
ar
X

iv
:2

50
4.

15
83

8v
1 

 [
ee

ss
.S

Y
] 

 2
2 

A
pr

 2
02

5

Gaussian behaviors: representations and data-driven control

András Sasfi, Ivan Markovsky, Alberto Padoan, Florian Dörfler

Abstract— We propose a modeling framework for stochastic
systems based on Gaussian processes. Finite-length trajectories
of the system are modeled as random vectors from a Gaussian
distribution, which we call a Gaussian behavior. The proposed
model naturally quantifies the uncertainty in the trajectories,
yet it is simple enough to allow for tractable formulations. We
relate the proposed model to existing descriptions of dynamical
systems including deterministic and stochastic behaviors, and
linear time-invariant (LTI) state-space models with Gaussian
process and measurement noise. Gaussian behaviors can be
estimated directly from observed data as the empirical sample
covariance under the assumption that the measured trajectories
are from independent experiments. The distribution of future
outputs conditioned on inputs and past outputs provides a
predictive model that can be incorporated in predictive control
frameworks. We show that subspace predictive control (SPC) is
a certainty-equivalence control formulation with the estimated
Gaussian behavior. Furthermore, the regularized data-enabled
predictive control (DeePC) method is shown to be a distribu-
tionally optimistic formulation that optimistically accounts for
uncertainty in the Gaussian behavior. To mitigate the excessive
optimism of DeePC, we propose a novel distributionally ro-
bust control formulation, and provide a convex reformulation
allowing for efficient implementation.

I. INTRODUCTION

Recent data-driven control methods based on the be-

havioral approach [1]–[7] have gained significant attention.

These formulations rely on behavioral systems theory that

treats systems as sets of trajectories, and allows to represent

linear time-invariant (LTI) systems directly with data [8], [9].

The methods exploit this data representation and typically

add regularization to the problem [10], [11] for a posteriori

robustification. The resulting formulations can achieve com-

parable or even superior performance compared to classical

methods consisting of an identification and a control step,

especially in challenging scenarios involving nonlinear ef-

fects and large amount of uncertainty [10], [12]. Existing

works explain this observation by the robustifing effect of

regularization, yet they rely on the inherently deterministic

behavioral description [2], [3], [13]. On the other hand, only

a few works propose frameworks that start directly from

a stochastic system model. In fact, the survey [12] points

out that a major open problem in this field is precisely the

extension of data representations to the stochastic domain.

A. Sasfi and F. Dörfler are with the Department of Information Tech-
nology and Electrical Engineering, ETH Zürich, 8092 Zürich, Switzerland
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Stochastic extensions to behavioral systems theory have

been defined bottom up in the literature [14], [15]. However,

the existing works provide general and abstract (and thus also

blunt) perspectives that hinder the practical applicability of

the frameworks. Stochastic behaviors have also been mod-

eled in the literature using polynomial chaos expansions [16],

[17]. However, the complexity of the resulting methods grow

with the order of the expansion, limiting scalability. Recently,

a stochastic interpretation of data-driven control formula-

tions was proposed in [18], highlighting that regularization

accounts for the uncertainty in a linear model estimated

from data. In this work, we take a different approach, and

propose a new bottom-up stochastic modeling framework

that admits a data representation and leads to tractable control

formulations which can be solved efficiently.

The contributions of this work are the following. First,

in Section III, we propose a stochastic modeling framework

based on Gaussian processes that enables us to model tra-

jectories as normally distributed random vectors. We define

the distribution of trajectories to be a Gaussian behavior,

characterized by its mean and covariance, which inherently

captures uncertainty. Gaussian behaviors give rise to pre-

dictive models given by the conditional distribution, which

can be calculated readily in the proposed framework. Fur-

thermore, in a data-driven context, Gaussian behaviors can

be estimated directly as the empirical sample covariance,

which is also used as a system representation in [19]. We

show that Gaussian behaviors are a special class of stochas-

tic behaviors. Furthermore, the deterministic behavioral de-

scription of LTI systems as subspaces is captured by the

proposed definition with zero mean and singular covariance

matrix. Finally, stochastic LTI systems given by state-space

equations with normally distributed initial state, process and

measurement noise are also special cases of the proposed

definition by imposing additional structure on the covariance.

Additionally, Gaussian behaviors are closely connected to

covariance steering problems [20]–[23] that usually consider

linear stochastic systems with a normally distributed initial

state and aim at finding a feedback controller that achieves

a desired distribution for the closed-loop output.

Second, we interpret existing data-driven control formula-

tions in the proposed framework and derive a new robust

method in Section IV. In particular, subspace predictive

control (SPC) is a certainty-equivalence formulation in this

framework that uses the sample covariance to predict the

future outputs. To account for inaccuracies in the predictive

model, we optimize the predictive distribution within an

uncertainty set centered around the estimate. This results

in a distributionally optimistic formulation, which is shown
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to be equivalent to the regularized data-enabled predictive

control (DeePC) approach. In this method, the distribution

that minimizes the control cost is selected from the uncer-

tainty set. In contrast, we propose a distributionally robust

formulation that optimizes the control input under the worst-

case mismatch between the true and estimated distributions.

