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Abstract—This paper presents a systematic method for synthe-
sizing a Control Barrier Function (CBF) that encodes predictive
information into a CBF. Unlike other methods, the synthesized
CBF can account for changes and time-variations in the con-
straints even when constructed for time-invariant constraints.
This avoids recomputing the CBF when the constraint specifica-
tions change. The method provides an explicit characterization
of the extended class Ke function α that determines the dynamic
properties of the CBF, and α can even be explicitly chosen as
a design parameter in the controller synthesis. The resulting
CBF further accounts for input constraints, and its values can
be determined at any point without having to compute the CBF
over the entire domain. The synthesis method is based on a finite
horizon optimal control problem inspired by Hamilton-Jacobi
reachability analysis and does not rely on a nominal control law.
The synthesized CBF is time-invariant if the constraints are.
The method poses mild assumptions on the controllability of the
dynamic system and assumes the knowledge of at least a subset of
some control invariant set. The paper provides a detailed analysis
of the properties of the synthesized CBF, including its application
to time-varying constraints. A simulation study applies the
proposed approach to various dynamic systems in the presence of
time-varying constraints. The paper is accompanied by an online
available parallelized implementation of the proposed synthesis
method.

Index Terms—Control Barrier Functions, Constrained Con-
trol, Time-Varying Systems, Safety.

I. INTRODUCTION

The dynamic capabilities of a system with respect to a
given state constraint can be effectively characterized by a
Control Barrier Function (CBF). Thereby, CBFs constitute
an important control theoretic tool for ensuring constraint
satisfaction and the systematic construction of safety filters [1],
[2]. Having their origin in the optimization literature as barrier
functions [3], [4], CBFs became a by now well-established and
wide-spread tool within the domain of control [5], [6]. The
application of CBFs has been explored in a wide range of areas
such as vehicle control [7], [8], vehicle coordination [9]–[11],
the control of vessels [12]–[14] and underwater vehicles [15],
for air- and spacecrafts [16]–[18], to handle sensor limita-
tions [19], as well as in robotics [20]–[24]. Moreover, CBFs
have been suggested for handling various classes of spatio-
temporal constraints [25]–[28]. Once a CBF has been found,
the design of a controller ensuring constraint satisfaction
is rather straightforward. A challenge, however, remains the
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systematic synthesis of CBFs — in particular for systems with
input constraints or subject to time-varying state constraints.

The problem of deriving a CBF is stated as follows: Let
a dynamic system 9x “ fpx, uq and a state constraint x P

H – tx |hpxq ě 0u be given. Then, a Lipschitz-continuous
function b shall be derived such that C – tx | bpxq ě 0u Ď H
is a control-invariant subset of H with respect to the dynamic
system. In addition, a certain ascend condition on b yet to be
specified must be satisfied. Such a function b is called a CBF.

If the dynamics are locally controllable on the boundary of
H and sufficiently large control inputs u are admitted, then
the design of a CBF is straightforward. In particular, a CBF is
then directly given by h. Beyond such favorable cases, CBFs
are, like all other value functions as well, notoriously hard
to compute. This is especially true for systems with weak
controllability properties, such as systems that are not locally
controllable, or that are subject to input constraints. Then
more sophisticated synthesis methods are needed. We start by
providing a survey on available methods.

A. Related Work
The synthesis of CBFs has developed into a thriving re-

search branch in its own right and a wide variety of construc-
tion methods have been proposed, each of them with its own
advantages. The proposed methods can be roughly subdivided
into analytical and numerical approaches, even though some
of them combine both analytical and numerical elements.

At first, we review analytical construction approaches. As
previously discussed, the constraint function h readily consti-
tutes a CBF in some favorable cases. In less favorable cases,
backstepping as known from nonlinear control design may
still lead to a CBF [29]–[31]. Starting with h, which is then
called a high-order CBF, an actual CBF can be derived. Yet
it is important to note that with the order of the CBF also
its sensitivity with respect to model uncertainties increases. A
related, though model-free approach is prescribed performance
control (PPC) [32], [33]. It is applicable to systems that pos-
sess relatively strong controllability properties. Other works
develop a systematic analytical CBF construction for particular
classes of dynamic systems [34], [35], or augment a function
that almost everywhere (a.e.) satisfies the CBF-properties with
a logic to handle the remaining critical states [36]. In order to
account for input constraints, analytical approaches commonly
require, if at all possible, a meticulous construction of the CBF.

Often, the explicit consideration of input constraints and
more generic classes of dynamic systems are possible with
numerical approaches. As such, a sum-of-squares (SOS) ap-
proach is taken in [37]–[39]. Here, a CBF is determined by
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solving an optimization problem over a polynomial basis. Ap-
proaches based on sum-of-squares are limited to polynomial
dynamics. Due to the complexity of the optimization problem,
there is no guarantee that a CBF is found even if it exists.

Since most control laws based on CBFs are gradient-
based, they result in a reactive behavior. Therefore, if a
more anticipatory control performance is required from a
CBF-based feedback control law, predictive information needs
to be encoded into the CBF upon synthesis. Some control
approaches circumvent this problem by combining CBFs with
model predictive control (MPC) [40]–[42], yet, these assume
that a CBF is readily provided. In [43], an a-priori known
control-invariant set is extended with finite horizon predic-
tions, however without constructing a CBF. The first works
to construct a CBF via predictions were [44], [45]. These
approaches simulate the system dynamics controlled by some
given nominal control law over an infinite time horizon. By
additionally employing an a-priori known CBF, [46] reduces
the prediction horizon to a finite one. The hereby resulting
CBF is called a backup CBF in the literature. A predictive CBF
is proposed in [47] using a finite, though not further specified,
prediction horizon. The method is based on a sensitivity
analysis by varying a nominal control law.

The need for nominal control laws can be circumvented
by choosing an approach via Hamilton-Jacobi reachability
analysis as in [48]. Despite the time-invariance of the state
constraint, a time-dependent barrier function is obtained here.
Only with an infinite number of iterations, a time-invariant
barrier function can be asymptotically obtained. Its zero super-
level set, however, is the largest control-invariant set that
ensures the satisfaction of the original state constraint.

The last category to point out among the numerical CBF
synthesis approaches are the learning based ones, see [49]–
[51] and references therein. Based on the observed trajectories
of a dynamical system, a neural network can be trained to
approximate a CBF. Learning-based approaches inherently
take input constraints into account and the class K in the
ascend condition of the CBF is often obtained along with the
learnt CBF. A challenge of such approaches is the generation
of the large amount of trajectories needed for the training as
well as the verification of the learnt function as a CBF.

A major problem in the CBF synthesis, also within the
above mentioned literature, is that CBFs are derived for a par-
ticular (static) constraint. Any change in the constraint requires
a recomputation of the CBF, which is usually computationally
expensive. At the same time, it is important to note that a
CBF constructed for a given dynamic system and a given state
constraint is far from being unique.

In this paper, we deliberately take advantage of this free-
dom in order to construct a CBF with various favorable
properties. The here proposed construction method yields a
CBF that encodes predictive information and accounts for
potential time-variations in the state constraint. Thereby, the
resulting CBF does not require an expensive recomputation if
the state constraint varies over time but can be adapted. In
our follow-up paper [52], we furthermore leverage the here
proposed approach to the synthesis of CBFs for equivariant
systems [53], [54]. Our particular contributions are as follows.

B. Contributions

Given a dynamic system, a state constraint, and a control-
invariant set (or one of its subsets) satisfying the state con-
straint, our method synthesizes a CBF that encodes predictive
information and has the following favorable properties:

‚ The CBF accounts for time-varying constraints. While
the synthesized CBF, in the sequel denoted by b, is time-
invariant, the function

bpxq ` λptq

is guaranteed to be still a CBF for any function λ that
varies within certain bounds. These bounds are a design
parameter to the proposed synthesis method. Following
the terminology in [55], the constructed CBF is shiftable.
To the best of our knowledge, no other available CBF
synthesis method provides this property.

‚ The CBF can be determined on any domain containing
its zero super-level set. Most synthesis methods in the
literature yield only CBFs on a domain equal to their
zero super-level set.

‚ Our synthesis method yields an explicit characterization
of the extended class Ke function in the ascend condition
along with the corresponding CBF. It is furthermore
indifferent to the relative degree of the constraint.

‚ Our method allows to compute the numeric values of the
CBF at some given state without the need to compute
the entire CBF. This is particularly advantageous for
exploiting the equivariances of some dynamics in the
CBF construction as detailed in our follow-up work [52].

Beyond these, our synthesized CBF explicitly accounts for
input constraints and can handle a general class of nonlinear
dynamics which it has in common with other predictive CBF
synthesis methods. However, our synthesis method does not
rely on an auxiliary nominal controller in contrast to other
predictive methods. In contrast, our method is rather inspired
by Hamilton-Jacobi reachability as in [48].

A preliminary version of our synthesis method has been
presented in [56]. However, the domain of the CBF constructed
there was confined to the zero super-level set of the CBF.
Moreover, our earlier paper did not account for time-varying
constraints. Additionally, we accompany the theoretic results
in this paper with detailed implementation remarks, and an
elaborate simulation study for various dynamic systems sub-
ject to static and time-varying constraints. Furthermore, this
paper comes along with a Python toolbox implementing the
proposed synthesis method. It supports the parallelized CBF
computation on multiple cores.

