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We present a fault-tolerant quantum algorithm for implementing the Dis-
crete Variable Representation (DVR) transformation, a technique widely used
in simulations of quantum-mechanical Hamiltonians. DVR provides a diagonal
representation of local operators and enables sparse Hamiltonian structures,
making it a powerful alternative to the finite basis representation (FBR), par-
ticularly in high-dimensional problems. While DVR has been extensively used
in classical simulations, its quantum implementation, particularly using Gaus-
sian quadrature grids, remains underexplored. We develop a quantum circuit
that efficiently transforms FBR into DVR by following a recursive construction
based on quantum arithmetic operations, and we compare this approach with
methods that directly load DVR matrix elements using quantum read-only
memory (QROM). We analyze the quantum resources, including T-gate and
qubit counts, required for implementing the DVR unitary and discuss prefer-
able choices of QROM-based and recursive-based methods for a given matrix
size and precision. This study lays the groundwork for utilizing DVR Hamil-
tonians in quantum algorithms such as quantum phase estimation with block
encoding.

1 Introduction
The Discrete Variable Representation (DVR) technique [1, 2, 3, 4] formulates partial differ-
ential equations using a localized basis associated with an underlying spatial grid. DVR is
constructed as a linear combination of variational basis functions such that, in the spatial
representation, each basis function is localized around the grid point it is associated with.

DVRs are widely used in computational physics, simulations, and engineering, with
successful applications in nuclear motion theory [5, 6, 7], scattering calculations [8], nuclear
physics [9], electronic structure theory [10], attosecond physics [11], and quantum circuit
simulations [12].

In this work, we focus on Gaussian discrete variable representations in the context
of quantum simulations of Hamiltonians. A commonly used approach for solving the
associated Schrödinger equation is the finite basis representation (FBR), in which the
Hamiltonian operator is represented in a truncated variational basis, and matrix elements
are evaluated via quadrature [4]. The DVR can be obtained via a unitary transformation
of the FBR and offers several advantages.

First, DVR yields diagonal representations for local quantum-mechanical operators
such as multi-dimensional potential energy surfaces (PES) [4]. For this reason, DVR is

Szymon Pliś: szymonzdzislawplis@gmail.com
Emil Zak: emil@beit.tech, https://www.beit.tech

1

ar
X

iv
:2

50
4.

15
84

1v
1 

 [
qu

an
t-

ph
] 

 2
2 

A
pr

 2
02

5

https://quantum-journal.org/?s=Quantum%20Discrete%20Variable%20Representations&reason=title-click
https://orcid.org/0000-0002-2445-2701
https://orcid.org/0000-0003-3528-4907
mailto:szymonzdzislawplis@gmail.com
mailto:emil@beit.tech
https://www.beit.tech


often preferred over variational bases, particularly when evaluating many-body potential
energy matrix elements is computationally intensive. Typically, the kinetic energy opera-
tor, being a second-order differential operator, has a simpler structure than the potential.
When expressed in a DVR basis, the potential energy becomes a diagonal matrix with
entries corresponding to the potential evaluated at DVR grid points. The kinetic energy
operator is first evaluated analytically in a variational basis and then transformed to the
DVR basis. Such an approach often results in sparse Hamiltonian matrices, making DVR
especially valuable in molecular physics, where the curse of dimensionality imposes severe
computational limits. Another notable advantage of DVR is the ability to selectively prune
basis functions based on physical insight, thanks to their spatial localization. Finally, in
contrast to finite-difference grid-based methods, DVRs exhibit exponential convergence in
accuracy of approximating bound states of many-body Hamiltonians [13].

For multi-dimensional problems, DVR can be extended using a direct-product basis [4].
On classical computers, the memory required for this transformation scales exponentially
with the number of dimensions, as ND, where N is the number of basis functions per
dimension and D is the dimensionality. Quantum computers however can reduce this
memory scaling to O(ND). Beyond memory advantages, DVR may also offer quantum-
computational speedups due to the sparsity of the DVR Hamiltonian [14]. We therefore
argue that, given an efficient circuit implementation of the FBR-to-DVR transformation,
Hamiltonian simulation problems can be solved on quantum computers at a lower gate
cost in the DVR basis than in the FBR basis.

A particularly appealing application of DVR is in computing Hamiltonian eigenvalues.
In this context, fault-tolerant quantum algorithms such as Quantum Phase Estimation
(QPE) often rely on block encoding of the Hamiltonian [15, 16, 17, 18, 19]. The norm of
the Hamiltonian, which proportionally scales the T-gate complexity of QPE, can be re-
duced compared to variational methods through appropriate truncations, such as removing
irrelevant DVR grid points. Moreover, the Hamiltonian can often be decomposed into a
diagonal PES and a structured kinetic energy operator, where the diagonal part can be
efficiently block-encoded using standard techniques [14, 20, 21].

Several quantum algorithms have been developed for grid-based physical simulations
[22, 23, 24, 25] and for solving differential equations [26, 27], with applications in electronic
structure [28, 25] and nuclear motion calculations [19, 24, 29]. A quantum algorithm for
wavelet-based representations was also proposed in Ref. [30]. For Hamiltonian simula-
tion in general, the widely used quantum Fourier-transformed representation based on
equidistant grids provides several advantages [28, 19]. However, quantum simulations us-
ing non-equidistant grids, particularly those defined by Gaussian quadrature, which allows
exact integration of polynomials up to a given degree, have not yet been explored in detail.
In particular, a quantum circuit implementing the FBR-to-DVR unitary transformation
could enable more efficient simulations in DVR.

Below we present a quantum algorithm for implementing the FBR-to-DVR transfor-
mation and for loading DVR matrix elements into qubit states. In Section 2, we review the
fundamentals of Gaussian DVRs, which are used throughout the paper. In Section 3.1, we
describe the construction of a quantum DVR oracle used to implement the FBR-to-DVR
transformation, which is detailed in Section 4. For each construction, we estimate fault-
tolerant quantum resources, including T-gate counts, circuit depth, and qubit requirements.
Finally, we briefly discuss potential applications of DVRs on quantum devices.