The resulting min-max problem can be reformulated as a

convex problem, enabling efficient computation.

II. PRELIMINARIES

A. Notation

The image and kernel of a matrix A are denoted by

im(A) and ker(A), respectively. Furthermore, A† denotes

the Moore–Penrose inverse of A. The set of symmetric

positive (semi) definite matrices is denoted by S>0 (S≥0).
The identity matrix of dimension n× n is In. Furthermore,

the (semi-) norm of x weighted by a matrix M ∈ S>0 (S≥0)
is denoted by ‖x‖M = x⊤Mx.

B. Stochastic processes

Classically, a stochastic process (or, briefly, process) is

defined as a family of random variables {wt}t∈T, where wt

is a random variable for each time t in the time range T [24].

Given their finite-dimensional distributions, the entire pro-

cess is uniquely characterized via Kolmogorov’s extension

theorem [24].

A stochastic process {wt}t∈T is wide-sense stationary [25,

Sec. 10.1] if its mean is constant, i.e.,

E[wt] = µ, for all t ∈ T,

for some vector µ, and the covariance between wti and wtj

depends only on the time shift ti − tj , i.e.,

Cov(wti , wtj ) = K(ti − tj), for all ti, tj ∈ T,

for some matrix-valued covariance function K(·).
A stochastic process is said to be a Gaussian process if,

for any finite set of time instants

T = {t1, t2, . . . , tk} ⊂ T,

the joint probability distribution of the corresponding random

variables {wt}t∈T is Gaussian, that is,

{wt}t∈T ∼ N (µT ,KT ),

where µT = [µ(t1) . . . µ(tk)]
⊤ is the mean vector, and KT

is the k × k covariance matrix with entries

KT (i, j) = E[(wti − µ(ti))(wtj − µ(tj))
⊤] for ti, tj ∈ T.

C. Behavioral systems theory for discrete-time LTI systems

Behavioral systems theory abstractly defines systems as

a set of trajectories, called the behavior, regardless of its

representation in terms of particular equations. For LTI

systems, the behavior is a shift-invariant subspace of the set

of all possible trajectories [11]. In this deterministic context,

with a slight abuse of notation, we denote the realization of

the random vector by the same symbol, i.e., wt ∈ Rq . We

focus on system trajectories of finite length L > 0, which

we denote by w = [w⊤
t w⊤

t+1 . . . w⊤
t+L−1]

⊤. The restricted

behavior, denoted by BL, is the set of all system trajectories

of length L > 0, and it is defined as

BL = {w ∈ R
qL | w is a length-L trajectory of the system}.

For LTI systems and for large enough L, BL ⊆ RqL is a

subspace of dimension d = mL + n, where n is the order

of a minimal realization of the system and m is the number

of inputs. The behavior has multiple representations, two of

which are reviewed below.

1) State-space representation: Without loss of generality,

each trajectory wt ∈ Rq of an LTI system can be partitioned

into inputs ut ∈ Rm and outputs yt ∈ Rq−m. Furthermore,

every discrete-time LTI system is described by the state-

space representation

xt+1 = Axt +But,

yt = Cxt +Dut,

with state xt ∈ Rn. By convention, we denote the input and

output trajectories of length L by u and y. By linearity, the

output trajectory can be expressed as a linear combination

of the initial state and the inputs

y = OLxini + TLu,

where xini is the initial state, while OL and TL are the
extended observability and convolution matrices, defined as

OL =











C
CA

.

..

CAL−1











, TL =













D 0 0 . . . 0
CB D 0 . . . 0
CAB CB D . . . 0

...
...

. . .
. . .

...

CAL−2B . . . . . . CB D













.

A basis for the subspace BL can be readily constructed from

OL and TL, giving

BL = im

(

P ·

[

ImL 0
TL OL

])

,

where P is a suitable permutation matrix.

2) Data representation: Assume that measurements of

D > qL trajectories wi, i ∈ {1, . . . , D}, from the system

are available, and define the data matrix W = [w1 . . . wD].
According to [26], if the inputs are collectively persistently

exciting, W has rank mL + n, and it spans the restricted

behavior, i.e.,

BL = im(W ).

Therefore, sufficiently rich data directly provide representa-

tions of deterministic LTI behaviors.

D. Stochastic LTI systems

Consider a stochastic LTI system described by the state-

space equations

xt+1 = Axt +But + ξt,

yt = Cxt +Dut + ηt,
(1)

where ξt ∈ Rn and ηt ∈ Rp are the process and mea-

surement noise, respectively. Assume that both ξt and ηt



are independent and identically distributed with zero mean

and covariance Σξ and Ση, respectively. Then the output

trajectory be expressed as a linear combination of the initial

state, the input trajectories, and noise realizations

y = OLxini + TLu+ T ξ
L ξ + η,

where ξ and η are the length-L trajectories of process and

measurement noise, and T ξ
L is a convolution matrix defined

as TL with B = I, D = 0.

