
2025 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

EFFACT: A Highly Efficient Full-Stack FHE
Acceleration Platform

Yi Huang*, Xinsheng Gong*, Xiangyu Kong, Dibei Chen, Jianfeng Zhu†, Wenping Zhu, Liangwei Li,
Mingyu Gao, Shaojun Wei, Aoyang Zhang and Leibo Liu†

Tsinghua University
Equal Contribution*

Corresponding Authors†
{yi-huang,jfzhu,liulb}@tsinghua.edu.cn

Abstract—Fully Homomorphic Encryption (FHE) is a set of
powerful cryptographic schemes that allows computation to be
performed directly on encrypted data with an unlimited depth.
Despite FHE’s promising in privacy-preserving computing, yet
in most FHE schemes, ciphertext generally blows up thousands
of times compared to the original message, and the massive
amount of data load from off-chip memory for bootstrapping
and privacy-preserving machine learning applications (such as
HELR, ResNet-20), both degrade the performance of FHE-based
computation. Several hardware designs have been proposed to
address this issue, however, most of them require enormous
resources and power. An acceleration platform with easy pro-
grammability, high efficiency, and low overhead is a prerequisite
for practical application.

This paper proposes EFFACT, a highly efficient full-stack FHE
acceleration platform with a compiler that provides comprehen-
sive optimizations and vector-friendly hardware. We start by ex-
amining the computational overhead across different real-world
benchmarks to highlight the potential benefits of reallocating
computing resources for efficiency enhancement. Then we make a
design space exploration to find an optimal SRAM size with high
utilization and low cost. On the other hand, EFFACT features a
novel optimization named streaming memory access which is pro-
posed to enable high throughput with limited SRAMs. Regarding
the software-side optimization, we also propose a circuit-level
function unit reuse scheme, to substantially reduce the computing
resources without performance degradation. Moreover, we design
novel NTT and automorphism units that are suitable for a cost-
sensitive and highly efficient architecture, leading to low area.
For generality, EFFACT is also equipped with an ISA and a
compiler backend that can support several FHE schemes like
CKKS, BGV, and BFV.

We provide both FPGA and ASIC versions of EFFACT. On
account of our full stack design, FPGA-EFFACT outperforms
the SOTA FPGA accelerators in gmean by 1.22×. Meanwhile,
ASIC-EFFACT shows increased improvements in terms of the
performance per chip area and the performance per Watt
compared with the SOTA ASIC works.

I. INTRODUCTION

Fully Homomorphic Encryption (FHE), due to its unique
ability to compute encrypted data without requiring a secret
key, is indispensable in the privacy-preserving computing
field. In certain data privacy-sensitive scenarios like finance
and medicine, FHE enables clients to access the computing
and storage capabilities of cloud servers without disclosing
confidential information.

FHE has been used in many applications to protect user’s
privacy data, e.g. ACGT base-pairs sequence in the genomic
computing [45], the financial transaction [25], and the im-
age processing in CT [22], [42]. However, the amount of
computations performed on FHE’s encrypted data exceeds
that of the unencrypted data. This is mainly because most
FHE schemes are lattice-based (e.g., BGV, BFV, CKKS,
TFHE) [14], [18], [19], [21], which utilizes the complexity
of the Learning With Error (LWE) problem [60] to ensure the
security. Besides, FHE schemes necessitate extra operations
for ciphertext maintenance to ensure the compactness and
correctness of the scheme. These maintenance operations, such
as key switching, rescale, and bootstrapping, are not efficient
in CPU [76]. Therefore, FHE applications usually need thou-
sands of seconds to be completed on the CPU while the same
applications on the unencrypted data only require milliseconds.
To tackle this problem, various software methods have been
explored, including optimizing FHE algorithms [10], [17],
[23] and developing highly optimized HE libraries for CPU
or GPU-based systems [8], [16], [24], [49]. However, their
performance enhancements remain inadequate to meet the
demand of practical applications. In recent years, researchers
have focused on creating Domain Specific Architecture (DSA)
for FHE to make it more applicable to real-world scenarios.

Currently, efforts have been made to implement ASIC and
FPGA designs for FHE. The ASIC designs such as CraterLake
[63], BTS [35], and ARK [34] provided more than 2 orders
of magnitude speedup over GPU, showing a promising future
for the large scale adoption of FHE. However, they have not
explored the computation overhead and off-chip bandwidth
efficiency. As a result, they require enormous resources, typ-
ically hundreds of megabytes of on-chip SRAM and tens of
thousands of multipliers. The huge on-chip resources incur
large area consumption and huge energy consumption, which
is expensive for commercial use and leads to low efficiency
[33], [63]. On the contrary, the FPGA solutions [4], [75]
are much more efficient due to their highly reused design.
However, the FPGA implementations only execute one HE
operation every time due to the limited resources, and just
a handful of scheduling or parallelism is explored, restricting
their throughput. A practical design that features high through-
put, flexibility, and high efficiency is demanded in the area of

ar
X

iv
:2

50
4.

15
81

7v
1

 [
cs

.C
R

]
 2

2
A

pr
 2

02
5

commercial FHE acceleration.
MAD [2] and SHARP [33] are the pioneers in design-

ing a cost-sensitive and highly efficient architecture. SHARP
gives an in-depth analysis of the word length to tackle the
memory and NoC bottleneck, which is orthogonal to our
proposal. MAD proposes a novel caching scheme to explore
data reuse and reduces the on-chip SRAM requirement by
16×. However, MAD only looks into the on-chip SRAM
optimization while still keeping the computing resources, its
buffers and SRAM bandwidth as high as prior designs [34],
[35], [63], thus still requiring substantial area and energy
consumption. Meanwhile, its caching scheme falls into hand-
tuned data path scheduling within HE primitives and relies on
the buffers on the computing resource side, revealing further
optimizations. Therefore, there remains a significant design
space for developing a cost-effective and highly efficient FHE
accelerator.

To alleviate those drawbacks, in this work, we first exhibit
the possibility of re-distributing the computing resources by a
detailed analysis of the proportion of different FHE operations
at the residue polynomial level in real-world benchmarks.
Then we also take a design exploration of the size of on-chip
memory based on several trade-offs including performance,
efficiency, and cost. Exploring computing resources and on-
chip memory to achieve high efficiency and low cost while
maintaining high throughput is an essential step in many
accelerator designs [37]–[39], [46], [47], [67], [69], [74].
However, such a resource-aware design is not well explored
in prior FHE works.

Starting from the analysis, we build EFFACT, a highly
Efficient Full-stack FHE ACceleration plaTform to enhance
the performance, area efficiency, and power efficiency of a
cost-sensitive FHE accelerator. To obtain high speed with
limited on-chip memory, we propose an automatic software-
level optimization named streaming and its architecture-level
support, in which the compiler finds the temporary data with
less reuse and directly sends them from DRAM to function
units without the buffering of SRAMs [53], [65]. To enhance
the area and power efficiency, we propose a circuit-level
reuse scheme that judiciously uses both the NTT’s multipliers
and modular mult’s multipliers to accelerate mult-accumulate
(MAC) operations without performance degradation. Mean-
while, we also devise specialized NTT and automorphism units
to adapt to the cost-sensitive and highly efficient microarchi-
tecture, further reducing computing resources.

Without loss of generality, we also analyze the basic residue
polynomial level operations in different FHE schemes includ-
ing CKKS, BGV, and BFV, and design EFFACT’s Instruction
Set Architecture (ISA) and a compiler backend featuring
automatic code optimization. Through the efforts of the ISA
and compiler, our platform can flexibly support many kinds
of FHE schemes and can be integrated into the state-of-the-art
compiler frontends and analysis [44], [54].

The contribution of this work can be summarized as follows:
• We propose EFFACT, a full-stack FHE acceleration plat-

form with generalized ISA and compiler backend, which

runs near speed as resource-unconstrained designs with
higher efficiency and low hardware overhead.

• We analyze the proportion of different FHE operations
among different benchmarks and show the impact of
different resource assignments on the efficiency and per-
formance of the FHE accelerator.

• We propose a novel compiler optimization scheme on the
software side with its architectural support that keeps high
throughput while using extremely small on-chip memory.

• We devise a circuit-level reuse scheme for function units
that reduces hardware redundancy without performance
penalty and specialized resource-saving NTT and auto-
morphism units.

• We rigorously evaluate EFFACT in logistic regression
and bootstrapping with both ASIC and FPGA versions.
The experiments are performed by scaling the real FPGA
runtime. Results are verified by comparing with Lattigo
[49]. On account of our full stack design, FPGA-EFFACT
outperforms the SOTA FPGA accelerators in gmean
by 1.22×. Meanwhile, ASIC-EFFACT shows increased
improvements by ≥1.46× in terms of the performance
per chip area and ≥1.48× in terms of the performance
per Watt compared with the SOTA ASIC works.

II. BACKGROUND

As mentioned above, there are different types of FHE
schemes. In this section, we will take CKKS as an example to
explain how FHE works. Relevant parameters and notations
for the CKKS scheme can be found in Table I.

TABLE I
CKKS SCHEME PARAMETER AND NOTATION

Notation Description
N Degree of cyclotomic ring
Q Biggest modulus of ciphertext
P Modulus product of all extension limbs
RQ Cyclotomic polynomial ring, RQ =ZQ[X]/(XN + 1)
qi Modulus at level i of the modulus chain
L Max level of ciphertext
l Current level of ciphertext
dnum Number of decompose digits
Lboot Consumed level of bootstrapping
LCtS Consumed level of CtS in bootstrapping
LStC Consumed level of StC in bootstrapping
LEvalMod Consumed level of EvalMod in bootstrapping

A. RNS-CKKS FHE scheme

CKKS, proposed by Cheon et al. [18], supports fixed-point
real and complex data types and SIMD operation, which intro-
duces approximate calculation into homomorphic encryption
algorithm. It trades the loss of accuracy for a huge increase
in computational efficiency compared to BGV/BFV schemes.

In EFFACT platform, we ignore the encoding/decoding and
encrypting/decrypting steps of the scheme, since these are
executed on the client side. Instead, we focus directly on the
plaintext, ciphertext, and related homomorphic operations. In
CKKS, plaintext can be presented as a polynomial m(X) =∑N−1

i=0 miX
i. The plaintext is an element of the cyclotomic

Level 1

1. NTT 2. Auto

3. Vector ModAdd
4. Vector ModMult

1. Homomorphic Multiplication
2. Homomorphic Addition
3. Homomorphic Rotation

1. Scalar ModAdd
2. Scalar ModMult

1. Key-Switching
2. Rescale
3. Mod Up/Down

iNTT BConv NTT

Element-wise

Limb-wise

Poly-wise

Coeff-wise1. BConv

Level 0

Level 1.5

Level 2

Kernel of level 1.5

Modulus switch

Polynomial on RQ in RNS system
 by CRT decompostion

(a) (b)

q0

q1

q2

q3

q4

q5

ql-2

ql-1

0Coefficient
index 1 2 3 N-2 N-1

limb wise or
residue polynomial wise Coefficient wise Poly wise Element wise

Limb prime

Fig. 1. (a)The limb-wise and coefficient-wise data in a polynomial on RQ

with RNS system. (b)The level of HE operations.

polynomial ring RQ = ZQ[X]/(XN+1), which means all the
N-degree polynomial plaintext’s coefficients (mi) fall within
the range [0, Q-1] and the number of their coefficients is
N. Typically, N is the power of 2. A single plaintext is
packed (encoded) from a so-called message, which consists
of a vector of N/2 complex numbers. Each element on the
plaintext is called a slot. The multiplication or addition of the
message can be performed through the polynomial operations
on the plaintext. Then the plaintext (m(X) ∈ RQ) will be
encrypted into the ciphertext (ct(X) ∈ R2

Q). The ciphertext is
represented as ct(X) = (c0(X), c1(X)) satisfying c0(X) =
c1(X) · s(X) + ∆m(X) + e(X), where s(X) is the secret
key, c1(X) ∈ RQ is a random polynomial, e(X) ∈ RQ

is a small error polynomial is added for security, and ∆ is
the scaling factor. The recovery of plaintext is conducted by
m′(X) = ct(X) · (1,−s(X)) = ∆m(X) + e(X).