2



2 Gaussian DVRs
Gaussian DVR matrix elements can be defined as:

Tpq = Nq
√
wppq(xp), for p, q = 0, . . . , N − 1 (1)

where Nq = ∥pq∥−1
L2(µ) is the normalization constant, wp are the Gaussian quadrature

weights, pq(xp) is the value of the degree-q orthogonal polynomial defining the Gaussian
quadrature evaluated at the Gaussian quadrature node xp [31]. Gaussian quadrature nodes
and weights are chosen such that the integral:

∫
fdµ ≈

N−1∑
k=0

wkf(xk) (2)

is exact for f chosen as polynomials of degree less or equal 2N−1. The Gaussian quadrature
nodes x0, x1, . . ., xN−1 are chosen as zeroes of pN . The weights are then determined from
the equation:

wk = aN

aN−1

∥pN−1∥L2(µ)
p′

N (xk)pN−1(xk) ≥ 0, k = 0, . . . , N − 1,

Orthogonal polynomials associated with Gaussian quadratures satisfy the three-term
recurrence relations:

pq(x) = (aq + bqx)pq−1(x) + cqpq−2(x) (3)

which gives the following recurrence for the columns of the DVR matrix

Tpq = (Aq +Bqxp)Tpq−1 + CqTpq−2. (4)

In eq. 4, Aq = Nq

Nq−1
aq, Bq = Nq

Nq−1
bq and Cq = Nq

Nq−2
cq.

For simulations of quantum-mechanical Hamiltonians states can be represented using
Finite Basis Representation (FBR), given by a linear combination of basis functions:

ψ(x) =
N−1∑
j=0

cjϕj(x) (5)

where the coefficients cj are determined variationally. The DVR basis functions dp(x) can
be written as a linear combination of FBR basis functions:

dp(x) =
N−1∑
q=0

Tpqϕq(x) (6)

Note that DVR functions vanish in all quadrature grid points except one, which can be
shown by evaluating the DVR wavefunction at k-th grid point:

dl(xk) =
N−1∑
j=0

√
wlω(xk)pj(xl)pj(xk). (7)

From orthogonality of pj(x) we find

dl(xk) =
√
ω(xk)
wl

δlk (8)
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Figure 1: Example DVR basis function (blue solid line) constructed from 33 Harmonic oscillator wave-
functions (grey dashed lines). Zeros of the DVR basis function marking the Gauss-Hermite quadrature
nodes are marked.

The DVR-to-FBR transformation T is unitary because the Gaussian quadrature ap-
proximation to the overlap integral:

∫
pi(x)pj(x)dx ≈ (T†T)ij =

∑N
k=1wkpi(xk)pj(xk) is

exact for i and j both smaller or equal N − 1, i.e. their combined degree is maximally
2N − 2. For this reason T†T = TT† = 1. Note that the left index p in the DVR matrix
given in eq.1 refers to grid-point (physical space) while the right index q refers to varia-
tional basis function index. Thus the DVR transformation connects delocalized (global)
basis functions space with localized functions associated with a grid.

For solving quantum-mechanical problems, DVR is often constructed based on orthog-
onal polynomials that solve the Schrödinger equation for specific model systems: Hermite
polynomials for the harmonic oscillator, Legendre polynomials for spherically symmetric
problems, Laguerre polynomials for the hydrogen atom, associated Laguerre polynomials
for the Morse oscillator, Chebyshev polynomials for a particle in a square potential well,
and Lobatto polynomials for problems with fixed boundary conditions [32, 4]. An exam-
ple set of DVR basis functions defined for the Hermite polynomias is shown in Figure 1.
Further details about Gaussian DVRs and methods for generating them are discussed in
Appendix 7.

3 Quantum DVR Oracle
3.1 Constructing the DVR oracle with the recursive method
For implementing the FBR-DVR unitary circuit we first construct a unitary, which we call
the DVR oracle. The DVR oracle is defined as quantum state transformation encoding the
elements of the DVR matrix T in qubit registers, written as:

T |p⟩ |q⟩ |0⟩ = |p⟩ |q⟩ |Tpq⟩ (9)
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where Tpq are the DVR matrix elements, |q⟩ is argument state representing column index
(basis state index) of the DVR matrix, |p⟩ is argument state representing row index (grid
point index). We represent the column index as q = wF + v, where w = 0, 1, 2, ..., N

F − 1
and v = 0, 1, 2, ..., F − 1 for the purpose of splitting the column space in the DVR matrix
into N

F segments. Let us call F the segmentation parameter. The overall construction is
divided into several steps, described in the following paragraphs.

Segment initialization. The construction begins with initialization unitary that loads
2N

F columns of the DVR matrix using quantum random-access memory (QROM) written
as:

Û (init)|p⟩|w⟩ |0⟩ |z⟩|z⟩ = |p⟩|w⟩ |xp⟩ |z ⊕ Tpq̃−1⟩|z ⊕ Tpq̃⟩ (10)

where q̃ = wF + F
2 is the midpoint index in each of the N

F segments dividing the DVR
matrix. State |xp⟩ keeps nodes of the N -th orthogonal polynomial defining the DVR. This
step requires loading N2

F pairs of numbers (Tpq̃−1, Tpq̃), given by m-bits each, leading to
the T-gate cost of

C(Ûinit) = 2N
√
m√
F

+
√
Nm (11)

in case of using the SELSWAP algorithm [33] and

C(Ûinit) = N2

F
+N (12)

for the SELECT QROM.

Recursive construction. Following the initialization step, the algorithm performs a
sequence of operations Û2c, Û2c+1 controlled by the running index values c = 1, 2, ..., F

4 − 1
enumerating the range for the segmentation parameter F , as depicted in Figure 3. The
recursive block of the circuit is wrapped with SWAP operations applied to two output
registers, m-qubit each. The SWAP operations are controlled on the most significant bit
v0 of v = v02f−1 + v12f−2 + ...+ vf−120, where v = 0, 1, 2, ..., F − 1 and the column index
is given by q = wF +v. Here F = 2f . The output registers keep the intermediate values in
the recursive construction procedure, whereas the role of the SWAP operations is to move
the output to the |.⟩g register, regardless of the parity of the column index queried. The
cost of the single controlled-SWAP operation is m Toffoli gates.
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Figure 2: Quantum circuit representing initialization unitary for the DVR oracle defined in eq. 10.
D̂N,m(A) denotes QROM encoding data represented by function A for N arguments and output stored
in m qubits. Here Tpq̃ denotes the DVR matrix element for the q̃’th column, where q̃ = wF + F

2 . The
column index q is represented as q = wF + v.