E. Data-driven predictive control formulations

Various data-driven predictive control formulations exploit

the data representation of the behavior [1], [4], [7], [27]. To

ensure compatibility with the most recent measurements, the

initial part of the trajectory wini = [u⊤
ini y⊤ini]

⊤ of length

(L−Lf) is considered to be given, and the future part wf =
[u⊤

f y⊤f ]
⊤ of length Lf is a free variable to be optimized. The

whole trajectory is w = [w⊤
ini w

⊤
f ]

⊤. The control objective

is often posed as minimizing the quadratic cost

cctrl(wf) = (wf − wref)
⊤

[

R 0
0 Q

]

(wf − wref),

where wref is the reference trajectory, and R ∈ S>0,

Q ∈ S≥0 are weight matrices for the entire future input

and output trajectories, respectively. The future trajectory

wf = [u⊤
f y⊤f ]

⊤ is often restricted to a non-empty, closed

and convex constraint set W = U × Y .

We review two data-driven predictive control formulations

below. Let us partition the rows of the data matrix W as

W = [W⊤
p , U⊤

f , Y ⊤
f ]⊤, where the block rows correspond

to uini, yini, uf and yf , respectively. The SPC formulation

from [11], [27] is then given as

min
wf∈W

cctrl(wf)

s.t. yf = Yf

[

Wp

Uf

]† [
wini

uf

]

.
(2)

Furthermore, the DeePC method from [10] is based on

min
wf∈W,g∈RD

cctrl(wf) + λg · h(g)

s.t.





wini

uf

yf



 =





Wp

Uf

Yf



 g,
(3)

where h(g) is a regularizer and λg ≥ 0 is the regulariza-

tion weight. Typical choices for the function h(g) are the

(squared) 1-norm, 2-norm, and suitably projected 2-norm of

g, see [10], [11].

III. GAUSSIAN BEHAVIORS

We propose a pragmatic yet foundational modeling frame-

work for stochastic dynamical systems based on Gaussian

processes enabling tractable control formulations. In par-

ticular, we model trajectories of (discrete-time) dynamical

systems as stochastic processes {wt}t∈Z. Similarly to be-

havioral systems theory, we consider models that describe

entire trajectories of the system. Furthermore, to ensure that

the proposed model is amenable to computation, we focus

on finite-length trajectories. For the rest of the paper, we

restrict our attention to a special class of systems, whose

trajectories are wide-sense stationary Gaussian processes of

q-variate random vectors wt. Note that wide-sense stationar-

ity is closely connected to time-invariance of the dynamical

system [28].

We consider each trajectory of length L > 0 to be a

random vector containing L consecutive time instants of the

random process {wt}t∈Z denoted by

w = [w⊤
t w⊤

t+1 . . . w⊤
t+L−1]

⊤.

Due to the stationarity of the process, all trajectories of length

L follow the same Gaussian distribution

Definition 1: A (finite-length) Gaussian behavior is a

random length-L trajectory w ∈ RqL distributed as a multi-

variate Gaussian, that is,

w ∼ N (µw,Σw),

with mean µw ∈ RqL and covariance matrix Σw ∈ S≥0.

The covariance Σw captures the correlation between the

components of w. This model naturally quantifies uncertainty

in the trajectories and enables tractable methods to perform

downstream tasks, such as prediction or control. Further-

more, the mean and covariance can be readily identified from

data, leading to a data representation of the system based

on empirical sample covariances (see Lemma 1), which

was recently proposed also in [19]. Finally, this model is

consistent with existing modeling approaches for stochastic

LTI systems, as discussed next.

Remark 1: Gaussian processes are widely used in ma-

chine learning to model the relationship between a regressor

vector and a dependent variable [29]. Gaussian processes in

this context are collections of (random) dependent variables

indexed by the regressor vector. The covariance (or kernel)

function defines the covariance between two dependent vari-

ables as a function of the corresponding regressors. In this

work, on the other hand, the random variables are the inputs

and outputs of a dynamical system indexed by time. Since we

work with stationary processes, the covariance function K(·)
only depends on the time shift ti − tj . Furthermore, as we

consider length L trajectories, we are only interested in the

first L values of the covariance function K(0), . . . ,K(L−1),
which constitute the covariance matrix Σw in Definition 1.

These function values can be identified from measured

trajectories of length L as described later.

A. Relation to existing system descriptions

1) Stochastic behaviors: The notion of stochastic behav-

iors is formalized in [15] as a extension of the deterministic

notion of dynamical systems. It incorporates a probability

space structure into the set of admissible system trajectories

and it includes as special cases both the deterministic notion

of dynamical system—viewed as a set of trajectories—and

the traditional notion of stochastic process [24]. In this con-

text, a stochastic dynamical system is defined as a quadruple

(T,W,F , P ),



where T is the time axis (e.g., T = Z, T = R), W is the

signal set (e.g., W = R
q or W = C

q), F is a σ-algebra of

events, that is, measurable subsets of the space of trajectories

WT, and P is a probability measure on (WT,F), assigning

probabilities to events. Opposed to the traditional notion of

stochastic processes, the behavioral approach [8] shifts the

focus from individual random variables to the structure of

admissible trajectories in WT, where P assigns a probability

to entire trajectories. This interpretation, further developed

in [15], highlights that stochastic dynamical systems gen-

eralize classical stochastic processes by emphasizing event

spaces rather than generating random variables.

