
FailLite: Failure-Resilient Model Serving for
Resource-Constrained Edge Environments

Li Wu
University of Massachusetts Amherst

USA

Walid A. Hanafy
University of Massachusetts Amherst

USA

Tarek Abdelzaher
University of Illinois at
Urbana-Champaign

USA

David Irwin
University of Massachusetts Amherst

USA

Jesse Milzman
Army Research Laboratory

USA

Prashant Shenoy
University of Massachusetts Amherst

USA

ABSTRACT
Model serving systems have become popular for deploying deep
learning models for various latency-sensitive inference tasks. While
traditional replication-based methods have been used for failure-
resilient model serving in the cloud, such methods are often infea-
sible in edge environments due to significant resource constraints
that preclude full replication. To address this problem, this paper
presents FailLite, a failure-resilient model serving system that em-
ploys (i) a heterogeneous replication where failover models are
smaller variants of the original model, (ii) an intelligent approach
that uses warm replicas to ensure quick failover for critical appli-
cations while using cold replicas, and (iii) progressive failover to
provide low mean time to recovery (MTTR) for the remaining appli-
cations. We implement a full prototype of our system and demon-
strate its efficacy on an experimental edge testbed. Our results using
27 models show that FailLite can recover all failed applications with
175.5ms MTTR and only a 0.6% reduction in accuracy.

1 INTRODUCTION
In recent years, deep learning-based systems have revolutionized
many domains, such as autonomous driving, augmented reality,
personal assistants, and Internet of Things analytics [20, 22, 37].
The broad adoption of deep learning models is attributed to the
availability of accelerators, such as Nvidia GPUs and Google TPUs.
To train a Deep Neural Network (DNN) model, users often rely on
cloud data centers (e.g., Amazon AWS and Google Cloud) to access
their powerful DNN accelerators via simple application interfaces.
For example, services like Amazon SageMaker allow users to upload
their data and use a simple user interface to select the models to
train [3]. In contrast to DNN training, which is largely a batch work-
load, runtime use of trained models—often called model serving or
model inference—tends to be latency-sensitive in nature. To meet
the latency requirement of such applications, users often rely on
edge data centers placed at the network edge [35, 36]. The advances
in edge accelerators (e.g., edge GPUs and TPUs) have made edge
computing a popular choice for deploying latency-sensitive models
serving applications [23, 37].

With the advances in AI, researchers have addressed many chal-
lenges in building model serving systems. For instance, researchers
have addressed the latency challenges by optimizing the network
overheads [12, 15], processing latency [5, 7, 23, 34, 39, 48, 49], cost
[2, 6, 25, 46], energy efficiency [11, 24, 40, 45], and addressing chal-
lenges of workload dynamics [1, 2, 47]. However, there is limited

research on the failure resiliency of model serving systems, espe-
cially in resource-constrained environments, such as the edge.

The traditional approach for ensuring fault tolerance of an ap-
plication task is to replicate it on additional servers and to fail over
to a backup server when the primary fails. This approach to crash
fault tolerance is commonly used for critical cloud-based services.
Cloud-based model serving, which is useful when tight latency re-
quirements are not needed, has also employed replication to satisfy
demand and latency constraints and to ensure failure resiliency. For
instance, a recent effort [39] utilized backup requests to multiple
replicas and cross-server cancellation to ensure that all requests are
processed within their latency requirements. Which such replica-
tion may be feasible in cloud settings where resources are abundant
and can be scaled on demand, edge environments are often highly
resource constrained, which may preclude replication of deployed
models for fault tolerance. Moreover, edge computing clusters are
often deployed across multiple geographically distributed locations
and may face many single points of failure issues, where the entire
cluster becomes out of service or unreachable.

Designing a failure-resilient model serving system at the edge
involves several key challenges. First, such a system must address
resource constraints where traditional replication and failover solu-
tions may not be feasible. Second, the interactive nature of model
serving requires low mean time to recovery (MTTR) in the event of
a failure, such that users are minimally impacted. Third, the systems
should be able to handle concurrent server failures or the failure of
an edge location by restoring applications at other suitable edge
sites.

To address this problem, we present FailLite, a failure-resilient
machine learning inference system for edge computing clusters.
FailLite exploits several well-known accuracy-resource trade-
offs for deep learning models, such as choosing the right-sized
DNN model [1, 2, 9, 11, 19, 47] and compression techniques, such
as quantization and pruning [13, 27, 45], all of which ignificantly
decrease resource requirements and latency with a minor reduc-
tion in accuracy. The core insight of FailLite is to provide fault
tolerance using the concept of heterogeneous replication, where we
use a smaller variant of the original model as a failover replica, en-
suring high resiliency in such resource-constrained environments.
Our second insight is that applications can vary in terms of their
criticality and failure resilience needs, allowing FailLite to intel-
ligently choose the level of failure resilience on a per-model basis.
Specifically, FailLite can intelligently use proactive replication

ar
X

iv
:2

50
4.

15
85

6v
1

 [
cs

.D
C

]
 2

2
A

pr
 2

02
5

Conference’17, July 2017, Washington, DC, USA Wu et al.

and warm replicas for the most important models, while using
cold replicas with progressive failover for low downtimes for the re-
maining models. Such an approach can provide good accuracy upon
failover despite using smaller models as replicas, while providing
low mean time to recovery.

In designing, implementing, and evaluating FailLite, our paper
makes the following contributions:

(1) We present the design of FailLite, a failure-resilient model
serving system for resource-constrained environments. To our
knowledge, FailLite is the first effort to tackle this issue.

(2) We present a two-step failover approach that utilizes heteroge-
neous replication, considers applications’ criticality levels, and
progressively loads cold backups to optimize their MTTR.

(3) We implemented FailLite as a framework agnostic control
plane with failure detection and failure-resilient policies. We
integrated FailLitewith the Nvidia Triton Inference Server, an
open-source model serving framework to show the utility of our
design. We also integrated our FailLite with a custom-built
discrete event simulation platform for large-scale evaluations.

(4) Our experimental evaluation of FailLite of a real test bed
using 27 machine learning models shows that in resource con-
straint environments, FailLite can recover all failed applica-
tions under 175.5 ms MTTR only for 0.6% reduction in accuracy.
In addition, our large-scale simulation with 69 DNN models
shows that in the extreme scenario, where 50% of the edge sites
fail simultaneously, FailLite achieves at least 39.3% higher
recovery rate compared to the full-size baseline.

2 BACKGROUND AND MOTIVATION
In this section, we provide a background on model serving, fail-
ures and fault-tolerance techniques, and trade-offs in DNN models.
Lastly, we motivate the need for FailLite by highlighting the key
challenges in designing failure-resilient model serving systems.

2.1 Model Serving on the Edge
Edge Computing brings cloud-like computational and storage re-
sources to the network’s edge and provides users with low-latency
applications [35, 36]. Although edge computing was pioneered
more than a decade ago, the rise of AI made it more critical due
to the resource requirements and performance objective of AI ap-
plications that often go beyond the most sophisticated on-device
capabilities [20, 37]. The model serving process, also known as
model inference, can be described as follows: a user or a sensor
node sends input data 𝑥𝑖 to a specific ML inference application, and
the application responds with output data𝑦𝑖 , where𝑦𝑖 = 𝑓 (𝑥𝑖). The
function 𝑓 (·) may represent a single model inference or a pipeline
of different ML models. Users often rely on model serving frame-
works (e.g., Nvidia Triton [30] and Kubeflow [18]) to run their DNN
models as they provide many management and monitoring capabil-
ities. Model serving services benefit from edge servers’ low latency,
the availability of powerful DNN accelerators, and data privacy
capabilities to provide users with real-time processing capabilities.
For example, applications such as IoT analytics, video streaming,
and AR/VR systems heavily rely on edge resources to cover their
high computing demand [33, 38].

Disk

Primary Server

(b) Warm Failover Replica

GPU

GPU

Failover Server

Client

Disk

Primary Server

(a) Hot Failover Replica

GPU

GPU

Failover Server

Client

Disk

Primary Server

(c) Cold Failover Replica

GPU

GPU

Failover Server

ClientBackup
Request

Figure 1: Approaches to utilize a failover replica.

2.2 Network and Resource Failures
Network and compute resources are prone to multiple types of
failures, such as transient, crash, or byzantine failures, impacting
the model serving systems’ reliability [10, 17]. Resilient execution
ensures service availability and correctness in the event of faults
and aims to minimize metrics such as downtime or mean time to
recovery (MTTR). In this work, we focus on network and server
crash failures that make an edge server or a cluster inaccessible or
unreachable. Crash failures result from various factors, including
human errors, power outages, battery drain, hardwaremalfunctions,
software misconfigurations, and security attacks [41]. Addressing
crash failures is critical in edge computing since they are irrecov-
erable and more likely to occur than in cloud computing, as edge
computing resources typically operate in a less controlled envi-
ronment with limited to no resource redundancy. In the context
of model serving systems, little or no work has addressed the re-
siliency challenges and the effect of server or network crashes. To
our knowledge, researchers have only addressed failures in dis-
tributed training and inference scenarios [14, 21, 28, 42, 43] but not
the entire model’s failure. Finally, we note that addressing byzan-
tine failure from adversarial clients (e.g., DNN Perturbation attacks
[26]) is outside the scope of this work.

2.3 Failover Replication
Replication is a key strategy in ensuring resilient systems, where
components are backed with a failover replica. In the case of model
serving systems, researchers have used traditional failover replica
approaches, where a model can have a hot (also referred to as active-
active), warm (active-passive), or cold failover backup. Figure 1
highlights the difference between hot, warm, and cold backups. For
instance, in [39], the authors have used a hot backup (see Figure 1a)
where each request is issued twice, and the extra request is canceled
once a response is available. To avoid wasting compute cycles, warm
backups are used where the DNN models are loaded to memory but
do not process any requests. In contrast to hot and warm backups,
which are loaded to memory, cold backups are just cached to disk
and loaded to memory only when the failure occurs.