Figure 3: Quantum circuit representing the DVR oracle defined in eq. 9. Ûinit represents state initial-
ization oracle shown in Fig. 2. Ûc are iteration unitaries shown in Fig. 4. γ−1

q is a gate multiplying
the result by the appropriate scaling factor defined in eq. 16. The result is returned in m-qubit register
|Tpq⟩g.
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Figure 4: Quantum circuit representing Ûc iteration unitary in the the DVR oracle. |z⟩d is the dump
qubit register shown also in Figure 3.

Figure 5: a) Schematic representation for the segment construction of the DVR oracle matrix. Basis
set (column) index is represented as q = wF + v, where w = 0, 1, 2, ..., N

F − 1 and v = 0, 1, 2, ..., F − 1
for the purpose of splitting the column space in the DVR matrix into N

F segments. Columns in each
segment are constructed simultaneously in the ascending and descending horizontal direction following
the three-step recursion given in eq. 13; b) Color map encoding values of the DVR transformation
matrix for the Gauss-Hermite quadrature with N = 128 elements.

The recursive block is completed upon F
4 −1 steps (marked between red vertical dashed

lines in Figure 3), where in each step two columns per segment are constructed. The
columns are successively built moving in the descending and ascending order of q values
simultaneously, starting from the midpoint columns indexed by q̃ = wF + F

2 . Schematic
for this procedure is shown in Figure 5a. In constructing Û2c and Û2c+1 we utilize the
three-term recurrence relation satisfied by the DVR matrix elements:

Tp q+2 = (Aq +Bqxp)Tp q+1 + CqTpq. (13)

where the specific values of coefficients Aq, Bq, Cq depend on the underlying orthogonal
polynomial. The number of effective parameters in eq. 13 can be reduced by introducing
scaled matrix elements: T ′

p q+2 = γqTp q+2, giving the following recursions for the ascending
and descending directions, respectively:

T ′
pq = (A′

q +B′
qxp)T ′

p q−1 + T ′
p q−2 for q = wF + F

2 + k (14)

T ′
pq = (A′

q +B′
qxp)T ′

p q+1 + T ′
p q+2 for q = wF + F

2 − 1 − k (15)
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where k = 1, . . . , F
2 − 1. For the two initial columns in each segment we set γq = 1 (for

q = wF + F
2 − 1 and q = wF + F

2 ). For the ascending direction of q = wF + F
2 + k the

scaling constant is given by

γq = γq−2C
−1
q−2 = (Cq−2Cq−4 . . . Ci)−1 (16)

where i ∈ {wF+F
2 −1, wF+F

2 } has the same parity as q. Then (A′
q, B

′
q) = γq

γq−1
(Aq−2, Bq−2).

For the descending direction of q = wF + F
2 − 1 − k, the scaling constant is given by the

formula γq = γq+2Cq = CqCq+2 . . . Ci, where again i ∈ {wF + F
2 − 1, wF + F

2 } has the
same parity as q. In this case (A′

q, B
′
q) = −γq+2

γq+1
(Aq, Bq). Each unitary iteration Û2c and

Û2c+1 involves two arithmetic blocks, two multiplications and one addition each, as shown
in Figure 4. The appropriate qubit state transformation for Û2c and Û2c+1 can be written
as:

U2c |q⟩ |x⟩ |A⟩ |B⟩ = |q⟩ |x⟩ |A⟩ |B ⊕ (A′
q̂ +B′

q̂x)A⟩ (17)
U2c+1 |q⟩ |x⟩ |A⟩ |B⟩ = |q⟩ |x⟩ |A⊕ (A′

q̌ +B′
q̌x)B⟩ |B⟩ (18)

for |v − F −1
2 | > 2c. The indices for recursion constants appearing in eqs. 17, 18 are given

by

q̂ = q̂(v0, w, c) =
{
wF + F/2 + 2c for v0 = 1
wF + F/2 − 1 − 2c for v0 = 0

(19)

and

q̌ = q̌(v0, w, c) =
{
wF + F/2 + 2c+ 1 for v0 = 1
wF + F/2 − 2 − 2c for v0 = 0.

(20)

where q = wF + v. Further details of the quantum arithmetics are given in Appendix B.

Cost estimation for the recursive block. The recursive block given by eqs. 17,18 and
shown between the red dashed lines in Figure 3 requires loading 2N/F constants A′

q, B
′
q

with QROM, associated with the 2N/F Toffoli gate cost. The total Toffoli cost for the
Uc iteration shown in Figure 4 consists of multiplication and addition costs (cf. eq. 1718).
Circuit performing multiplication of numbers B′

q and x, denoted MUL(B′
q, x), involves

2m2 Toffoli gates. The result of multiplication is rounded to m-bits. Circuit performing
addition of A′

q and B′
qx, denoted as ADD[A′

q, B
′
qx], costs 4m Toffoli gates. All the above

arithmetic operations must be uncomputed, which doubles the Toffoli cost. Finally, the
bitwise addition in eq. 17, B⊕(A′

q̂ +B′
q̂x)A costs 2m Toffoli gates, giving the overall Toffoli

count for the arithmetic part Ûc:

C(Ûc) = 2C(D̂N
F

,m(A′)) + 2C(D̂N
F

,m(B′)) + 2C(MUL(B′
q, x)) + 2C(ADD[A′

q, B
′
qx])+

(21)

+2C(MUL(A′
q̂ +B′

q̂x,B)) + C(B ⊕ (A′
q̂ +B′

q̂x)A) = 4N
F

+ 8m2 + 10m
(22)

There are F
4 − 1 pairs of transformations (Û2c, Û2c+1) giving the total cost of the recurisive

block:
Crec =

(
F

4 − 1
)(

2C(Ûc) + 2C(v′ ≥ c)
)

(23)

where the checking the condition v′ ≥ c (on f − 2 qubits) costs f − 2 Toffoli gates, while
SWAP operations cost 3m Toffolis in total. Here v′ = v12f−2 + ... + vf−221 is a bitmask
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of v with the most and the least significant bit removed. The cost of loading scaling
constants γ−1

q and multiplication C(MUL(A, γ−1
q )) shown in Figure 3 is N + 2m2 Toffoli

gates, assuming SELECT QROM.