RNS-CKKS scheme [10], [17], [23] further improves the
efficiency by using the Chinese Remainder Theorem (CRT) to
decompose a big prime base (the Q base in the RQ, which
requires thousands of bits) into L small primes (denoted as
Q =

∏L−1
i=0 qi) with shorter bit width. Therefore, a polyno-

mial m(X) in the RQ can be represented using L residue
polynomials or limbs in Rqi as {m0[X] ∈ Rq0 ,m1[X] ∈
Rq1 , ...,mL−1[X] ∈ RqL−1

} or simply {[m[X]]qi}i∈L. It not
only reduces the bit width of coefficients but also provides
the possibility of parallel computation among different residue
polynomials in Rqi . All the computations on the polynomial
level can be easily extended into the RNS-based residue
polynomials.

The level of basic HE operations is shown in Figure 1.b,
which is categorized by the types of operands, which are repre-
sented as element-wise, residue-polynomial-wise, coefficient-
wise, and polynomial-wise as shown in Figure 1.a. For ex-
ample, given two ciphertexts ct0= (a0 ∈ RQ, a1 ∈ RQ)
and ct1= (b0 ∈ RQ, b1 ∈ RQ), the Homomorphic Addition
(HADD) operates on their polynomials by computing ctadd=
(a0+ b0, a1+ b1). When it is broken into residue-polynomial-
wise vector Modular Addition (MADD), the two ciphertexts
can be represented as ct0= ({[a0]qi}i∈L, {[a1]qi}i∈L) and
ct1= ({[b0]qi}i∈L, {[b1]qi}i∈L). Then the HADD means per-
forming ctadd= ({[a0]qi + [b0]qi}i∈L, {[b1]qi + [a1]qi}i∈L).
The computing kernel of level 1.5 and lower (level 1/0) is of
importance in many architectures including EFFACT.

B. Number Theoretic Transformation (NTT)

NTT is a variant of Discrete Fourier Transform (DFT), but
it performs computation in a finite field. In CKKS schemes,
NTT is used to speed up polynomial or residue polynomial
multiplication. Performing polynomial multiplication in the
out-of-NTT domain takes O(N2) asymptotic time, whereas
the same operation only requires O(NlogN) asymptotic time
in the NTT domain, similar to the way FFT speeds up
convolution. To eliminate the cost of padding to 2N-point NTT
when performing N-point multiplication, [7], [57] proposes
the Negative Wrapped Convolution (NWC) algorithm, which
further improves the efficiency of NTT polynomial multipli-
cation. The NWC-based NTT algorithm is defined as follows,
let A(X) = NWC NTT (a(X)), we have:

Aj =

N−1∑
i=0

aiω
(2i+1)j
2N mod Q (1)

where Aj is the j-th coefficient of A(X) ∈ RQ, ai is the i-
th coefficient of a(X) ∈ RQ, and ω2N is the 2N-th root of
prime Q. With the similar algorithmic optimization of FFT [7],
the equation can be broken down into a sequence of butterfly
operations on RQ.

Due to the linearity and bit-reversal property of NTT
operation [7], [57], many arithmetic characteristics have been
maintained between the NTT domain and out-of-NTT domain,
we conclude these characteristics of NTT operation as follows:

NTT (a ∗ b) = NTT (a) ·NTT (b)

NTT (a+ b) = NTT (a) +NTT (b)

NTT (σs(a)) = BR(σ′
s(BR(NTT (a))))

(2)

where a, b ∈ RQ, ”∗” is the convolution signal, ”·”
means residue-polynomial-wise vector production, ”+” means
residue-polynomial-wise vector addition, ”σs()” is the s-step
automorphism operation in the out-of-NTT domain, ”σ′

s()”
is the s-step automorphism operation in NTT domain, ”BR”
denotes the bit reversal operations.

C. Key-switching and Base Conversion (BConv)

Homomorphic Multiplication (HMULT) on two ciphertexts
ct0= (a0 ∈ RQ, a1 ∈ RQ) and ct1= (b0 ∈ RQ, b1 ∈ RQ)
requires both polynomial-wise multiplications and a key-
switching process. It first computes the intermediate results
(d0, d1, d2), where d0 = a0 · b0, d1 = a1 · b0 + a0 · b1,
and d2 = a1 · b1. The tuple (d0, d1, d2) is decryptable under
the secret tuple (1, s, s2), where s is the secret key. The
evk= (evka, evkb) is a ciphertext in the ring R2

PQ with a
extended special prime P . The RNS can also be applied to the
P base by P =

∏k−1
i=0 pi. Such an evk is different from the

input ciphertext’s secret key, which is applied in key-switching
to change the secret key back to (1, s). The key-switching is
the process by computing ksw=P−1(d2· evk), and the final
HMULT result is ctmult=(d0, d1)+ksw.

Base conversion is a major operation in the key-switching.
It converts a set of residue polynomials from one modulus
set to another set, therefore, it can change the intermediate

evk0

d2

evk1

evk2

evk3

d1

ax

bx

d2ntt

d2ntt

x

x

x

x

SSA

intt bc ntt

intt

intt

bc

bc

ntt

ntt

(a)

d2mul0

d2mul1

out0

out1

SSA

d0

d2ntt x evk2

load evk2 load evk0

d2->intt

d2->bconv

d2->ntt

d2 x evk0

Enormous SRAM

ax->intt

ax->bconv

ax->ntt

(b)

SSA

load d1

MAD d2ntt x evk2

load evk2

d2->intt

d2->bconv

d2->ntt

store d2ntt

d2 x evk0

ax->intt

ax->bconv

ax->ntt

MAD (SRAM holds 4 operands only)

(c)

SRAM: d2

SRAM: ax, d2,

 evk0, d2ntt

load evk0 load d1

SSA

SRAM: d2mul0, d2,

 d1, out0

SRAM: axntt, d2,

d2ntt, d2mul0

d2ntt x evk2

d2->intt

d2->bconv

d2->ntt

d2 x evk0

ax->intt

ax->bconv

ax->ntt

Streaming opt (4 operands)

load evk2

SRAM: d2

(d)

TimeTime

SRAM: ax, d2,

 evk0, d2ntt

SSA with streaming d1

SRAM: axntt, d2,

d2ntt, d2mul0

SRAM: d2ntt, d2,

d2mul0, out0

load evk0

SSA: substract, scaling, and add

bc: base conversion

To load d1 into SRAM

must spill either d2ntt or d2

Fig. 2. A toy example of performing key-switching in HMULT. d0, d1, and d2 are the intermediate multiplication results noted in Section II-C, and the evk0
and evk2 are evka’s Q base and P base representations where the evka is the component of evaluation key evk=(evka, evkb). We only show the timing
diagram of the branch below the data flow graph (DFG). (a) Example key-switching DFG, (b) The timing graph of architectures with enormous SRAM and
buffers that can hold all temporary operands, (c) The timing graph of MAD with limited SRAM and buffers that can only hold 4 operands, (d) The timing
graph of MAD with our streaming optimization, in which we successfully reserve the d2ntt for the reuse in the branch above DFG, reducing extra spills.
The latency of streaming optimized instruction is determined by the longest latency of the merged instructions. Here is the latency of loading d1.

results of HMULT to match the evk’s modulus set. For a RNS
representation aC on primes set C = {q0, q1, ..., ql−1}, the fast
base conversion from primes set C to B = {p0, p1, ..., pk−1}
is define as follows:

BConvC→B(aC) = {(
l−1∑
j=0

(aC [j] · q̂j−1)qj · q̂j)pi
} 0≤i<k

(3)
where q̂j =

∏
j′ ̸=j qj′ , (·)qi means reduce the number to Zqi .

BConv operation is widely used in the CKKS scheme, almost
as frequent as NTT/iNTT.

D. Prior FHE accelerators

In prior resource-unconstrained FHE accelerator designs,
enormous on-chip SRAM and resource-hungry functional
units, e.g., base conversion unit and NTT/iNTT unit, are
used for tackling the memory-hungry and compute-hungry
challenges in FHE computations. Despite their remarkable
improvement, the use of hundreds of megabytes of SRAM and
fully pipelined functional units makes the area and energy con-
sumption high. Meanwhile, the off-chip memory bandwidth
and functional units stay idle most of the time, e.g., less than
50% HBM and ∼25% base conversion utilization [33], [63].
Therefore, prior accelerators have a low efficiency with high
cost due to the lack of memory and computing efficiency
exploration.

SHARP [33] provides an in-depth analysis of the impact
of word length of slots on the security level and the data
movement, thus, greatly enhancing area and power efficiency
by exploring the optimal word length and a NoC-friendly
hierarchical architecture. SHARP’s insightful proposals can
be extended to other accelerators such as ARK [34], and are
orthogonal to EFFACT as well. MAD [2] proposed a set of
novel caching strategies to explore memory efficiency leading
to enormous SRAM reduction. With the O(α) caching data
path which only causes load/store of intermediate results at
the modulus switching and uses computing resources’ buffers

Fig. 3. Residue polynomial level instruction counts in DBLookup, ResNet20,
HELR and Bootstrapping. BC MULT and BC ADD are MULT and ADD
instructions used in BConv, while MULT and ADD represent the normal
MULT and ADD except those in BConv.

to buffer intermediate results in other operations, DRAM trans-
fers are reduced by 44% compared to the naive bootstrapping
baseline. However, these caching strategies are still within the
category of custom manual adjustments, which only optimize
several HE primitives and rely on the buffers on the computing
resource side and large numbers of computing resources to
hold and consume the intermediate results. There is parallelism
unexplored between the HE primitives when given limited
SRAMs and buffers. On the other hand, MAD requires large
amounts of computing resources to immediately consume their
data flow, or severe memory spills and data flow stalls arise.
The computation inefficiency problem in the prior architecture
is still unsolved. While SHARP and MAD have paved the
way for efficient FHE accelerators, the incomplete exploration
of memory efficiency and computing resource optimization
makes them still fall short of achieving a highly efficient
design with low cost.

III. OPPORTUNITIES AND EFFACT PROPOSALS

The first opportunity comes from the computing resource
side. MAD [2] keeps a similar computing resource distri-
bution as resource unconstrained accelerators to get extreme
performance of function units and smoothly conduct their
manual data flow without memory spills or pipeline stalls. This
causes their computing resources to occupy nearly 90% area of
MAD. MAD rarely explores circuit-level function unit reuse

and computing resource optimization, which are essential for
creating highly efficient and cost-effective designs. Figure
3 shows the analysis of different instructions in IR format
of HELR and fully-packed bootstrapping benchmark. The
IR program is at the residue polynomial level, where NTT
instructions only account for 7% and 6.5% of all instructions.
The majority of instructions are MULT and ADD operations,
which totally account for 90.7% and 90.9% of all instructions,
in which there are 52.7% of MULT instructions and 51.6% of
ADD instructions are used for BConv. We call those MULT
and ADD not for BConv the normal MULT and ADD.