Our approach of modeling stochastic systems as Gaussian

processes fits in this framework as a special case with

T = Z and W = Rq. Furthermore, the σ-algebra of

events F is the Borel σ-algebra on (Rq)Z, generated by the

open sets under the product topology (i.e., the topology of

pointwise convergence). We use the standard Borel σ-algebra

in this work, since it suffices for our purposes, while we

leave the investigation of more general structures to future

work. The probability measure P is the Gaussian process

in the proposed framework. Even tough we lose some of

the generality of the definitions given in [14], [15], our

definition of Gaussian behaviors in Definition 1 allows us to

propose actionable, i.e., simple and tractable, identification

and control techniques.

2) Deterministic LTI behaviors: Deterministic restricted

LTI behaviors can be regarded as special cases of the

Gaussian behavior in Definition 1.

Proposition 1: Consider a Gaussian random vector w ∈
RqL with mean µw = 0 and covariance matrix Σw ∈ S≥0.

Assume Σw = BB⊤ for some full column rank matrix

B ∈ RqL×d. Then, rank(Σw) = d and w ∈ im(B) with

probability one.

Proof: Note that w ∼ N (0, BB⊤) can be written as

w = Bx, with some x ∼ N (0, Id). Thus, w belongs to the

image of B with probability 1 (cf., e.g., [30, Sec. 2.5.4]).

Proposition 1 shows that the Gaussian behavior with a

suitably chosen mean and singular covariance matrix restricts

the trajectories to BL = im(B). Nevertheless, a Gaussian

behavior contains more information about the finite-length

trajectories, namely, their probability distribution on BL.

Note, however, that if we fix d “free” variables (the inputs

and n output components) in w, the trajectory becomes

deterministic. Therefore, by fixing some of the variables,

we recover the deterministic relation between the signal

components that is given by BL. Note that for a general

µw 6= 0, w belongs to a hyperplane instead of a subspace,

and hence, the Gaussian behavior would describe an affine

system [31].

3) Stochastic LTI systems: Now we show that the state-

space representation of stochastic LTI systems with normally

distributed initial state can also be recovered with a specific

choice of the covariance matrix.
Proposition 2: Consider the stochastic LTI system (1).

Assume that w = [u⊤ y⊤]⊤ satisfies (1), with xini ∼
N (0,Σini), u ∼ N (0,Σu), ξ ∼ N (0,Σξ), and η ∼

N (0,Ση). Assume further that xini and u are independent.
Then w ∼ N (0,Σw) with covariance

Σw =

[

Σu ΣuT
⊤

L

TLΣu OLΣiniO
⊤

L + TLΣuT
⊤

L + T
ξ
LΣξ(T

ξ
L )⊤ + Ση

]

.

Proof: The claim follows by writing the trajectory as

w =

[

u
y

]

=

[

0 ImL 0 0

OL TL T ξ
L I

]









xini

u
ξ
η









,

where [x⊤
ini u⊤ ξ⊤ η⊤]⊤ ∼ N (0, diag(Σini,Σu,Σξ,Σξ)),

with diag(Σini,Σu,Σξ,Ση) denoting a block diagonal ma-

trix with blocks Σini,Σu,Σξ, and Ση .

Proposition 2 shows that the covariance Σw in Definition 1

can be constructed from the stochastic state-space represen-

tation (1) and the covariances of u, xini, ξ, and η. Note that

the initial state xini is assumed to be normally distributed,

which is a common assumption in the covariance steering

literature [20]–[23] as well. The mean µw is set to zero,

implying that the output must be zero mean, if xini, u, ξ, η
are also zero mean. In contrast to the deterministic behaviors

in Proposition 1, the covariance is always non-singular if

Σu and Ση are non-singular. Thus, we assume the following

throughout the rest of the paper.

Assumption 1: Assume µw = 0 and Σw is non-singular.

B. Prediction using Gaussian behaviors

The Gaussian behavior in Definition 1 describes the dis-

tribution of the whole trajectory w. In many downstream

tasks, some parts of the trajectory are already observed, or

are fixed priori. For example, in predictive control, the initial

part wini of the trajectory is observed, and the future inputs

uf are decision variables that we can fix. The probability

of the future outputs yf given wini and uf is expressed by

the conditional distribution and can be easily computed for

Gaussians. Recall Assumption 1 and partition Σw into block

corresponding to [w⊤
ini, u

⊤
f ]

⊤ and yf

Σw =

[

Σ11
w Σ12

w

Σ21
w Σ22

w

]

.

The distribution of yf conditioned on wini and uf is given as

yf |uf , wini ∼ N (µpred,Σpred), with

µpred = Σ21
w (Σ11

w )−1

[

wini

uf

]

, (4)

Σpred = Σ22
w − Σ21

w (Σ11
w )−1Σ12

w . (5)

We call N (µpred,Σpred) the predictive distribution. Note

that the mean of the predictive distribution is linear in wini

and uf , while the covariance is independent of them.