Despite the advantages and trade-offs involved with traditional
failover replication techniques, edge environments are resource-
constrained, and such failover replication methods fall short in
resilient execution. For example, using a hot backup needlessly
increases the system’s load and average response time, while re-
sources may not allow all applications to have a warm backup.
Moreover, unlike cloud resources, adding more resources to edge
environments introduces high-cost overheads and may not be feasi-
ble due to space and power constraints. To overcome such resource
limitations, one approach is to limit the failure recovery to a set

FailLite: Failure-Resilient Model Serving for Resource-Constrained Edge Environments Wu et al.

30 50 100 200 500 1000 3000
GPU Memory (log MB)

70

80

90

100
A

cc
ur

ac
y

(%
)

Convnext
Efficientnet

Regnet
Shufflenet

(a) Resource-Accuracy Trade-offs

30 50 100 200 500 1000 3000
GPU Memory (log MB)

0.01

0.1

1.0

10.0

L
oa

di
ng

 T
im

e
(lo

g
s)

Convnext
Efficientnet

Regnet
Shufflenet

(b) Loading Time

Figure 2: Accuracy-Resource Tradeoff (a) and Loading time
(b) across DNN models.

of critical applications or reduce the quality of service, commonly
known as graceful service degradation [8, 10, 29, 50]. Our proposed
FailLite utilizes this method to increase the resiliency of model
serving systems by inter-playing the accuracy-resiliency trade-offs.

2.4 DNN Models Trade-offs
Recent research has highlighted the accuracy-memory trade-offs of
DNNs [1, 2, 9, 11, 19, 24, 47], where increases in accuracy come at
an exponential increase in resource requirements. Figure 2 demon-
strates the accuracy-memory trade-offs and the loading time across
different pre-trained model families from Pytorch [31]. Figure 2a
shows the trade-off between model size and accuracy (we report
normalized accuracy to the biggest model) in four different model
families. As shown, the figure highlights that significant reductions
in memory requirements introduce limited reductions in accuracy.
For example, ConvNext-Tiny is 5.1× smaller compared to ConvNext-
Large but only reduces accuracy by 1.89%. Figure 2b also highlights
a key aspect of DNNs where loading time is a function of mem-
ory size, where accurate models are typically large, thus requiring
higher loading time.

This unique trade-off has motivated users to address runtime
issues. For example, the authors of [1, 47] have used model switch-
ing to address workload dynamics by replacing the DNN with a
smaller variant at peak hours, allowing all requests to abide by
their required SLO. Moreover, Clover [19] used model switching to
reduce the energy consumption when the energy is generated from
brown energy sources. In contrast to these approaches that focus on
workload dynamics, FailLite utilizes model variants in optimiz-
ing the resiliency of model serving systems by using a compressed
or smaller size failover replica, which significantly decreases the
resource requirements for the failover replicas, an approach we
denote as heterogeneous replication.

2.5 Failure Resilience Challenges on the Edge
FailLite leverages the DNN model’s flexibility to ensure resilient
model serving in case of crash failures in resource constrained
edge environments. Designing FailLite involves addressing the
following research challenges:
C1 Model Selection. The first challenge is model selection; naively

choosing the smallest variant unnecessarily reduces accuracy.
In contrast, selecting larger or identical replicas restricts the
capacity to provide failover replicas. Therefore, the systemmust
weigh the trade-offs across applications and other factors when
choosing the failover models.

C2 Balancing Accuracy-MTTR Trade-offs. The second chal-
lenge is that while offering failover backups for all applications
highly decreases the MTTR, adding backups for all applications
in resource-constrained scenarios unnecessarily reduces the ac-
curacy for applications that fail since resources are allocated to
backups of functioning applications. In contrast, cold backups
enable us to load the most accurate models, but activating cold
backup models takes more time, significantly increasing the
MTTR, as loading large models from disk is a lengthy process
(see Figure 2b).

C3 Model Placement. The third challenge is that the systemmust
optimize the placement decisions while considering a unique
set of constraints while optimizing the selection decisions. The
system must adhere to the performance requirements of both
the primary and failover models, as well as the resource limits.
Additionally, the placement must address correlated failures,
where co-located edge servers are more likely to fail in a corre-
lated manner.

C4 Failure Detection and Fast Failover. Finally, the system
must promptly detect failures and implement the recovery plan,
quickly restoring applications’ functional behavior. Further-
more, the system must notify clients of the new location and
the selected DNN model.

3 FAILLITE DESIGN
To address the above challenges, we propose FailLite, a failure-
resilient model serving system for the resource-constrained edge.
Inside FailLite, the core is a two-step proactive and progressive
failover approach, which intelligently provides failover replicas
in a proactive and dynamic manner to minimize the MTTR while
ensuring minimal accuracy degradation. In this section, we first
give an overview of the two-step approach, then detail each of
the two steps, and lastly explain how these two steps sit together
within FailLite and how to extend them to tolerate geographically
correlated edge failures.

3.1 FailLite Overview
The key insight of FailLite is leveraging the flexibility in DNN
models by using the concept of heterogeneous replication, where
we allow the failover backup to be a smaller model, reducing the
failover replica resource requirements. This heterogeneous replica-
tion allows FailLite to increase the number of failover replicas,
enhancing the end-to-end model serving resiliency. However, as
highlighted in Section 2.5, designing a fault tolerance model serving
system requires addressing issues of model selection and placement

Conference’17, July 2017, Washington, DC, USA Wu et al.

Step 2: Progressive FailoverStep 1: Proactive Failover

Disk

GPU

Primary Warm Replica Cold Replica Failed Models Usable Capacity Reserved Capacity

Server 1 Server 2 Server 3 Server 1 Server 2 Server 3

Figure 3: Overview of FailLite’s two-step approach.

and balancing the accuracy-MTTR trade-offs. To do so, FailLite
features a two-step fault tolerance process, illustrated in Figure 3.
As shown, initially, FailLite places warm failover replicas for a
set of critical applications while considering available resources
and performance requirements. In the second step, FailLite uses
a progressive failover process in which cold failover replicas are
loaded in an iterative manner from disk to memory based on the
servers that have failed. As we will demonstrate in Section 5, our
proposed two-step approach overcomes the limitations of singular
methods (i.e., only using warm or cold backups). Our hypothesis
is that using our two-step approach enables FailLite to maximize
accuracy during edge server failures by preloading warm backups for
critical applications while reserving some capacity for cold backups.
This progressive loading of cold backups on demand allows FailLite
to enhance the system’s accuracy while minimizing MTTR. Next, we
provide an overview of these two steps.

1) Proactive Failover. FailLite uses a configurable parameter
to split the free capacity between the proactive and the progressive
backups (see Figure 3). FailLite takes into account the usable
capacity (free capacity - reserved capacity) and applications that
require a warm backup (e.g., critical applications) and selects model
variants per application while permitting all applications to have a
cold backup (i.e., backups stored on servers’ disks). FailLite lever-
ages the flexibility of DNN models to optimize the warm backup
model selection and placement with a goal of maximizing the to-
tal accuracy while ensuring the placement of the warm backups.
FailLite assumes that each application has multiple DNN variants
of different resource requirements and accuracy, and models with
smaller sizes often have less accuracy (see Figure 2a).

2) Progressive Failover. When a server fails, FailLite needs
to determine and load models for the application without a warm
backup in a dynamic fashion. The key challenge in this step is that
the model selection and placement becomes a real-time decision
and highly affects the MTTR. In addition, loading cold backups
often has a high loading and warm-up time, a function of the model
size, as illustrated in Figure 2b. To overcome this challenge, we
propose a progressive model selection and placement approach.
FailLite first uses a greedy heuristic that maximizes the accuracy
under available capacity to perform backup model selection and
placement. Next, FailLite loads these models in a progressive
manner. It instantaneously loads the smallest model variant per
application to minimize the MTTR and then loads the selected
larger model to maximize the accuracy. Although the application
may experience higher performance degradation when using the
smallest model, it greatly decreases the service downtime. As shown
in Figure 2b, two model variants from the same model family can
have up to an order of magnitude difference in their loading time.

Table 1: Notations used in FailLite.

Notation Definition

𝑁 set of applications.
𝑆 set of servers.

𝐾 : 𝐾 ⊆ 𝑁 set of applications that require a warm backup.
𝛼 ∈ [0, 1] fault-tolerance parameter.

𝑐𝑟
𝑘

resource capacity of server 𝑘 of type 𝑟 .
𝑛𝑖 set of models for application 𝑖 .
𝑎𝑖 𝑗 normalized accuracy of model 𝑗 of application 𝑖 .
𝑑𝑟
𝑖 𝑗

resource demand of model 𝑗 of application 𝑖 of type 𝑟 .
𝑝𝑖 primary server of application 𝑖 .
𝑞𝑖 request rate of application 𝑖 .
𝑙𝑖 𝑗𝑘 latency of running model 𝑗 of application 𝑖 on server 𝑘 .
𝐿𝑖 latency constraints of application 𝑖 .

𝑥𝑖 𝑗𝑘 ∈ {0, 1} 1 when model 𝑗 for application 𝑖 assigned to server 𝑘 .
where, 𝑖 ∈ 𝐾 , 𝑗 ∈ 𝑛𝑖 , and 𝑘 ∈ 𝑆 .

