

16

∫ t

0
L∞

ε+s ds.

This martingale can be represented as

4

∫ t

0

√
L∞

ε+s dBε
s ,

where Bε is an (Fε
t )-Brownian motion started from 0. This completes the proof.

We finally prove Theorem 3, which was stated in the introduction.

Proof of Theorem 3. We first observe that h(t, x) > 0 for every t > 0 and x ∈ R. As it
is clear from (4) and (5), the function x 7→ xAi(x2) + Ai′(x2) is everywhere negative, and
since the function x 7→ Ai(x2) is positive on R, it follows from formula (6) that h(t, x) > 0.

Then, for ε > 0, the Brownian motion Bε in Proposition 10 can be written as

Bε
t =

∫ t

0

1

4
√
L∞

ε+s

dHε
s ,

where

Hε
t = L̇∞

ε+t −
∫ t

0
h(L∞

ε+s, L̇
∞
ε+s) ds.

If 0 < ε′ < ε, it is a simple matter to verify that we must have Bε
t = Bε′

(ε−ε′)+t − Bε′

ε−ε′ ,

and then that there exists an (Ft)-Brownian motion B started at 0 such that, for every

17



ε > 0, Bε
t = Bε+t − Bε. From Proposition 10, we then get, for every fixed u > 0 and

0 < ε < u,

L̇∞
u = L̇∞

ε + 4

∫ u

ε

√
L∞

s dBs +

∫ u

ε
h(L∞

s , L̇
∞
s ) ds. (28)

When ε −→ 0,

L̇∞
u − L̇∞

ε − 4

∫ u

ε

√
L∞

s dBs −→ L̇∞
u − 4

∫ u

0

√
L∞

s dBs

in probability. Hence, ∫ u

ε
h(L∞

s , L̇
∞
s ) ds

also converges in probability to a finite limit when ε → 0. This implies that

∫ u

0
h(L∞

s , L̇
∞
s ) ds < ∞, a.s.

and, to complete the proof of (2), we just have to let ε → 0 in (28).

Acknowledgment. I thank Patrick Cattiaux for useful comments about the time reversal
of diffusions.

References

[1] C. Banderier, P. Flajolet, G. Schaeffer, M. Soria, Random maps, coalesc-
ing saddles, singularity analysis, and Airy phenomena. Random Structures Algorithms

19, 194–246 (2001)

[2] M. Bousquet-Mélou, S. Janson, The density of the ISE and local limit laws for
embedded trees. Ann. Appl. Probab. 16, 1597–1632 (2006)

[3] T. Budzinski, The hyperbolic Brownian plane. Probab. Theory Related Fields 171,
503–541 (2018)

[4] G. Chapuy, J.-F. Marckert, Note on the density of ISE and a related diffusion.
Ann. Inst. Henri Poincaré D (to appear), arXiv:2210.10159

[5] N. Curien, J.-F. Le Gall, The Brownian plane. J. Theoret. Probab. 27, 1240–1291
(2014)

[6] N. Curien, J.-F. Le Gall, The hull process of the Brownian plane. Probab. Th.

Rel. Fields 166, 187–231 (2016)

[7] A. Gomez, J. Lee, C. Mueller, E. Neumann, M. Salins, On uniqueness and
blowup properties for a class of second order SDE’s. Electron. J. Probability 22, no.
72, 1–17 (2017)

[8] O. Kallenberg, Foundations of Modern Probability, 2nd ed. Springer, Berlin, 2002.

[9] J. Kent, Time-reversible diffusions. Adv. Appl. Probab. 10, 819–835 (1978)

[10] A. Lachal, Les temps de passage successifs de l’intégrale du mouvement brownien.
Ann. Inst. Henri Poincaré Probab. Stat. 33, 1–36 (1997)

[11] J.-F. Le Gall, Spatial Branching Processes, Random Snakes and Partial Differen-

tial Equations. Lectures in Mathematics ETH Zürich. Birkhäuser, Boston, 1999.

[12] J.-F. Le Gall, The volume measure of the Brownian sphere is a Hausdorff measure.
Electron. J. Probab. 27, article no.113, 1–28 (2022)

[13] J.-F. Le Gall, The Markov property of local times of Brownian motion indexed by
the Brownian tree. Ann. Probab. 52, 188–216 (2024)

18

http://arxiv.org/abs/2210.10159


[14] J.-F. Le Gall, E.A. Perkins, A stochastic differential equation for local times of
super-Brownian motion. Ann. Probab. 53, 355–390 (2025)

[15] L. Mytnik, E. Perkins, The dimension of the boundary of super-Brownian motion.
Probab. Theory Related Fields 174, 821–885 (2019)

[16] E. Perkins, Dawson-Watanabe superprocesses and measure-valued diffusions. Ecole
d’été de probabilités de Saint-Flour 1999. Lecture Notes Math. 1781. Springer, Berlin,
2002.

[17] D. Revuz, M. Yor, Continuous Martingales and Brownian Motion. Springer,
Berlin, 1991.

[18] S. Sugitani, Some properties for the measure-valued branching diffusion processes.
J. Math. Soc. Japan 41, 437–462 (1989)

[19] V.M. Zolotarev, One-dimensional stable distributions. Translations of Mathemat-

ical Monographs 65. American Mathematical Society, Providence, 1986

19


	Introduction
	Preliminaries
	Brownian snake excursions and super-Brownian motion
	Areas of spheres in the Brownian plane

	The time reversal argument
	A representation for the process of local times
	The stochastic differential equation for areas of spheres