C. Identifying Gaussian behaviors

An important advantage of Gaussian behaviors is that they

can be readily identified using the sample covariance of data

Σ̂w = (1/D) · WW⊤. It is worthwhile noting that in the

deterministic LTI setting, the sample covariance serves as

the data representation of the behavior, since im(Σ̂w) =



im(W ) = BL. Consequently, existing data-driven methods

that exploit the image of W can be directly interpreted in

the proposed framework using the image of Σ̂w. Analogously

to deterministic behaviors in Section II-C, one might say that

the sample covariance is the data representation of Gaussian

behaviors. In practice, however, only finite data is available

from the system, and therefore the covariance estimate Σ̂w

of the true covariance Σw is usually inaccurate.

Let us pose the following assumption on the available data.

Assumption 2: Assume wi, i ∈ {1, . . . , D} are indepen-

dent samples from N (0,Σw), and W is full row rank.

The rank condition on W can be interpreted as a persistence

of excitation condition analogously to the generalized per-

sistency of excitation condition for deterministic LTI behav-

iors [11], which is equivalent to identifiability. Furthermore,

the samples are assumed to be independent to ensure that

the sample covariance can be used to estimate Σw.

Under Assumption 2, the estimate Σ̂w of Σw that max-

imizes the likelihood of observing the data is given by the

sample covariance, as formalized below.

Lemma 1: Let Assumptions 1 and 2 hold. Then

Σ̂w =
1

D
WW⊤ = arg max

Σw∈S>0

ΠD
i=1 pw(w

i),

where pw(w
i) denotes the probability density function of

N (0,Σw) evaluated at wi.

Proof: The optimizer Σ̂w can be expressed by taking

the logarithm of the cost and using the first order optimality

condition. See, e.g., [32, Thm. 3.1.5] for the derivation.

Note that it is possible to relax Assumption 2 and

allow linear correlation between the samples wi. Then,

the maximum likelihood estimator of Σw is given as a

weighted sample covariance [33], [34]. Furthermore, finite-

sample bounds on the estimation error are available in the

literature [35]. From Σ̂w, the estimate of the conditional

distribution yf |uf , wini can be derived as follows.

Lemma 2: For Σ̂w = (1/D) · WW⊤ as in Lemma 1,

the mean and covariance of the predictive distribution

N (µpred,Σpred) can be expressed as

µ̂pred = Yf

[

Wp

Uf

]† [
wini

uf

]

, (6)

Σ̂pred =
1

D
Yf (I −Π) Y ⊤

f , (7)

where Π :=

[

Wp

Uf

]† [
Wp

Uf

]

.

Proof: The formulas follow from (4) and (5) with

Σ11
w =

1

D

[

Wp

Uf

] [

Wp

Uf

]⊤

, Σ12
w =

1

D

[

Wp

Uf

]

Y ⊤
f ,

and Σ21
w = (Σ12

w )⊤, Σ22
w = 1

D
YfY

⊤
f .

IV. DATA-DRIVEN CONTROL WITH GAUSSIAN

BEHAVIORS

We propose stochastic predictive control formulations re-

lying on our definition of Gaussian behaviors, and show

that they are closely related to existing control formulations

described in Section II-E. In the proposed control formula-

tions, the future inputs uf are considered to be deterministic

decision variables, i.e., the trajectory is partially realized. The

future outputs are random variables that depend on uf and

wini, and they follow the predictive probability distribution

from Section III-B. Therefore, we define the control cost as

c̃ctrl(uf) := cctrl([u
⊤
f (yf |uf , wini)

⊤]⊤),

which is a family of random variables parametrized by

uf . The proposed control problems aim at finding uf that

minimizes the expected control cost given wini. As the yf
is a random variable in this setting, it is natural to include

chance constraints on it in the following control formulations.

However, we do not impose such constraints to simplify the

presentation. The following formulations differ in how the

expectation of the cost is calculated.

Remark 2: Aside from predictive control formulations,

our definition of Gaussian dynamical systems fits naturally

with covariance steering problems [20]–[23] and the co-

variance parametrization in [19]. In covariance steering, the

feedback controller that achieves a desired distribution for the

closed-loop output usually consists of a linear state feedback

gain and a feedforward term. In our setup, wini can be

considered as a (non-minimal) initial state. By tuning the

feedback gain, the cross-correlation between uf and wini in

the covariance Σw can be shaped. Therefore, covariance of

the predictive distribution N (µpred,Σpred) can be influenced

by the controller design. Furthermore, the mean µpred can

be assigned directly by a feedforward term.

A. Certainty-equivalence control

We propose a control formulation that calculates the input

by minimizing the expected control cost. The expectation is

calculated using the estimated predictive distribution from

Section III-C. This is a certainty-equivalence approach, as

we do not take into account the inaccuracy of the estimated

model. Let µ̂pred and Σ̂pred be defined as in (6) and (7).

Then, the control problem can be formulated as follows

min
uf∈U

EN(µ̂pred,Σ̂pred)[c̃ctrl(uf)]. (8)

Next, we show that (8) has the same minimizer as the SPC

method in (2) without output constraints, i.e., Y = Rdy ,

where dy = (q −m)Lf is the dimension of yf .

Theorem 1: If u⋆
f is a minimizer of (2) with Y = Rdy ,

then it is also a minimizer of (8).

Proof: The expectation of the control objective is

EN(µ̂pred,Σ̂pred)[c̃ctrl(uf)]

=‖uf − uref‖
2
R + E

[

‖(yf |uf , wini)− yref‖
2
Q

]

=cctrl

([

uf

µ̂pred

])

+ tr
(

QΣ̂pred

)

.