Resource estimation summary. We summarize the quantum computing resources for
implementing the DVR oracle circuit given in eq. 9, by first estimating the required number
of qubits. The DVR oracle requires 2n + m (nonancilla) qubits, n per argument register
keeping values of matrix row and column indices, respectively, plus m qubits to represent
the output matrix elements. We use additional m qubits for the purpose of loading pairs
of entries of the DVR matrix, as required by the recursive scheme adopted in eqs. 17,18.
Quantum arithmetic performed in eqs. 17,18 requires 6m additional ancilla qubits. Thus
the total qubit count is 2n+ 9m.

The total Toffoli gate cost for the DVR oracle consists of initalization cost C(Ûinit),
the cost of the recursive block Crec plus the cost of the remaining operations: C(Û1),
C(SWAPS) and C(MUL(A, γ−1

q )), giving:

CODV R = C(Ûinit) + C(Û1) + Crec + C(MUL(A, γ−1
q )) + C(SWAPS) (24)

The total cost is thus:

CODV R = N2

F
+N+4N

F
+8m2+10m+

(
F

4 − 1
)(

16m2 + 8m+ 4N
F

+ 2(f − 2)
)

+3m+N+2m2

(25)
in which the dominant cost is given by

CODV R ≈ N2

F
+ 4Fm2 (26)

In eqs. 25-27 we assume SELECT QROM for initial data loading (Ûinit), with the benefit
of qubit saving compared to the SELSWAP approach. When one optimizes for balance
between the number of qubits and T-gates, the SELSWAP version of QROM in Ûinit can
be chosen (cf. eq. 11) giving the asymptotic cost:

CODV R ≈ 4Fm2 +N

(√
m

F
+ 1

)
(27)

The DVR oracle for parity-conserving orthogonal polynomials. When Aq = 0
for all q, parity symmetry emerges in the orthogonal polynomials defined by the recursive
relations shown in Eq. 13. For example, Hermite polynomials and Jacobi polynomials
with α = β (such as Legendre and Chebyshev) exhibit the symmetry Tpq = (−1)qTN−p,q.
These represent a special class of orthogonal polynomials that allow for additional quantum
computing cost savings.

In such cases, it is sufficient to load only the upper half of the DVR matrix, applying
a sign flip to the lower half for odd-numbered columns, at no additional Toffoli cost.
Consequently, the Toffoli cost of QROM loading D̂N/2,m(x) is halved in the SELECT
method and reduced by a factor of

√
2 for equal-split SELSWAP. The cost of loading

the initial 2N
F columns in Ûinit is reduced by the same factor. Additionally, the operations

associated with adding the free term Aq′ in the recursion are removed, saving an additional
2m Toffoli gates per recursive step.

In summary, for parity-conserving polynomials, the total Toffoli gate cost of the DVR
oracle is given by

9



CODV R = N2

2F +N

2 +4N
F

+8m2+10m+
(
F

4 − 1
)(

16m2 + 8m+ 4N
F

+ 2(f − 2)
)

+3m+N+2m2

(28)

3.2 DVR Oracle via SELSWAP QROM
An alternative construction of the DVR oracle, compared to the recursive method described
in Section 3.1, employs the generic QROM technique. In this approach, matrix elements
are loaded into the quantum computer using a combination of the SELECT and SWAP
oracles introduced in Ref. [33]. Loading the DVR matrix into a quantum state via the
SELSWAP method requires N

√
m Toffoli gates and N

√
m ancilla qubits.

For parity-conserving orthogonal polynomials, this cost is reduced to 1
2N

√
m Toffoli

gates, i.e. approximately half that of the general case. The T -depth of the SELSWAP
method is roughly equal to the T -gate count, with the SELECT operation dominating the
circuit depth. A comparison of the direct SELSWAP and recursive approaches is presented
in the following section.

3.3 Comparison of techniques for constructing the DVR oracle
The two approaches for constructing the DVR oracle discussed in sections 3.1 and 3.2 are
summarized in Table 1.

Quantity T-count T-depth Qubit count Volume

LKS N
√
m N

√
m N

√
m N2m

REC 4Fm2 + N2

F 4Fm2 + N2

F 2n+ 9m 36Fm3 + 9mN2

F

REC-LKS 4Fm2 +
+N

(√
m
F + 1

) 4Fm2 +
+N

(√
m
F + 1

) N
√

m
F +

√
Nm+

+2n+ 6m
N2 m

F + 24Fm3

Table 1: Comparison of methods for constructing the DVR oracle defined in eq. 9. LKS stands for the direct QROM
method using the SELSWAP technique from ref. [33], REC is our present method where the initialization unitary given
in eq. 12 is constructed using SELECT QROM (saving ancilla qubits), while REC-LKS is the present method where the
initial unitary given in eq. 11 is constructed using SELSWAP QROM (balancing T-gate cost with ancilla qubits). Only
dominant terms are shown for the recursive method. The columns correspond to: T-count, T-depth, qubit count, and
quantum volume (qubit count × T-count).

The recursive method involves approximately O(4Fm2 + N2

F ) T-gates compared to
O(N

√
m). Choosing F = N

m leads to O(Nm) T-gate cost for the recursive method, which
is typically greater cost than that of the SELSWAP method. However the recurisive method
is more favourable in terms of qubit count: 2n + 9m compared do N

√
m. The quantum

volume for the recursive method with F = N
m is O(Nm2) compared to O(N2m) for the LKS

method. The advantage of the recursive method is that it uses O(m) ancilla qubits and
O(Nm2) Clifford gates, compared to O(N

√
m) ancilla qubits and O(N2m) Clifford gates

for the LKS method. For the recursive-LKS method the quantum volume is reduced with
respect to the SELECT-based recursive method by a constant factor. Quantum volume
comparison between the SELSWAP (LKS) method and the recursive method is shown
in Figure 6. It follows that for DVRs of size greater than 27 and at appropriately low
precisions m for representing the matrix elements, the recursive method is advantageous
over the LKS method with respect to the quantum volume metric.
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Figure 6: Comparison of quantum volumes for the LKS method and the recursive method for con-
structing the DVR oracle as a function of the number of basis functions N and the number of bits of
precision m for representing the DVR matrix elements. White equal volume isoline is shown. Blue color
denotes region of advantage of the recursive method.

We note that error-propagation when using arithmetics requires a qubit overhead of
at least 2F additional qubits for representing x, Tpq (for precision of m-bits for the final
results). It is thus a matter of choice and a specific use-case which method to choose. For
optimizing the number of qubits used it is prerefable to use the recursive method, whereas
for high-precision and low matrix size computations we recommend using the LKS method.