Taking the four applications in Figure 3 as an example, FailLite
loads warm backups for two applications while the others have
cold backups. By reserving capacity for cold backups, FailLite
can utilize server 2 for failing over applications from servers 1 and 3.
If server 3 fails, FailLite switches the two applications to a warm
backup on server 1 and to a cold backup on server 2, respectively.

3.2 Proactive Failover
Our proactive fault tolerance step employs users’ preference (e.g.,
using application criticality level) as well as the required fault tol-
erance degree of non-critical applications. FailLite assumes that
users define a set of applications that must have a warm failover
replica while allowing all models to have cold failover replicas.
However, naively allocating all available capacity to warm back-
ups may curb the overall resiliency of the systems, as FailLite
may utilize oversized failover replicas, leaving no room for other
applications. To address this issue, FailLite reserves some of the
capacity for cold replicas determined by a configuration parameter.
Warm Backup Model Selection and Placement Problem.We
formulate our warm backup model selection and placement as an
Integer Linear Programming (ILP) optimization problem. Our op-
timization problem considers 𝑁 applications running on 𝑆 edge
servers and a set of applications 𝐾 : 𝐾 ⊆ 𝑁 that must have a warm
backup. We assume that the primary instances are placed and each
server has a free capacity 𝑐𝑟

𝑘
where 𝑟 represents different resource

types (e.g., GPU memory, CPU RAM, and compute cycles). We as-
sume that users or system administrators define a system-wide
failover parameter 𝛼 , where a higher 𝛼 reserves more resources
for cold backups, improving the overall system’s resilience, while a
small 𝛼 maximizes the accuracy of the critical applications. Further-
more, our settings assume that each application 𝑖 has a set of model
variants 𝑛𝑖 with varying resource demands 𝑑𝑟

𝑖 𝑗
and accuracy 𝑎𝑖 𝑗 .

We note that since different applications have different accuracy
ranges, we normalize the accuracy, where 𝑎𝑖 𝑗 = 𝑎𝑖 𝑗/𝑚𝑎𝑥 (𝑎𝑖 𝑗), a
common approach in such situations [1]. The latency of running
variant j of application 𝑖 on server 𝑠𝑘 is denoted as 𝑙𝑖 𝑗𝑘 . The nota-
tions used in the problem are summarized in Table 1. We define our
problem as a maximization problem as follows:

max
𝑥∗
𝑖 𝑗𝑘

∑︁
𝑖∈𝐾

∑︁
𝑗 ∈𝑛𝑖

∑︁
𝑘∈𝑆

𝑎𝑖 𝑗 · 𝑞𝑖 · 𝑥𝑖 𝑗𝑘 (1)

FailLite: Failure-Resilient Model Serving for Resource-Constrained Edge Environments Wu et al.

Algorithm 1: FailLite_Heuristic()
Input: Affected Applications 𝑁 ′ , Available Servers 𝑆 ′ .
Output:Model Selection 𝑋 and Placement 𝑌

1 Initialization: 𝑋 ← {} and 𝑌 ← {};
2 𝐶𝑟 =

∑𝑆 ′
𝑘

𝑐𝑟
𝑘
// Compute Available Capacity.

3 𝐷𝑟 =
∑𝑁 ′
𝑘

𝑑𝑟𝑚𝑎𝑥 // Compute Max Demand.

4 𝛿 = 𝐶𝑟 /𝐷𝑟 // Compute demand ratio.

5 for 𝑖 ∈ 𝑁 ′ do
6 𝑋 [𝑖] = match(𝑛𝑖 , 𝛿) // Select variants close to 𝛿.

7 for 𝑖 ∈ 𝑁 ′ do
// Iterate over model variants

8 for 𝑗 ∈ [𝑋 [𝑖] ..1] do
9 𝑘 =WorstFit(𝑗, 𝑆 ′)// Model Placement

10 if 𝑘 ≠ 𝜙 then
// Feasible placement was found.

11 𝑌 [𝑖] = 𝑘 ;
12 𝑋 [𝑖] = 𝑗

13 for 𝑖 ∈ 𝑁 ′ do
// Increase model accuracy.

14 𝑋 [𝑖] =upgrade_model(𝑋 [𝑖], 𝑌 [𝑖]);
15 return 𝑋,𝑌

s.t. ∑︁
𝑖∈𝐾

∑︁
𝑗 ∈𝑛𝑖

𝑥𝑖 𝑗𝑘 · 𝑑𝑟𝑖 𝑗 ≤ 𝑐𝑟
𝑘
, ∀𝑘, ∀𝑟 (2)∑︁

𝑖∈𝐾

∑︁
𝑗 ∈𝑛𝑖

∑︁
𝑘∈𝑆

𝑥𝑖 𝑗𝑘 · 𝑑𝑟𝑖 𝑗 ≤ (1 − 𝛼)
∑︁
𝑘∈𝑆

𝑐𝑟
𝑘
, ∀𝑟 (3)∑︁

𝑗 ∈𝑛 𝑗
𝑥𝑖 𝑗𝑝𝑖 = 0, ∀𝑖 (4)∑︁

𝑗 ∈𝑛 𝑗

∑︁
𝑘∈𝑆

𝑥𝑖 𝑗𝑘 = 1, ∀𝑖 (5)∑︁
𝑗 ∈𝑛 𝑗

∑︁
𝑘∈𝑆

𝑙𝑖 𝑗𝑘 · 𝑥𝑖 𝑗𝑘 ≤ 𝐿𝑖 , ∀𝑖 (6)

𝑥 ∈ {0, 1} (7)

The objective function (Equation 1) maximizes the effective ac-
curacy [1, 47] by considering the normalized accuracy and applica-
tions’ request rate 𝑞𝑖 by only considering the set of applications 𝐾 .
Equation 2 ensures the total resource demands of all warm failover
backups assigned to a server do not exceed its available capacity.
Equation 3 ensures that the capacity reserved for cold backups
is respected. Equation 4 is a primary backup independence con-
straint, where failover replicas do not share the same server with
the primary. Equation 5 ensures each application has one backup.
Equation 6 limits backup placement to servers and variants that
meet the latency SLO. Lastly, Equation 7 ensure that 𝑥𝑖 𝑗𝑘 is binary.

3.3 Progressive Failover
In the proactive model selection and placement step, FailLite
leverages an ILP to select and place model variants across servers.
Despite the similarities between the proactive approach in Sec-
tion 3.2, which can be used to select and place the failover backups
by considering the subset of affected applications 𝐾 ′, the location
of cold replicas, and the available resources. The key challenge in
formulating this problem as an ILP is that solving ILPs typically
takes large amounts of time. Although this may be suitable for
the proactive step, it highly increases the MTTR, a key objective

of FailLite. Moreover, as mentioned earlier, cold backups often
exhibit a high loading and warm-up time, which can be in orders
of seconds (see Figure 2b).

To address these challenges, we propose a model selection and
placement heuristic, described in Algorithm 1, and a progressive
model loading approach. When FailLite detects a failure, Algo-
rithm 1 takes the list of impacted applications that have no warm
backup to fail over and available servers to select the model vari-
ants (Line 2-6) and to decide their placement (Line 7-14). First, it
computes the available resource capacity and maximum resource
demands and computes a resource ratio 𝛿 , where 𝛿 ≥ 1 denotes
that resources are mostly sufficient to place full backups for all
applications, while 𝛿 < 1 means that some applications may face
accuracy degradation. Algorithm 1 then selects the model variant
that matches the 𝛿 (e.g., when 𝛿 is 0.5, the match() function selects
a model whose resource demands are 50% of the full-size model).
The algorithm then iterates over the applications and their model
variants (from the selected model to smaller) and tries to place it
on a server in a worst-fit manner until a feasible server and model
variant is found. Lastly, Algorithm 1 tries to upgrade the selected
model if the selected server can fit a more accurate model. After
determining the model variant and its placement, FailLite first
loads the smallest variant, ensuring a low MTTR, and after the
connection is restored, it upgrades it to the selected model.

3.4 Putting It Together
Figure 4 presents the architecture of FailLite, featuring a central-
ized controller that implements failure detection and our proposed
two-step failover policies. FailLite utilizes an agent sitting at edge
servers to facilitate the two-step failover process. Here, we present
the workflow of FailLite and demonstrate how the proactive and
progressive failover approaches are utilized.

First, when a new application arrives (1), FailLite uses the
predetermined placement of primary replica (e.g., by the lowest
latency or user selection) and uses the proactive failover approach
to select and place warm backup models. In either case, FailLite
informs the FailLite agent to retrieve the model from the disk and
load it to the GPU memory according to the policy (2). At runtime,
FailLite uses a heartbeat signal to determine the state of themodel
serving servers. When FailLite detects a failure, it follows the
progressive failover approach and determines the location of the
cold backup using our proposed heuristic approach(3). In the case
of cold backups, FailLite progressively loads the model, allowing
the system to have both a low MTTR and a high accuracy(4). Once
the failover process completes, FailLite informs the load balancer
or clients of the new location to reroute their inference requests(5).

Extending FailLite to Geographically Correlated Failures.
Although the aforementioned policy focuses on single failure toler-
ance, geographically corrected failures within or across edge sites
are commonplace in edge environments. To tolerate these failures,
FailLite’s proactive failover can allow applications to have mul-
tiple warm backups (i.e., updating Equation 5 as a multi-replica
constraint). Moreover, FailLite can extend the primary indepen-
dence constraint (Equation 4) to edge site independence, where
primary and failover backup do not share the same edge cluster
or create an exclusion list where applications in an edge site are

Conference’17, July 2017, Washington, DC, USA Wu et al.