C. Outline

The remainder is structured as follows. Section II introduces
some preliminaries including the definition of a CBF in the
Dini sense. Section III states fundamental assumptions on
a control invariant set and on the required controllability
properties before stating the objective of the paper formally.
Section IV presents our CBF synthesis method, and Section V
provides a detailed analysis and discussion of its properties.
Section VI remarks on the implementation of our method.
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Finally, in Section VII, we apply our method to various
dynamic systems and time-varying constraints, and present
numerical results. Section VIII draws a conclusion.

D. Notation

Let X Ď Rn, x P Rn. We denote sets by calligraphic upper
case letters, while trajectories x : R Ñ X are denoted by
boldface lower case letters. The set of all trajectories x defined
on rt1, t2s is denoted by X rt1,t2s, and X is used for brevity
whenever the interval of definition is clear from the context.
The complement and boundary of X are denoted by X c and
BX , respectively, and the Euclidean norm and Hausdorff dis-
tance by ||¨|| and dHpx,X q – infx1PX ||x´x1||. A ball around
x0 with radius r is defined as Brpx0q – tx | ||x0 ´ x|| ă ru.
For two sets X1,X2 Ď Rn, the Minkowski sum is defined as
X1 ‘ X2 “ tx1 ` x2 |x1 P X1, x2 P X2u, and the Pontryagin
difference as X1 aX2 – tx1 P Rn |x1 `x2 P X1, @x2 P X1u.
A class K function is defined as a continuous, strictly increas-
ing function α : Rě0 Ñ Rě0 with αp0q “ 0; if the function is
defined on R as α : R Ñ R, then it is called an extended
class Ke function. At last, if a property holds everywhere
except on a set of measure zero, we say that it holds almost
everywhere (a.e.).

II. PRELIMINARIES

We consider the dynamic system

9x “ fpx, uq, xp0q “ x0 (1)

where x, x0 P Rn, u P U Ď Rm, and f : Rn ˆ U Ñ Rn is
Lipschitz continuous in both of its arguments. The system is
subject to the state constraint

x P H – tx |hpxq ě 0u (2)

where h : Rn Ñ R is a Lipschitz continuous function. For
a given input trajectory u : Rě0 Ñ U , continuous a.e., the
solution to (1) up to some time T is given by φ : r0, T s Ñ Rn

where φpt;x0,uq – x0 `
şT

0
fpxpτq,upτqqdτ . The forward

completeness of φ is assumed for the considered input tra-
jectory u. We call a set S forward control invariant with
respect to system (1) if there exist u P U r0,8q such that
φpt;x0,uq P S for all t ě 0. Furthermore, we call S
forward invariant under input u P U r0,8q with respect to (1)
if φpt;x0,uq P S for all t ě 0.

A. Control Barrier Functions in the Dini Sense

Control Barrier Functions (CBF) have been introduced as
the system theoretic analogue to Contol Lyapunov Functions
(CLF) for forward set invariance [1], [2]. While these works
introduce them as differentiable functions, requiring differen-
tiability can be limiting. The need for non-differentiable CBFs
arises in the context of constraints with non-differentiable
outer bounds (e.g. box constraints), or due to certain dynamics
as it is the case for CLFs [57], [58]. For this reason, we
state CBFs more generally in terms of the Dini derivative
analogously to CLFs in the Dini sense [58], [59].

Definition 1 (CBF in the Dini Sense). Consider D Ď Rn and
a locally Lipschitz continuous function b : Rn Ñ R such that
C defined as

C – tx | bpxq ě 0u (3)

is compact and it holds C Ď D Ď Rn. We call such b a CBF
in the Dini sense on D with respect to (1) if there exists an
extended class Ke function α such that for all x P D

sup
uPU

tdbpx; fpx, uqqu ě ´αpbpxqq (4)

where dϕpx; vq with ϕ : Rn Ñ R locally Lipschitz continuous
denotes the Dini derivative at x in the direction of v as

dϕpx; vq – lim inf
σÓ0

ϕpx` σvq ´ ϕpxq

σ
.

Remark 1. In this paper, we explicitly allow for a domain D
that is larger than C. This is in contrast to our earlier work [56].

For convenience, we define the other superlevel sets of b as

Cλ – tx | bpxq ě ´λu

where λ P R. Next, we briefly show that CBFs in the
Dini sense characterize control inputs that render C forward
invariant; this is analogous to the differentiable case. The
subsequent result is a consequence of the Comparison Lemma.

Theorem 1. Let u P U r0,T s be continuous a.e. with the
corresponding state trajectory xptq – φpt;x0,uq starting in
some initial state x0 P C. If

dbpxptq; fpxptq,uptqqq ě ´αpbpxptqqq @t P r0, T s,

then C is forward invariant such that xptq P C for all t P r0, T s.

Proof. Let the intervals, where u is continuous, be w.l.o.g.
given as rτi, τi`1q where τi P tτiui“1,...,N 1́ with

τ0 “ 0 ă ¨ ¨ ¨ ă τi ă τi`1 ă ¨ ¨ ¨ ă τN “ T.

Next, assuming that bpxpτiqq ě 0, it follows together with
dbpxptq; fpxptq,uptqqq ě ´αpbpxptqqq from the Comparison
Lemma [60, Lemma 3.4] that bpxptqq ě 0 for all t P rτi, τi`1q.
Due to the continuity of b and x, we further obtain

bpxpτi`1qq “ lim inf
τÒτi`1

bpφpτ ;xpτiq,uqq ě 0.

Since x0 P C and thus bpx0q “ bpxpτ0qq ě 0, it follows
inductively that bpxptqq ě 0 and therefore xptq P C for all
t P r0, T s.

B. Reachability and Controllability

A state x1 is called T-reachable from x0 under dynamics (1)
if φpT ;x0,uq “ x1 for some bounded measurable input
trajectory u P U r0,T s. We define the set of all such points as
RT px0q – tx1 | Du P U r0,T s : φpT ;x0,uq “ x1u. System (1)
is controllable on M Ď Rn if M Ď

Ť

tPr0,8q Rtpx0q for all
x0 P M [61]. Moreover, we call system (1) locally-locally
controllable on M Ď Rn [62] if there exist ε ě δε ą 0 such
that for any state xf P Bδεpx0q there exists a u P U and t ě 0
such that φpt;x0,uq “ xf and φpτ ;x0,uq P Bεpx0q for all
τ P r0, ts (“any state in a δε-neighborhood can be reached
without leaving a certain ε-neighborhood”).
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hpxq ă 0

hpxq ą 0hpxq “ δ

F
V

Fig. 1: Illustration of Assumption 1.
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Fig. 2: Kinematic bicycle model: (a) schematic sketch; (b)
construction of a set with its viable points via turning radius r.

III. PROBLEM SETTING

Let us consider the constraint set

H – tx |hpxq ě 0u

where h is a Lipschitz continuous function. The CBF synthesis
method presented in this paper is based on the idea that
if a system is initialized with x0 sufficiently far from the
boundary of constraint set H, then it can be expected that
there exists an input trajectory which ensures that the system
state stays within H for all times. This property holds, for
example, for all locally-locally controllable systems, but also
for any more general system that possesses a forward control
invariant set contained in H. The particular premises, under
which a CBF is constructed in the sequel, are formalized by
the following assumptions. These parallel the setting in our
previous work [56].

A. Assumption on Forward Control Invariant Sets

First, we assume the existence of a forward control invariant
set V which does not need to be explicitly known. Instead, we
assume that only one of its subsets, denoted by F , is known.

Assumption 1. There exists a forward control invariant subset
V Ă H where H – tx P Rn |hpxq ě 0u such that hpxq ě δ
for all x P V and some δ ą 0. While V is not required to be
explicitly known, we assume that a subset F Ď V is known.

The assumption is illustrated in Figure 1. Often, the con-
struction of F is more straightforward than that of V , and an
intuitive understanding of the system dynamics can be taken
as a starting point.

Example 1. The kinematic model of a vehicle modeled as a
bicycle [63] (see Fig. 2a) is given as

9x “ v cospψ ` βpζqq (5a)
9y “ v sinpψ ` βpζqq (5b)

9ψ “
v cospβpζqq tanpζq

L
(5c)

where βpζq “ arctanp 1
2 tanpζqq. The position of the center

of mass C is denoted by the states xpos “ rx, ysT , and
the vehicle’s orientation by ψ; inputs are velocity v and
steering angle ζ. The vector of the system states is denoted by
x “ rx, y, ψsT . The vehicle is also subject to input constraints
0 ă vmin ď v ď vmax and |ζ| ď ζmax. The minimum
turning radius can be directly obtained from the dynamics
as R “ L

cospβpζmaxqq tanpζmaxq
. We let the vehicle move in a

plane with an obstacle as shown in Figure 2b. The obstacle
is specified as a set Hc Ă Rn. Correspondingly, we define
hpxq “ dHpx,Hcq. By geometrical considerations, as shown
in Fig. 2b, the set F “ tx |hpxq ě δ ` 2Ru is determined as
a subset of the control-invariant set V . It is however important
to note that F is not forward control invariant. While for
the construction of F it is sufficient to consider the vehicle’s
position, the construction of V also requires orientation ψ.

In the example, we exploit the fact that a bicycle can always
return to its initial state by moving on a circle. More generally,
this relates to the following observation.

Proposition 2. A set F is a subset of a forward control
invariant set if for any state x0 P BF there exists a control
input u P U such that φptf ;x0,uq P F for some tf ě 0.