For the computations of a single ciphertext, we observe
that among the normal ADD and MULT instructions (those
not for BConv), nearly 77.6% of them cannot be well hid-
den by the computing of iNTT − BConv − NTT (dnum
= 4, a practical parameter widely used in [2], [33], [34])
in previous architectures [34], [63]. Such a situation arises
since (1) 77.6% of the normal ADD and MULT instructions,
e.g., so-called MatMul1D, BlockMatMul1D in HElib [24],
appear behind long iNTT −BConv −NTT chains. Such a
pattern also frequently shows up in bootstrapping’s CtS/StC,
ResNet’s convolutions [43], and HELR’s gradient calculation
[25]. Due to the coefficient-wise aggregation nature of BConv,
only the NTT at the end of the last chain or iNTT in the
front chain (occupying only 0.88%∼1.75% among all the
instructions) can reveal parallelism with normal ADD and
MULT instructions behind chains, (2) due to the inevitable
data dependency caused by digit-decomposed key-switching
algorithm [26] and hoisting rotation algorithm [13] which need
aggregation or automorphism in the last step, a majority of
data from the NTT at the end of chains cannot be immediately
used for subsequent normal multiplication or addition unless
they undergo a series of aggregations, further blocking the
parallelism. Greatly enhancing the units for normal MULT
and ADD instructions may relieve this problem, however, it is
out of EFFACT’s scope. Based on the above observation, we
propose three optimizations as follows:

1) Removing BConv units: Since BConv MULT and ADD
instructions cannot execute in parallel with most normal
MULT and ADD instructions, we break BConv into a se-
ries of vector MULT and ADD instructions in the residue-
polynomial-wise execution mode and use the normal MULT
and ADD units to execute BConv, removing the specialized
BConv units which occupy 66.7% area of all computing units
in CraterLake [63]. On the other hand, due to the residue-
polynomial-wise execution mode, the computation inefficiency
caused by ciphertext level change is also well solved.

2) Reusing function units at circuit level: Since a large
number of normal MULT and ADD instructions cannot run
in parallel with NTT and iNTT, we devise a circuit-level
NTT reuse scheme that leverages reconfigurable technology to
intelligently reuse NTT units and modular multiplication units
with no performance penalty. The butterfly units’ modular
multipliers and adders within the NTT units can be reused as
MAC units to substitute consecutive normal MULT and ADD
instructions, providing speed-up with low hardware overhead.

3) Fine-grained NTT units: Since nearly 17% of the to-
tal instructions (see Figure 3) cannot run in parallel with
NTT/iNTT, we tend to adopt a fine-grained NTT pipeline
similar to [4], [75] instead of the fully-pipelined NTT. Unlike
the fully-pipelined NTT unit in which each NTT pipeline
stage possesses its own modular multiplier and adder, the fine-
grained NTT unit tries to share the same modular multiplier
and adder among all the NTT pipeline stages. Therefore, the
fully-pipelined NTT [9] runs at a better performance with a
larger area than the fine-grained one. However, in resource-
constrained scenarios, the fully-pipelined NTT design can
easily disrupt the equilibrium between speed and hardware
overhead. Using the proportion in Figure 3 and assuming
other instructions can be perfectly executed in parallel with
NTT and normal MULT and ADD without considering the
DRAM fetches, the fully-pipelined NTT design can only
achieve ≤2.7× performance enhancement compared to the
fine-grained NTT design at the cost of ≥8× total computing
resource consumption. Therefore, implementing such fully-
pipelined NTT units is not a better trade-off in the case of
a highly efficient and cost-sensitive design.

Another opportunity lies in the on-chip memory side. MAD
uses a novel cache scheme to reduce the SRAM cost. However,
it does not fully explore the memory efficiency due to its
manual optimization and the need for computing resources’
distributed buffers used for buffering the intermediate results.
They keep prior designs’ buffers. In their data flow, data are
firstly fetched from DRAM to the SRAM and then flowed to
the computing resources. The data will stay between comput-
ing resources and their buffers until the computation stage is
finished. Such a data path works perfectly when the on-chip
SRAM and buffers are large enough to hold all the operands
and intermediate results for instructions like in BTS, ARK, and
SHARP. However, as shown in Figure 2(c), the reduced SRAM
and buffer size causes extra spills and, thus, limit MAD’s
performance.

To overcome the above challenge, we propose streaming
data flow optimization as depicted in Figure 2(d). In our
optimization, the function units can get their operands either
from the SRAM or directly from the DRAM, which not only
reduces the extra stores but also enhances EFFACT’s DRAM
bandwidth utilization. Our compiler uses a static analysis pass
to decide which instructions should get their operands from
the DRAM.

Besides the above optimizations, EFFACT also provides an
analysis of the interplay among SRAM capacity, bootstrapping
running time, off-chip memory bandwidth utilization, and
function unit utilization. The compiler of EFFACT automati-
cally explores reuse opportunities and minimizes off-chip data
movement at the program level using static scheduling and
register allocation. Figure 4 depicts the DRAM bandwidth,
function unit utilization, and total runtime variation with
different on-chip memory sizes in EFFACT, highlighting the
performance and efficiency turning points at 27MB and 54MB.
It is worth noting that the MULT and ADD units are almost
saturated at ≤50% because most of the normal MULT and

(b)(a)

(a)
(a)

Fig. 4. Impact of different SRAM sizes on utilization and total run time given
certain computing resources, we do not show automorphism utilization since
it is always low. (a) NTT, and MULT ADD units utilization with different on-
chip memory, (b) DRAM bandwidth utilization and total running time with
different on-chip memory.

ADD can only be executed serially with (i)NTT except for
BConv operations, and in the EFFACT design, (i)NTT will
also conduct some of the normal MULT and ADD. We choose
27MB as a trade-off between performance, cost, and efficiency.
We also use SimFHE [2] to simulate DRAM transfers of
MAD with O(α) caching strategy under identical architectural
parameter setting, the result shows that the DRAM transfers
of EFFACT are reduced by ∼40% compared to MAD.

To make EFFACT more practical and generic, we build
a full-stack acceleration platform. Despite EFFACT’s hard-
ware design and optimizations, we also extract common
residue polynomial level vector instructions from different
FHE schemes to develop a generic ISA for EFFACT. At the
same time, we also propose a compiler backend with code
optimization for EFFACT that can be adapted to the recent
compiler frontend [54].

IV. EFFACT PLATFORM

A. ISA overview

EFFACT looks into HE primitives and breaks those prim-
itives at the level of residue polynomials. For generality, we
analyze several FHE schemes’ operations including CKKS,
BGV, and BFV, and thus establish the vector ISA as shown
in Table II. For example, the MADD operation means adding
one residue polynomial vector to another or a constant by a
specific modulus. In the analyzed FHE schemes, operations
of level 1 in Figure 1 fall into two categories. One is the
residue-polynomial-wise operation in (i)NTT/automorphism or
between two polynomials (feeding one polynomial’s residue
polynomial to the other polynomial’s residue polynomial).
The other is the coefficient-wise operation within one poly-
nomial. Our ISA can fully support both categories. Our
residue-polynomial-wise ISA naturally supports the residue-
polynomial-wise operations between two polynomials. Since
the coefficient-wise operations’ behavior is the same for all
the slots in the same residue polynomial, the coefficient-wise
operations within one polynomial can be conducted by keeping
a residue polynomial of the given polynomial in the memory
and then feeding the next residue polynomial to it. In this
way, the coefficient-wise operation is changed into the residue
polynomial vector operation. In addition, we keep some of the

int64 operations (scalar subset) to perform control flow such
as loops.

TABLE II
EFFACT ISA

Instruction Description
MMUL dest src0, src1(imm), modulus perform modular multiplication on residues
MMAD dest src0, src1(imm), modulus perform modular addition on residues

(i)NTT dest src0, modulus perform (i)NTT on a residues
AUTO dest src0, imm, modulus perform automorphism on a residues

LoadRes dest, srcaddr load a residue from main memory
StoreRes destaddr, src0 store a residue into main memory

VecCopy dest, src0 move residue among on-chip SRAM
Scalar subset support loop, branch, and address calculation

B. Compiler Design

Our compiler optimizes the extended LLVM Intermediate
Representation (IR) file [41] and generates the executable
machine program while also partially supporting control flow
features such as loops and branches.

1) Code Optimizations: Our compiler begins by parsing the
IR file and the hardware description, lowering the IR instruc-
tions to EFFACT’s ISA while maintaining the Static Single
Assignment (SSA) form. Then it performs copy propagation
and constant propagation to eliminate redundant vector copies
across different on-chip SRAMs and reduce constant calcula-
tion during execution. Our compiler also employs partial re-
dundancy elimination (PRE) using the algorithm described in
[15], [32], [36] to eliminate the code redundancy. Additionally,
our compiler performs computation merge as mentioned in
Section IV-D through a peephole optimization pass. Code op-
timization is crucial as the automatic IR translator introduces
some redundant code. In fully-packed bootstrapping, our code
optimizer eliminates 12.9% of instructions, a task that was
previously done manually in prior works [2], [33], [34]. Given
that previous designs relied on manual optimizations, we have
excluded code optimization from our evaluation.

2) Static Scheduling & Memory Allocation: An alias anal-
ysis [6] is first performed before scheduling instructions to
chain the load/store which may point to the same address in the
correct order. Then we schedule the SSA-formed instructions
globally as described in [1], [58], [66] to get the optimal
parallelism. One big challenge in the compiler is how to
manage the on-chip SRAM and the HBM stack to minimize
spilling and reduce the load/store when allocating SRAM.
Since our vector operation is at the residue polynomial level,
we can split the on-chip SRAM into several parts which are
the size of one or two residue polynomials, and view each
part as a register. Thus, the linear register allocation algorithm
[56], [68], [70] can be adopted to allocate on-chip SRAM and
manage the HBM.

3) Instruction Merging for Streaming Memory Access: The
compiler identifies load operations with a single consumer and
merges them as a new streaming operation. The original load
operations will not be considered in the succeeding memory
allocation phase. The same technique also works in store
operations and between different function units.

St
re

am
in

g
FI

FO
R

eg
is

te
r F

ile
s

H
B

M
 M

em
or

y Modular ADD Units

Modular MULT Units

(i)NTT Units

Automorphism Units

St
re

am
in

g
FI

FO

N
oC

 &
 A

rb
ite

r

MULT MAC

NTT MAC

M
em

or
y

C
on

tr
ol

le
r

M
em

or
y

Sy
st

em

Compute System

iCacheOoO Core

Et
he

rn
et

 In
te

rf
ac

e

H
O

ST

Fig. 5. EFFACT overall hardware architecture.

4) Machine Code Generation: Ultimately, the binary pro-
gram is obtained by translating the optimized IR into EF-
FACT’s machine code.

C. Streaming Memory Access

In EFFACT architecture, there is a stream memory con-
troller to manage memory accesses. Streaming is a pattern
that involves the continuous flow of data through computing
units and DRAM. EFFACT employs partial streaming memory
access [53], [65], in which part of data can flow directly from
DRAM to function units upon arrival instead of waiting for
the SRAM chunk to be filled. It aims to maximize computing
resource utilization, reduce memory latencies, and more essen-
tially, relieve the SRAM pressure. For stream implementation,
a separate FIFO address space is added to efficiently collect
data. The memory controller handles concurrent accesses from
HBM to the on-chip SRAM or among on-chip SRAM and
the aforementioned FIFO space. High parallelism with low
overhead can be achieved by fully utilizing the associated
resources through arbitration of memory accesses.

As mentioned in Section IV-B, load operations or nor-
mal functional operations with only one consumer will be
processed with instruction merging and are allowed to use
streaming memory access. The merged instruction will first
issue the first operation it merges. Through streaming, vector
data that is returned by the first operation can be directly
read into the aforementioned FIFO space one by one and
subsequently dispatched straight to the second operation’s FU
or the DRAM. If there are no other data dependencies, the
second operation will execute upon arrival of the data without
needing to wait for the preceding operation to complete.
The data is processed on arrival, eliminating the requirement
of waiting for the on-chip SRAM to fill up, and enabling
nearly real-time processing of data, as shown in Figure 2(d).
Otherwise, in the case where data will be used by multiple
consumers, it is filled into the on-chip SRAM for reuse.

D. EFFACT Architecture

EFFACT architecture consists of an Out-of-Order (OoO)
control core, four functional units (ModAdd, ModMult, NTT,
and Auto), FIFOs, register files (RFs, implemented using
SRAM), and the interface with off-chip HBM. This section
will introduce how these components work in our architecture
in Figure 5.