Control Plane
Data Plane

Model
Profiler

FailLite Controller

Failover Manager
(Proactive + Progressive)

Failure Detector

FailLite
Agent

Model Inference
Server

Monitoring Daemon

Worker

Model Repository

Client
Object Detection

SLO: 200 ms
Critical: True

Model Serving SystemFailLite

1 5

2

Datastore

3

Inference request

4

Figure 4: Overview of FailLite Architecture.

only allowed to have backups in a subset of the listed edge sites.
Importantly, our progressive failover approach can adapt to these
widespread failures by selecting models and placing them on the fly.
In Section 5.6, we evaluate FailLite behavior in edge site failures.

4 IMPLEMENTATION
In this section, we detail the prototype implementation of FailLite.
Our current prototype controller is integrated with the Nvidia
Triton Inference Server [30]. However, it is not limited to Triton’s
design or interfaces. We implemented FailLite using Python and
∼5kSLOC. FailLite is available at (url-hidden). In the remainder
of this section, we will detail the implementation of FailLite and
how the proposed architecture is integrated with the Nvidia Triton
Inference Server.

FailLite Failure Detection. At the heart of FailLite, is our
failure detection approach. The FailLite agent utilizes a periodical
push alive message, sent every𝑇ms, which our experiments use𝑇 =

20𝑚𝑠 . If the controller does not receive two consecutive messages,
it initiates our proposed failover process.

FailLite Failover. We implemented our proposed two-step
failover approach, where it places warm backups for critical ap-
plications (i.e., proactive failover) and reacts to failure detection
by loading the failover replicas for other applications. We imple-
mented our proposed ILP for the proactive placement step using
the Python interface of Gurobi v12.0.0. In contrast, our progres-
sive failover heuristic Algorithm 1) is implemented in Python and
initiated to load models for applications without a warm backup.
Lastly, FailLite asynchronously informs the applications’ client
of the failover inference server and model using push notifications
implemented using websockets v15.0.

FailLite Data Store. FailLite utilizes a data store to collect sys-
tem state (e.g., utilization), performancemetrics (e.g., response time),
and application profiles (e.g., memory requirements and service
time) across model variants. FailLite also maintains the locations
of the primary and backups of applications. Our implementation
utilizes Redis v7.4.2, an in-memory key-value data store, which al-
lows replication and periodic checkpoints, enhancing the resiliency
of our controller.

Integrating FailLite and Triton. We build the worker node
on top of Nvidia’s open-source enterprise model inference system,
Nivida Triton Inference Server v24.12-py3 [30], and TensorRT v10.8.
We run Triton as a Docker container using Docker v27.5.1, where
we allocate all accelerator resources to the container. Triton can
serve multiple model inferences within one server, collect system
and inference metrics, and support model management at runtime.
Triton utilizes a local model repository where models are placed
on the disk before loading. To load/unload models, Triton presents
a Load/Unload{ID} API, where ID is the application ID, and each
application model variant has a unique ID. To differentiate the
applications, each inference model is indexed with appID andmodel
variant (e.g., 𝐴𝑝𝑝𝐼𝐷_𝑀𝑉𝑎𝑟).

Our implementation augments the Triton server with two key
features. First, with failure detection capabilities, where FailLite
agent implements a periodic heartbeat where it pushes a keep alive
message every 50ms. Second, FailLite dynamically configures
the running models to enhance the system’s resiliency. To do so,
our controller utilizes Triton API to load and unload models as per
the failover policy. However, since Triton assumes that all models
are locally available, our FailLite agent manages the local model
repository by fetching the needed model variants (e.g., from the
cloud).1

5 EVALUATION
In this section, we evaluate the performance of FailLite and our
proposed policies using a real-world testbed. We also augment our
results with large-scale simulations highlighting the supremacy and
the scalability of our solution. In doing so, we answer the following
research questions:
• How does FailLite react to an edge server crash failure? How
does our two-step approach address the limitation of traditional
failover approaches?
• What is the performance of FailLite with different resource
constraints, application configurations, model families, and edge
site failures.
• What is the overhead and scalability of FailLite?

5.1 Experiment Setup
Experimental Testbed. We deploy FailLite on a local testbed
consists of 7 Dell PowerEdge R630, each equipped with a 40-core
Xeon E5-2660v3 CPU running on Ubuntu 22.04. Each server has
256 GB of memory, a 400 GB Intel 730 SSD, and up to 10 Gbps net-
working speed. Additionally, 6 of these servers include an NVIDIA
A2 GPU with 1280 CUDA cores and 16 GB of GPU memory. We
assume these six servers represent three edge sites, each with two
servers, and we use a server as a controller node.

DNNWorkloads. We evaluate FailLite with 16 model families
PyTorch [31], totaling 69 DNN models. PyTorch models include
their accuracy and model requirements (number of parameters
and FLOPs) across these models and different architectures. We

1We assume that servers typically have ample storage and may maintain many cold
replicas. Although addressing storage limitations is beyond the scope of this paper,
one solution is to assume that servers rely on a cloud-based model repository where
they download models on the fly or use a replication where application models are
replicated on multiple servers or sites.

FailLite: Failure-Resilient Model Serving for Resource-Constrained Edge Environments Wu et al.

assume that each architecture represents a family, and we calculate
the accuracy by normalizing the accuracy to the most accurate
model within a family. We categorize these model families into
three classes: small, medium, and large, according to their maxi-
mum resource demands difference between the largest and smallest
models. Our experiments first focus on deploying a number of DNN
models from 5 model families, including Mobilenet, Shufflenet, Con-
vnext, Efficientnet, and Regnet. We later expand our analysis to
include all model families using simulation.

We compile these models using TensorRT and use Triton’s Model
Analyzer to profile all the model variants. Triton Model Analyzer
measures the GPU memory, compute utilization, and average in-
ference time for batch size 1. Lastly, we note that our approach
can utilize static analysis techniques to estimate the memory and
processing times [4, 16, 32].

FailLite Deployment. We deploy FailLite on the edge testbed.
Each server acts as a worker node and serves inference requests.
Each server hosts a Triton inference server within a container and
uses TensorRT as a backend. Furthermore, we disable the auto
completion and set the model loading thread of 10 to reduce the
model loading overhead introduced by Triton. Each worker node
reports the heartbeat to the controller every 20 ms. The FailLite
controller runs on one edge server and detects edge crash failure
every 100 ms.

In our real experiments, we first deploy the primary of these
DNN applications using the worst-fit algorithm, resulting in around
50% utilization in GPUmemory and GPU. Our setup deploys a client
on the same server as the primary. Moreover, unless otherwise men-
tioned, we assume that users provide a set 𝐾 of critical applications
that must have a warm failover replica, which we set as 50%, and
we set the fault tolerance parameter 𝛼 as 0.1. Lastly, to make results
comparable across settings, we fix the applications and control the
available capacity via controlling a headroom parameter, which we
range from 50% to 10%, representing different resource constraints,
where unless otherwise mentioned, we assume that headroom is
20%. Moreover, we extend the evaluation of FailLite through
large-scale simulations. We utilize all the model families from Py-
Torch [31] and expand the setup to 100 servers. We utilize the
model profiles and MTTR numbers collected from the real testbed
to ensure the fidelity of our results. To overcome the scalability
issues of the ILP solver, our solutions utilize the proposed heuristic
(Algorithm 1).

Failure Injection. We inject crash failures of edge servers by stop-
ping the Triton inference container. When the container is down,
the FailLite Agent stops sending the heartbeat to the controller.
Note that we do not consider transient failures, where failed servers
are shortly recovered. In our experiments, we run model inference
in the normal state for 60 seconds before injecting crash failures
and collect another 60 seconds of data afterward.

Evaluation Metrics. We focus on three metrics to evaluate the
performance of FailLite: (i) Recovery Rate (%): The percentage
of DNN applications that were affected by the failure and were
recovered, (ii) Mean Time To Recovery (MTTR) (s): The duration
between the failure detection and notifying the client of the new
application location, which includes model loading time for cold

0

200
Failover Time: 9 ms Warm

0

200
Failover Time: 441 ms Cold-Small

0

200
Failover Time: 2105 ms Cold-Large

0 1 2 3 4 5 6 7 8 9 10
Time (s)

0

200R
es

po
ns

e
Ti

m
e

(s
)

Failover Time: 536 ms Cold-Progressive

Figure 5: FailLite behavior across different types of backups,
showing the advantages of warm backups and our proposed
progressive failover.

backups. Note that we only consider applications that were recov-
ered; non-recovered applications have an infinite MTTR, and (iii)
Accuracy Reduction (%): The accuracy reduction of backup com-
pared to primary. Note that we only consider applications that were
recovered; non-recovered applications have zero accuracy.

Baselines. To the best of our knowledge, no existing model serv-
ing systems address the failure resiliency in resource constraint
environments. Therefore, we compare FailLite to the traditional
approaches in failover replication that do not consider the accuracy-
resource trade-off and try to use full-size models. Note that since
these policies do not consider different model variants, they have
no accuracy loss, but not all applications can be recovered. In doing
so, we consider three baselines:
• Full-Size-Warm: This policy places full-size warm backups to
minimize the MTTR of DNN applications. It first considers the
set of critical application 𝐾 , then tries to place full-size backup
for others.
• Full-Size-Cold: This policy considers all applications and places
cold backups. In case of failure, this policy first loads backups for
the 𝐾 critical applications, then randomly loads other failover
replicas.
• Full-Size-Warm (𝐾): Lastly, this policy considers both warm
and cold backups, where it only places warm backups for the 𝐾
critical applications, while allowing all application to have cold
backups

5.2 FailLite in Action
First, we evaluate the behavior of FailLite in failure recovery,
where we consider a simple scenario where a single application
is running and show the failure recovery process across different
approaches. Figure 5 shows the behavior of FailLite when con-
sider a model serving application using the Convnext model family.
The x-axis represents the experiment type, where we inject the
failure at the 4th second, and the y-axis shows the clients’ response
time. The figure shows the difference in behavior across types of
failover backups, where a warm backup (aside from its size) will
have a small failover time, where clients can quickly restore their

Conference’17, July 2017, Washington, DC, USA Wu et al.

