
ar
X

iv
:2

50
4.

15
85

5v
1 

 [
q-

bi
o.

PE
] 

 2
2 

A
pr

 2
02

5

Generating heterogeneous data on gene trees

Mart́ı Cortada Garcia, Adrià Diéguez Moscardó, Marta Casanellas

Abstract

We introduce GenPhylo, a Python module that simulates genetic data along a phy-
logeny avoiding the restriction of continuous-time Markov processes. GenPhylo uses
directly a general Markov model and therefore naturally incorporates heterogeneity
across lineages. We solve the challenge of generating transition matrices with a pre-
given expected number of substitutions (the branch length information) by providing
an algorithm that can be incorporated in other simulation software.

1 Introduction

When testing or training phylogenetic reconstruction methods, it is necessary to have syn-
thetic data simulated by running a Markov process of state substitution on a phylogenetic
(gene) tree. Usually, gene trees trees that represent the evolution of DNA sequences have
branch lengths accounting for the expected number of nucleotide substitutions per site.
When the Markov process of nucleotide substitution is assumed to be time-continuous, gen-
erating transition matrices with a pre-given number of substitutions is straightforward and
it is what most phylogenetic software does [Nguyen et al., 2014, Rambaut and Grass, 1997,
Schaller et al., 2022, Spielman and Wilke, 2015, Sjöstrand et al., 2013, Mallo et al., 2016].
However, assuming that the process is time-continuous might be very restrictive: less than
4% of Diagonal Largest in Column (DLC) matrices of size 4 are of continuous-type, see
[Casanellas et al., 2023] (see also [Chang, 1996] for the importance of DLC in identifiability
of substitution parameters). Another drawback arises when restricting to continuous-time
processes: the simulation of heterogeneous rates across lineages has to be handled via some
probabilistic model.

When one avoids the time-continuous assumption and considers a general Markov pro-
cess, one has to face the difficult task of generating transition matrices with a pre-given
number of substitutions. This was addressed in [Kedzierska and Casanellas, 2012] for very
simple models of nucleotide substitution and a partial solution was proposed for the general
Markov model (only working for uniform distribution of nucleotides).

In this paper we present a way of generating a random transition matrix M for an edge
e : u −→ v given an expected number b of substitutions per site and distribution π at u.
According to Lake [Lake, 1994], b can be approximated by

b = −1

4
ln

√
detDπ detM√

detDπ′
, (1)

1

https://arxiv.org/abs/2504.15855v1


where π′ = πM and Dπ and Dπ′ are the diagonal matrices with the corresponding node
distributions.

We have implemented this method for DNA and in the software GenPhylo we use it
to provide multiple sequence alignments evolving on a phylogenetic tree with given branch
lengths. Our algorithm in python can also be imported to be used in larger simulation
software such as [Spielman and Wilke, 2015].

2 Design and implementation

2.1 Generating DLC Markov matrices with a prefixed number of substi-
tutions

Consider and edge between two nodes u −→ v. For a given distribution π at node u and
for a given branch length b we want to generate a Markov matrix M such that π′ = πM
(the distribution at node v) and M satisfy (1). As we need to control both the determinant
of M and the distribution πM , we produce M as the product of two Markov matrices,
M = M1M2: M1 will be a random Markov matrix satisfying mild constrains which will
give the final distribution π′ = πM1, and M2 will be a time-reversible Markov matrix with
stationary distribution π′ and whose determinant is adjusted such that (1) is satisfied. As
the determinant of a Markov matrix is bounded above by one, one has to carefully check
that the procedure can be executed. The full process is described in Algorithms 1 and 2
and further explained below.

We use a Dirichlet distribution Dir(α1, α2, α3, α4) to generate the rows of random
Markov matrices. One has to be careful when choosing the parameters for this distri-
bution: on the one hand we want to generate DLC matrices but on the other hand we
need (1) to hold. To this end, for each row i, parameters αj are set to 1 if j ̸= i and

parameter αi is given as a function ke−b
√
b

where k is aimed to be the smallest value for which

a matrix sampled from this Dirichlet distribution satisfies the desired determinant bounds.
These parameters for the Dirichlet distribution in each row are referred to as Dirichlet(b)
in Algorithms 1 and 2.

In Algorithm 2, we first produce a random time-reversible matrix M2 with stationary
distribution π′ using the Metropolis-Hastings method [Dunn and Shultis, 2011]. Then we
seek for a new time-reversible matrix M̃2 (with same stationary distribution π′) such that
its determinant equals

d2 =
e−4b
√
detDπ′

det(M1)
√
detDπ

. (2)

To do so, we consider matrices M̃2 = (1−a)M2+aI and determine the value of a by imposing
det M̃2 = d2. With this process we obtain a Markov matrix with stationary distribution π′

and with determinant d2.
We check whether the final matrix M = M1M2 is DLC and we repeat the process oth-

erwise (we set a maximum of 5 repetitions as in most cases the algorithm already produces
DLC matrices, even when using long branches as of 1.2).