Proof. For a given x0 P BF , let there be a control input ux0
P

U and a final time tf,x0
ě 0 such that φptf,x0

;x0,ux0
q P

F ; their existence is a consequence of the premises of the
proposition. Then, note that

V –
ď

x0PBF
tx |x “ φpt;x0,ux0

q, t P r0, tf,x0
su Y F

is forward control invariant and F Ď V .

This however is not a necessary condition, as any trajectory
through x0 might converge to some point or limit cycle outside
of F . For the construction of a set F satisfying Assumption 1,
it is of particular interest if any such trajectory starting at an
arbitrary x0 P BF can be bounded into an ε-neighborhood
of x0. This gives rise to the following sufficient conditions.

Proposition 3. The set F – tx |hpxq ě δu a Bεp0q for
some ε ą 0 is a subset of a forward control invariant set V
that satisfies Assumption 1 if at least one of the subsequent
conditions hold:
(1) System (1) is locally-locally controllable on BF with

constants ε ě δε ą 0.
(2) For any state x0 P BF , there exists a control input u P U

such that φpt;x0,uq P Bεpx0q for all t ě 0 (e.g. Bεpx0q

contains an attractor, or φ converges to a periodic solution
in Bεpx0q).

(3) For any state x0 P BF , there exists a control input
u P U such that φptf ;x0,uq P F for some tf ě 0
and φpτ ;x0,uq P F ‘Bεp0q for all τ P r0, tf s.

Also, any subset of F satisfies Assumption 1.

Proof. The proof can be found in the appendix.

This proposition is of practical relevance. For instance, the
construction of F in Example 1 is based on condition (2) of the
proposition. More generally, the proposition points out that the
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knowledge on a system’s locally-locally controllability or on
the existence of attractors and periodic solutions are valuable
properties that can be exploited for the construction of F .

B. Assumption on Controllability and Reachability

We call a trajectory starting at some point x0 viable if there
exists an input trajectory u : Rě0 Ñ U such that φpt;x0,uq P

H for all t ě 0. By the next assumption, we ensure that the
viability of a trajectory can be determined by predicting the
trajectories of a system over a finite time horizon. To this end,
we note that a trajectory that ends in x1 P F can be feasibly
continued for all times as F is a subset of a forward control
invariant set V Ă H. Thus, the time horizon required in order
to decide if a trajectory starting at x0 is viable, is the minimal
time τpx0q that it takes to reach F . It is formally defined as

τpx0q – min
τě0

τ (6a)

s.t. 9xptq “ fpxptq,uptqq (a.e.), (6b)
xp0q “ x0, uptq P U , xpτq P F . (6c)

Note that trajectory x is not required to stay in H for all times.
Here, the states x0 P D are of particular interest as a CBF on
the domain D shall be constructed. While for x0 P F it clearly
holds τpx0q “ 0, further assumptions are required to ensure
that τpx0q is finite for any other x0 P DzF . To this end, we
impose the following controllability assumption.

Assumption 2. Let either of the following statements hold:

A2.1 System (1) is controllable on the closure of F c; or
A2.2 For all x0 P DzF , there exist t ě 0 such that Rtpx0q X

F ‰ H.

Proposition 4 ([56], Proposition 2). Let Assumption 2 hold.
Then there exists for all x0 P DzF a finite time τpx0q P Rą0

that minimizes (6).

Let us denote the upper bound of τp¨q on DzF by

τ – sup
xPDzF

τpxq (7)

Upper bounds to τp¨q can often be analytically found. An
illustrative example on the bicycle model can be found in [56].

C. Objective

Let Assumptions 1 and 2 hold, and let a constraint set H,
a domain D Ě H, and a set F as defined in Assumption 1 be
given. Then, construct a CBF with respect to (1) on domain D
such that its zero-superlevel set C is a subset of constraint
set H, i.e., C Ď H.

IV. PREDICTIVE CBF SYNTHESIS

We now present our synthesis approach and prove that the
synthesized function constitutes a CBF in the Dini sense.
Thereafter, we refine the established result in order to relax
imposed conditions and to explicitly incorporate the extended
class Ke function α as a design parameter into the synthesis.

A. Synthesis Approach

The CBF is determined pointwise by solving an optimal
control problem over a finite prediction horizon T . Thus, the
CBF can be computed on parts of its domain without having
to compute it on the entire domain. This is, for instance,
advantageous when the overall CBF can be induced from its
values computed on a subset of its domain as it is the case for
equivariant systems [52].

In order to become more specific, let us choose the predic-
tion horizon T as T ě τ , where τ is defined in (7). Moreover,
let us define a function HT : D Ñ R as

HT px0q – max
up¨qPUr0,T s

min
tPr0,T s

hpxptqq ´ γt (8a)

s.t. xp0q “ x0, (8b)
9xpsq “ fpxpsq,upsqq pa.e.q, (8c)
upsq P U , @s P r0, T s (8d)
xpϑq P F , for some ϑ P r0, T s, (8e)

where γ ą 0 is some positive constant. In the sequel, HT

turns out to be a CBF in the Dini sense. For later reference,
we denote the input trajectory u and the times t and ϑ that
solve optimization problem (8) for initial value x0 by u˚

x0
, t˚x0

and ϑ˚
x0

.
The intuition behind optimal control problem (8) is as

follows. Let us assume for a moment that γ “ 0. In
the optimal control problem, we consider a state trajectory
xp¨q “ φp¨;x0,uq that starts in x0 and evolves according to
some input trajectory u over a time horizon T such that (8e) is
satisfied at some time ϑ P r0, T s. The minimization determines
that point of time t˚x0

when the trajectory x takes the smallest
value on h, whereas the maximization aims at increasing this
value as much as possible with a suitable input trajectory.
Thereby for γ “ 0, the optimal control problem (8) defines
the function HT such that it can be interpreted as a measure
for how close the system state gets to the boundary of set H,
or to which extent the state trajectory leaves set H when it
evolves over time. Constraint (8e) ensures that φp¨;x0,u

˚
x0

q

can be always feasibly continued within H even beyond time
horizon T . For γ “ 0, (8) is identical to the optimal control
problem proposed in [56]. Next, let us consider γ to be
strictly positive, which renders ´γt non-positive on the time-
interval r0, T s and penalizes the magnitude of t˚x0

. Thereby,
it is ensured that the value of HT increases along trajectory
φp¨;x0,u

˚
x0

q. In particular, we formally derive later on in the
proof of Theorem 6 that for any x0 P DzF it holds

dHT px; fpx,u˚
x0

qq

ˇ

ˇ

ˇ

ˇ

x“φpt;x0,u
˚
x0

q

ą 0.

The latter inequality eventually allows us to establish that HT

constitutes a CBF even on domains D Ą C. This is in contrast
to most existing works on CBF synthesis, which only allow
for D “ C.

Before formally establishing this result, we show that HT

is well-defined and the zero super-level set of HT , in the
remainder of the paper denoted by C – tx |HT pxq ě 0u,
is a subset of the state constraint set H, i.e., C Ď H. Thereby,
any point in C satisfies state constraint (2).
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H
D

Rn

CΛ
C V F

HT px0q “ δ ´ γpε` 1qT

Fig. 3: Relation of the defined sets. The particular shapes of
the sets are only schematic and have no further meaning.

Proposition 5. Let Assumptions 1 and 2 hold. Then for all
x0 P D, HT defined in (8) is well-defined, i.e., there exists a
solution to (8). Moreover, C Ď H.

Proof. In order to show the first part, consider a state x0 P D.
As Assumptions 1–2 hold, it follows from Proposition 4 that
there exists a finite time horizon T with T ě τ . Thus, by
the definition of τ , there also exists an input trajectory u˚

x0
P

U r0,T s and times t˚x0
and ϑ˚

x0
which solve (8). Thus, HT is

well-defined.
For the second part, we note that

HT px0q
(8a)
“ max

up¨q
min

tPr0,T s
hpφpt;x0,uqq ´ γt

ď max
up¨q

min
tPr0,T s

hpφpt;x0,uqq

ď max
up¨q

hpφp0;x0,uqq “ hpx0q.

Thus, if HT px0q ě 0, then hpx0q ě 0 and C Ď H.

Thereby, the relation of the so far defined sets can be
summarized as

F Ď V Ď C Ď H Ď D Ď Rn

which is illustrated in Figure 3. Now we are ready to prove
that HT constitutes a CBF in the Dini sense.

Theorem 6. Let Assumptions 1 and 2 hold, let h be Lipschitz-
continuous and let T ě τ . Moreover, let HT : D Ñ R be
defined by (8) on some domain D Ď Rn with H Ă D; the
parameter γ is chosen such that

γ ă
δ

T
(9)

where δ is determined as part of Assumption 1. Furthermore,
let f be bounded on C in the sense that for all x P C there exists
a u P U such that ||fpx, uq|| ď M for some constant M ą 0.
If HT is locally Lipschitz-continuous, then HT constitutes a
CBF in the Dini sense on the domain D with respect to the
dynamics (1).

Proof. To start with, note that at any x0 P D, HT px0q is well-
defined as by Proposition 5. The value of HT at x0 is then
given by HT px0q “ hpφpt˚x0

;x0,u
˚
x0

qq where φp¨;x0,u
˚
x0

q :
r0, T s Ñ Rn is the state trajectory that starts in x0 and is
induced by u˚

x0
.