Furthermore, due to the definition of µ̂pred in (6), yf = µ̂pred

which coincides with the explicit constraint in (2).



B. Distributionally optimistic control

We now show that, contrary to the certainty-equivalence

formulation in (8), the regularized DeePC scheme is a distri-

butionally optimistic formulation. Since we use finite data to

identify µ̂pred and Σ̂pred, the estimates may be inaccurate.

To account for this uncertainty, we propose to optimize over

possible Gaussian distributions that are close to the estimated

predictive model and lead to the lowest expected control cost.

We quantify the closeness of two distributions by assuming

an upper bound ǫ on their Kullback–Leibler (KL) divergence,

leading to the distributionally optimistic problem

min
uf∈U

min
µ∈R

dy ,Σ∈S>0

EN (µ,Σ)[c̃ctrl(uf)]

s.t. DKL

(

N (µ,Σ)
∥

∥ N
(

µ̂pred, Σ̂pred

))

≤ ǫ.
(9)

The KL divergence DKL measures the relative entropy

between two distributions and for Gaussian distributions it

takes the form [29]

DKL

(

N (µ,Σ)
∥

∥ N (µ̂pred, Σ̂pred)
)

=
1

2

(

tr(Σ̂−1
predΣ)

−dy + ln

(

det(Σ̂pred)

det(Σ)

)

+ ‖µ− µ̂pred‖
2
Σ̂−1

pred

)

.

Remark 3: An important benefit of the KL divergence is

that the true covariance Σ only appears in terms that are

independent of µ and µ̂pred. The size of the uncertainty

set ǫ is often a tuning parameter in robust formulations.

Furthermore, we can rewrite the constraint in (9) as

‖µ− µ̂pred‖
2
Σ̂−1

pred

≤ 2ǫ

−
(

tr(Σ̂−1
predΣ)− dy + ln

(

det(Σ̂pred)/ det(Σ)
))

,

and consider the entire right-hand side of the inequality as

a tuning parameter. Thus, the exact knowledge of Σ is not

required. We use the KL divergence in (9) to exploit this

benefit and also to highlight the similarities between robust

formulations in the proposed framework and regularized

data-driven control schemes. However, one can also consider

other metrics, such as the Wasserstein [23] or Bhattacharyya

distance [36].

To simplify (9), we lift the constraint on the KL divergence

to the cost with a coefficient λ ≥ 0 resulting in

min
uf∈U , µ∈R

dy

EN (µ,Σ)[c̃ctrl(uf)]

+ λ ·DKL

(

N (µ,Σ)
∥

∥ N
(

µ̂pred, Σ̂pred

))

.
(10)

Note that due to the formula for the KL divergence and

since EN (µ,Σ)[c̃ctrl(uf)] = cctrl([u
⊤
f µ⊤]⊤) + tr(QΣ), the

minimizers u⋆
f , µ

⋆ of (10) are independent of the covariance

Σ. For these reasons and those in Remark 3, we can drop

the optimization over Σ. For a fixed (finite) value of Σ, the

solution u⋆
f , µ

⋆ of the two problems coincide, if λ in (10)

takes the value of the optimal Lagrange multiplier of the

constraint in (9). In problem (10), λ is a tuning parameter

that captures the uncertainty in the estimated predictive

distribution. Intuitively, larger values of λ correspond to

smaller uncertainty ǫ in (9), and vice versa. Note that as

ǫ → 0, problem (9) collapses to the certainty-equivalence

formulation (8), and hence, we expect the same to hold for

(10) as λ → ∞.

Next, we show that the projected 2-norm regularizer in

the DeePC method and the softened constraint on the KL

divergence in (10) play the same role, and therefore the two

problems have the same minimizer. We consider the squared

projected 2-norm regularizer h(g) = ‖(I −Π)g‖22 also used,

e.g., in [10], with Π defined as in Lemma 2.

Theorem 2: If (w⋆
f , g

⋆) is a minimizer of (3) with h(g) =
‖(I −Π)g‖22 and Y = Rdy , then u⋆

f = Ufg
⋆ and µ⋆ = y⋆f =

Yfg
⋆ is a minimizer of (10) with λ = λg

2
D

.

Note that solving (3) is computationally more expensive

than solving (10), as it contains the optimization variable g,

whose dimension scales with the number of data points D.

Problem (10) accounts for the uncertainty in the estimated

distribution in an optimistic fashion. The mean of the true

distribution is chosen such that it minimizes the control cost.

This optimism in the face of uncertainty has been observed

perform well by balancing exploitation and exploration in

adaptive settings [37], [38]. However, in the considered

setup, one might expect the realized (closed-loop) control

performance to degrade as the model uncertainty captured

by ǫ increases, or equivalently, λ decreases. This intuition

is supported by the empirical observation made in [10],

stating that the realized control performance monotonically

increases as λg in (3) is increased.