2



Algorithm 1 Algorithm to compute M1

Input: node distribution π, branch length b
while number of iterations < 50 do

M1 ← Dirichlet(b)
π′ ← πM1

if
exp(−4b)

√
det(Dπ′ )√

det(Dπ)
< 1 then

if det(M1) >
exp(−4b)

√
det(Dπ′ )√

det(Dπ)
then

break and return M1

end if
else

repeat
end if

end while
Output: M1

Algorithm 2 Algorithm to compute M2 using Metropolis-Hastings

Input: distribution π1, M1, and branch length l
P ← Dirichlet(b)
while number of iterations < 50 do

repeat (M2)i,j ←
{

P (i, j)α(i, j) if i ̸= j
P (i, i) +

∑
k ̸=i P (i, k)(1− α(i, k)) otherwise

until stationary distribution of M2 approximates π1.
end while
then
Find a ∈ (0, 1) root of polynomial s.t. M̃2 = (1− a)M2 + aI satisfies (2)
M2 = M̃2

Output: M2

2.2 Sampling sequences from the Markov process on a phylogenetic tree

Given a Newick tree with branch lengths, we root the tree at an interior node and assign
to it a distribution π from Dir(1, 1, 1, 1) (unless the distribution is specified by the user).
Then for each edge incident to the root r we compute a Markov matrix with the desired
branch length as indicated in the previous section. We compute the distribution at the
adjacent nodes to the root and repeat the process until a Markov matrix M e is assigned to
each edge e.

We generate a sequence of a specific length L at the root r of the tree by sampling from
the distribution at the root. Then, for each edge e directed from r and for each site in
the sequence we read the nucleotide and we generate the nucleotide at the child node by
sampling from the distribution at the corresponding row of the Markov matrix M e. We
iterate this process throughout the tree from deeper to outer nodes.

3



2.3 Implementation and execution time

These methods have been implemented in Python3 in our module GenPhylo [Cortada et al., 2024a],
which has been released in the Python Package Index (PyPI) and can be installed using
pip install GenPhylo. Additionally, we also offer the option to run the simulator without
installing the package by simply cloning our repository [Cortada et al., 2024b] and running
the GenPhylo.py script from the terminal with the appropriate parameters.

In Table 1 we provide the running time of our algorithm. Note that our algorithm
encompasses a rich level of heterogeneity at the expense of speed.

Leaves Branch length Alignment length
1000 10000

4
0.1 1.20 1.51
0.5 1.33 1.76

8
0.1 2.22 3.06
0.5 2.64 3.53

16
0.1 4.15 6.17
0.5 5.09 7.11

Table 1: Average execution time for generating 100 alignments on balanced trees with the
given branch lengths (same at all branches) and alignment lengths. Computations run on
a M1 Mac with an ARM-based processor.

Author’s contributions

Last author conceived the idea and the first two authors equally contributed to develop and
implement it; all authors wrote and revised the manuscript.

Acknowledgments

We thank Jesús Fernández-Sánchez for useful discussions on this topic. MC was partially
supported by grants PID2019-103849GB-I00 and PID2023-146936NB-I00 funded by MI-
CIU/AEI/ 10.13039/501100011033 and Maŕıa de Maeztu Program for Centers and Units
of Excellence in R&D (project CEX2020-001084-M) and the AGAUR project 2021 SGR
00603 Geometry of Manifolds and Applications, GEOMVAP.

References

[Casanellas et al., 2023] Casanellas, M., Fernández-Sánchez, J., and Roca-Lacostena, J.
(2023). The embedding problem for Markov matrices. Publicacions Matemàtiques,
67:411–445.

4



[Chang, 1996] Chang, J. T. (1996). Full reconstruction of Markov models on evolutionary
trees: Identifiability and consistency. Mathematical Biosciences, 137(1):51–73.

[Cortada et al., 2024a] Cortada Garcia, M., Diéguez Moscardó, A., and Casanellas, M.
(2024). GenPhylo module, https://pypi.org/project/GenPhylo/

[Cortada et al., 2024b] Cortada Garcia, M., Diéguez Moscardó, A., and Casanellas, M.
(2024). GenPhylo Project repository. https://github.com/GenPhyloProject/GenPhylo

[Dunn and Shultis, 2011] Dunn, W. and Shultis, J. (2011). Exploring Monte Carlo Methods.
Elsevier Science & Technology.

[Kedzierska and Casanellas, 2012] Kedzierska, A. M. and Casanellas, M. (2012). GenNon-h:
Generating multiple sequence alignments on nonhomogeneous phylogenetic trees. BMC
Bioinformatics, 13(1):216.

[Lake, 1994] Lake, J. A. (1994). Reconstructing evolutionary trees from DNA and pro-
tein sequences: paralinear distances. Proceedings of the National Academy of Sciences,
91(4):1455–1459.

[Mallo et al., 2016] Mallo, D., De Oliveira Martins, L., and Posada, D. (2016). Sim-
phy: Phylogenomic simulation of gene, locus, and species trees. Systematic Biology,
65(2):334–344.

[Nguyen et al., 2014] Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., and Minh, B. Q.
(2014). IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-
Likelihood Phylogenies. Molecular Biology and Evolution, 32(1):268–274.

[Rambaut and Grass, 1997] Rambaut, A. and Grass, N. C. (1997). Seq-Gen: an application
for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees.
Bioinformatics, 13(3):235–238.

[Schaller et al., 2022] Schaller, D., Hellmuth, M., and Stadler, P. F. (2022). Asymmetree:
A flexible python package for the simulation of complex gene family histories. Software,
1(3):276–298.

[Sjöstrand et al., 2013] Sjöstrand, J., Arvestad, L., Lagergren, J., and Sennblad, B. (2013).
Genphylodata: realistic simulation of gene family evolution. BMC Bioinformatics,
14(209).

[Spielman and Wilke, 2015] Spielman, S. J. and Wilke, C. O. (2015). Pyvolve: A flexible
python module for simulating sequences along phylogenies. PLOS ONE, 10(9):1–7.

5


	Introduction
	Design and implementation
	Generating DLC Markov matrices with a prefixed number of substitutions
	Sampling sequences from the Markov process on a phylogenetic tree
	Implementation and execution time