1) OoO core: Both the SRAM and streaming FIFO will
request data from DRAM. To fully utilize the DRAM band-
width, we allow the streaming FIFO and SRAM to compete
for DRAM transferring. Since the instruction merge may
chain load/store with the fine-grained NTT which is slower
than DRAM transferring, tying DRAM to NTT will lead
to underutilization of DRAM bandwidth. Therefore, compet-
ing for DRAM transferring becomes necessary. To manage
the competition of DRAM requests, we introduce an OoO
controller that issues instructions when function units are
temporarily available and controls in-flight instructions. We
implement an OoO core using the scoreboard to track the
dependencies and availability of instructions. Since memory
ordering has been enforced by the compiler, the results of
instructions are ensured to be written back to the register file
or the memory in the correct order.

2) Memory and Interfaces: The on-chip SRAM is con-
nected to a multi-channel off-chip HBM for staging data
in order to enable increased data reuse and reduced access
overhead, as mentioned in Section IV-C. Also, the partial
streaming memory access scheme allows direct communica-
tion between the function units and HBM to save the step of
filling the on-chip SRAM. A memory controller and an arbiter
are responsible for managing the data access between function
units and the SRAM via banks. An HBM controller manages
the load/store operations of the HBM.

Since the SRAM and computing resources are largely
decreased thanks to the proposed streaming and hardware
optimizations, it alleviates the stringent requirement for large
on-chip SRAM bandwidth. Therefore, we are able to reduce
the on-chip bandwidth to further reduce the area and energy
consumption. Unlike MAD, ARK, and CraterLake, which
require at least 90TB/s on-chip SRAM bandwidth, the stream-
ing access and smart function unit reuse scheme relieves the
pressure on the SRAM ports and thus, EFFACT only requires
about 30TB/s on-chip SRAM bandwidth, giving a roughly
threefold improvement.

3) Reconfigurable NTT units: The baseline fine-grained
NTT architecture of EFFACT is similar to [4]. However,
EFFACT makes several improvements to better adapt to a
vector accelerator. First, EFFACT employs the CG-NTT [11]
algorithm to implement the fine-grained NTT units due to their
vector-friendly characteristics instead of the Cooley-Tukey in
[4]. Second, we diminish the bit-reversal operation of each
coefficient vector. We perform the bit-reversal operation on
twiddle factors rather than the N coefficients since the bit-
reversal operation of twiddle factors (TFs) can be done with
much less cost during TFs seed pre-computation and TF on-
the-fly generation. Moreover, we notice that some modular
multiplications and additions cannot run in parallel with the
NTT and the NTT naturally possesses a mult-accumulate
(MAC) data path in its circuit implementation as shown in
the middle of Figure 6. Therefore, we propose to reuse the
NTT as a MAC unit while [4] cannot.

Figure 6 shows a sequence of iNTT −BConv−NTT fol-
lowed by normal MULT and ADD, which shows up frequently

q0

q1

q2

q3

NTT-BFuiNTT-BFu NTT-MAC

iNTT

4 limbs before BConv

BConv NTT

p0

p1

p2

p3

p4

p5

MAC

6 limbs after BConv
6 Limbs from other digits

3 reconfigurable types of NTT butterfly unit

Fig. 6. NTT reuse scheme to accelerate MAC operation.

in operations such as matrix multiplications, convolutions,
and hoisting rotations. Based on the observations proposed
in Section III, EFFACT reuses NTT unit under following
execution modes. First, the butterfly units at the bottom of
Figure 6 can be reused as both NTT-butterfly units and iNTT-
butterfly units (the middle and left) just like ARK [34] by
adding several multiplexers to change the position of the
multiplier in the data path. Second, EFFACT also supports
configuring the NTT data path as the MAC units to accelerate
those MAC operations that can not run in parallel with NTT. It
is implemented by simply masking the subtraction out of the
data path and picking the MAC result out of the original NTT
pipeline. Through this reconfigurable technology, EFFACT
gets performance enhancement in MAC operations without
much hardware overhead.

4) Auto units: Automorphism is a sub-operation of HROT,
where the automorphism with s-step is defined as σs(·). It can
be regarded as a straightforward process of address mapping
and sign transformation. In address mapping, the new index
of position i for rotation step s is calculated as follows:

indexnew(i, s) = i ∗ 5s mod N (4)

Inspired by ARK [34], we discovered that data in each row
remains in the same row after the automorphism operation.
This allows us to decompose the 216-element permutation
into NL-element permutations inside each row and design the
auto-mapping units with sign transformation, where NL is the
number of lanes in EFFACT. Such units have also been used
in ARK [34] to vectorize automorphism.

However, for the transpose before and after the auto-
mapping units in Figure 7(a), SHARP [33] and ARK [34]
transpose the input matrix by accessing different rows of their
register files simultaneously, which requires their RFs heavily
banked. This is not suitable for a vectorized accelerator like
EFFACT which can only access SRAM row by row. On the
other side, the transpose units proposed by CraterLake [63]
demand excessive global connections, causing a large area.
Therefore, EFFACT proposes a modified algorithm replacing
the expensive matrix transpose operation with a fixed network
(FN). We notice when the coefficients in the NTT domain
follow a bit-reversal order, each row of the coefficients matrix
shares the same transform pattern to turn to the transposed
matrix as shown in Figure 7(b), while the transformation in

4 0
5 1
6 2
7 3

Normal order
matrix

(b)

12
13
14
15

8
9
10
11

Transpose
matrix

Bit-reverse
 matrix

FN

(a)

Tr
an

sp
os

e
U

ni
t

F1

C
ra

te
rL

ak
e

R
F

A
R

K

SH
A

R
P

Fi
x

N
et

w
or

k

EF
FA

C
T

Transpose
matrix

H
ar

dw
ar

e
co

st

A
ut

o
m

ap
pi

ng
 u

ni
ts

Normal order
matrix

Bit-reverse
 matrix

Tr
an

sp
os

e
U

ni
t

F1

C
ra

te
rL

ak
e

R
F

A
R

K

SH
A

R
P

Fi
x

N
et

w
or

k

EF
FA

C
T

H
ar

dw
ar

e
co

st

4 0
5 1
6 2
7 3

12
13
14
15

8
9

10
11

1

12

8
023

9 1011

13 1415
45 67

1

12

4
8

0
567

23

91011
131415

4
0

5
1

6
2

7
3

12131415
8910114

0

5

1

7

3

121315
6

2

14

8911 10

Fig. 7. (a) Hardware structure of different automorphism units and hardware
cost comparison, (b) An example of how bit-reverse character works on the
16-point matrix transposition.

the column can be conducted by changing the SRAM fetching
order. This implies that we can simply leverage a fixed network
to implement the comprehensive transposed operation.

5) Merge computation into BConv: Prior works [34], [62]
uses the Montgomery modular multiplier due to the relatively
lower hardware overhead. However, it will bring extra Mont-
gomery representation transformation penalties when dealing
with the modulus switching operations. Meanwhile, the post-
processing of iNTT will also bring one extra modular multi-
plication with a constant. To eliminate both issues, EFFACT
analyze the widely-used iNTT−BConv−NTT computation
flow and propose to merge these extra computations into the
BConv.

In classic Montgomery algorithm [55], input data will be
converted into their single-Montgomery (SM) representations
like X → XR mod Q. The Montgomery modular multi-
plication is computed on SM representations of input data
by MontMult(XR, Y R, Q) = XY R mod Q, which
maintains the same representation between the input and
output data. The data in EFFACT will be maintained in
their SM representations through the whole process when
no modulus transformation happens. However, operations like
rescale and key-switching require data in the non-Montgomery
(NM) format to perform modulus transformation, causing
extra Montgomery representation transformation penalties. To
reduce the extra Montgomery transformations, we propose a
double-Montgomery (DM) representation of constant numbers
defined as X → XR2 mod Q. Then the DM representation
can help to merge the Montgomery transformation into BConv
as follows.

Initially, the (q̂j
−1)qj in equation 3 is kept in the NM

representation. The input data aC [j] in equation 3 naturally
stays at the SM representation. Therefore, the Montgomery
multiplication result of aC [j] and (q̂j

−1)qj will be in the NM
representation. To this end, we pre-compute the constant (q̂j)pi

in equation 3 in the DM representation. The Montgomery
multiplication results with (q̂j)pi in the DM representation will
directly change the NM-represented intermediate result from
the last multiplication back into the SM representation. With

Fig. 8. FPGA layout of EFFACT with 64 lanes.

this optimization, we eliminate the Montgomery representation
transformation in the modulus transformation.

On the other hand, a final constant multiplication with 1
N

is needed when finishing iNTT butterfly operations. In the
iNTT −BConv−NTT computation flow, each iNTT oper-
ation is followed by a BConv operation, giving the opportunity
to merge the 1

N constant multiplication into the first constant
multiplication of BConv operation, i.e. rewrite the constant
(q̂j

−1)qj in equation 3 as (q̂j
−1 ∗ 1

N)qj which can be pre-
computed.

In total, the computation merge that eliminates both the
post-processing of iNTT and the Montgomery representation
transformation penalties can be solved by redefining the right
side of BConv in equation 3 as:

{(
l−1∑
j=0

(aC [j]
SM · (q̂j−1 ∗ 1

N
)NM)qj) · q̂j

DM)pi
}0≤i<k (5)

V. EXPERIMENTAL METHODOLOGY

We evaluate a complete EFFACT system: the compiler is
built using C++ with LLVM-like IR and passes, and the
microarchitecture is fully implemented in RTL and synthesized
by using LVT TSMC 28nm technology node by Synopsis
Design Compiler with a commercial SRAM IP [71] licensed
by TSMC. Moreover, we further synthesized our RTL design
to the Xilinx VCU128 evaluation board using Vivado 2021.1.

A. Benchmarks and Parameters

Fully-packed bootstrapping: Bootstrapping is the pivotal
operation of the FHE schemes, we compare the bootstrapping
performance of EFFACT with the SOTA GPU [30], FPGA
[4], [75], and ASIC [34], [35], [63] implementation. Our fully-
packed bootstrapping algorithm consumes Lboot = 15 level,
which includes 4 levels for the CtS procedure, 3 levels for the
StC procedure, and 8 levels for the EvalMod procedure.
Logistic regression: Logistic regression is a general model
in machine learning which used for binary classification.
Previous work HELR [25] proposed a highly efficient logistic
regression algorithm based on the CKKS scheme, we regard
this work as the baseline, and target at the training phase. The
experimental results show that after 30 iterations of training
in EFFACT, the accuracy of the inference phase can reach
96.67%.
ResNet-20: ResNet-20 [43] implemented the ResNet-20 DNN
model based on the CKKS scheme, which consists of numbers
of bootstrapping and homomorphic convolutions, we evaluate

the performance of the inference on a single encrypted image
as in the original implementation.
DB-lookup based on BGV: As mentioned earlier, EFFACT is
a universal acceleration platform for BGV, BFV, and CKKS.
We also evaluate the performance of the DB Lookup applica-
tion proposed in HElib [24] based on the BGV scheme, and
we take F1’s implementation as our baseline.

In order to show it more intuitively, we list the parameters
used in the fully-packed and 256-slot bootstrapping in Table
III. HELR starts computations at level 23 and performs 256-
slot bootstrapping per two iterations, The parameters of other
benchmarks are the same as their original implementations.

TABLE III
BOOTSTRAPPING PARAMETERS

#Slots N L Lboot LCtS LEvalMod LStC log(q) dnum
215 216 24 15 4 8 3 54 4
28 216 24 13 3 8 2 54 4

B. Compiler

EFFACT’s compiler passes are LLVM-style and are in line
with the EFFACT ISA. We implemented passes for code
optimization, memory ordering, and static scheduling. We also
implemented code generation for the EFFACT microarchitec-
ture. The compiler is run on a workstation with 4 Intel Xeon
3.40 GHz CPUs.