In order to prove that HT is a CBF in the Dini sense, it
needs to be shown that for some extended class Ke function
α it holds

sup
uPU

tdHT px0; fpx0, uqqu ě ´αpHT px0qq (10)

for all x0 P D. To this end, we introduce ε ą 0 such that

γ ă
δ

pε` 1qT
ă
δ

T
(11)

which exists due to (9). As such, we can choose any ε P

p0, δ
γT ´ 1q. From here on, we proceed in two steps: at first,

we consider those x0 with HT px0q ď δ ´ γpε` 1qT (marked
blue in Figure 3); thereafter, we consider the remaining x0,
namely those with HT px0q ą δ´γpε`1qT (marked in green).

Step 1: Let x0 be such that HT px0q ď δ´ γpε` 1qT . Note
that the right-hand side δ ´ γpε` 1qT is strictly positive due
to (11). In this way, Step 1 considers all states x0 outside of
C (x0 R C), together with those contained in C within in some
neighborhood of its boundary (see Figure 3). Now let us extend
input trajectory u˚

x0
by an input trajectory ue,x0

P U rT,8q that
renders V forward invariant for all times t ě T . In particular,

u˚
e,x0

ptq –

#

u˚
x0

ptq if t P r0, ϑ˚
x0

s

ue,x0ptq if t P pϑ˚
x0
, T pε` 1qs

(12)

where ue,x0
P U pϑ˚

x0
,T pε`1qs such that φpt;x0,u

˚
e,x0

q P V for
all t ą ϑ˚

x0
. Since V is forward control invariant, such ue,x0

exists. Moreover, we note that

HT px0q “ hpφpt˚x0
;x0,u

˚
x0

qq ´ γt˚x0
(13a)

ď δ ´ γpε` 1qT (13b)
ď hpφpt;x0,u

˚
e,x0

qq ´ γt @t P rϑ˚
x0
, T pε` 1qs (13c)

where the first inequality holds by assumption for those x0
considered in Step 1; for the second inequality, we note
that φpt;x0,u

˚
e,x0

q P V for all t ě ϑ˚
x0

and thus δ ď

hpφpt;x0,u
˚
e,x0

qq, and ´γpε` 1qT ď ´γt for t ď T pε` 1q.
In particular, (13) implies that

min
tPr0,ϑ˚

x0
s

hpφpt;x0,u
˚
x0

qq´γt ď min
tPrϑ˚

x0
,pε`1qT s

hpφpt;x0,u
˚
x0

qq´γt

(14)

where the left-hand side equals (13a), and the right-hand side
is the minimum of (13c). By using the latter result, we derive

HT px0q “ min
tPr0,T s

hpφpt;x0,u
˚
x0

qq ´ γt

(14)
“ min

tPr0,pε`1qT s
hpφpt;x0,u

˚
e,x0

qq ´ γt, (15)

where the last equality follows as the extension of the time
interval by εT does not impact the value of HT due to (14).
Based on this, and by introducing the auxiliary time vari-
able t1 P p0, εT q (it may take arbitrary values on its interval
of definition), we derive that

HT px0q
(15)
“ min

tPr0,pε`1qT s
hpφpt;x0,u

˚
e,x0

qq ´ γt (16a)

ď min
tPrεT,pε`1qT s

hpφpt;x0,u
˚
e,x0

qq ´ γt (16b)
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“ min
tPr0,T s

hpφpt` εT ;x0,u
˚
e,x0

qq ´ γt´ γεT (16c)

“ min
tPr0,T s

hpφpt;φpεT ;x0,u
˚
x0

q,u˚
e,x0

p˚´εT qqq ´ γt´ γεT

(16d)
ď max

up¨qPUr0,T s

s.t. xp0q“φpεT ;x0,u
˚
x0

q,

(8c)–(8e)

min
tPr0,T s

hpxptqq ´ γt´ γεT (16e)

(8)
“ HT pφpεT ;x0,u

˚
x0

qq ´ γεT, (16f)

where we obtain (16c) by employing a time-shift in the
argument of the min-operator, and in (16d) we indicate that
the argument of the input trajectory is shifted by a time ∆t by
writing u˚

e,x0
p˚´∆tq. We point out that the inequality in (16e)

follows from the suboptimality of u˚
e,x0

with respect to the
shifted initial state, which is φpεT ;x0,u

˚
x0

q. To summarize
the reasoning in Step 1 so far, we have shown that
HT pφpεT ;x0,u

˚
x0

qq ´HT px0q

εT
ě γ @t1 P r0, T s. (17)

Furthermore, we observe that

lim inf
σÓ0

HT pφpσ;x0,uqq ´HT px0q

σ
(18a)

“ lim inf
σÓ0

HT px0 ` σfpx0,up0qqq ´HT px0q

σ

` lim inf
σÓ0

HT pφpσ;x0,uqq ´HT px0 ` σfpx0,up0qqq

σ
(18b)

“ lim inf
σÓ0

HT px0 ` σfpx0,up0qqq ´HT px0q

σ
(18c)

where the second limit in (18b) equals zero as

φpσ;x0,uq “ φp0;x0,uq ` σfpx0,up0qq ` Opσ2q

“ x0 ` σfpx0,up0qq ` Opσ2q

and thus, by employing the local Lipschitz continuity of HT

in terms of the local Lipschitz constant L,

lim inf
σÓ0

|HT pφpσ;x0,uqq ´HT px0 ` σfpx0,up0qqq|

σ

“ lim inf
σÓ0

|HTpx0̀ σfpx0,up0qq̀ Opσ2qq´HTpx0̀ σfpx0,up0qqq|

σ

ď lim inf
σÓ0

LOpσ2q

σ
“ 0.

Equipped with these results, we can finally show that for any
state x0 with HT px0q ď δ ´ γpε ` 1qT there exists an input
trajectory, namely u˚

x0
, that results in an ascend on HT in the

direction of the state trajectory φp¨;x0,u
˚
x0

q at point x0. More
precisely, it holds

sup
uPU

tdHT px0; fpx0, uqqu ě dHT px0; fpx0,u
˚
x0

p0qqq (19a)

“ lim inf
σÓ0

HT px0 ` σfpx,u˚
x0

p0qqq ´HT px0q

σ
(19b)

(18)
“ lim inf

σÓ0

HT pφpσ;x0,u
˚
x0

qq ´HT px0qq

σ
(19c)

(17)
ě lim

σÓ0

γσ

σ
“ γ (19d)

ě ´αpHT px0qq (19e)

α

α2

α1

´γ

ζδ́ γpὲ 1qT

LM

Fig. 4: Schematic sketch of the extended class Ke function α.

for all x0 with HT px0q ď δ ´ γpε ` 1qT where α is some
suitable extended class Ke function that we choose as

αpζq “

#

α1pζq ζ ě 0

α2pζq ζ ă 0
(20)

such that

´γ ď αpζq (21)

holds. To satisfy condition (21), we choose α1 : Rě0 Ñ Rě0

as an arbitrary class K function which trivially satisfies (21)
as α1 is by definition non-negative and γ ą 0. In order
to complement α in (20) as an extended class Ke function,
α2 : Ră0 Ñ Ră0 needs to be chosen as some strictly
increasing function with α2p0q “ 0. Because also (21)
needs to be satisfied, we choose α2 as a sigmoid function
but also other choices are feasible. For example, we choose
α2pζq “ 2γpsigpζq´0.5q where sigpζq “ 1

1`e´ζ . A schematic
sketch of α can be found in Figure 4.

Now, we have shown that (10) holds for all x0 P Rn with
HT px0q ď δ ´ γpε ` 1qT . It remains to show that (10) also
holds for those x0 P D where HT px0q ě δ´γpε`1qT , which
is done in the next step.

Step 2: Let us now consider states x0 with HT px0q ą δ ´

γpε ` 1qT . By (9), we then have HT px0q ą 0 and x0 P C.
Therefore, for any such x0, it holds by assumption that there
exists some u P U such that ||fpx0, uq|| ď M . Because xptq “

x0 `
şt

0
fpxpsq, upsqqds, it follows for sufficiently small t1 that

||x0 ´ φpt1;x0,uq|| “

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ż t1

0

fpφps;x0,uq,upsqq ds

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż t1

0

||fpφps;x0,uq,upsqq|| ds ď

ż t1

0

M ds “ M t1. (22)

By invoking the local Lipschitz continuity of HT with local
Lipschitz constant L, we lower-bound HT pφpt1;x0,u

1qq for
some input trajectory u1 P U r0,t1s as

HT pφpt1;x0,uqq ě HT px0q ´ L ||x0 ´ φpt1;x0,u
1q||

(22)
ě HT px0q ´ LM t1.

(23)

Now it follows analogously to (19) that

sup
uPU

tdHT px0; fpx0, uqqu ě dHT px0; fpx0,u
˚
x0

p0qqq (24a)

“ lim inf
σÓ0

HT px0 ` σfpx,u˚
x0

p0qqq ´HT px0q

σ
(24b)

(18)
“ lim inf

σÓ0

HT pφpσ;x0,u
˚
x0

qq ´HT px0qq

σ
(24c)

(23)
ě lim

σÓ0

´LM σ

σ
“ ´LM. (24d)
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Thus, by continuously extending the class K function α1

in (20) such that α1pζq ě LM for all ζ ą δ ´ γpε ` 1qT ,
(10) also holds for all x0 with HT px0q ą δ´ γpε` 1qT . The
choice of α1 in this step does not conflict with the choice of
α1 in Step 1 as α1 is only required to be an arbitrary class K
function.