4 The DVR unitary
4.1 Construction via reflections
The DVR unitary can be constructed from the DVR oracle using a technique given in
ref. [33]. The resulting unitary circuit represents the following transformation:

D̂ = |0⟩ ⟨1| T̂ + |1⟩ ⟨0| T̂ † (29)

The construction assumes providing an oracle returning the k-th column of the DVR
unitary, |uk⟩ = T̂ |k⟩. Let Uk prepare the following state:

|wk⟩ = |0⟩a |k⟩ − |1⟩a |uk⟩ (30)

where |k⟩ represents index-state labeling columns of the DVR matrix. Then the product
of N reflections:

R̂k = I − 2 |wk⟩ ⟨wk| (31)
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gives D̂ = ΠN
k=1R̂k = |0⟩ ⟨1| T̂ + |1⟩ ⟨0| T̂ †. Having execution of T̂ and T̂ † conditioned on

the state of ancilla qubit can be useful in certain scenarios, as discussed further. The total
cost for the D̂ unitary is 2N2 +N(4m+ 1)n, where m is the precision of matrix elements.
This cost consists of the state preparation cost and the reflections cost. In the following
paragraphs we give a more detailed resource estimation for the procedure sketched above
for constructing D̂.

State preparation. Let us consider the cost of preparing the state |wk⟩ given in eq. 30.
For simplicity, consider the case of DVRs generated by polynomials with definite parity,
i.e. Aq = 0 in eq. 4. For general polynomials the gate cost is roughly doubled due to
twice the number of angles that must be loaded. Our present state preparation procedure
follows the approach of Ref. [33] and references therein.

Step 1. First, initialize state |0⟩a |0⟩, on which execute HAk ⊗ I and get |0⟩a |0⟩ ±
|1⟩a |0⟩, where Ak ∈ {I,X} (if the first number in the k-th column of the T matrix is
nonnegative we choose Ak = X, otherwise Ak = I. Next, create the state |0⟩a |k⟩ ± |1⟩a |0⟩
with controlled-X̂ gates, with controls on the ancilla register |0⟩a and log(N) target qubits
for representing the integer index |k⟩.

Step 2 Consider the n-qubit state |.⟩ = |.⟩0 ⊗ . . .⊗ |.⟩n−1 initialized for representing
|uk⟩ given in eq. 30. We act on the |.⟩0 qubit with controlled-H gate, where the condition
is on the ancilla qubit |.⟩a. Controlled Hadamard is equivalent to two T-gates.

Step 3 Apply CXn−1 on qubits |.⟩1,. . .,|.⟩t−1, with control on the 0-th qubit to be
|1⟩0. This is required for accounting for the horizontal symmetry of the DVR matrix. We
reflect the elements in the upper half of the DVR matrix.

Step 4 For a given k denoting column index, follow the recursive procedure: for
t = 1, . . . , n− 1 load suitable angles φl represented with m+ 1-bits:

D̂
(t)
N,m+1(φ) |l⟩ |0⟩ = |l⟩ |φl⟩ (32)

where l = l1l2 . . . lt−1 is index
i.e. we load 2t−1 (m+ 1)-bit numbers. The extra m+ 1’th bit stores information about

the sign of the coefficient. The QROM given in eq. 32 is executed conditionally on the
ancilla qubit |0⟩a in state |1⟩a. Also, accounting for the horizontal symmetry in the DVR
matrix we can ignore qubit |.⟩0 - the appropriate reflection is implemented in step 3. The
angles φl are chosen such that

cos2 φl =
∑2−t−1N−1

s=0 |Tl2−tN+s k|2∑2−tN
s=0 |Tl2−tN+s k|2

(33)

i.e. they reproduce the correct probabilities in the t’th recursive step:

V
(t)

k |0⟩t = cos |φl| |0⟩t + sin |φl| |1⟩t (34)

and the relative phase between the elements is retrieved by loading one bit informing
about the sign of φl and executing controlled-Z operation on qubit |·⟩t. We choose φl

to be nonnegative for Tl2−tNk, Tl2−tN+2−t−1Nk both nonnegative or both nonpositive, and
negative otherwise.

step 5. Uncompute the CXn−1 operation applied in step 3, If k is odd, apply Z to
qubit |⟩0.

The Toffoli cost of the t-th recursive step in the procedure outlined above is 2t−1, giving
the total cost

n−1∑
t=1

2t−1 = 2n−1 − 1 = 1
2N − 1 (35)
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in each recursive step the controlled single-qubit arbitrary rotation consumes 2m Toffoli
gates (using phase-gradient technique). The circuit must be uncomputed adding another∑n−1

t=1 2t−1 = 1
2N Toffoli gates, to give the final cost of the state preparation

C(Ûk) = N + 2(n− 1)m (36)

Reflections. Implementing reflections Rk = I − 2 |wk⟩ ⟨wk| requires loading N/2 angles
that encode appropriate column of the DVR matrix |uk⟩. When uk is non-symmetric with
respect to the midpoint (for orthogonal polynomials of indefinite parity), N angles must
be loaded. For the |0⟩ |k⟩ part of the reflection no additional Toffoli gates are required,
leaving N/2 + 1 Toffoli gates for state preparation with the SELECT-QROM method,
plus equal number of Toffoli gates for uncomputation. This final Toffoli cost for the state
preparation stage is thus N + 2mn, where 2mn is from controlled-adder in the phase-
gradient technique [33]. Since R̂k = Uk(I − 2 |0⟩ ⟨0|)U †

k the cost implementing a single
reflection operator is 2N + (4m+ 1)n. Finally, the Toffoli gate cost of the DVR unitary D̂
is

CREF L.(D̂) = O
(
2N2 +N(4m+ 1)n

)
. (37)

4.2 Construction via block-encoding and QROM
The DVR unitary can be implemented via an construction alternative to the reflections
method discussed in sec. 4.1. The other technique relies on block-encoding of an appropri-
ate matrix loaded with the following oracle:

T̃ |p⟩ |q⟩ |0⟩ = |p⟩ |q⟩ | 2
π

arcsinTpq⟩ (38)

The DVR unitary can be synthesized using the technique from ref. [14], giving 1
N T̂ , followed

by amplitude amplification [34], associated with an N -fold increase in the Toffoli cost. The
SELECT circuit for T̃ costs N Toffoli gates (N2/2 for symmetric Tpq = (−1)qTN−pq matrix
elements). To get 1