0 10 20 30 40 50 60
Time (s)

0

100

200

300

R
es

po
ns

e
Ti

m
e

(m
s)

Full-size
FailLite

(a) Warm backup (small)

0 10 20 30 40 50 60
Time (s)

0

100

200

300

R
es

po
ns

e
Ti

m
e

(m
s)

Full-size
FailLite

(b) Cold backup (small)

0 10 20 30 40 50 60
Time (s)

0

50

100

R
es

po
ns

e
Ti

m
e

(m
s)

Full-size duration: 2047 ms

FailLite duration: 571 msFull-size
FailLite

(c) Cold backup (full-size)

Figure 6: Comparing FailLite to Full-Size-Warm(𝐾), showing scenarios, where only FailLite can have a backup (a) and (b) as
well as benefits of progressive failover in reducing the recovery time when using the full-size cold backup.

Full-Warm Full-Cold Full-Warm-K FailLite
0

50

100

R
ec

ov
er

y
R

at
e

(%
)

(a) Recovery Rate (%)
Full-Warm Full-Cold Full-Warm-K FailLite

0.0

1.0

2.0

M
T

T
R

 (s
)

(b) MTTR (s)

Figure 7: Recovery rate and MTTR of FailLite. The accuracy
loss is 0.6%.

behavior and reissue the queued requests after failure, restoring
the normal behavior after ∼300ms. In contrast, when using the cold
backups, the model loading time (see Figure 2b) is dependent on
the model size. For example, Figure 5 shows that the small model
of size 158MB, requires 594ms to load, while the large one of size
806MB, requires 2294ms to load, increasing the MTTR between
small and large by a 3.86×. Lastly, the figure shows the benefits
of our progressive approach, where it reduces the MTTR while
retaining the accuracy of the large. We note that, in this progressive
approach, the client is oblivious to the switch, where FailLite
does the change using the same network interface, yielding a small
spike in the response time.

Next, we extend our experimental scenario, where we consider
5 model families and load models to cover 50% of the compute
and memory resources, resulting in 46 different applications. Fig-
ure 6 shows the behavior of FailLite compared to the Full-Size-
Warm(𝐾), which considers warm backups for 𝐾 = 50% critical
application. We also assume that the headroom (usable space to
load backups) is 20%. Figure 6 shows the behavior of FailLite and
Full-Size-Warm(𝐾) for three selected scenarios, highlighting the
advantages of FailLite, but we summarize the results across all ap-
plications in Figure 7. Figure 6a shows a scenario where FailLite
utilizes a warm backup of small size to circumvent the resource
limitation, maintaining a small MTTR (85 ms), in a scenario where a
full-sized model cannot be loaded. Figure 6b shows another decision
made by FailLite, where it decides only to load a smaller-sized
model, allowing the application to be recovered despite the re-
source limitation. In this case, FailLite will face a 1316 ms MTTR,
as loading the application from disk takes more time. Lastly, Fig-
ure 6c shows the behavior of FailLite in a scenario where both
approaches can secure a cold failover backup. As shown, although
both approaches can recover the full-model, FailLite can reduce
the MTTR by 72%.

Figure 7 shows the aggregate behavior of FailLite and three
baseline policies in terms of recovery rate (Figure 7a) and (Fig-
ure 7b). We note that we do not report the accuracy reduction, as

baselines use full-size models, leading to no accuracy reduction,
while FailLite exhibits a 0.6% accuracy reduction. The figure re-
ports the average recovery rate and MTTR across six runs where
we fix the application placement and, each time, we inject a failure
on one of our six servers.

As shown in Figure 7a, in all scenarios, FailLite was able to
maintain a high recovery rate, where it was able to load a failover
backup for all applications. In contrast, other baselines could not
host a failover for all applications. Figure 7b completes the picture by
showing the MTTR across baselines. The figures highlight the trade-
offs of the choices made by the Full-size baselines. For instance,
the Full-Size (Warm) policy was able to provide only a failover
replica (in case of failure) for 85.9% and 76% of the applications on
average and in the worst case. In contrast, although the Full-Size
(Cold) was able to overcome this limitation, Figure 7b shows that
this approach has a high average MTTR, 15.8× larger than that of
the Full-size (Warm). Moreover, the figure shows that despite how
Full-Size-Warm(𝐾) may address the limitation of either approach, it
still falls short in comparison to FailLite. For instance, Figure 7a
shows how FailLite has a recovery rate higher by 7.7% and an
average MTTR better by 2×.

Key Takeaways. FailLite proposed a two-step approach, hetero-
geneous replication, and progressive loading address the limitation
of traditional failover techniques. Our results show that compared to
Full-Size-Warm(𝐾), FailLite is able to maintain a 100% recovery
rate and decrease the MTTR by 2×, only for an 0.6% accuracy loss.

5.3 Impact of Resource Constraints
Despite the ability of FailLite to enhance failure resiliency in
resource-constrained environments, the quantity of available re-
sources influences the decisions made by FailLite. For example,
when resources are already overloaded, there is no room to enhance
the system’s resiliency. In contrast, in low utilization scenarios, tra-
ditional failover techniques shall behave quite well. In this section,
we evaluate the performance of FailLite and depict its ability to
optimize its decisions in different resource contention scenarios. We
simulate 10 edge sites with 100 servers in total and deploy the same
mixture of DNNmodels as the real experiments across these servers.
To make results comparable across settings, we fix the applications
to 640 and control the available capacity via controlling a headroom
parameter, which we range from 50% to 10%, representing different
resource constraints.

Figure 8 shows the behavior of FailLite and traditional failover
baselines across different headroom settings. Figure 8a shows the

FailLite: Failure-Resilient Model Serving for Resource-Constrained Edge Environments Wu et al.

10 20 30 40 50
Headroom (%)

0

50

100

R
ec

ov
er

y
R

at
e

(%
)

Full-Warm Full-Cold Full-Warm-K FailLite

10 20 30 40 50
Headroom (%)

0

50

100
R

ec
ov

er
y

R
at

e
(%

)

(a) Recovery Rate (%)

10 20 30 40 50
Headroom (%)

0.0

0.5

1.0

M
T

T
R

 (s
)

(b) MTTR (s)

10 20 30 40 50
Headroom (%)

0

2

4

6

A
cc

ur
ac

y
 R

ed
uc

tio
n

(%
)

(c) Accuracy Reduction (%)

Figure 8: Impact of resource constraints on the decisions and performance of FailLite and our baselines. We introduce resource
constraints by changing the headroom available for failover backups.

0 20 40 60 80 100
Top-K (%)

0

2

4

6

8

10

A
cc

ur
ac

y
R

ed
uc

tio
n

(%
)

Accuracy Loss
MTTR

0

100

200

300

M
T

T
R

 (m
s)

Figure 9: Impact of 𝐾 .

recovery rate across different settings, highlighting the ability of
FailLite to recover all applications, even in highly constrained
settings. In contrast, the traditional failover approach has struggled,
especially for small headrooms. For instance, when headroom is 10%,
the full-warm, full-cold, and full-warm-k are only able to recover
50.5%, 79.8%, and 66% of the applications. Nonetheless, increased
headroom increases the recovery rate, where at 50%, all approaches,
except for Full-Warm, are able to recover 100% of the applications.

In addition, Figure 8b shows the runtime behavior of different
policies. As expected, the Full-Warm backup has a low and stable
MTTR, as the headroom size has no effect when only considering
warm backups, yielding a 50 ms average failover time. In contrast,
policies that depend on cold backups (i.e., Full-Cold and Full-Warm-
K) have a much higher increase in MTTR, as higher headroom
allows for failover replicas for larger models, increasing the MTTR.
For instance, the average MMTR increases from 784 ms to 1742
ms between 10% and 30% headroom. The figure also highlights
how FailLite addresses the limitation in these policies, where
FailLite achieves a low MTTR by allowing all applications within
𝐾 to have a warm backup while progressively loading cold failover
models, resulting in ∼134 MTTR. Finally, Figure 8c shows the ac-
curacy; as noted earlier, utilizing full backups have no accuracy
loss, and we only considered restored applications. As shown, the
high recovery rate and smaller MTTR, come at a cost of accuracy
reductions, where at a headroom of 10% FailLite loses 4.52% of
the accuracy of the models.

Key Takeaways. Although resource limitation highly affects the
failure resiliency of traditional failover approaches, FailLite was
able to circumvent the key limitations of these approaches and achieve
a 100% recovery rate for a 4.52% reduction in accuracy.

10 20 30 40 50
Headroom (%)

0

50

100

R
ec

ov
er

y
R

at
e

(%
)

Full-Warm Full-Cold Full-Warm-K FailLite

Small Medium Large
Model Family

0

50

100

R
ec

ov
er

y
R

at
e

(%
)

(a) Recovery Rate (%)

Small Medium Large
Model Family

0

1

2

M
T

T
R

 (s
)

(b) MTTR (s)

Small Medium Large
Model Family

0

2

4

6

8

A
cc

ur
ac

y
 R

ed
uc

tio
n

(%
)

(c) Accu. Reduction (%)

Figure 10: Impact of model family on the Recovery Rate (a),
MTTR (b) and Accuracy Reduction (c).