Altogether, we have now shown that (10) holds for all x0 P

D. Together with the assumption that HT is locally Lipschitz
continuous, it follows that HT is a CBF in the Dini sense
according to Definition 1, which concludes the proof.

Conceptually, we showed in the first step of the proof that
for all states marked blue in Figure 3 at least an ascend of γ
can be achieved on HT . In the second step, we lower-bounded
the minimal possible descend on HT for all states marked
green in Figure 3. Based on these bounds, we established that
HT is a CBF in the Dini sense by constructing an extended
class Ke function satisfying (4). The transition between no
descend (for HT px0q “ 0) and limited descend (for HT px0q “

δ ´ γpε ` 1qT ) on HT takes place on the interval 0 ď ζ ď

δ ´ γpε` 1qT and is characterized by the choice of α1pζq as
a continuous function.

Remark 2. The assumption of Theorem 6 that f is bounded
on C is reasonable as the time-variation of practically relevant
systems is bounded within their domain of operation.

Remark 3. It is known for certain types of nonlinear systems
that finite horizon optimal control problems such as (8) may
be sensitive to variations in the initial condition. While this
seems to be a minor practical problem, it can be still observed
in some examples [64]. This can be mitigated by varying the
design parameters T , γ, δ or choosing F closer to V . In
Theorem 6, we account for this by including local Lipschitz
continuity into the premises. This can be observed after the
computation of HT .

B. Relaxed Upper-Bound on γ

The proof of the previous theorem unraveled the role of
parameter γ in the CBF synthesis. As it becomes evident
from (19d), γ constitutes a lower bound on the maximum
possible ascend on HT at any x0 contained in the set marked
blue in Figure 3. In Theorem 6, we formulated a condition on
the choice of γ in (9). It can be relaxed as follows:

‚ If

t˚x0
– argmin

tPr0,T s

hpφpt;x0,u
˚
x0

qq ´ γt P r0, T s (25)

for some time T ă T and any x0, where t˚x0
is defined as

the time that solves the inner minimization in (8a), then
condition (9) relaxes to γ ă δ

T
.

‚ Or, introducing the extended class Ke function α into (8)
instead of γ allows us to drop condition (9).

While the first approach requires additional knowledge, the
second adds slightly to the complexity of the computation
of HT . We investigate both approaches in the following.

Theorem 7. Let (25) hold for some time T ă T . Then
Theorem 6 holds with

γ ă
δ

T
(26)

instead of condition (9).

Proof. Let us consider ε P p0,mint δ
γT
, T
T

u ´ 1q. Then, γ ă

δ
pε`1qT

ă δ
T

and pε ` 1qT ă T hold. Analogously to before,
we divide the proof into two steps.

Step 1: Let x0 be such that HT px0q ď δ ´ γpε ` 1qT .
We note that the right-hand side is strictly positive due to
the above choice of ε. Furthermore, let us consider u˚

e,x0
as

defined in (12). Based on (25), we derive

HT px0q “ min
tPr0,T s

hpφpt;x0,u
˚
e,x0

qq ´ γt (27a)

(25)
“ min

tPr0,T s

hpφpt;x0,u
˚
e,x0

qq ´ γt (27b)

(25)
“ min

tPr0,pε`1qT s

hpφpt;x0,u
˚
e,x0

qq ´ γt (27c)

ď min
tPrεT,pε`1qT s

hpφpt;x0,u
˚
e,x0

qq ´ γt (27d)

(25)
“ min

tPrεT,pε`1qT s
hpφpt;x0,u

˚
e,x0

qq ´ γt (27e)

where (27b) and (27e) are immediate consequences of (25);
in (27c), we additionally employed that for the chosen ε it
holds pε` 1qT ă T . We note that (27e) coincides with (16b)
in the proof of Theorem 6, and we follow the same steps from
here onward. Thereby, (10) follows for all x0 considered in
Step 1.

Step 2: We follow the proof of Theorem 6, Step 2, for all
x0 with HT px0q ą δ´ γpε` 1qT and finally choose α1 such
that α1pζq ě LM for all ζ ą δ ´ γpε` 1qT .

Remark 4. The construction of α in the proof of Theorem 7
stays the same as in Figure 4, however, with T replaced by T .

Let us assume a differentiable constraint function h.
Then according to the KKT-conditions, it holds at
time t˚x0

in (25) that ∇hpxpt˚x0
qq fpxpt˚x0

q, uq ě γ and
d
dt p∇hpxpt˚x0

qq fpxpt˚x0
q, uqq ą 0 for some u P U . We apply

this insight in the next example.

R

fpx, uq

∇hpxq

Fig. 5

Example 2. Let us reconsider the
bicycle dynamics in Example 1. Fur-
thermore, let h be a differentiable
function with ||∇hpxq|| “ 1 specify-
ing some convex constraint. Now we
note that the bicycle can be steered
from any initial point x0 to a point x

where ∇hpxq and fpx, uq are aligned as depicted in Figure 5.
This can be done by steering the bicycle on a circular trajectory
with radius R for at most a half round; R denotes the turning
radius as previously specified. Thus if vmax ě γ, we obtain that
∇hpxq fpx, uq ě ||∇hpxq|| ||fpx, uq|| ě vmax ě γ and hence
that the KKT conditions are satisfied for some t˚x0

ď T “ πR
vmax

.
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C. Incorporating α as Explicit Design Parameter
Alternatively, the extended class Ke function α can be used

as a design parameter in the synthesis of HT instead of γ. To
this end, we modify (8) and replace γ by

ᾱpζq –

#

αpζq if ζ ď 0

0 if ζ ą 0
(28)

where α is an extended class Ke function. The modified
optimization problem is then

HT px0q – max
up¨qPUr0,T s

min
tPr0,T s

hpxptqq ` ᾱphpxptqqq t (29a)

s.t. (8b)-(8e) hold. (29b)

By following similar arguments as before, we can show that
also HT as defined in (29) constitutes a CBF in the Dini sense.

Theorem 8. Let Assumptions 1 and 2 hold, and let h and T
be as in Theorem 6. Moreover, let HT : D Ñ R be defined
on some domain D Ď Rn with H Ă D in (29) where ᾱ is
defined as in (28) via some extended class Ke function α.
Furthermore, let f be bounded in the sense that for all x with
HT pxq ě δ there exists a u P U such that ||fpx, uq|| ď M for
some constant M ą 0. If HT is locally Lipschitz continuous
with Lipschitz constant L, and α satisfies αpζq ě LM for all
ζ ě δ, then

sup
uPU

tdHT px0; fpx0, uqqu ě ´αpHT px0qq (30)

and HT constitutes a CBF in the Dini sense on the domain D
with respect to the dynamics (1).

Proof. Using the same arguments as in Proposition 5, we
conclude that also HT defined in (29) is well-defined for
all x0 P D. We conduct this proof, as the previous ones, in
two steps: at first, we consider those x0 with HT px0q ď δ;
in a second step, x0 with HT px0q ą δ are considered. In
each of the steps, we mostly follow the line of arguments
in the proof of Theorem 6 and therefore only point out
important intermediate results. In this proof, we denote the
input trajectory u and the times t and ϑ that solve optimization
problem (29) by u˚

x0
, t˚x0

and ϑ˚
x0

analogously to before.
Step 1: Let x0 be such that HT px0q ď δ. As in the proof

of Theorem 6, we obtain analogously to (13)

HT px0q “ hpφpt˚x0
;x0,u

˚
x0

qq ` ᾱphpφpt˚x0
;x0,u

˚
x0

qqq t˚x0

ď δ ď hpφpt;x0,u
˚
e,x0

qq @t P rϑ˚
x0
, T pε`1qs

where u˚
e,x0

–

"

u˚
x0

ptq if tPr0,ϑ˚
x0

s

ue,x0
ptq if tPpϑ˚

x0
,T pε`1qs

with ue,x0 P

U pϑ˚
x0

,T pε`1qs such that φpt;x0,u
˚
e,x0

q P V for all t ą ϑ˚
x0

.
Thus the analogue to (15) becomes

HT px0q “ min
tPr0,T s

hpφpt;x0,u
˚
x0

qq ` ᾱphpφpt;x0,u
˚
x0

qqq t

ď min
tPr0,T pε`1qs

hpφpt;x0,u
˚
e,x0

qq ` ᾱphpφpt;x0,u
˚
e,x0

qqq t

which is the same as (15) when replacing γ with ´ᾱ; note
that ´ᾱ is by definition non-negative. This ultimately leads to

HT pφpε;x0,u
˚
x0

qq ´HT px0q

ε
ě ´ᾱpHT pφpε;x0,u

˚
x0

qqq

(31)

for all ε P r0, T s, and further to

sup
uPU

tdHT px0; fpx0, uqqu ě dHT px0; fpx0,u
˚
x0

p0qqq (32a)

“ lim inf
εÓ0

HT px0 ` σfpx,u˚
x0

p0qqq ´HT px0q

σ
(32b)

(18)
“ lim inf

σÓ0

HT pφpσ;x0,u
˚
x0

qq ´HT px0qq

σ
(32c)

(31)
ě lim

σÓ0
´
ᾱpHT pφpσ;x0,u

˚
x0

qqqσ

σ
“ ´ᾱpHT px0qq (32d)

ě ´αpHT px0qq. (32e)

Step 2: Replacing γ with ´ᾱ does not change Step 2 in the
proof of Theorem 6. Thus, we analogously conclude

sup
uPU

tdHT px0; fpx0, uqqu ě ´LM ě ´αpHT px0qq. (33)

Combining Step 1 and 2, it follows that (30) holds and HT

defined by (29) is a CBF in the Dini sense.