Remark 4: In [18], the authors argue that model predictive

control (MPC) and direct data-driven control techniques such

as regularized DeePC differ in the way the expectation of

the control cost is calculated. In MPC, the future output is

predicted by some “true” model M, and the expected cost

given the model E[c̃ctrl(uf)|M] is minimized in the control

problem. On the other hand, the model is not know in direct

data-driven control methods. Instead, the expectation of the

expected cost given the model is minimized given the data

D, i.e., the control input minimizes E [E[c̃ctrl(uf)|M]|D].
In this work, we consider M to be the predictive dis-

tribution N (µpred,Σpred) of a Gaussian dynamical system,

and argue that SPC and regularized DeePC first estimate

M from data, and then perform control. SPC is an MPC

formulation in this setup. On the other hand, the model M is

an optimization variable in regularized DeePC, and we pose

the constraint that M should remain close to its estimate.

Proof: To prove the claim, we show that the costs of

(3) and (10) are equal up to a constant, and the feasible

sets coincide. Any term that does not depend on uf , yf , µ
or g will be denoted by c. First note that the expected

control cost in (10) can be written as EN (µ,Σ)[c̃ctrl(uf)] =
cctrl([u

⊤
f µ⊤]⊤) + c.

Next, we show that h(g) and the KL divergence in (10)

are related. Let us decompose g in (3) as

g = gpart + ghom, gpart ∈ im(W⊤), ghom ∈ ker(W ).

Since (I − Π)⊤(I − Π) = I − Π, gpart ⊥ ghom, and (I −



Π)ghom = 0, the regularizer becomes

h(g) = ‖gpart‖
2
(I−Π) + ‖ghom‖

2
2.

Note that ghom ∈ ker(W ) can be removed from the con-
straint and only appears in the regularization term h(g) in the
optimization, therefore ghom = 0 for any optimal solution.

Consequently, g = gpart = W †

[

wini

wf

]

. Furthermore, since
[

Wp

Uf

]

gpart =

[

wini

uf

]

, the regularization on gpart can be

expressed as

h(gpart) =

∥

∥

∥

∥

[

wini

wf

]
∥

∥

∥

∥

2

(WW⊤)−1

−

∥

∥

∥

∥

[

wini

uf

]
∥

∥

∥

∥

2









Wp

Uf









Wp

Uf





⊤




−1 .

Observe that for any x and M ∈ S>0, the weighted

norm satisfies ‖x‖2M = −2 log(p(x)) − c̃, where p denotes

the probability density function of N (0,M−1), and c̃ is a

constant independent of x. Then

h(gpart) =−
2

D
log
(

pw([w
⊤
ini w

⊤
f ]

⊤)
)

+
2

D
log
(

pm([w
⊤
ini u

⊤
f ]

⊤)
)

+ c,

where pw is the density of N (0,Σw), and pm is den-

sity of the estimated marginal distribution over wini and

uf given as N

(

0,

[

Wp

Uf

] [

Wp

Uf

]⊤
)

. We can then apply

the law of conditional probability pyf |wini,uf
(yf |wini, uf) =

pw(w)/pm([w
⊤
ini u

⊤
f ]

⊤), where pyf |wini,uf
is the density of

the predictive distribution N (µ̂pred, Σ̂pred), leading to

h(gpart) =−
2

D
log(pyf |wini,uf

(yf)) + c

=
1

D
(yf − µ̂pred)

⊤Σ̂−1
pred(yf − µ̂pred) + c

=
2

D
DKL

(

N (yf ,Σ)
∥

∥ N (µ̂pred, Σ̂pred)
)

+ c.

Thus, for any optimal value of g, the regularizer h(g) is

proportional to the KL divergence plus a constant term.

C. Distributionally robust control

While optimism in the face of uncertainty often works

well, sometimes one needs to be conservative to minimize

risks. For this reason, we propose a novel distributionally ro-

bust control formulation that minimizes the expected control

cost under the worst-case deviation between the mean of the

true and estimated predictive distributions. Let us again fix

the covariance Σ, and formulate the distributionally robust

control problem as

min
uf∈U

max
µ∈R

dy

EN (µ,Σ)[c̃ctrl(uf)]

s.t. DKL

(

N (µ,Σ)
∥

∥ N
(

µ̂pred, Σ̂pred

))

≤ ǫ.
(11)

By writing the dual of the inner problem, we obtain an

upper bound on the cost for any feasible point, which is

expressed as a minimization over the Lagrange multiplier λ
of the constraint on the KL divergence.

Theorem 3: For any feasible pair (ũf , µ̃), the cost of

problem (11) is upper bounded by

min
λ≥λ0

EN (µ⋆,Σ)[c̃ctrl(ũf)]

− λ
(

DKL

(

N (µ⋆,Σ)
∥

∥ N
(

µ̂pred, Σ̂pred

))

− ǫ
)

.
(12)

where λ0 > 0 is such that λ0Σ̂
−1
pred − Q ∈ S>0, and µ⋆ is

defined as

µ⋆ := (λΣ̂−1
pred −Q)−1(λΣ̂−1

predµ̂pred −Qyref). (13)

The mean µ⋆ maximizes the Lagrangian of the inner problem

in (11) by balancing the term ‖µ− yref‖2Q from the control

cost and the term λ‖µ − µ̂‖2
Σ̂−1

pred

from the KL divergence.