N2 T̂ we construct the circuit implementing the following controlled-
rotation:

P | 2
π

arcsin a⟩ |0⟩ = | 2
π

arcsin a⟩ (a |0⟩ +
√

1 − a2 |1⟩) (39)

that involves m controlled single-qubit rotations and costs roughly m+m2 (m−1)/2 Toffoli
gates. The gate count can be reduced at the expense of an increased number of qubits.
Thus the Toffoli cost for implementing the DVR unitary scales as

CBE(D̂) = O
(
N(N2 +m3)

)
. (40)

4.3 Construction via block-encoding and quantum arithmetics
An alternative construction of T̃ uses quantum arithmetic operations to build matrix el-
ements 2

π arcsinTpq defined in Eq. 38. The benefit relative to the direct loading of the
matrix elements with QROM depends on the magnitude of the entries in T̃ and their pre-
cision. For example, for the Gauss-Hermite DVR the largest Tpq entry is around 0.5, such
that the Taylor series approximation arcsin(x) ≈ x + x3/6 + 3x5/40 + 5x7/102 + 7!!

8!!·9x
9

is sufficient for a 16-bit precision representation, with the associated cost of roughly 16m2

Toffoli gates.
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In general, the construction of states storing values of a polynomial P (x) = a1x +
a3x

3 + . . .+ a2p−1x
2p−1 with quantum arithmetic operations requires 3pm2 + O(pm) Tof-

foli gates and O(mp) qubits. The procedure begins by initializing qubit registers in the
states: |x⟩, |x2⟩, |x3⟩, |x5⟩, ..., |x2p−1⟩, with the associated cost of 2pm2 Toffoli gates.
Such a construction involves transforming the register |x⟩ while keeping previously loaded
numbers, by multiplying by x2 to get |x3⟩ and so on. Each multiplication is associated
with an approximate cost of m2 Toffoli gates.

Next, using a separate qubit register, create |a2k−1x
2k−1⟩ for k = 1, 2, ...p and sum the

terms, giving an extra cost of m2 +m Toffoli gates, per term. Thus, overall, including the
cost of QROM for loading the initial matrix elements Tpq, the total cost of the quantum
arithmetic method is

Cart = N2 + 3pm2 + O(pm) (41)

where p depends on the desired accuracy and the type of Gaussian DVR. In practice, it
can be net-beneficial to set a threshold value τ for the matrix elements Tpq, below which
quantum arithmetic is used in constructing T̃ , and QROM is used otherwise.

5 Summary
We developed a quantum algorithm that implements the discrete-variable representation
(DVR) transformation. Our approach involves constructing a DVR oracle, which is then
used to synthesize a unitary circuit implementing the DVR gate. We explore several
synthesis strategies for the DVR gate, including a method based on reflections, block-
encoding using QROM, and block-encoding with quantum arithmetic.

For the DVR oracle construction, we found that for matrix sizes of N = 27 and larger,
our recursive procedure (described in Section 3.1) can be advantageous to QROM, par-
ticularly when high precision is not required (see Fig. 6 and Section 3.3). For instance,
for a 10-qubit DVR matrix at 16 bits of precision, the recursive procedure yields a gate
count roughly 50% lower than the QROM-based construction. However, it should be noted
that this estimate does not account for numerical error propagation. Incorporating numer-
ical error-propagation in the recursive construction of the DVR gate incurs an overhead
of at least 2F qubits, which may offset the benefits over QROM. F is the segmentation
parameter defined in section 3.1.

We also presented two methods for implementing the DVR unitary gate. The first lever-
ages a modified DVR oracle T̃ defined in eq.38, followed by appropriate quantum rotations.
The second, based on reflections, is discussed in Section 4.1 and implements Eq. 29. The
reflection-based method exhibits more favorable Toffoli gate count scaling with respect to
matrix size and precision compared to the method using T̃ : O

(
2N2 +N(4m+ 1)n

)
vs

O
(
N(N2 +m3)

)
, respectively.

In summary, we examined multiple strategies for constructing both the DVR oracle
and the unitary DVR-FBR transformation circuit. Among these, we proposed a construc-
tion exploiting the recursive properties of orthogonal polynomials underlying the Gaussian
DVR, which can outperform SELECT-SWAP QROM for large matrices and low precision.
For synthesizing the DVR unitary circuit, we recommend the reflection-based technique
described in Section 4.1.

The advantages of implementing the DVR transformation directly within a quantum
circuit are apparent in applications such as block-encoding many-body Hamiltonians, rel-
evant to simulations of vibrational and vibronic dynamics in molecules and materials. In
such Hamiltonians, the kinetic energy operator is naturally represented in a variational
(FBR) basis, while the potential energy function is best described in a DVR basis, in
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which it is diagonal. Performing the FBR-to-DVR transformation on a D-particle bosonic
product basis incurs a cost that scales linearly with D, relative to the 1D DVR transfor-
mation discussed here. In contrast to grid-based and finite-difference methods, Gaussian
DVRs exhibit exponential convergence of the approximation error with respect to basis set
size. This arises from the exactness of the underlying N -point quadrature in integrating
polynomials up to degree 2N − 1. As a result, DVR methods are highly effective for rep-
resenting smooth wavefunctions of bound states that are common in many-body systems
such as molecular vibrations.

This favorable scaling in both solution accuracy and quantum gate complexity (due to
the tensor-product structure of multidimensional DVRs and the typically sparse nature of
DVR Hamiltonians) makes the approach particularly appealing for quantum computation.
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7 Appendix A: Gaussian DVRs
In this appendix we discuss some of the useful properties of Gaussian DVRs [31], including
the derivation of the diaognal form of local operators in DVR, a method of constructing
the DVR matrix and the Schroedinger equation in multi-dimensional DVR [4].

The potential energy operator in DVR. The DVR basis functions generally take
non-zero values between quadrature points, however they tend to be smaller with increasing
distance from the point of localization of the DVR function, as shown in Figure 1. This
observation intuitively supports the diagonal approximation to the potential matrix V (x):

V DV R
ij = ⟨di(x)|V (x)|dj(x)⟩ =

∫ b

a
di(x)V (x)dj(x)dx ≈

≈
N−1∑
k=0

wk

ω(xk)di(xk)V (xk)dj(xk) =
N−1∑
k=0

wk

ω(xk)

√
ω(xk)
wi

δikV (xk)
√
ω(xk)
wj

δjk = V (xi)δij

(42)

For the potential energy operators represented as polynomial functions of coordinates
(quadratic or higher degrees), the Gaussian quadrature rule is not exact and the FBR/DVR
approximation can no longer be considered variational.