In the remainder of the paper, we refer to (8) whenever
we write HT unless otherwise specified. Nevertheless, results
analogous to the following ones also apply to HT in (29).

V. PROPERTIES OF HT

Next, we characterize some of the properties of the deter-
mined CBF HT .

A. Impact of the Prediction Horizon

At first, we investigate the impact of the prediction hori-
zon T on the size of the zero-superlevel set C as well as on
the size of the other superlevel sets Cλ of HT with λ ě 0.
To avoid ambiguities in the notation, we include the time
horizon as an argument to these sets. In particular, we define
C0,T – tx |HT pxq ě 0u and Cλ,T – tx |HT pxq ě ´λu. We
show next that the sets C0,T and Cλ,T , λ ě 0, can be enlarged
by increasing time horizon T .

Proposition 9. Let Assumptions 1 and 2 hold, let h be
Lipschitz continuous and let T2 ě T1 ě τ . Moreover, let
HT1

: D Ñ R and HT2
: D Ñ R be defined as in (8) for

some γ ą 0 where

γ ă
δ

T2
. (34)

Then C0,T1
Ď C0,T2

and, more generally, Cλ,T1
Ď Cλ,T2

for
any λ ě 0 with Cλ,T1 , Cλ,T2 Ď D.

Proof. The proof can be found in the appendix.

Analogous results hold for γ ă δ
maxtT 1,T 2u

, or if HT is
synthesized based on (29).

B. Changing and Time-Varying Constraint Specifications

Independent of whether HT was synthesized based on
Theorem 6, 7 or 8, further CBFs can be derived based
on it. In particular, the CBF property of HT is preserved
when adding – within bounds still to be further specified
– a constant or a time-varying trajectory. In this way, the
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synthesized CBF HT can account for corresponding changes
in the constraint specifications and time-variations.

To become more specific, let us define the largest superlevel
set of HT contained in D as CΛ,T – tx |HT pxq ě ´Λu where
Λ – maxtλ | Cλ,T Ď Du. Based on this,

Hλ,T pxq – HT pxq ` λ

is also a CBF for any λ P r0,Λs. This is a direct implication
of the fact that1 supuPU tdHT px0; fpx0, uqqu ě γ ě 0 in
any x0 where HT px0q P r´Λ, 0s as shown in (19) as part of
the proof of Theorem 6. In the light of [55], an even stronger
property holds. Assuming that HT is not only locally Lipschitz
continuous but differentiable, then HT constitutes a so-called
Λ-shiftable CBF on the domain D with respect to (1); for
details refer to [55]. This characteristic leads to the following
property: for a time-varying trajectory λ : Rě0 Ñ r0,Λs

satisfying some additional condition, the function

Hλp¨q,T pt, xq – HT pxq ` λptq (35)

constitutes a differentiable CBF [2] with respect to the dynam-
ics augmented in time. This is formally stated as follows.

Proposition 10. Let Hλp¨q,T be defined as in (35), and let the
same premises hold as in Theorem 6. Moreover, let HT as
defined in (8) be differentiable and let λ : Rě0 Ñ r0,Λs be a
differentiable function that satisfies

Bλ

Bt
ptq ě ´rαpλptqq (36)

where rα is an either convex or concave class K function and
it holds αp´ζq ď ´rαpζq for all ζ P r0,Λs. Then, Hλp¨q,T is
a CBF on the domain Rě0 ˆ D with respect to dynamics (1)
augmented by time

“

9t
9x

‰

“
“

1
fpx,uq

‰

.

Proof. By Theorem 6, HT is a CBF on the domain CΛ Ď D.
Hence, as HT is assumed to be differentiable, it follows by
[55, Definition 2] that HT is a Λ-shiftable CBF. Based on this,
the proposition is a direct implication of [55, Theorem 4].

Remark 5. The same result follows if the premises of Theo-
rem 7 hold instead of those of Theorem 6, or alternatively, if
HT is defined in (29) with the premises of Theorem 8 satisfied.

The construction of HT in the previous section has the
following favorable properties with respect to the application
of Proposition 10:

1.) While most CBF construction approaches in the litera-
ture only apply to the determination of CBFs on a domain C,
our proposed method allows for the construction on larger
domains D Ě C, which gives rise to the “shiftability”-property.

2.) Our method comes along with a concrete construction
of the extended class Ke function α invoking the design
parameter γ as outlined in the proofs of Theorems 6 and 7,
see Figure 4. Alternatively, in the synthesis of HT according
to (29), α can be even chosen as a design parameter.

3.) Regardless of the particular approach, function α can
here always be chosen to be convex (see also Figure 4), thus

1In the case of HT defined by (29), it holds analogously
supuPU tdHT px0; fpx0, uqqu ě ´ᾱpHT px0qq ě 0 according to (32) for
any x0 with HT px0q P r´Λ, 0s.

αp´ζq “ ´α̃pζq for all ζ P r0,Λs in Proposition 10 is a
feasible choice. Then, (36) becomes

Bλ

Bt
ptq ě αp´λptqq. (37)

4.) Our CBF construction approach accounts for input
constraints.

C. Saturated HT

By introducing a saturated version of HT , the computation
of a CBF in the Dini sense can be simplified. To this end, we
make the following observation.

Proposition 11. Let the saturated value function sHT : D Ñ R
be defined as

sHT px0q – mintHT px0q, δ ´ γT u

where HT is defined by (8), and let the same premises hold
as in Theorem 6. Then, sHT is a CBF in the Dini sense.

Proof. For x0 with sHT px0q ď δ ´ γT , we trivially have
sHT px0q “ HT px0q and the proof of Theorem 6 still applies.
For x0 with sHT px0q ą δ´γT , it holds d sHT px0; fpx0, uqq “ 0
for any u P U as sHT is constant in the ϵ-neighborhood of x.
Thus, (24) still holds when substituting HT by sHT because
supuPU

␣

d sHT px0; fpx0, uqq
(

“ 0 ě ´LM . From this, we
conclude that the proof of Theorem 6 also applies to sHT and
we conclude that sHT is a CBF in the Dini sense.

Remark 6. If the premises of Theorem 7 are considered instead
of those in Theorem 6, then the above results holds for
sHT px0q – mintHT px0q, δ ´ γT u. If HT as defined by (29)
is considered and the premises of Theorem 8 hold, then the
above result holds for sHT px0q – mintHT px0q, δu. The proofs
in each of the cases are analogous to the one of Proposition 11.

VI. IMPLEMENTATION REMARKS

The implementation of the optimization problems in (8)
and (29) as a max-min-problem is not entirely straightforward
and deserves a discussion on its own. While their formulation
is well-suited for analysis, we propose in the sequel some
simplifications with regard to their practical implementation.
These yield an arbitrarily close approximation of HT px0q

while giving rise to a computationally efficient implementa-
tion. We focus on HT defined in (8), and note that analogous
remarks apply to HT defined in (29).

A. Discrete-Time Implementation

For the practical implementation of the optimization prob-
lems in (8) and (29), dynamics and trajectories need to be
discretized. To this end, we discretize time-horizon T into
N ` 1 time-steps using discretization time ∆t “ T {N .
Correspondingly, state and input trajectories in (8) become

xN:“
“

xp0∆T q xp1∆T q xp2∆T q . . . xpN∆T q
‰

PRn,N 1̀,

uN 1́:“
“

up0∆T q up1∆T q up2∆T q . . . uppN 1́q∆T q
‰

PRm,N.
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The k-th column of xN is referred to as xN rks. The values
of h corresponding to xN r¨s are

hNpxN q:“
“

hpxN r0sq hpxN r1sq hpxN r2sq . . . hpxN rN sq
‰T

PRN 1̀.

The max-min-problem (8) can be then rewritten as

HT px0q :“ max
uN 1́

min
k“0,1,...,N

hpxN rksq ´ γk∆t (38a)

s.t. xN r0s “ x0, (38b)
xNrk̀ 1s“fdpxNrks,uN 1́rksq, @k“0,1, . . . ,N 1́, (38c)
uN 1́rks P U , @k “ 0, 1, . . . , N ´ 1, (38d)
xN rκs P F , for some κ P t0, 1, . . . , Nu, (38e)

where fd : Rn ˆ Rm Ñ Rn denotes the discretized dynamics
of system (1). A good approximation of the discretized dy-
namics can be obtained via numerical integration algorithms,
e.g., a Runge-Kutta method. The input trajectory uN´1 and the
times k and κ that solve (38) for initial value x0 are denoted
by u˚

N´1,x0
, k˚

x0
and κ˚

x0
. Note that due to the incremental

definition of the discrete-time dynamics in (38c), uN´1 has
one entry less than xN . By increasing N , (38) becomes an
arbitrarily close approximation of (8).

B. Bypassing the Nested Optimization Problem

Max-min-problem (8) allows for an efficient implementation
bypassing the nested optimization problem. The essence of
this approach is to approximate the inner minimization using
a p-norm.

Let us first consider the discrete-time approximation (38).
By drawing a factor p´1q out from the nested optimization
in (38a), the max- and min-operators are reversed and we
obtain

HT px0q :“ ´ min
uN 1́

s.t. (38b)-(38e)

max
k“0,1,...,N

´phpxN rksq ´ γk∆tq.