C. System-Level Integration & Experimental Platform

EFFACT is implemented completely in RTL, including
an OoO core and four function units, together with a User
Datagram Protocol (UDP) unit. We provide an ASIC version
featured with 1.2-TB/s HBM bandwidth and 1024 lanes which
is synthesized without the UDP unit and HBM controller. The
power and area of HBM are estimated using [27]. We also
implemented the RTL on the Xilinx VCU128 evaluation board
as EFFACT’s experimental platform.

In the FPGA experimental platform, the evaluation board is
connected to the PC through a 1000-Mbit Ethernet interface.
We developed a C++ source code based on the socket library
to communicate with the FPGA using the UDP. Data for
each application begins off-chip and is loaded from FPGA
HBM. On the FPGA side, there is a corresponding module that
unpacks the UDP-formatted data and deposits it sequentially
into the HBM, and the results of the FHE program are also
packed up and transmitted using the UDP. Furthermore, the
functionality of EFFACT has been thoroughly verified by
comparing it with Lattigo [49].

Figure 8 demonstrates the layout of our design. Worth
mentioning that the system in FPGA runs only at 12.5 MHz
with 64 lanes, although we successfully synthesized it at 300
MHz with 256 lanes on Vivado. The major bottleneck lies in
the routing congestion in which the congestion level reaches 7.
The HBM bandwidth is also lowered through an asynchronous
FIFO to ensure that we can correctly scale the performance
of the 12.5 MHz with 64 lanes version to our target 300
MHz with 256 lanes FPGA-EFFACT and 1024 lanes ASIC-
EFFACT.

VI. EVALUATION

A. Area and Power Analysis

TABLE IV
ASIC-EFFACT BREAKDOWN

Components Area(mm2) Power(W)
NTTU 37.13 21.16

MADDU 3.59 3.51
MMULU 18.21 10.12
AUTOU 4.65 4.88
SRAM 81.50 43.14
HBM 29.60 31.80
Others 37.20 21.13

Table IV shows the area and power breakdown of ASIC-
EFFACT. We adopt a fine-grained NTT unit in contrast to other
ASIC designs and there are no additional transpose units and
twisting units in the data path, which leads to only 11% area
of the NTTU in ARK. Unlike other designs that use more
than 200-MB SRAM, ASIC-EFFACT only requires 27 MB,
dropping the SRAM area to 6% compared to ARK. In total,
the SRAM occupies 38.46% area and 31.79% power with 30%
and 29.22% going to FUs.

TABLE V
ASIC RESOURCE COMPARISON

Tech Freq(GHz) Area(mm2) Power(W)
F1 14/12 nm 1-2 151.4 180.4

BTS 7 nm 0.3-1.2 373.6 133.8
CraterLake 14/12 nm 1-2 472.3 320.0

ARK 7 nm 1 418.3 281.3
CL+MAD-32 14/12 nm 1 333.9 213.4

ASIC-EFFACT 28 nm 0.5 211.9 135.7

Table V shows the resource comparison with recent
ASIC designs. By technology scaling [51], [72], [73] (HBM
keeps unchanged when scaling), ASIC-EFFACT only requires
0.783×, 0.153×, 0.257×, 0.137×, and 0.414× area consump-
tion compared to F1 [62], BTS [35], CraterLake [63], ARK
[34], and CL+MAD-32 [2]. Meanwhile, ASIC-EFFACT nearly
achieves the lowest absolute power among these designs.
The main area and power drop come from the significant
reduction in SRAM capacity (nearly identical to MAD, 2×
compared to F1, more than 8× in others), no computing
resources’ buffers (some necessary pipeline registers in which
one register is only lanes×1 large) and the smart function
unit reuse scheme. In the next subsection, we will demonstrate
that ASIC-EFFACT reaches a higher performance density [48]
and power efficiency than prior ASIC designs even though we
reduce the function units and SRAM capacity.

TABLE VI
FPGA RESOURCE COMPARISON

Work Platform LUT FF BRAM URAM DSP
FAB Xilinx U280 899K 2073K 3840 960 5120

Posidon Xilinx U280 728K 915K 2048 - 8640
FPGA-EFFACT Xilinx VCU128 1246K 2096K 1343 864 8212

Table VI lists the resource utilization of our FPGA-
EFFACT. Although FPGA-EFFACT only requires 7.6-MB
SRAM, the BRAM and URAM utilization reaches more than
50% in the VCU128. This is because the BRAM and URAM
array in the FPGA have a depth of 1024 and 4096, in which
our residue polynomial mapping only uses 256 rows leading

F1 BTS CraterLake ARK CL-MAD EFFACT

0.1

1

10

100

1000

P
e
rf

o
rm

a
n
c
e
 d

e
n
s
it
y
 (

n
o
rm

a
liz

e
d
 t

o
 F

1
) Bootstrapping

 HELR

 ResNet

(a)

(b)
F1 BTS CraterLake ARK CL-MAD EFFACT

0.1

1

10

100

1000

P
o
w

e
r

e
ff

ic
ie

n
c
y
 (

n
o
rm

a
liz

e
d
 t

o
 F

1
)

 Bootstrapping

 HELR

 ResNet

Fig. 9. (a) Performance density comparison, (b) Power efficiency comparison.

to more than 75% rows unused. Meanwhile, to route FPGA-
EFFACT, we use the routability strategy of Vivado which
increases our LUT usage from ∼900K by default to 1246K.

B. Performance and Efficiency
We use the amortized time (TA.S) [30] to evaluate the per-

formance of Fully-packed Bootstrapping. The amortized time
of Bootstrapping effectively captures the reciprocal throughput
of a CKKS scheme with a certain parameter set. Therefore, it is
widely used to evaluate the Bootstrapping performance in prior
FHE accelerators [3], [34], [35]. ASIC-EFFACT is 13.49×,
4743.79×, 0.82×, 0.31×, 0.26×, and 4.93× faster than GPU
[30], F1 [62], BTS [35], CraterLake [63], ARK [34], and MAD
[2] as shown in Table VII in CKKS. ASIC-EFFACT is slower
than most ASIC designs in Bootstrapping since (1) ASIC-
EFFACT works only at 500 MHz with fewer multipliers while
others run at more than 1 GHz. (2) Bootstrapping features
frequent data movement that blocks the parallelism. However,
ASIC-EFFACT speeds up over MAD due to (1) our streaming
optimization and global memory management reduce nearly
40% DRAM access and the corresponding SRAM latency,
(2) excessive static and dynamic scheduling well explores
the instruction parallelism compared to MAD’s hand-tuned
data path, and (3) circuit-level reuse scheme is performed
on the highly serial data path which results in acceleration
with fewer computing resources. While in HELR, ASIC-
EFFACT is 89.1×, 117.7×, 3.26×, 0.43×, 0.89×, and 5.5×
faster than GPU, F1, BTS, CraterLake, ARK, and MAD.
Unlike Bootstrapping, ASIC-EFFACT becomes more compa-
rable with prior ASIC designs even if fewer function units
and lower frequency are provided because HELR does not
require as intermediate load/store as Bootstrapping as profiled
by CraterLake [63]. The same thing also happens in ResNet,
in which ASIC-EFFACT is 6.16×, 4.62×, 0.57×, 0.67×, and
2.35× faster than F1, BTS, CraterLake, ARK, and MAD.

Performance density is calculated by throughput per area
to provide an area efficiency comparison and a scale-out
evaluation. We scale prior ASIC designs to a 28-nm technol-
ogy using the scaling technique provided by TSMC in [51],
[72], [73], in which we use our SRAM IP to evaluate the

TABLE VII
PERFORMANCE ON BENCHMARKS

F1/F1+ BTS-2 CraterLake ARK FAB Poseidon Over 100× CL+MAD-32 FPGA-EFFACT ASIC-EFFACT
Parallelism 2048 2048 2048 1024 256 256 - 2048 256 1024

Multiplier Number 18432 8192 ≥33792 20480 256 256 - 14336 512 2048
HBM Bandwidth 1 TB/s 1 TB/s 1 TB/s 1 TB/s 460 GB/s 460 GB/s - 1 TB/s 460 GB/s 1.2 TB/s

On-chip Memory Cap 64 MB 512 MB 282 MB 588 MB 43 MB 8.6 MB - 32 MB 7.6 MB 27 MB
Bootstrapping(TA.S.) 260 us 0.045 us 0.017 us 0.014 us 0.477 us 0.840 us 0.74 us 0.270us 0.566 us 0.0548 us

HELR(1 iteration) 1024 ms 28.4 ms 3.73 ms 7.72 ms 103 ms 86.3 ms1 775 ms 47.81 ms 64.55 ms 8.7 ms
ResNet-20 2693 ms 2020 ms 249.45 ms 294 ms - 2661.23 ms - 1015.8 ms2 2175.41 ms 436.95 ms
DBLookup 4.36 ms - - - - - - - 0.86 ms 0.13 ms

EFFACT-27 EFFACT-54 EFFACT-108 EFFACT-162

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2
3.4
3.6

S
p
e
e
d
 u

p
 o

v
e
r

E
F

F
A

C
T

-2
7

 Bootstrapping

 HELR

 ResNet

Fig. 10. How performance scales up with memory and computing resources.

SRAM of CraterLake like SHARP [33] does since CraterLake
has not reported the exact power of SRAM. Figure 9(a)
shows that in terms of performance density, ASIC-EFFACT
achieves 6054.9×, 5.35×, 1.46×, 1.86×, and 11.89× higher
performance density than F1, BTS, CraterLake, ARK, and
MAD in Bootstrapping. While in the HELR and ResNet,
ASIC-EFFACT outperforms prior designs at least by 2.02×
and 2.7×. We also look into the power efficiency evaluated by
performance per Watt. Figure 9(b) depicts that ASIC-EFFACT
surpasses F1, BTS, CraterLake, ARK, and MAD by 8256.62×,
2.28×, 1.48×, 1.49×, and 9.76× respectively in Bootstrapping
by scaling technology node. ASIC-EFFACT also outperforms
prior architectures in HELR and ResNet by at least 2.04×
and 2.72×. ASIC-EFFACT achieves the best area and power
efficiency due to (1) streaming access removing nearly 40%
DRAM fetches compared to MAD, thus, enhancing the SRAM
efficiency, (2) computing resources re-assignment based on
our analysis, and (3) efficient fine-grained function units
and circuit-level reuse scheme further dramatically reducing
the area without heavy performance penalty. When applying
SHARP’s optimization [33] to EFFACT, we find that SAHRP-
EFFACT will further improve EFFACT’s area and power
efficiency by 1.82× and 1.74× on average.

On the FPGA side, FPGA-EFFACT can well explore the
parallelism between all the HE operations globally, thus,
FPGA-EFFACT boosts both FAB [4] and Poseidon [75] in
HELR by 1.59× and 1.34×. We also observe that FPGA-
EFFACT outperforms Poseidon in Bootstrapping by 1.48×.
However, 7.6-MB SRAM makes the frequent data movement
during Bootstrapping worse for our compiler, thus, FPGA-
EFFACT cannot exceed FAB in Bootstrapping.