DVR defined via the Position operator. A practical way of obtaining the DVR can
be achieved through the so called product approximation [4], by means of diagonalisation
of the position operator X matrix. In VBR the matrix elements of X are written as:

(
XVBR

)
ij

=
∫ b

a
ϕi(x)xϕj(x)dx ≈

N−1∑
k=0

wk

ω(xk)ϕi(xk)xkϕj(xk) =
N−1∑
k=0

TT
ikXkTkj (43)

As long the
(
XVBR)

ij matrix is truncated to size N × N and the basis functions are
orthogonal polynomials of degree N−1, the integrated function is of degree 2N−1, and can
be evaluated exactly by a Gaussian quadrature. It means that the T matrix diagonalizes
the position operator matrix in the orthogonal polynomials basis. As a result, eigenvalues
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Figure 7: A general scheme for the VBR-FBR-DVR transformation. VF BR denotes FBR representation
of a local operator and T is the FBR-to-DVR transformation matrix.

of X in this basis correspond to quadrature points and the diagonalising transformation
matrix is related to the quadrature weights. Diagonalisation of XVBR unambiguously
defines the DVR:

XDVR = TXVBRTT (44)

where we used the fact that for the Gaussian quadratures the FBR-DVR transformation
matrix is unitary: T−1 = TT . The VBR representation of the position matrix in the
orthogonal polynomials basis is straightforward to derive, thanks to the three-term recur-
rence relations for orthogonal polynomials: pq+1(x) = (Aq +Bqx)pq(x)+Cqpq−1(x), where
Aq, Bq, Cq are constants characteristic for a given class of polynomials. As a result the
position operator matrix is tridiagonal. In practice, diagonalising the position operator
matrix is the most efficient way of finding a DVR.

The Schroedinger equation in DVR. The Hamiltonian given in the variational basis
(VBR) can be approximated with finite basis representation as follows

HV BR ≈ HF BR = KV BR + TT VdiagT (45)

where the kinetic energy operator KV BR remains in the VBR representation and quadra-
ture approximation is applied to the potential energy matrix elements VV BR ≈ TT VdiagT.
Then the Schroedinger equation can be written in the matrix form as:(

KV BR + TT VdiagT
)

U = TT TUE (46)

where overlap integral matrix S on the right-hand side is also given in quadrature approx-
imation, i.e. S = TT T. Upon multiplication of eq. 46 from the left by T−T and defining
a new basis by Z = TU we get the DVR form of the Schroedinger equation:(

T−T KV BRT−1 + Vdiag
)

Z = ZE (47)

A schematic for the VBR-FBR-DVR transformation chain is depicted in Figure 7.
This scheme extends to many-dimensions by incorporating direct-product basis set rep-

resentatino of the multi-dimensional problem. The D-dimensional basis functions gain D
indices as follows: {ϕn1,n2,...,nD := ϕn1(Q1)ϕn2(Q2)...ϕnD (QD)}nc=1,2,...,Nc;c=1,..,D. Direct
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product quadrature grid is a grid composed as a simple sum of 1-dimensional grids so that
the indices of the multidimensional grid are independent. The multi-dimensional FBR
Schroedinger equation then takes the form(

KV BR + TT VdiagT
)

U = TT TUE (48)

where T = (1)T ⊗ (2)T ⊗ ...⊗ (D)T with (c)Tpcqc = Nqc

√
(c)wkcnc

(c)ppcqc
, where (c)ppcqc

=
pqc(Qpc). The DVR representation is then obtained by transposing the Kronecker T di-
rectly, at no additional cost compared to the one-dimensional problem. Note that the size
of the wavefunction U is ND which quickly becomes a prohibitively large number with
increasing D. For instance, if 10 basis functions per dimension are needed to converge the
variational wavefunction, then for a 5-atom molecule (D = 9) e.g. CH4, as many as 109

basis functions are required. For molecules with more than 5 atoms, the amount of memory
needed to store even a single wavefunction vector becomes problematic. To circumvent this
curse of dimensionality several approaches have been developed to define FBR and DVR
with non-direct product basis sets and non-direct product quadrature grids [35, 36, 37, 38].
With quantum computer qubit encoding of information, this memory requirement can be
alleviated to O(ND) qubits, while the tensor structture of the multidimensional DVR
transformation allows to execute this transformation at low depth (each dimension can be
transformed simultaneously).

8 Appendix B: orthogonal polynomials
In this appendix we lay out properties of popular classes of orthogonal polynomials used
in construction of Gaussian DVRs.

I. Generalized Laguerre polynomials For fixed α ∈ R orthogonal polynomials with
respect to µ = xαe−xχ[0,∞)

We have the formula

L(α)
n (x) = x−αex

n! (xn+αe−x)(n) = (−1)nxn/n! + . . . ,

the recurrence relations

L(α)
n (x) =

(−x+ 2n+ α− 1)L(α)
n−1(x) − (n+ α− 1)L(α)

n−2(x)
n

and the norm

∥L(α)
n ∥L2(µ) =

√
Γ(α+ n+ 1)

Γ(n+ 1) .

Thus

tpq = (α+ q)1/2(−x+ 2q + α− 1)tpq−1
q3/2 −

((q + α− 1)
q

)3/2√q + α

q − 1 tpq−2 ,

Laguerre polynomials: α = 0 Orthogonal polynomials with respect to µ = e−xχ[0,∞)
We have the formula

Ln(x) = L(0)
n (x) = ex

n! (xne−x)(n) = (−1)nxn/n! + . . . ,

the recurrence relations

Ln(x) = (−x+ 2n− 1)Ln−1(x) − (n− 1)Ln−2
n
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and the norm
∥Ln∥L2(µ) = 1 .