(39)

In the following, we first determine u˚
N 1́,x0

and k˚
x0

before
actually computing HT px0q. To this end, we observe that for
some strictly positive function f it holds

argmax
x

´fpxq “ argmax
x

1

fpxq

since ´fpx1q ą ´fpx2q ô fpx1q ă fpx2q ô 1
fpx2q

ă
1

fpx1q
(replacing the negation with the multiplicative in-

verse is order-preserving). Furthermore, it is argmax 1
fpxq

“

argmax 1
fpxq`c for any positive constant c P Rą0. With this,

we obtain u˚
N´1,x0

and k˚
x0

from (39) as

u˚
N 1́,x0

, k˚
x0

Ð min
uN 1́

s.t. (38b)-(38e)

max
k“0,1,...,N

1

hpxN rksq´γk∆t`h̃

(40)

where h̃ ą maxt0,minxPD hpxq ` γT qu is some constant
that ensures the strict positivity of the denominator. At
last for bypassing the nested optimization, we approximate
the maximization by a p-norm with a sufficiently high p.
Therefore, we note that for any (finite-dimensional) vector
x “ rx1, . . . , xns P Rn

ą0 it holds that ||x||p « maxk xk with

Algorithm 1: Computation of HT px0q

Parameters: h, fd, T , N , F , γ
Input : x0
Output : HT px0q

1 ∆t Ð T {N ;
2 u˚

N´1,x0
Ð solve (41);

3 x˚
N,x0

r0s Ð x0;
4 x˚

N,x0
rk̀ 1s Ð fdpx˚

N,x0
rks,u˚

N 1́,x0
rksq for

k“0, 1, . . . , N´1;
5 HT px0q Ð mink“0,1,...,N hpx˚

N,x0
rksq ´ γk∆t;

p " 0 where ||x||p :“ p
a

řn
k“1 x

p
k. Thus, for a sufficiently

large p, we obtain

u˚
N 1́,x0

« argmin
uN 1́

s.t. (38b)-(38e)

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

»

—

—

—

—

—

—

—

–

1
hpxN r0sq´0 γ∆t`h̃

...
1

hpxN rksq´k γ∆t`h̃

...
1

hpxN rNsq´N γ∆t`h̃

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

p

. (41)

From this, we can approximate x˚
N,x0

rk ` 1s “

fdpx˚
N,x0

rks,u˚
N´1,x0

rksq, k “ 0, 1, . . . , N ´ 1, with initial
condition x˚

N,x0
r0s :“ x0, and

k˚
x0

“ argmax
k“0,1,...,N

1

hpx˚
N,x0

rksq ´ γk∆t` h̃
,

or equivalently

k˚
x0

“ argmin
k“0,1,...,N

hpx˚
N,x0

rksq ´ γk∆t. (42)

From this, we finally obtain

HT px0q “ hpx˚
N,x0

rk˚
x0

sq ´ γk˚
x0
∆t. (43)

The algorithm is summarized in Algorithm 5.

C. Terminal Constraint

Optimization problem (38) is a mixed integer problem due
to (38e). When F however is readily given as a forward control
invariant set, a mixed integer problem can be avoided and (38)
becomes

HT px0q :“ max
uN 1́

min
k“0,1,...,N

hpxN rksq ´ γk∆t

s.t. (38b)-(38d) hold,
xN rN s P F .

(44)

If F is forward control invariant, Assumption 1 is still satisfied
and Theorem 6 applies.

D. Computation of the Saturated CBF H̄T

The computation of sHT reduces the effort for computing a
CBF in the Dini sense, as sHT px0q “ δ´γT for x0 P F . Thus,
sHT is only required to be explicitly computed on DzF .
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VII. NUMERICAL EXAMPLES

In the following, we apply our CBF synthesis method to
the design of safety filters for various dynamic systems in
the presence of both static and time-varying constraints. In
particular, we consider

A. single and double integrators as examples for first and
second order systems;

B. the bicycle model with minimum velocity ą 0 as an
example for a system that is not locally controllable;

C. the unicycle as an example for a system with a non-
holonomic constraint and state-dependent relative degree.

For each of the systems, we compute the function HT based
on (8) for the static constraint over a grid and approximate
all further values by linear interpolation. The approximated
function coincides in each of the grid points with HT , while
all further points are close approximations. Also other methods
for fitting a function into the set of computed values can
be applied including the training of a neural network. The
subsequent simulation examples however indicate that also
elementary approximation methods yield promising results.
An implementation of our CBF synthesis method in Python
using Casadi [65] is provided on Github2. It allows for the
parallelized computation of HT . Videos to the examples can
be found on Youtube3.

The constraint function under consideration is

hpxq “
a

px´ xcq2 ` py ´ ycq2 ´ r

describing a circular obstacle with center pxc, ycq and radius r;
the square root ensures that h scales linearly with the distance.
The extended class Ke functions are chosen as convex func-

tions of the form αpζq –

"

cζ if ζě0

2γ

ˆ

sig
ˆ

cζ
4

˙

´0.5

˙

if ζă0 according

to Theorem 6 with c ą 0. To vary the constraint function h
and the synthesized CBF HT over time, we add the periodic
time-varying function

λptq “ ´rmax

ˇ

ˇ

ˇ
sin

´

πt
τp

´ σ
¯
ˇ

ˇ

ˇ
` r

where rmax ď r denotes the maximum radius, τp is the
period and σ some shift. Its parameters are chosen such
that (37) holds and thereby Proposition 10 applies. Thus,
Hλp¨q,T pt, xq – HT pxq `λptq is a CBF. The control task can
be now stated as follows: track a straight line while avoiding
all possibly time-varying obstacles. For tracking, we employ
a feedback controller that generates a baseline input ubaseline.
For obstacle avoidance, we use a standard safety filter based
on the time-varying CBF Hλp¨q,T defined as

usafeptq “ argmin
uPU

pu´ ubaselineptqqTP pu´ ubaselineptqq

s.t. dHT pxptq; fpxptq,uptqqq ` 9λptq

ě ´αpHT pxptqq ` λptqq ` cα

where P is some positive definite matrix, and cα ě 0 some
constant that can be set positive to add robustness with view

2Implementation and examples on Github: https://github.com/KTH-DHSG/
Predictive-CBF-Synthesis-Toolbox.git

3Videos to the examples: https://www.youtube.com/watch?v=8inhub7IhFY
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(e) CBF for the single integra-
tor with 9x P r1, 2s. Points mark
explicitly computed values.
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(f) Difference between con-
straint function h and the CBF
depicted in Fig. 6e.

Fig. 6: Simulation results for single and double integrators:
trajectories and the corresponding CBF values are depicted in
(a), (b) for static and in (c), (d) for time-varying constraints
(maximum expansion is indicated by the dotted circle). The
single integrator with U “ r´2, 2s2 is marked blue, the one
with U “ r1, 2s ˆ r´2, 2s in green, and the double integrator
in yellow. (e), (f) depict a CBF and compare it to h.

to the discretization. An overview over all parameters and
computation times of the various CBFs can be found in Table I.
The CBFs have been computed on a 12th Gen Intel Core i9-
12900K with 64GB RAM.

A. Single and Double Integrator

First, we consider single and double integrators in a plane
with dynamics 9x “ u and :x “ u where x “ rx, ysT . We
consider two single integrators where the first (marked blue
in Figure 6) has input constraints U “ r´2, 2s2 and the
second (green) U “ r1, 2s ˆ r´2, 2s. While the first single
integrator can stop or move backwards, the second always
moves into the positive x-direction. For the double integrator
(yellow), the input constraint is U “ r´1, 1s2, and we limit its
velocity to 9x P r´2, 2s2 using the modified constraint function
h̃px, 9xq – ηmint 1

η hpxq, 2` 9x, 2` 9y, 2´ 9x, 2´ 9yu with some
positive constant η P Rą0. The simulation results are depicted
in Figure 6 for static (a,b) and time-varying constraints (c,d).
While in the static case, both single integrators have an almost
identical trajectory, in the time-varying case they become

https://github.com/KTH-DHSG/Predictive-CBF-Synthesis-Toolbox.git
https://github.com/KTH-DHSG/Predictive-CBF-Synthesis-Toolbox.git
https://www.youtube.com/watch?v=8inhub7IhFY
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constr. CBF params. class Ke fcn. numerical computation
r γ δ T T c cα N domain discretization #points comp. time

single integrator 9 2 1 0 10 2 0.2 25 r´10, 10s2 41, 41 1681 0:01:24
single i. (vx,min ą 0) 9 2 1 0 10 2 0.2 25 r´10, 10s2 41, 41 1681 0:01:11
double integrator 9 1 5 3 12 0.5 0.2 30 r´14, 14s2 ˆ r´2.5, 2.5s2 29, 29, 15, 15 189 225 2:49:46
bicycle (less agile) 6 2 9 4.4 12 1 0.1 30 r´15, 15s2 ˆ r´π, πs 61, 61, 41 152 561 5:01:42
bicycle (more agile) 6 2 4 1.8 10 1 0.1 30 r´10, 10s2 ˆ r´π, πs 41, 41, 41 68 921 2:33:33
unicycle 6 2 4 1.8 10 0.5 0.1 30 r´10, 10s2 ˆ r´π, πs 41, 41, 41 68 921 1:38:12

TABLE I: Constraint specs, parameters and computation times [h:mm:ss] for the CBFs of each considered dynamic system.

distinct as the first single integrator uses its capability to move
backwards. The positive CBF values in Figures 6b and 6d
indicate constraint satisfaction.