5.4 Impact of Applications’ Criticality
Another key factor in the decision of FailLite is the application
criticality. Figure 9 shows the effect of FailLite across different
𝐾 configurations, where we change 𝐾 from 0% to 100% using the
large-scale simulation setup described earlier. As shown, the curve
highlights the accuracy-MTTR trade-off in failure-resilient model-
serving systems. For instance, when all applications are critical
(𝐾 = 100), FailLite needs to place warm backups for all appli-
cations, reducing the overall accuracy. On the other hand, when
none of the applications require a warm backup (𝐾 = 0), FailLite
can maximize the accuracy by loading the largest model for the
affected applications at the cost of higher MTTR. Lastly, we note
that although how users value different parameters is beyond the
scope of this paper, we highlight that a balance point exists when
𝐾 = 60%.

KeyTakeaways. The decisions of FailLite introduces an accuracy-
MTTR trade-offs, where the decisions of FailLite at 𝐾 introduces a
low MTTR, while higher 𝐾 , comes with a performance desegregation.

5.5 Impact of Model Family
We analyze the impact of different model families on the perfor-
mance of FailLite. We categorize model families into three classes
according to the maximal difference of resource demand between
model variants: Small, Medium, and Large. For example, we con-
sider Mobilenet model family as Small as the maximal resource
demand difference is 12MB, and consider the Convnext model fam-
ily as Large as its 648MB demand difference. Figure 10 shows the
performance of FailLite and other baselines when all applications
are composed exclusively from one model family class. Lastly, we
note that since model families have different resource requirements,

Conference’17, July 2017, Washington, DC, USA Wu et al.

10 30 50 70
Failure Ratio (%)

0

25

50

75

100

R
ec

ov
er

y
R

at
e

(%
)

Full-Warm Full-Cold Full-Warm-K FailLite

1 3 5 7
Failed Edge Sites

0

25

50

75

100

R
ec

ov
er

y
R

at
e

(%
)

(a) Recovery Rate (%)

1 3 5 7
Failed Edge Sites

0.0

1.5

M
T

T
R

 (s
)

(b) MTTR (s)

Figure 11: Impact of edge site wide failures.

the total number of applications changes across scenarios ranging
between 3264 and 402 across the Small and Large classes.

Figure 10a shows that FailLite is able to achieve a higher re-
covery rate when the demand difference is bigger, while full-size
baselines struggle. For instance, Full-Cold can only recover 65% of
the applications in the large class while FailLite can recover all.
When the demand difference is small, FailLite can still outper-
form the Full-Warm-K policy by 15% in recovery rate. Figure 10b
also highlights the effect of model family class on the MTTR, where
increases in model size introduce higher MTTR across all base-
lines. However, it is worth mentioning that even in the Large class,
FailLiteMTTR value was 214 ms on average. Figure 10c shows
the accuracy reduction, although accuracy reduction is not com-
parable across scenarios, FailLite exhibits a maximum of 7.1%
reduction in accuracy. Lastly, as noted earlier, traditional policies
have no accuracy loss.

Key Takeaways. With a larger difference in resource demand be-
tween model variants, FailLite is able to further optimize the re-
siliency of DNN models while achieving a 214ms MTTR.

5.6 Impact of Edge Site Failure
Site-wide failures are common in the edge, as network and power
systems do not have high levels of redundancy. To evaluate the
effect of edge-wide failures, we utilize our large-scale simulation
testbed of 100 servers and group these servers into ten sites of size
10. We then explore the effect of site failures by failing 1 - 7 of
the 10 edge sites. Similar to previous experiments, we repeat these
experiments multiple times to ensure the stability of our results.
Figure 11 shows the recovery rate and MTTR of FailLite and
other approaches. We note that as mentioned in Section 3.4, we
add a site independence constraint, where the warm backup is
placed in a different site. As shown in Figure 11, FailLite is able to
maintain 100% failure recovery until 50% of the sites fail enhancing
the recovery rate by 7.9% and 39.3% compared to Full-Cold, for the
single edge site and seven edge sites failures scenarios, respectively.
Figure 11b also highlights how the MTTR changes across scenarios,
where increases in the number of failed sites decreases the ability
to load large models, decreasing the MTTR for all approaches.

Key Takeaways. The capabilities of FailLite can be extended
to edge-site resilience. For instance, when 50% of the edge sites fail,
FailLite increases the recovery rate by at least 39.3% compared to
the full-size policies.

500 1000 2000 3000
Apps

0.0

2.0

4.0

Ti
m

e
(s

)

(a) # Apps

100 250 500 750 1000
Servers

0.0

2.0

4.0

Ti
m

e
(s

)

(b) # Servers

4 100 200 300 400
Model Variants

0.0

2.0

4.0

Ti
m

e
(s

)

(c) # Model Variants

Figure 12: Scalability of FailLite heuristic model selection
and placement. We fix the number of servers as 500, applica-
tions as 1000, and model variants as 4, and show the effect of
changing each.

5.7 FailLite Overheads
In this section, we highlight the runtime overheads experienced by
FailLite. Our failure detection process typically took 65ms per
our configuration, while informing the clients with the location
of the failover replica was around 10ms. Figure 12 highlights the
scalability of our proposed heuristic, where even in very large scale
settings (e.g., 3000 applications or 1000 servers), it took less than 4
seconds. Lastly, we note that the largest overhead source was the
model loading time, which was not controlled by FailLite as it
was a function of the model size as we shown in Figure 2b.

6 RELATEDWORK
Model Serving. The importance of model serving systems has
encouraged many researchers to address its latency [5, 7, 7, 12, 23,
34, 39, 48, 49], cost [2, 6, 25, 46], energy efficiency [11, 24, 40, 45],
and addressing challenges of workload dynamics [1, 2, 24, 40, 47].
A common idea of these papers is exploring the accuracy-resource
trade-offs where choosing the right-sized DNNmodel [1, 2, 9, 11, 19,
47] or utilizing flexible DNN architecture (e.g., multi-exit DNNs [24]
and Slimmable DNNs [44]). Although similar to many of these
papers, FailLite exploits the accuracy-resource trade-offs, and we
utilize it to enhance the resiliency of model serving systems and
highlight a new accuracy-resiliency trade-off.
Resilient Model Serving. Although researchers have addressed
failure resiliency issues in previous work, they often have different
assumptions or objectives than FailLite. For instance, the authors
of [28, 42, 43] highlighted that as models become larger, the model
inference systems will often utilize multi-nodes to process inference
requests, where failures of any of the utilized nodes affect the model
resiliency. To address these issues, the authors often use early-exit
and skip-connection models to ensure a result is available. Our
approach, in contrast, focuses on a different scenario, where we
assume that models are deployed on a single server and failures
affect the entire model
Resiliency in Resource Constraint Environments Graceful
degradation is commonly used in scenarios with resource con-
tention. For instance, Defcon [29] improves reliability by incorpo-
rating services’ criticality and allocating resources per this crit-
icality. In contrast to this paper, where placement decisions are
binary, FailLite addresses the Failure Resiliency in model serving
systems, where the decisions are far more complex and the system
can utilize DNNs’ flexibility by choosing different model sizes and
selecting which applications have a failover replica.

FailLite: Failure-Resilient Model Serving for Resource-Constrained Edge Environments Wu et al.

7 CONCLUSION
In this paper, we proposed FailLite, a failure-resilient model
serving system that employs (i) a heterogeneous replication where
failover models are smaller variants of the original model, and (ii)
an intelligent approach that uses warm replicas to ensure quick
failover for important applications while using cold replicas and
(iii) progressive failover to provide low mean time to recovery for
the remaining applications. Our evaluation has demonstrated that
our two-step approach enables FailLite to maximize worst-case
accuracy (i.e., accuracy during system failures) for critical and non-
critical applications while minimizing MTTR. Our results using the
27 models show that FailLite can recover all failed applications with
175.5ms MTTR and only introduce 0.6% reduction in accuracy. Our
future work will address the failure resiliency in heterogeneous
environments and when deploying model serving pipelines.

REFERENCES
[1] Sohaib Ahmad, Hui Guan, Brian D. Friedman, ThomasWilliams, Ramesh K. Sitara-

man, and ThomasWoo. 2024. Proteus: A High-Throughput Inference-Serving Sys-
tem with Accuracy Scaling. In Proceedings of the 29th ACM International Confer-
ence on Architectural Support for Programming Languages and Operating Systems,
Volume 1 (La Jolla, CA, USA) (ASPLOS ’24). Association for Computing Machinery,
New York, NY, USA, 318–334. https://doi.org/10.1145/3617232.3624849

[2] Sohaib Ahmad, Hui Guan, and Ramesh K. Sitaraman. 2024. Loki: A System
for Serving ML Inference Pipelines with Hardware and Accuracy Scaling. In
Proceedings of the 33rd International Symposium on High-Performance Parallel and
Distributed Computing (Pisa, Italy) (HPDC ’24). Association for Computing Ma-
chinery, New York, NY, USA, 267–280. https://doi.org/10.1145/3625549.3658688

[3] Amazon Web Services. 2025. Amazon SageMaker. https://aws.amazon.com/
sagemaker/ Accessed: 2025-04-09.

[4] Ermao Cai, Da-Cheng Juan, Dimitrios Stamoulis, and Diana Marculescu. 2017.
Neuralpower: Predict and Deploy Energy-efficient Convolutional Neural Net-
works. In Asian Conference on Machine Learning.