C. Scalibility of EFFACT

To analyze how the computing resources and SRAM ca-
pacity impact EFFACT’s performance, we create EFFACT-
54 with 54-MB SRAM and 4096 multipliers, EFFACT-108

ba
se

lin
e

M
A
D
-e

nh
an

ce
d

gl
ob

al
 s
tre

am
in
g

an
d

m
em

or
y
op

t

fu
ll
E
FFA

C
T

0

10

20

30

40

50

60

70

80

90

Ideal MAD's DRAM transfer & running time

D
R

A
M

 t
ra

n
s
fe

r
(G

B
)

 DRAM transfer

 absolute running time

0

10

20

30

40

50

60

70

80

90

a
b
s
o
lu

te
 r

u
n
n
in

g
 t
im

e
 (

m
s
)

Fig. 11. How Bootstrapping’s DRAM transfer and absolute running time
change when incrementally applying MAD’s optimizations, EFFACT’s global
scheduling and streaming, and EFFACT’s circuit reuse scheme.

with 108-MB SRAM and 8192 multipliers, and EFFACT-162
with 162-MB SRAM and 12288 multipliers. The performance
is evaluated using a cycle-accurate C++ simulator. Figure
10 shows the results. When both the computing and SRAM
resources scale up, EFFACT can directly have better perfor-
mance since (1) when adding multipliers, the performance
of NTT instructions increases linearly, (2) the serial normal
MULT and ADD can be faster with the help of NTT units,
and (3) larger SRAM incur fewer DRAM fetches, which
means fewer memory stalls and more DRAM bandwidth
can be provided to streaming optimization. According to the
simulation results, EFFACT-108 can outperform ARK and
CraterLake in HELR and ResNet. Since Bootstrapping is more
memory intensive, EFFACT should have a 162-MB SRAM
and 12288 multipliers to catch up with ARK and CraterLake.

D. Application to other schemes

Since the CKKS, BGV, and BFV share the same algebraic
structure at the bottom layer, correspondingly, the same ba-
sic operations of the ciphertext (ModMult, ModAdd, NTT,
Auto), it’s obvious that EFFACT is also capable of accel-
erating the other two schemes, we evaluate ASIC-EFFACT
and FPGA-EFFACT over BGV application, DBLookup. From
Table VII, ASIC-EFFACT and FPGA-EFFACT are 33.54×
and 5.07× faster than F1. As for the boolean FHE scheme,
take TFHE [28] as an example, EFFACT also demon-
strates excellent acceleration capabilities. The key opera-
tion in TFHE is bootstrapping, which contains 3 major
sub-operations, ModulusSwitching, BlindRotation, and
SampleExtraction. ModulusSwitching can be mapped

into modular arithmetic and NTT in EFFACT, even though
FFT is used in previous work [29]. For BlindRotation and
SampleExtraction, as described in [3], [20], when excluding
the modular arithmetic and NTT, they are mainly linear
shift operations with some slots being reversed. Therefore,
EFFACT can support them using our automorphism unit by
bypassing the fixed network and controlling the Muxes and
reverse units to form shift operations and reverse data. We
evaluate ASIC-EFFACT on TFHE Bootstrapping [20] under
N = 213, logQ = 218, h = 1, l = 2 like HEAP [3], and
it shows the performance of 0.576-ms. Due to the flexibility
of supporting different schemes, EFFACT has more potential
than prior designs in the transciphering applications such as
switching to AES [5] or TFHE [3].

E. Sensitivity Study

Since Bootstrapping operations represent a fundamental
HE primitive, we analyze how our optimizations influence
Bootstrapping’s DRAM transfer and absolute running time
to study how EFFACT enhances efficiency in a resource-
constrained scenario. We create a bold baseline accelerator un-
der our resource-constrained hardware settings and parameter
set similar to ASIC-EFFACT (27-MB SRAM, 1TB/s DRAM
bandwidth for simplification, 2048 modular multipliers, and
3072 modular adders) without any optimization and incremen-
tally switch to MAD’s and our optimizations. Figure 11 shows
the results.

We assume that the baseline, MAD-enhanced baseline,
and ideal MAD have an ideal parallelism between memory
operations and computations. The ideal MAD has unbounded
computing resources and uses its infinite modular multipliers,
modular adders and their buffers to support the smooth data
flow processing and storing intermediate results, therefore no
intermediate results are spilled and its main DRAM transfer
is used to load secret keys or perform data structure trans-
formation. However, MAD only looks into several data paths
and highly relies on the number of computing resources and
their buffers to consume the data flow results immediately.
Therefore, with a restricted number of computing resources
and their registers, MAD-enhanced baseline cannot perform
as well as the ideal MAD. It only reduces the DRAM transfer
and absolute running time by 1.24× compared to the non-
optimized baseline. Our automatic scheduling and streaming
optimization is applied at the whole program level and is
aware of the limited computing resources and the small on-
chip memory, therefore it not only reduces the 42.2% DRAM
transfer but also reduces 30.6% of the absolute running time.
When further applying our circuit-level NTT reuse scheme,
it does not impact the DRAM transfer since it is only a
computing optimization. Instead, it improves the normal ADD
and MULT throughput which are shown in Figure 3, leading
to a 1.1× absolute running time improvement.

1To complete the full HELR benchmark, Poseidon will need more boot-
strapping operations rather than 10 iterations combined with 2 bootstrapping.

2We evaluate the performance of CL+MAD-32 on ResNet-20 using
SimFHE under the same parameter settings as EFFACT.

VII. RELATED WORK

CPU/GPU Acceleration. Previous designs have taken a
deep dive into the acceleration of HE primitives by making
better use of the CPUs and GPUs. Many software libraries
including Lattigo [49], HElib [24], SEAL [16], HEAAN [31],
and PALISADE [40] have been proposed to improve the HE
performance on CPUs. Intel HEXL [12] further used the AVX-
512 to accelerate HE operations over SEAL and PALISADE.
However, due to the limited resources, CPU schemes remain
impractical. Over 100× [30] accelerated the FHE primitives
including CKKS bootstrapping on GPUs by better utilizing
the memory bandwidth.

FPGA/ASIC Acceleration. HEAX [61] and [64] proposed
FPGA solutions for level HE. FAB [4] and Poseidon [75] are
pioneers in realizing the fully-packed bootstrapping on FPGA,
while HEAP [3] explored the possibility of FPGA acceleration
for HE scheme-switching. However, their designs either target
leveled HE or never explore the parallelism between HE ops.
CoFHEE [50], F1 [62], BTS [35], ARK [34], Cheetah [59],
SHARP [33], and CraterLake [63] are ASIC designs to ac-
celerate HE schemes. Cheetah targets privacy-preserving ML
using LHE and requires expensive communication overhead.
F1, BTS, ARK, SHARP, and CraterLake support fully-packed
bootstrapping and show impressive acceleration over GPUs
and FPGAs. However, they require a huge amount of on-
chip SRAMs and computing resources. CiFlow [52] proposes
a novel data flow framework tuned for the hybrid key switch
and shows huge data movement reduction. However, their data
flow is manually tuned only for the evaluation key’s DRAM
loading in the key-switching. It highly relies on the large
number of computing resources to immediately consume their
intermediate results of their data flow.

VIII. CONCLUSION

In this work, we propose EFFACT, aiming at the challenging
problems of highly efficient and cost-sensitive FHE accelera-
tion and propose. EFFACT analyzes the proportion of different
FHE operations and the inherent parallelism within them in
several real-world benchmarks, exhibiting opportunities to re-
assign the computing resources. Based on this observation,
we tailor the specialized BConv unit, devise novel compact
NTT and automorphism units, and propose a circuit-level reuse
scheme. These innovations aim to leverage reconfigurable
technology to enhance efficiency while minimizing perfor-
mance penalties. On-chip memory is also significant for a
compact accelerator. To fully utilize the limited SRAM, we
propose a streaming optimization in which function units can
directly fetch their operands from DRAM instead of waiting
for SRAM to be filled. Also, we perform a design space
exploration to find an optimal SRAM size targeting high
efficiency and low cost. Without loss of generality, we also
devise a generalized ISA and a compiler backend that can
support several FHE schemes and can be integrated into recent
compiler frontends. Experimental results demonstrate that EF-
FACT outperforms state-of-the-art baseline FHE accelerators
in terms of efficiency, and area/on-chip memory overhead.

ACKNOWLEDGEMENTS

This work is supported in part by the National Key R&D
Program of China (Grant No. 2023YFB4403500), and in part
by the National Natural Science Foundation of China (Grant
No. 62274102)

REFERENCES

[1] S. Abraham, W. Meleis, and I. Baev, “Efficient backtracking instruction
schedulers,” in Proceedings 2000 International Conference on Parallel
Architectures and Compilation Techniques (Cat. No.PR00622), pp. 301–
308, ISSN: 1089-795X.

[2] R. Agrawal, L. d. Castro, C. Juvekar, A. Chandrakasan, V. Vaikun-
tanathan, and A. Joshi, “Mad: Memory-aware design techniques for
accelerating fully homomorphic encryption,” in 2023 56th IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2023, pp. 685–
697.

[3] R. Agrawal, A. Chandrakasan, and A. Joshi,
“Heap: A fully homomorphic encryption accelerator
with parallelized bootstrapping,” 2024, https://bu-icsg.github.io/
publications/2024/fhe parallelized bootstrapping isca 2024.pdf. [On-
line]. Available: https://bu-icsg.github.io/publications/2024/fhe
parallelized bootstrapping isca 2024.pdf

[4] R. Agrawal, L. de Castro, G. Yang, C. Juvekar, R. Yazicigil,
A. Chandrakasan, V. Vaikuntanathan, and A. Joshi, “FAB: An FPGA-
based accelerator for bootstrappable fully homomorphic encryption,”
version: 1. [Online]. Available: http://arxiv.org/abs/2207.11872

[5] E. Aharoni, N. Drucker, G. Ezov, E. Kushnir, H. Shaul,
and O. Soceanu, “E2E near-standard and practical authenticated
transciphering,” Cryptology ePrint Archive, Paper 2023/1040, 2023.
[Online]. Available: https://eprint.iacr.org/2023/1040

[6] L. O. Andersen and P. Lee, “Program analysis and specialization for the
c programming language,” 2005.

[7] A. Aysu, C. Patterson, and P. Schaumont, “Low-cost and area-efficient
fpga implementations of lattice-based cryptography,” in 2013 IEEE
International Symposium on Hardware-Oriented Security and Trust
(HOST), 2013, pp. 81–86.

[8] A. A. Badawi, J. Bates, F. Bergamaschi, D. B. Cousins, S. Erabelli,
N. Genise, S. Halevi, H. Hunt, A. Kim, Y. Lee, Z. Liu,
D. Micciancio, I. Quah, Y. Polyakov, S. R.V., K. Rohloff, J. Saylor,
D. Suponitsky, M. Triplett, V. Vaikuntanathan, and V. Zucca, “Openfhe:
Open-source fully homomorphic encryption library,” Cryptology
ePrint Archive, Paper 2022/915, 2022, https://eprint.iacr.org/2022/915.
[Online]. Available: https://eprint.iacr.org/2022/915

[9] D. H. Bailey, “Ffts in external or hierarchical memory,” in Super-
computing ’89:Proceedings of the 1989 ACM/IEEE Conference on
Supercomputing, 1989, pp. 234–242.

[10] J.-C. Bajard, J. Eynard, M. A. Hasan, and V. Zucca, “A full RNS
variant of FV like somewhat homomorphic encryption schemes,” in
Selected Areas in Cryptography – SAC 2016, R. Avanzi and H. Heys,
Eds. Springer International Publishing, vol. 10532, pp. 423–442,
series Title: Lecture Notes in Computer Science. [Online]. Available:
https://link.springer.com/10.1007/978-3-319-69453-5 23

[11] U. Banerjee, A. Pathak, and A. P. Chandrakasan, “2.3 an energy-efficient
configurable lattice cryptography processor for the quantum-secure
internet of things,” in 2019 IEEE International Solid-State Circuits
Conference - (ISSCC), 2019, pp. 46–48.