Similarly to the distributionally optimistic formulation (10),

we consider the value of λ ≥ λ0 in (12) to be a tuning

parameter, instead of minimizing over it. Furthermore, we

choose the input uf that minimizes the upper bound (12) in

Theorem 3 leading to the control problem

min
uf∈U

‖λΣ̂−1
predµ̂pred −Qyref‖

2
(λΣ̂−1

pred
−Q)−1

− λ‖µ̂pred‖
2
Σ̂−1

pred

+ ‖uf − uref‖
2
R + c,

(14)

where c denotes the terms independent of uf . Since λ is the

Lagrange multiplier of the constraint with the KL divergence

in (11), increasing its value is directly related to considering

a smaller uncertainty set, i.e., smaller ǫ. As λ → ∞, we have

µ⋆ → µ̂pred, and thus, we recover the certainty-equivalence

formulation (8).

Notice that the estimated mean µ̂pred calculated as in (6)

is affine in uf , and thus, the cost of (14) is quadratic in uf .

Let us write

µ̂pred = M̂uuf + M̂iniwini.

Then, the Hessian of the cost in (14) with respect to uf is

H(λ) :=λ2M̂⊤
u Σ̂−1

pred

(

λΣ̂−1
pred −Q

)−1

Σ̂−1
predM̂u

− λM̂⊤
u Σ̂−1

predM̂u +R.

If λ ≥ λ0 is chosen such that H(λ) � 0, problem (14) is

convex, and hence, can be solved efficiently. Furthermore,

since H(λ) → R as λ → ∞, the convexity of the problem

is guaranteed for large enough λ. Preliminary numerical sim-

ulations showed that as λ is increased, the optimal solution

of (14) converges to that of (8), as expected. Furthermore,

the distributionally optimistic and robust formulations in (10)

and (14) yield similar realized control costs for the LTI

system considered in [10]. Thorough numerical testing of the

algorithms including more challenging nonlinear case studies

is the subject of future research.

Proof: For a fixed ũf , the inner problem in (11) is

min
µ∈R

dy

− EN (µ,Σ)[c̃ctrl(ũf)]

s.t. DKL

(

N (µ,Σ)
∥

∥ N
(

µ̂pred, Σ̂pred

))

≤ ǫ.
(15)



The Lagrangian associated with (15) is

L(µ, λ) = −EN (µ,Σ)[c̃ctrl(ũf)]

+ λ
(

DKL

(

N (µ,Σ)
∥

∥ N
(

µ̂pred, Σ̂pred

))

− ǫ
)

= µ⊤(λΣ̂−1
pred −Q)µ− 2(λµ̂⊤

predΣ̂
−1
pred − y⊤refQ)µ+ c(λ),

where λ denotes the Lagrange multiplier of the inequality

constraint, µ is the original optimization variable in (15), and

c(λ) denotes the terms that do not depend on µ. To ensure

that the Lagrangian is strictly convex in µ, and thus, the dual

function g(λ) = infµ L(µ, λ) is bounded, we require λ ≥
λ0. Then, g(λ) = L(µ⋆, λ), with µ⋆ = argminµ L(µ, λ)
given in (13). For any pair (ũf , µ̃), for which the original

problem (11) is feasible and any λ ≥ λ0 > 0, we have that

g(λ) = inf
µ

L(µ, λ) ≤ L(µ̃, λ) ≤ −EN (µ̃,Σ)[c̃ctrl(ũf)].

One can find the tightest lower bound by maximizing g(λ)
yielding the dual problem maxλ≥λ0

g(λ). Finally, we arrive

at (12) by writing the dual problem as a minimization of

−g(λ), leading to an upper bound on the cost of (11).

Remark 5: Note that the dual of the inner maximization

problem in (11) can also be expressed as a semidefinite

programming [39, App. B.1]. Then, strong duality holds if

tr(Σ̂−1
predΣ)− dy + ln

(

det(Σ̂pred)

det(Σ)

)

< 2ǫ,

that is, the constraint on the KL divergence satisfies Slater’s

condition. However, to ensure that the upper bound in Theo-

rem 3 attains a simple form, we formulate the dual problem

as in (12) and restrict λ such that the matrix λΣ̂−1
pred −Q is

invertible.

V. CONCLUSION

We proposed a modeling framework for stochastic systems

termed Gaussian behaviors, which is consistent with existing

LTI system models. This system description leads to a new

perspective on data-driven predictive control methods from

the literature, by interpreting regularization as accounting

for errors in the estimated distribution in an optimistic

fashion. Furthermore, we proposed a novel distributionally

robust control formulation that leads to a convex optimization

problem. Future work includes extending the results beyond

Gaussian distributions allowing us to model a larger class of

systems and address nonlinearities.
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model predictive control with stability and robustness guarantees,”
IEEE Trans. Automatic Control, vol. 66, no. 4, pp. 1702–1717, 2020.

[4] V. Breschi, A. Chiuso, and S. Formentin, “Data-driven predictive
control in a stochastic setting: A unified framework,” Automatica,
vol. 152, p. 110961, 2023.

[5] C. Verhoek, H. S. Abbas, R. Tóth, and S. Haesaert, “Data-driven
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