[5] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin, Joseph E. Gon-
zalez, and Ion Stoica. 2017. Clipper: A Low-Latency Online Prediction Serving
System. In 14th USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 17). USENIX Association, Boston, MA, 613–627. https://www.
usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw

[6] Qiang Fan and Nirwan Ansari. 2019. On cost aware cloudlet placement for mobile
edge computing. IEEE/CAA Journal of Automatica Sinica 6, 4 (2019), 926–937.
https://doi.org/10.1109/JAS.2019.1911564

[7] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kaufmann, Ymir
Vigfusson, and Jonathan Mace. 2020. Serving DNNs like Clockwork: Performance
Predictability from the Bottom Up. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20). USENIX Association, 443–462.
https://www.usenix.org/conference/osdi20/presentation/gujarati

[8] Zhishan Guo, Kecheng Yang, Sudharsan Vaidhun, Samsil Arefin, Sajal K. Das,
and Haoyi Xiong. 2018. Uniprocessor Mixed-Criticality Scheduling with Graceful
Degradation by Completion Rate. In 2018 IEEE Real-Time Systems Symposium
(RTSS). 373–383. https://doi.org/10.1109/RTSS.2018.00052

[9] Matthew Halpern, Behzad Boroujerdian, Todd Mummert, Evelyn Duesterwald,
and Vijay Janapa Reddi. 2019. One Size Does Not Fit All: Quantifying and
Exposing the Accuracy-Latency Trade-Off in Machine Learning Cloud Service
APIs via Tolerance Tiers . In 2019 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). IEEE Computer Society, Los Alamitos,
CA, USA, 34–47. https://doi.org/10.1109/ISPASS.2019.00012

[10] Walid A. Hanafy et al. 2023. Failure-Resilient ML Inference at the Edge through
Graceful Service Degradation. In IEEE Military Communications Conference (MIL-
COM). 144–149. https://doi.org/10.1109/MILCOM58377.2023.10356302

[11] Walid A. Hanafy, Tergel Molom-Ochir, and Rohan Shenoy. 2021. Design Con-
siderations for Energy-Efficient Inference on Edge Devices. In Proceedings of the
Twelfth ACM International Conference on Future Energy Systems (Virtual Event,
Italy) (e-Energy ’21). Association for Computing Machinery, New York, NY, USA,
302–308. https://doi.org/10.1145/3447555.3465326

[12] Walid A. Hanafy, LiminWang, Hyunseok Chang, Sarit Mukherjee, T. V. Lakshman,
and Prashant Shenoy. 2023. Understanding the Benefits of Hardware-Accelerated
Communication in Model-Serving Applications. In Proceedings of IEEE/ACM 31st
International Symposium on Quality of Service (IWQoS’23).

[13] Soheil Hashemi, Nicholas Anthony, Hokchhay Tann, R. Iris Bahar, and Sherief
Reda. 2017. Understanding the Impact of Precision Quantization on the Accuracy
and Energy of Neural Networks. In Proceedings of the Conference on Design,

Automation & Test in Europe (Lausanne, Switzerland) (DATE ’17). EuropeanDesign
and Automation Association, Leuven, BEL, 1478–1483.

[14] Yi He, Mike Hutton, Steven Chan, Robert De Gruijl, Rama Govindaraju, Nishant
Patil, and Yanjing Li. 2023. Understanding and Mitigating Hardware Failures in
Deep Learning Training Systems. In Proceedings of the 50th Annual International
Symposium on Computer Architecture (Orlando, FL, USA) (ISCA ’23). Association
for Computing Machinery, New York, NY, USA, Article 70, 16 pages. https:
//doi.org/10.1145/3579371.3589105

[15] Jin Huang, Colin Samplawski, Deepak Ganesan, Benjamin Marlin, and Heesung
Kwon. 2020. CLIO: Enabling Automatic Compilation of Deep Learning Pipelines
across IoT and Cloud. In Proceedings of the 26th Annual International Conference
on Mobile Computing and Networking (London, United Kingdom) (MobiCom ’20).
Association for Computing Machinery, New York, NY, USA, Article 58, 12 pages.
https://doi.org/10.1145/3372224.3419215

[16] Daniel Justus, John Brennan, Stephen Bonner, and Andrew Stephen McGough.
2018. Predicting the Computational Cost of Deep Learning Models. In 2018 IEEE
International Conference on Big Data (Big Data).

[17] Israel Koren and C. Mani Krishna. 2021. Fault-Tolerant Systems (second edition
ed.). Morgan Kaufmann.

[18] Kubeflow. 2025. Kubeflow: The Machine Learning Toolkit for Kubernetes. https:
//www.kubeflow.org/ Accessed: 2025-04-14.

[19] Baolin Li, Siddharth Samsi, Vijay Gadepally, and Devesh Tiwari. 2023. Clover:
Toward Sustainable AI with Carbon-Aware Machine Learning Inference Service.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (Denver, CO, USA) (SC ’23). Association for
Computing Machinery, New York, NY, USA, Article 20, 15 pages. https://doi.
org/10.1145/3581784.3607034

[20] En Li, Liekang Zeng, Zhi Zhou, and Xu Chen. 2020. Edge AI: On-Demand Accel-
erating Deep Neural Network Inference via Edge Computing. IEEE Transactions
on Wireless Communications 19, 1 (2020), 447–457. https://doi.org/10.1109/TWC.
2019.2946140

[21] Guanpeng Li, Siva Kumar Sastry Hari, Michael Sullivan, Timothy Tsai, Karthik
Pattabiraman, Joel Emer, and Stephen W. Keckler. 2017. Understanding error
propagation in deep learning neural network (DNN) accelerators and applications.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (Denver, Colorado) (SC ’17). Association for
Computing Machinery, New York, NY, USA, Article 8, 12 pages. https://doi.org/
10.1145/3126908.3126964

[22] Jinyang Li, Yizhuo Chen, Tomoyoshi Kimura, Tianshi Wang, Ruijie Wang,
Denizhan Kara, Yigong Hu, Li Wu, Walid A. Hanafy, Abel Souza, Prashant
Shenoy, Maggie Wigness, Joydeep Bhattacharyya, Jae Kim, Guijun Wang, Greg
Kimberly, Josh Eckhardt, Denis Osipychev, and Tarek Abdelzaher. 2024. Acies-
OS: A Content-Centric Platform for Edge AI Twinning and Orchestration. In
2024 33rd International Conference on Computer Communications and Networks
(ICCCN). 1–9. https://doi.org/10.1109/ICCCN61486.2024.10637580

[23] Qianlin Liang, Walid A. Hanafy, Ahmed Ali-Eldin, and Prashant Shenoy. 2023.
Model-Driven Cluster Resource Management for AI Workloads in Edge Clouds.
ACM Trans. Auton. Adapt. Syst. 18, 1, Article 2 (mar 2023), 26 pages. https:
//doi.org/10.1145/3582080

[24] Qianlin Liang, Walid A. Hanafy, Noman Bashir, Ahmed Ali-Eldin, David Irwin,
and Prashant Shenoy. 2023. DěLen: Enabling Flexible and Adaptive Model-
Serving for Multi-Tenant Edge AI. In Proceedings of the 8th ACM/IEEE Conference
on Internet of Things Design and Implementation (San Antonio, TX, USA) (IoTDI
’23). Association for Computing Machinery, New York, NY, USA, 209–221. https:
//doi.org/10.1145/3576842.3582375

[25] Qianlin Liang, Prashant Shenoy, and David Irwin. 2020. AI on the Edge: Charac-
terizing AI-based IoT Applications Using Specialized Edge Architectures. In 2020
IEEE International Symposium on Workload Characterization (IISWC). 145–156.
https://doi.org/10.1109/IISWC50251.2020.00023

[26] Yun Lin, Haojun Zhao, Ya Tu, Shiwen Mao, and Zheng Dou. 2020. Threats of
Adversarial Attacks in DNN-Based Modulation Recognition. In IEEE INFOCOM
2020 - IEEE Conference on Computer Communications. 2469–2478. https://doi.
org/10.1109/INFOCOM41043.2020.9155389

[27] Ning Liu, Xiaolong Ma, Zhiyuan Xu, Yanzhi Wang, Jian Tang, and Jieping Ye.
2020. AutoCompress: An Automatic DNN Structured Pruning Framework for
Ultra-High Compression Rates. Proceedings of the AAAI Conference on Artificial
Intelligence 34, 04 (Apr. 2020), 4876–4883. https://doi.org/10.1609/aaai.v34i04.5924

[28] Ayesha Abdul Majeed, Peter Kilpatrick, Ivor Spence, and Blesson Varghese. 2022.
CONTINUER: maintaining distributed DNN services during edge failures. In 2022
IEEE International Conference on Edge Computing and Communications (EDGE).
IEEE, 143–152.

[29] Justin J. Meza, Thote Gowda, Ahmed Eid, Tomiwa Ijaware, Dmitry Chernyshev,
Yi Yu, Md Nazim Uddin, Rohan Das, Chad Nachiappan, Sari Tran, Shuyang Shi,
Tina Luo, David Ke Hong, Sankaralingam Panneerselvam, Hans Ragas, Svetlin
Manavski, Weidong Wang, and Francois Richard. 2023. Defcon: Preventing
Overload with Graceful Feature Degradation. In 17th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 23). USENIX Association,
Boston, MA, 607–622. https://www.usenix.org/conference/osdi23/presentation/

https://doi.org/10.1145/3617232.3624849
https://doi.org/10.1145/3625549.3658688
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://doi.org/10.1109/JAS.2019.1911564
https://www.usenix.org/conference/osdi20/presentation/gujarati
https://doi.org/10.1109/RTSS.2018.00052
https://doi.org/10.1109/ISPASS.2019.00012
https://doi.org/10.1109/MILCOM58377.2023.10356302
https://doi.org/10.1145/3447555.3465326
https://doi.org/10.1145/3579371.3589105
https://doi.org/10.1145/3579371.3589105
https://doi.org/10.1145/3372224.3419215
https://www.kubeflow.org/
https://www.kubeflow.org/
https://doi.org/10.1145/3581784.3607034
https://doi.org/10.1145/3581784.3607034
https://doi.org/10.1109/TWC.2019.2946140
https://doi.org/10.1109/TWC.2019.2946140
https://doi.org/10.1145/3126908.3126964
https://doi.org/10.1145/3126908.3126964
https://doi.org/10.1109/ICCCN61486.2024.10637580
https://doi.org/10.1145/3582080
https://doi.org/10.1145/3582080
https://doi.org/10.1145/3576842.3582375
https://doi.org/10.1145/3576842.3582375
https://doi.org/10.1109/IISWC50251.2020.00023
https://doi.org/10.1109/INFOCOM41043.2020.9155389
https://doi.org/10.1109/INFOCOM41043.2020.9155389
https://doi.org/10.1609/aaai.v34i04.5924
https://www.usenix.org/conference/osdi23/presentation/meza
https://www.usenix.org/conference/osdi23/presentation/meza

Conference’17, July 2017, Washington, DC, USA Wu et al.

meza
[30] NVIDIA. 2024. Triton Inference Server. https://developer.nvidia.com/triton-

inference-server Accessed: 2025-04-13.
[31] PyTorch. 2024. TorchVision Models and pre-trained weights. https://pytorch.

org/vision/stable/models.html Accessed: 2025-04-14.
[32] Qi, Evan R. Sparks, and Ameet S. Talwalkar. 2017. Paleo: A Performance Model

for Deep Neural Networks. In The International Conference on Learning Represen-
tations (ICLR’17).