[12] F. Boemer, S. Kim, G. Seifu, F. D.M. de Souza, and V. Gopal, “Intel
hexl: Accelerating homomorphic encryption with intel avx512-ifma52,”
in Proceedings of the 9th on Workshop on Encrypted Computing &
Applied Homomorphic Cryptography, ser. WAHC ’21. New York, NY,
USA: Association for Computing Machinery, 2021, p. 57–62. [Online].
Available: https://doi.org/10.1145/3474366.3486926

[13] J.-P. Bossuat, C. Mouchet, J. Troncoso-Pastoriza, and J.-P. Hubaux,
“Efficient bootstrapping for approximate homomorphic encryption with
non-sparse keys,” Cryptology ePrint Archive, Paper 2020/1203, 2020,
https://eprint.iacr.org/2020/1203. [Online]. Available: https://eprint.iacr.
org/2020/1203

[14] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homo-
morphic encryption without bootstrapping,” p. 35.

[15] P. Briggs and K. D. Cooper, “Effective partial redundancy elimination,”
ACM SIGPLAN Notices, vol. 29, no. 6, pp. 159–170, 1994.

[16] H. Chen, K. Han, Z. Huang, A. Jalali, and K. Laine, “Simple encrypted
arithmetic library v2.3.0,” p. 35.

[17] J. H. Cheon, K. Han, A. Kim, M. Kim, and Y. Song, “A full
RNS variant of approximate homomorphic encryption,” in Selected
Areas in Cryptography – SAC 2018, C. Cid and M. J. Jacobson,
Eds. Springer International Publishing, vol. 11349, pp. 347–368,
series Title: Lecture Notes in Computer Science. [Online]. Available:
http://link.springer.com/10.1007/978-3-030-10970-7 16

[18] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic
encryption for arithmetic of approximate numbers.” [Online]. Available:
https://eprint.iacr.org/undefined/undefined

[19] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “Tfhe:
Fast fully homomorphic encryption over the torus,” Cryptology
ePrint Archive, Paper 2018/421, 2018, https://eprint.iacr.org/2018/421.
[Online]. Available: https://eprint.iacr.org/2018/421

[20] I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène, “TFHE:
Fast Fully Homomorphic Encryption Over the Torus,” Journal of
Cryptology, vol. 33, no. 1, pp. 34–91, Jan. 2020. [Online]. Available:
https://doi.org/10.1007/s00145-019-09319-x

[21] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption,” Cryptology ePrint Archive, Paper 2012/144, 2012,
https://eprint.iacr.org/2012/144. [Online]. Available: https://eprint.iacr.
org/2012/144

[22] Georgieva, G. Nicolas, Mariya, C. Sergiu, Troncoso-Pastoriza, and
J. Ramon, “Privacy-preserving semi-parallel logistic regression training
with Fully Homomorphic Encryption,” 2019, report Number: 101.
[Online]. Available: https://eprint.iacr.org/2019/101

[23] S. Halevi, Y. Polyakov, and V. Shoup, “An improved RNS variant of
the BFV homomorphic encryption scheme,” in Topics in Cryptology –
CT-RSA 2019, M. Matsui, Ed. Springer International Publishing, vol.
11405, pp. 83–105, series Title: Lecture Notes in Computer Science.
[Online]. Available: http://link.springer.com/10.1007/978-3-030-12612-
4 5

[24] S. Halevi and V. Shoup, “Design and implementation of HElib: a
homomorphic encryption library,” Cryptology ePrint Archive, Paper
2020/1481, 2020, https://eprint.iacr.org/2020/1481. [Online]. Available:
https://eprint.iacr.org/2020/1481

[25] K. Han, S. Hong, J. H. Cheon, and D. Park, “Logistic Regression
on Homomorphic Encrypted Data at Scale,” AAAI, vol. 33, pp.
9466–9471, Jul. 2019. [Online]. Available: https://www.aaai.org/ojs/
index.php/AAAI/article/view/5000

[26] K. Han and D. Ki, “Better bootstrapping for approximate homomorphic
encryption,” Cryptology ePrint Archive, Paper 2019/688, 2019,
https://eprint.iacr.org/2019/688. [Online]. Available: https://eprint.iacr.
org/2019/688

[27] R. Inc, “Hbm2e and gddr6: Memory solutions for ai,” 2020,
https://go.rambus.com/hbm2e-gddr6-memory-solutions-for-ai. [Online].
Available: https://go.rambus.com/hbm2e-gddr6-memory-solutions-for-
ai

[28] A. Jain, P. M. R. Rasmussen, and A. Sahai, “Threshold fully homomor-
phic encryption,” p. 40.

[29] L. Jiang, Q. Lou, and N. Joshi, “Matcha: A fast and energy-
efficient accelerator for fully homomorphic encryption over the
torus,” in Proceedings of the 59th ACM/IEEE Design Automation
Conference, ser. DAC ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 235–240. [Online]. Available:
https://doi.org/10.1145/3489517.3530435

[30] W. Jung, S. Kim, J. H. Ahn, J. H. Cheon, and Y. Lee, “Over 100x
faster bootstrapping in fully homomorphic encryption through memory-
centric optimization with GPUs,” Cryptology ePrint Archive, Paper
2021/508, 2021, https://eprint.iacr.org/2021/508. [Online]. Available:
https://eprint.iacr.org/2021/508

[31] W. Jung, E. Lee, S. Kim, J. Kim, N. Kim, K. Lee, C. Min, J. H. Cheon,
and J. H. Ahn, “Accelerating fully homomorphic encryption through
architecture-centric analysis and optimization,” IEEE Access, vol. 9, pp.
98 772–98 789, 2021.

[32] R. Kennedy, S. Chan, S.-M. Liu, R. Lo, P. Tu, and F. Chow, “Partial
redundancy elimination in SSA form,” vol. 21, no. 3, pp. 627–676.
[Online]. Available: https://dl.acm.org/doi/10.1145/319301.319348

[33] J. Kim, S. Kim, J. Choi, J. Park, D. Kim, and J. H. Ahn,
“Sharp: A short-word hierarchical accelerator for robust and practical
fully homomorphic encryption,” in Proceedings of the 50th Annual
International Symposium on Computer Architecture, ser. ISCA ’23.

https://bu-icsg.github.io/publications/2024/fhe_parallelized_bootstrapping_isca_2024.pdf
https://bu-icsg.github.io/publications/2024/fhe_parallelized_bootstrapping_isca_2024.pdf
https://bu-icsg.github.io/publications/2024/fhe_parallelized_bootstrapping_isca_2024.pdf
https://bu-icsg.github.io/publications/2024/fhe_parallelized_bootstrapping_isca_2024.pdf
http://arxiv.org/abs/2207.11872
https://eprint.iacr.org/2023/1040
https://eprint.iacr.org/2022/915
https://eprint.iacr.org/2022/915
https://link.springer.com/10.1007/978-3-319-69453-5_23
https://doi.org/10.1145/3474366.3486926
https://eprint.iacr.org/2020/1203
https://eprint.iacr.org/2020/1203
https://eprint.iacr.org/2020/1203
http://link.springer.com/10.1007/978-3-030-10970-7_16
https://eprint.iacr.org/undefined/undefined
https://eprint.iacr.org/2018/421
https://eprint.iacr.org/2018/421
https://doi.org/10.1007/s00145-019-09319-x
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2019/101
http://link.springer.com/10.1007/978-3-030-12612-4_5
http://link.springer.com/10.1007/978-3-030-12612-4_5
https://eprint.iacr.org/2020/1481
https://eprint.iacr.org/2020/1481
https://www.aaai.org/ojs/index.php/AAAI/article/view/5000
https://www.aaai.org/ojs/index.php/AAAI/article/view/5000
https://eprint.iacr.org/2019/688
https://eprint.iacr.org/2019/688
https://eprint.iacr.org/2019/688
https://go.rambus.com/hbm2e-gddr6-memory-solutions-for-ai
https://go.rambus.com/hbm2e-gddr6-memory-solutions-for-ai
https://go.rambus.com/hbm2e-gddr6-memory-solutions-for-ai
https://doi.org/10.1145/3489517.3530435
https://eprint.iacr.org/2021/508
https://eprint.iacr.org/2021/508
https://dl.acm.org/doi/10.1145/319301.319348

New York, NY, USA: Association for Computing Machinery, 2023.
[Online]. Available: https://doi.org/10.1145/3579371.3589053

[34] J. Kim, G. Lee, S. Kim, G. Sohn, J. Kim, M. Rhu, and J. H.
Ahn, “ARK: Fully homomorphic encryption accelerator with runtime
data generation and inter-operation key reuse.” [Online]. Available:
http://arxiv.org/abs/2205.00922

[35] S. Kim, J. Kim, M. J. Kim, W. Jung, M. Rhu, J. Kim,
and J. H. Ahn, “BTS: An accelerator for bootstrappable fully
homomorphic encryption,” in Proceedings of the 49th Annual
International Symposium on Computer Architecture, pp. 711–725.
[Online]. Available: http://arxiv.org/abs/2112.15479

[36] J. Knoop, O. Rüthing, and B. Steffen, “Lazy code motion,” vol. 27,
no. 7, pp. 224–234. [Online]. Available: https://dl.acm.org/doi/10.1145/
143103.143136

[37] K. Koul, J. Melchert, K. Sreedhar, L. Truong, G. Nyengele, K. Zhang,
Q. Liu, J. Setter, P.-H. Chen, Y. Mei, M. Strange, R. Daly, C. Donovick,
A. Carsello, T. Kong, K. Feng, D. Huff, A. Nayak, R. Setaluri,
J. Thomas, N. Bhagdikar, D. Durst, Z. Myers, N. Tsiskaridze,
S. Richardson, R. Bahr, K. Fatahalian, P. Hanrahan, C. Barrett,
M. Horowitz, C. Torng, F. Kjolstad, and P. Raina, “Aha: An agile
approach to the design of coarse-grained reconfigurable accelerators
and compilers,” ACM Trans. Embed. Comput. Syst., vol. 22, no. 2, jan
2023. [Online]. Available: https://doi.org/10.1145/3534933

[38] S. Krishnan, Z. Wan, K. Bhardwaj, P. Whatmough, A. Faust, S. Neuman,
G.-Y. Wei, D. Brooks, and V. J. Reddi, “Automatic domain-specific
soc design for autonomous unmanned aerial vehicles,” in 2022 55th
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2022, pp. 300–317.

[39] S. Krishnan, A. Yazdanbakhsh, S. Prakash, J. Jabbour, I. Uchendu,
S. Ghosh, B. Boroujerdian, D. Richins, D. Tripathy, A. Faust, and
V. Janapa Reddi, “Archgym: An open-source gymnasium for machine
learning assisted architecture design,” in Proceedings of the 50th
Annual International Symposium on Computer Architecture, ser. ISCA
’23. New York, NY, USA: Association for Computing Machinery,
2023. [Online]. Available: https://doi.org/10.1145/3579371.3589049

[40] Y. Lab., “PALISADE lattice cryptography library,” https://github.com/
yamanalab/PALISADE, 2021.

[41] C. Lattner and V. Adve, “Llvm: a compilation framework for lifelong
program analysis & transformation,” in International Symposium on
Code Generation and Optimization, 2004. CGO 2004., 2004, pp. 75–86.

[42] E. Lee, J.-W. Lee, J. Lee, Y.-S. Kim, Y. Kim, J.-S. No, and
W. Choi, “Low-complexity deep convolutional neural networks on
fully homomorphic encryption using multiplexed parallel convolutions,”
Cryptology ePrint Archive, Paper 2021/1688, 2021, https://eprint.iacr.
org/2021/1688. [Online]. Available: https://eprint.iacr.org/2021/1688

[43] J.-W. Lee, H. Kang, Y. Lee, W. Choi, J. Eom, M. Deryabin, E. Lee,
J. Lee, D. Yoo, Y.-S. Kim, and J.-S. No, “Privacy-preserving machine
learning with fully homomorphic encryption for deep neural network,”
IEEE Access, vol. 10, pp. 30 039–30 054, 2022.