Thus
tpq = (−xp + 2q − 1)

q
tpq−1 − (q − 1)

q
tpq−2 ,

II. Jacobi polynomials For fixed α, β > −1 orthogonal polynomials with respect to
µ = (1 − x)α(1 + x)βχ[−1,1] .

We have the formula

P (α,β)
n (x) = (−1)n

2nn! (1 − x)−α(1 + x)−β
(
(1 − x)α(1 + x)β(1 − x2)n

)(n)

=
n∑

s=0

(
n+ α

n− s

)(
n+ β

s

)(
x− 1

2

)s (x+ 1
2

)n−s

,

the recurrence relations

2n(n+ α+ β)(2n+ α+ β − 2)P (α,β)
n (x)

= (2n+ α+ β − 1)
(
(2n+ α+ β)(2n+ α+ β − 2)x+ α2 − β2

)
P

(α,β)
n−1 (x)

−2(n+ α− 1)(n+ β − 1)(2n+ α+ β)P (α,β)
n−2 (x)

and the norm

∥P (α,β)
n (x)∥L2(µ) =

√
2α+β+1

2n+ α+ β + 1
Γ(α+ n+ 1)Γ(β + n+ 1)

Γ(α+ β + n+ 1)n! .

Thus recurrence relations for tpq are complicated (but we can write it without Γ function).
It seems hard to deal with it but let us look at some special cases.
Legendre polynomials: α = β = 0 Orthogonal polynomials with respect to µ =

χ[−1,1]
We have the formula

Pn = P (0,0)
n (x) = 1

2nn!
(
(x2 − 1)n

)(n)

the recurrence relations

Pn(x) = (2 − 1/n)xPn−1(x) − (1 − 1/n)Pn−2

and the norm

∥Pn∥L2(µ) =
√

2
2n+ 1 .

Thus

tpq =
√

4q2 − 1
q

xptpq−1 − (q − 1)
q

√
2q + 1
2q − 3 tpq−2 ,

Chebyshev polynomials (second kind): α = β = 1/2 Orthogonal polynomials
with respect to µ =

√
1 − x2χ[−1,1]

We have the formula

Un(x) = P (1/2,1/2)
n (x) =

[n/2]∑
k=0

(−1)k

(
n− k

k

)
(2x)n−2k, Un(cos t) = sin ((n+ 1)t)

sin t ,

18



the recurrence relations
Un(x) = 2xUn−1(x) − Un−2

and the norm
∥Un∥L2(µ) =

√
π/2 .

Thus
tpq = 2xptpq−1 − tpq−2 ,

γq = (−1)[(q+1)/2]

and
t′pq = (−1)q2xpt

′
pq−1 + t′pq−2

thus we do not need to multiply by γq.
Chebyshev polynomials (first kind): α = β = −1/2 Orthogonal polynomials with

respect to µ = (1 − x2)−1/2χ[−1,1]
We have the formula

Tn(x) = P (−1/2,−1/2)
n (x) =

[n/2]∑
k=0

(
n

2k

)
(x2 − 1)kxn−2k, Tn(cos t) = cos (nt) ,

the recurrence relations

T0 = 1, T1(x) = x, Tn(x) = 2xTn−1(x) − Tn−2

and the norm
∥T0∥L2(µ) =

√
π and ∥Tn∥L2(µ) =

√
π/2 for n > 0 .

Thus
tp2 = 2xptp1 −

√
1/2tp0 and tpq = 2xptpq−1 − tpq−2 for q > 2 ,

γq = (−1)[(q+1)/2]
√

(3 + (−1)q)/2

and
t′pq = (−1)q2xpt

′
pq−1 + t′pq−2

thus again we do not need to multiply by γq.

9 Appendix C: Quantum arithmetic for Quantum DVR (QDVR)
In this appendix, we discuss details of quantum arithmetic required for the implementation
of the unitary blocks Uc in the recursive scheme for constructing the DVR oracle shown
in Figure 3. The dominant cost arises from the multiplication of numbers, which requires
O(m2) gates in each Uc.

Recalling eq. 18:

U2c |q⟩ |x⟩ |A⟩ |B⟩ = |q⟩ |x⟩ |A⟩ |B ⊕ (A′
q̂ +B′

q̂x)A⟩ (49)

we need to multiply the numbers x, A, and B′
q. Multiplication by B′

q is cheaper than
by A because B′

q is a fixed number (not a quantum input). These numbers are multi-
plied as integers written in binary system. The cost of computing xA is approximately
2 length(x) length(A) Toffoli gates, plus additional Clifford gates. Here length(x) corre-
sponds to binary precision, commonly denoted with m throughout the text. The cost
of multiplying xA by B′

q is length(xA) · length(B′
q) Toffoli gates, plus Clifford gates. Of
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course, the exact cost depends on the multiplication algorithm; here, we assume the most
basic textbook method, i.e. without using the Quantum Fourier Transform.

Next, we add (xAB′
q)m, which denotes the m most significant bits of xAB′

q, to A′
q,

conditioned on the ancilla qubit that encodes v′ ≥ c (see Figure 4). This controlled addition
costs approximately 2m Toffoli gates, plus O(m) Clifford gates. Finally, we uncompute
xAB′

q.
The basic algorithm we utilize for multiplying two numbers a and b is as follows. Let

a and b be m-bit and m′-bit numbers, respectively, and let m′′ = m+m′ + 1. We perform
m controlled additions: the i-th Adder Ai is controlled on the bit ai in the decomposition
a =

∑
ai2i ,for i = 0, . . . ,m− 1:

Ai |a⟩ |b⟩ |c⟩ =
{

|a⟩ |b⟩ |c⟩ if ai = 0
|a⟩ |b⟩ |c+ 2ib⟩ otherwise.

Each such adder is an addition of two m-bit numbers: b and [c/2i], and costs approximately
2m Toffoli gates. If we multiply by a fixed number, the operation costs (depending on the
specific value) 2× fewer Toffoli gates, since the Adders are then controlled by classical bits.
We note that multiple possibilities for optimizing this cost may exist.

The multiplication operation Multx |A⟩ = |xA⟩ can be implemented in the following
way: if x is an m-bit (nonzero) number and a is m′-bit, then we can perform

Multx |A⟩m′ |0⟩m′+1 = |xA⟩m′′ .

which requires m′ additional ancilla qubits. Note that if |x| ≠ 1, we cannot simply approx-
imate xA by truncating bits, since Multx is a unitary operation and must therefore be
injective. For example, if x = 2−m, we require at least 2−(m+m′) precision. Consequently,
if we perform K such multiplications as in our construction, we need O(Nm) additional
ancilla qubits.
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