Even in the case of single integrators, the CBF synthesis can
be a non-trivial task. While the constraint function h is directly
a CBF for the unconstrained single integrator, the same is not
necessarily true in the presence of input constraints. This can
be clearly seen in the case of the second single integrator for
which 9x P r1, 2s; its numerically computed CBF is depicted
in Figure 6e. It can be seen that, in contrast to h, the CBF is
nonsmooth along the negative x-axis. The difference between
h and the CBF is depicted in Figure 6f.

B. Kinematic Bicycle Model

Let us reconsider the kinematic bicycle model from Ex-
ample 1 with inputs u “ rv, ζsT and input constraints
U “ r1, 2s ˆ r´ζmax, ζmaxs where ζmax specifies the limitations
of the steering angle. In Figure 7, we consider bicycles with
two different input constraints: the first is less agile with
ζmax “ 20

180π (blue), while the second is more agile with
ζmax “ 40

180π (green). As it can be seen from Figures 7a
and 7b, the more agile bicycle stays closer to the obstacles
than the less agile one. Each of the obstacles is encoded via
a separate CBF that can be varied in time independently of
the others. The sinusoidal signal varying the size of each of
the obstacles is shifted by a third period; initial and maximum
expansions are indicated by green and light-blue dashed circles
in Figure 7b. For the case with time-varying obstacles, the
difference between the safe and the baseline input, the CBF
values and the vehicles’ distances to the obstacles are depicted
in Figure 7e. Figure 7f shows the corresponding control
inputs. It indicates that the time-varying constraints could be
satisfied with finite inputs that stay within the input constraints.
Because v ą 0, the CBF of both bicycles is nonsmooth as well
as in the previous example, which is shown in Figure 7c for
ζmax “ 20

180π and a fixed orientation. As it can be seen from
Figure 7d, the zero super-level sets are highly dependent on
the vehicle’s orientation.

C. Kinematic Unicycle Model

As last example, we consider the unicycle dynamics

9x “ v cospψq, 9y “ v sinpψq, 9ψ “ ω

with input vector u “ rv, ωsT and input constraint U “

r´0.9, 0.9s ˆ r1, 2s. The dynamic properties of the kinematic
unicycle are of particular interest, as it firstly involves a
nonholonomic constraint, and secondly its relative degree is

state-dependent. As such, the relative degree with respect to
state x is one for all ψ ‰ π{2. Yet, given an orientation of
ψ “ π{2, one obtains 9x “ 0 and the system becomes a second-
order system with respect to x. An analogous observation
holds for state y and orientation ψ “ 0. As our approach,
however, is indifferent to the order of the system, the CBF
synthesis method stays the same as for the bicycle dynamics
in the previous example. Hence, no high-order CBF concepts
need to be employed. Simulations in scenarios analogous to
those for the kinematic bicycle model have been conducted;
the results are shown in Figure 8. As indicated by Figure 8c,
constraint satisfaction is also ensured for the unicycle despite
the more challenging dynamic properties. We point out that
the values of the CBF and the distance to the obstacle are
not trivially correlated due to the dynamic properties of the
system.

VIII. CONCLUSION

In this work, we presented a systematic method for synthe-
sizing CBFs that encode predictive information. We showed
how this information can be advantageously used to account
for changes in the constraint specifications and to derive time-
varying CBFs. In particular, we presented three synthesis
methods that allow to specify the time-varying capabilities
of the CBF in terms of a design parameter. The theoretical
analysis of the synthesized CBFs was complemented by a
detailed discussion of its properties and practical implemen-
tation remarks. The proposed method was applied to multiple
dynamic systems to demonstrate its applicability. This work
is accompanied by a python implementation of the synthesis
method that allows for parallelization. The challenge that CBF
synthesis methods generally do not scale well with dimension-
ality remains and has not been addressed in this work. In our
follow-up work, we show how the synthesis method presented
here can be advantageously applied to equivariant systems in
order to reduce the time complexity of the CBF synthesis.
Furthermore, compositional controller design approaches may
be of interest in this direction.
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(b) Trajectories of the kinematic bicycle model for time-
varying constraints. Green circles mark the maximum and
light-blue ones the initial expansion of the obstacles. A marker
is depicted every 2s.
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APPENDIX

Proof of Proposition 3. Let us construct in the following for
each x0 P BF an input trajectory ux0

P U and its corre-
sponding state trajectory φpt;x0,ux0

q, which we consider
over a time horizon t P r0, tf,x0

s where tf,x0
is to be

specified later. As before, we consider V –
Ť

x0PBFtx |x “

φpτ ;x0,ux0q, τ P r0, tf,x0suYF for which clearly F Ď V . It
remains to show that for each condition, ux0

and tf,x0
can be

chosen such that V is forward control invariant and hpxq ě δ
for all x P V .

Let condition (1) hold. Consider a state xf,x0 P FXBδεpx0q

in the neighborhood of an arbitrary x0 P BF . As system (1)
is locally-locally controllable in any x0 P BF , there exists by
definition a ux0

and tf,x0
such that φptf,x0

;x0,ux0
q “ xf,x0

and φpt;x0,ux0q P Bεpx0q for all t P r0, tf,x0s. Then by
Proposition 2, the above defined V is forward control invariant.
Moreover, as for any x0 P F it holds φpt;x0,ux0

q P F ‘

Bεpx0q for all t P r0, tf,x0
s, we have V Ď F ‘ Bεp0q. From

this, we conclude that V Ď F ‘ Bεp0q Ď tx |hpxq ě δu

where the last subset relation holds by [66, (3.1.12)]. Hence,
Assumption 1 holds.

Let now condition (2) hold. For each x0 P BF , choose ux0

as suggested by the condition and let tf,x0
Ñ 8. Then, V

is clearly forward control invariant and V Ď F ‘ Bεp0q Ď

tx |hpxq ě δu as previously. Thus, Assumption 1 holds.
Let at last condition (3) hold. Choose ux0

and tf,x0
as

suggested by the condition, and it follows from analogous ar-
guments as in the previous case that Assumption 1 holds.

Proof of Proposition 9. Let us consider a trajectory
φpt;x0,u

˚
x0,T1

q defined for t P r0, T1s starting in an arbitrary
point x0 P D. The input trajectory and those times that
solve (8) for time horizon T1 are denoted by u˚

x0,T1
, t˚x0,T1

and
ϑ˚
x0,T1

, respectively. Similarly to before, we define an extended

input trajectory as u˚
e,x0,T1

ptq –

"

u˚
x0,T1

ptq if tPr0,ϑ˚
x0,T1

s

ue,x0,T1
ptq if tąϑ˚

x0,T1

where ue,x0,T1
P U pϑ˚

x0
,8q such that φpt;x0,u

˚
e,x0,T1

q P V
for all t ą ϑ˚

x0,T1
. Since V is forward control invariant, such

a trajectory exists.
Let us first consider those states x0 with HT1

px0q ă δ´γT2,
where the right-hand side intentionally employs T2 instead
of T1. Furthermore, note that the right-hand side is strictly
positive due to (34). We now derive analogously to (13) that

HT1px0q “ hpφpt˚x0,T1
;x0,u

˚
x0,T1

qq ´ γt˚x0,T1

ď δ ´ γT2

ď hpφpt;x0,u
˚
e,x0,T1

qq ´ γt @t P rϑ˚
x0,T1

, T2s. (45)

Based on this, we further obtain

HT1
px0q “ hpφpt˚x0,T1

;x0,u
˚
x0,T1

qq ´ γt˚x0,T1
(46a)

“ min
tPr0,T1s

hpφpt;x0,u
˚
x0,T1

qq ´ γt (46b)

(45)
“ min

tPr0,T2s
hpφpt;x0,u

˚
e,x0,T1

qq ´ γt (46c)

ď min
tPr0,T2s

hpφpt;x0,u
˚
x0,T2

qq ´ γt “ HT2px0q (46d)

where (46c) follows analogously to (15) as it holds for T2 that
ϑ˚
x0,T1

ď T1 ď T2, (46d) follows due to the suboptimality of
u˚
e,x0,T1

, and u˚
x0,T2

denotes the input trajectory that solves (8)
for time horizon T2 at state x0.

At last, we note that for the remaining states x0 with
HT1

px0q ą δ ´ γT2 we have that HT2
px0q ą 0 as

HT2
px0q “ min

tPr0,T2s
hpφpt;x0,u

˚
x0,T2

qq ´ γt (47a)

ě min
tPr0,T2s

hpφpt;x0,u
˚
e,x0,T1

qq ´ γt (47b)

“ min

"

HT1
px0q, min

tPrT1,T2s
hpφpt;x0,u

˚
e,x0,T1

qq´γt

*

(47c)

ě δ ´ γT2
(34)
ě 0 (47d)

where (47b) follows from the suboptimality of u˚
e,x0,T1

,
and (47d) holds as φpt;x0,u

˚
e,x0,T1

q P V for all t P rT1, T2s,
hpxq ą δ for all x P V and γt ă γT2 for all t P rT1, T2s.

We have now shown that the following holds: HT1px0q ě 0
implies HT2px0q ě 0, and thus C0,T1 Ď C0,T2 ; moreover, as
for all x0 P D with HT1

px0q ă δ ´ γT2, and in particular for
all x0 P D with HT1

ď 0, it holds HT1
px0q ď HT2

px0q as
by (46), we conclude that also Cλ,T1

Ď Cλ,T2
for all λ ě 0

with Cλ,T1 , Cλ,T2 Ď D.
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