[33] Mohammad Salehe, Zhiming Hu, Seyed Hossein Mortazavi, Iqbal Mohomed, and
Tim Capes. 2019. VideoPipe: Building Video Stream Processing Pipelines at the
Edge. In Proceedings of the 20th International Middleware Conference Industrial
Track (Davis, CA, USA) (Middleware ’19). Association for Computing Machinery,
New York, NY, USA, 43–49. https://doi.org/10.1145/3366626.3368131

[34] Colin Samplawski, Jin Huang, Deepak Ganesan, and Benjamin M. Marlin. 2020.
Towards Objection Detection Under IoT Resource Constraints: Combining Parti-
tioning, Slicing and Compression. In Proceedings of the 2nd InternationalWorkshop
on Challenges in Artificial Intelligence and Machine Learning for Internet of Things
(Virtual Event, Japan) (AIChallengeIoT ’20). Association for ComputingMachinery,
New York, NY, USA, 14–20.

[35] Mahadev Satyanarayanan. 2017. The Emergence of Edge Computing. Computer
50, 1 (2017), 30–39. https://doi.org/10.1109/MC.2017.9

[36] Mahadev Satyanarayanan, Paramvir Bahl, Ramon Caceres, and Nigel Davies.
2009. The Case for VM-Based Cloudlets in Mobile Computing. IEEE Pervasive
Computing 8, 4 (2009), 14–23. https://doi.org/10.1109/MPRV.2009.82

[37] Mahadev Satyanarayanan, Nathan Beckmann, Grace A. Lewis, and Brandon Lucia.
2021. The Role of Edge Offload for Hardware-Accelerated Mobile Devices. In Pro-
ceedings of the 22nd International Workshop on Mobile Computing Systems and Ap-
plications (Virtual, United Kingdom) (HotMobile ’21). Association for Computing
Machinery, New York, NY, USA, 22–29. https://doi.org/10.1145/3446382.3448360

[38] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong, Matthai
Philipose, Arvind Krishnamurthy, and Ravi Sundaram. 2019. Nexus: A GPU
Cluster Engine for Accelerating DNN-Based Video Analysis. In Proceedings of
the 27th ACM Symposium on Operating Systems Principles (Huntsville, Ontario,
Canada) (SOSP ’19). 322–337. https://doi.org/10.1145/3341301.3359658

[39] Jonathan Soifer, Jason Li, Mingqin Li, Jeffrey Zhu, Yingnan Li, Yuxiong He, Elton
Zheng, Adi Oltean, Maya Mosyak, Chris Barnes, Thomas Liu, and Junhua Wang.
2019. Deep Learning Inference Service at Microsoft. In 2019 USENIX Conference
on Operational Machine Learning (OpML 19). Santa Clara, CA, 15–17.

[40] Chengcheng Wan, Muhammad Santriaji, Eri Rogers, Henry Hoffmann, Michael
Maire, and Shan Lu. 2020. ALERT: Accurate Learning for Energy and Timeli-
ness. In 2020 USENIX Annual Technical Conference (USENIX ATC 20). USENIX
Association, 353–369.

[41] Yifan Xiong, Yuting Jiang, Ziyue Yang, Lei Qu, Guoshuai Zhao, Shuguang Liu,
Dong Zhong, Boris Pinzur, Jie Zhang, Yang Wang, et al. 2024. {SuperBench}:
Improving Cloud {AI} Infrastructure Reliability with Proactive Validation. In
2024 USENIX Annual Technical Conference (USENIX ATC 24). 835–850.

[42] Ashkan Yousefpour, Siddartha Devic, Brian Q Nguyen, Aboudy Kreidieh, Alan
Liao, Alexandre M Bayen, and Jason P Jue. 2019. Guardians of the deep fog:
Failure-resilient DNN inference from edge to cloud. In Proceedings of the first
international workshop on challenges in artificial intelligence and machine learning
for internet of things. 25–31.

[43] Ashkan Yousefpour, Brian Q Nguyen, Siddartha Devic, Guanhua Wang, Aboudy
Kreidieh, Hans Lobel, AlexandreMBayen, and Jason P Jue. 2020. Resilinet: Failure-
resilient inference in distributed neural networks. arXiv preprint arXiv:2002.07386
(2020).

[44] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and Thomas Huang. 2018.
Slimmable Neural Networks. arXiv:1812.08928 [cs.CV]

[45] Ali Hadi Zadeh, Isak Edo, Omar Mohamed Awad, and Andreas Moshovos. 2020.
GOBO: Quantizing Attention-Based NLP Models for Low Latency and Energy
Efficient Inference. In 2020 53rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO). 811–824. https://doi.org/10.1109/MICRO50266.2020.
00071

[46] Chengliang Zhang, Minchen Yu, wei wang, and Feng Yan. 2020. Enabling Cost-
Effective, SLO-Aware Machine Learning Inference Serving on Public Cloud. IEEE
Transactions on Cloud Computing (2020), 1–1. https://doi.org/10.1109/TCC.2020.
3006751

[47] Jeff Zhang, Sameh Elnikety, Shuayb Zarar, Atul Gupta, and Siddharth Garg. 2020.
Model-Switching: Dealing with Fluctuating Workloads in Machine-Learning-as-
a-Service Systems. In 12th USENIX Workshop on Hot Topics in Cloud Comput-
ing (HotCloud 20). USENIX Association. https://www.usenix.org/conference/
hotcloud20/presentation/zhang

[48] Shuai Zhang, Sheng Zhang, Zhuzhong Qian, Jie Wu, Yibo Jin, and Sanglu Lu.
2021. DeepSlicing: Collaborative and Adaptive CNN Inference With Low Latency.
IEEE Transactions on Parallel and Distributed Systems 32, 9 (2021), 2175–2187.
https://doi.org/10.1109/TPDS.2021.3058532

[49] Wuyang Zhang, Sugang Li, Luyang Liu, Zhenhua Jia, Yanyong Zhang, and Di-
pankar Raychaudhuri. 2019. Hetero-Edge: Orchestration of Real-time Vision
Applications on Heterogeneous Edge Clouds. In IEEE INFOCOM 2019 - IEEE

Conference on Computer Communications. 1270–1278. https://doi.org/10.1109/
INFOCOM.2019.8737478

[50] Jie Zou, Xiaotian Dai, and John Mcdermid. 2023. Graceful Degradation with
Condition- and Inference-Awareness for Mixed-Criticality Scheduling in Au-
tonomous Systems. In Proceedings of Cyber-Physical Systems and Internet of
Things Week 2023 (San Antonio, TX, USA) (CPS-IoT Week ’23). Association for
Computing Machinery, New York, NY, USA, 215–220. https://doi.org/10.1145/
3576914.3587511

https://www.usenix.org/conference/osdi23/presentation/meza
https://developer.nvidia.com/triton-inference-server
https://developer.nvidia.com/triton-inference-server
https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://doi.org/10.1145/3366626.3368131
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1109/MPRV.2009.82
https://doi.org/10.1145/3446382.3448360
https://doi.org/10.1145/3341301.3359658
https://arxiv.org/abs/1812.08928
https://doi.org/10.1109/MICRO50266.2020.00071
https://doi.org/10.1109/MICRO50266.2020.00071
https://doi.org/10.1109/TCC.2020.3006751
https://doi.org/10.1109/TCC.2020.3006751
https://www.usenix.org/conference/hotcloud20/presentation/zhang
https://www.usenix.org/conference/hotcloud20/presentation/zhang
https://doi.org/10.1109/TPDS.2021.3058532
https://doi.org/10.1109/INFOCOM.2019.8737478
https://doi.org/10.1109/INFOCOM.2019.8737478
https://doi.org/10.1145/3576914.3587511
https://doi.org/10.1145/3576914.3587511

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Model Serving on the Edge
	2.2 Network and Resource Failures
	2.3 Failover Replication
	2.4 DNN Models Trade-offs
	2.5 Failure Resilience Challenges on the Edge

	3 FailLite Design
	3.1 FailLite Overview
	3.2 Proactive Failover
	3.3 Progressive Failover
	3.4 Putting It Together

	4 Implementation
	5 Evaluation
	5.1 Experiment Setup
	5.2 FailLite in Action
	5.3 Impact of Resource Constraints
	5.4 Impact of Applications' Criticality
	5.5 Impact of Model Family
	5.6 Impact of Edge Site Failure
	5.7 FailLite Overheads

	6 Related Work
	7 Conclusion
	References