[44] Y. Lee, S. Cheon, D. Kim, D. Lee, and H. Kim, “Performance-
aware scale analysis with reserve for homomorphic encryption,”
in Proceedings of the 29th ACM International Conference on
Architectural Support for Programming Languages and Operating
Systems, Volume 1, ser. ASPLOS ’24. New York, NY, USA:
Association for Computing Machinery, 2024, p. 302–317. [Online].
Available: https://doi.org/10.1145/3617232.3624870

[45] Li, S. Yongsoo, Baiyu, K. Miran, Micciancio, and Daniele, “Semi-
parallel Logistic Regression for GWAS on Encrypted Data,” 2019,
report Number: 294. [Online]. Available: https://eprint.iacr.org/2019/294

[46] J. Lin, L. Zhu, W.-M. Chen, W.-C. Wang, C. Gan, and S. Han, “On-
device training under 256kb memory,” in Proceedings of the 36th
International Conference on Neural Information Processing Systems, ser.
NIPS ’22. Red Hook, NY, USA: Curran Associates Inc., 2024.

[47] S. Liu, J. Weng, D. Kupsh, A. Sohrabizadeh, Z. Wang, L. Guo, J. Liu,
M. Zhulin, R. Mani, L. Zhang, J. Cong, and T. Nowatzki, “Overgen:
Improving fpga usability through domain-specific overlay generation,”
in 2022 55th IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2022, pp. 35–56.

[48] P. Lotfi-Kamran, B. Grot, M. Ferdman, S. Volos, O. Kocberber,
J. Picorel, A. Adileh, D. Jevdjic, S. Idgunji, E. Ozer, and
B. Falsafi, “Scale-out processors,” SIGARCH Comput. Archit. News,
vol. 40, no. 3, p. 500–511, jun 2012. [Online]. Available: https:
//doi.org/10.1145/2366231.2337217

[49] C. Mouchet, J.-P. Bossuat, J. Troncoso-Pastoriza, and J.-P. Hubaux,
“Lattigo: a multiparty homomorphic encryption library in go,” p. 6.

[50] M. Nabeel, D. Soni, M. Ashraf, M. A. Gebremichael, H. Gamil,
E. Chielle, R. Karri, M. Sanduleanu, and M. Maniatakos, “CoFHEE:
A co-processor for fully homomorphic encryption execution,” version:
1. [Online]. Available: http://arxiv.org/abs/2204.08742

[51] S. Narasimha, B. Jagannathan, A. Ogino, D. Jaeger, B. Greene,
C. Sheraw, K. Zhao, B. Haran, U. Kwon, A. K. M. Mahalingam, B. Kan-
nan, B. Morganfeld, J. Dechene, C. Radens, A. Tessier, A. Hassan,
H. Narisetty, I. Ahsan, M. Aminpur, C. An, M. Aquilino, A. Arya,
R. Augur, N. Baliga, R. Bhelkar, G. Biery, A. Blauberg, N. Borjem-
scaia, A. Bryant, L. Cao, V. Chauhan, M. Chen, L. Cheng, J. Choo,
C. Christiansen, T. Chu, B. Cohen, R. Coleman, D. Conklin, S. Crown,
A. da Silva, D. Dechene, G. Derderian, S. Deshpande, G. Dilliway,
K. Donegan, M. Eller, Y. Fan, Q. Fang, A. Gassaria, R. Gauthier,
S. Ghosh, G. Gifford, T. Gordon, M. Gribelyuk, G. Han, J. Han, K. Han,
M. Hasan, J. Higman, J. Holt, L. Hu, L. Huang, C. Huang, T. Hung,
Y. Jin, J. Johnson, S. Johnson, V. Joshi, M. Joshi, P. Justison, S. Kalaga,
T. Kim, W. Kim, R. Krishnan, B. Krishnan, K. Anil, M. Kumar, J. Lee,
R. Lee, J. Lemon, S. Liew, P. Lindo, M. Lingalugari, M. Lipinski, P. Liu,
J. Liu, S. Lucarini, W. Ma, E. Maciejewski, S. Madisetti, A. Malinowski,
J. Mehta, C. Meng, S. Mitra, C. Montgomery, H. Nayfeh, T. Nigam,
G. Northrop, K. Onishi, C. Ordonio, M. Ozbek, R. Pal, S. Parihar,
O. Patterson, E. Ramanathan, I. Ramirez, R. Ranjan, J. Sarad, V. Sarde-
sai, S. Saudari, C. Schiller, B. Senapati, C. Serrau, N. Shah, T. Shen,
H. Sheng, J. Shepard, Y. Shi, M. Silvestre, D. Singh, Z. Song, J. Sporre,
P. Srinivasan, Z. Sun, A. Sutton, R. Sweeney, K. Tabakman, M. Tan,
X. Wang, E. Woodard, G. Xu, D. Xu, T. Xuan, Y. Yan, J. Yang, K. Yeap,
M. Yu, A. Zainuddin, J. Zeng, K. Zhang, M. Zhao, Y. Zhong, R. Carter,
C.-H. Lin, S. Grunow, C. Child, M. Lagus, R. Fox, E. Kaste, G. Gomba,
S. Samavedam, P. Agnello, and D. K. Sohn, “A 7nm cmos technology
platform for mobile and high performance compute application,” in 2017
IEEE International Electron Devices Meeting (IEDM), 2017, pp. 29.5.1–
29.5.4.

[52] N. Neda, A. Ebel, B. Reynwar, and B. Reagen, “Ciflow: Dataflow
analysis and optimization of key switching for homomorphic
encryption,” 2024. [Online]. Available: https://arxiv.org/abs/2311.01598

[53] T. Nowatzki, V. Gangadhar, N. Ardalani, and K. Sankaralingam,
“Stream-dataflow acceleration,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture, 2017, pp. 416–429.

[54] S. Park, W. Song, S. Nam, H. Kim, J. Shin, and J. Lee, “Heaan.mlir:
An optimizing compiler for fast ring-based homomorphic encryption,”
Proc. ACM Program. Lang., vol. 7, no. PLDI, jun 2023. [Online].
Available: https://doi.org/10.1145/3591228

[55] M. Peter, L., “Modular multiplication without trial division,”
Mathematics of Computation, vol. 44, pp. 519–521, 1985. [Online].
Available: https://api.semanticscholar.org/CorpusID:119574413

[56] M. Poletto and V. Sarkar, “Linear scan register allocation,” vol. 21,
no. 5, pp. 895–913. [Online]. Available: https://dl.acm.org/doi/10.1145/
330249.330250

[57] T. Pöppelmann and T. Güneysu, “Towards efficient arithmetic for
lattice-based cryptography on reconfigurable hardware,” in Progress in
Cryptology – LATINCRYPT 2012, A. Hevia and G. Neven, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 139–158.

[58] V. Porpodas and M. Cintra, “CAeSaR: Unified cluster-assignment
scheduling and communication reuse for clustered VLIW processors,” in
2013 International Conference on Compilers, Architecture and Synthesis
for Embedded Systems (CASES), pp. 1–10.

[59] B. Reagen, W.-S. Choi, Y. Ko, V. T. Lee, H.-H. S. Lee, G.-Y. Wei,
and D. Brooks, “Cheetah: Optimizing and accelerating homomorphic
encryption for private inference,” in 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA), pp. 26–39, ISSN:
2378-203X.

[60] O. Regev, “The learning with errors problem (invited survey),” in 2010
IEEE 25th Annual Conference on Computational Complexity, 2010, pp.
191–204.

[61] M. S. Riazi, K. Laine, B. Pelton, and W. Dai, “Heax: An
architecture for computing on encrypted data,” Proceedings of the
Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, 2019. [Online].
Available: https://api.semanticscholar.org/CorpusID:210836379

[62] N. Samardzic, A. Feldmann, A. Krastev, S. Devadas, R. Dreslinski,
C. Peikert, and D. Sanchez, “F1: A fast and programmable accelerator
for fully homomorphic encryption,” in MICRO-54: 54th Annual

https://doi.org/10.1145/3579371.3589053
http://arxiv.org/abs/2205.00922
http://arxiv.org/abs/2112.15479
https://dl.acm.org/doi/10.1145/143103.143136
https://dl.acm.org/doi/10.1145/143103.143136
https://doi.org/10.1145/3534933
https://doi.org/10.1145/3579371.3589049
https://github.com/yamanalab/PALISADE
https://github.com/yamanalab/PALISADE
https://eprint.iacr.org/2021/1688
https://eprint.iacr.org/2021/1688
https://eprint.iacr.org/2021/1688
https://doi.org/10.1145/3617232.3624870
https://eprint.iacr.org/2019/294
https://doi.org/10.1145/2366231.2337217
https://doi.org/10.1145/2366231.2337217
http://arxiv.org/abs/2204.08742
https://arxiv.org/abs/2311.01598
https://doi.org/10.1145/3591228
https://api.semanticscholar.org/CorpusID:119574413
https://dl.acm.org/doi/10.1145/330249.330250
https://dl.acm.org/doi/10.1145/330249.330250
https://api.semanticscholar.org/CorpusID:210836379

IEEE/ACM International Symposium on Microarchitecture. ACM, pp.
238–252. [Online]. Available: https://dl.acm.org/doi/10.1145/3466752.
3480070

[63] N. Samardzic, A. Feldmann, A. Krastev, N. Manohar, N. Genise,
S. Devadas, K. Eldefrawy, C. Peikert, and D. Sanchez, “CraterLake: a
hardware accelerator for efficient unbounded computation on encrypted
data,” in Proceedings of the 49th Annual International Symposium
on Computer Architecture. ACM, pp. 173–187. [Online]. Available:
https://dl.acm.org/doi/10.1145/3470496.3527393

[64] S. Sinha Roy, F. Turan, K. Jarvinen, F. Vercauteren, and I. Verbauwhede,
“FPGA-based high-performance parallel architecture for homomorphic
computing on encrypted data,” in 2019 IEEE International Symposium
on High Performance Computer Architecture (HPCA). IEEE, pp. 387–
398. [Online]. Available: https://ieeexplore.ieee.org/document/8675244/

[65] S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and A. Moshovos,
“Spatial memory streaming,” ACM SIGARCH Computer Architecture
News, vol. 34, no. 2, pp. 252–263, 2006.

[66] P. H. Sweany and S. J. Beaty, “Dominator-path scheduling: a global
scheduling method,” vol. 23, no. 1, pp. 260–263. [Online]. Available:
https://dl.acm.org/doi/10.1145/144965.145824

[67] C. Tan, C. Xie, A. Li, K. J. Barker, and A. Tumeo, “Aurora: Automated
refinement of coarse-grained reconfigurable accelerators,” in 2021 De-
sign, Automation & Test in Europe Conference & Exhibition (DATE),
2021, pp. 1388–1393.

[68] O. Traub, G. Holloway, and M. D. Smith, “Quality and speed in
linear-scan register allocation,” vol. 33, no. 5, pp. 142–151. [Online].
Available: https://dl.acm.org/doi/10.1145/277652.277714

[69] J. Weng, S. Liu, V. Dadu, Z. Wang, P. Shah, and T. Nowatzki, “Dsagen:
Synthesizing programmable spatial accelerators,” in 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA),
2020, pp. 268–281.

[70] C. Wimmer and M. Franz, “Linear scan register allocation on SSA
form,” in Proceedings of the 8th annual IEEE/ACM international
symposium on Code generation and optimization. ACM, pp. 170–179.
[Online]. Available: https://dl.acm.org/doi/10.1145/1772954.1772979

[71] S.-Y. Wu, J. Liaw, C. Lin, M. Chiang, C. Yang, J. Cheng, M. Tsai,
M. Liu, P. Wu, C. Chang, L. Hu, C. Lin, H. Chen, S. Chang, S. Wang,
P. Tong, Y. Hsieh, K. Pan, C. Hsieh, C. Chen, C. Yao, C. Chen, T. Lee,
C. Chang, H. Lin, S. Chen, J. Shieh, M. Tsai, S. Jang, K. Chen, Y. Ku,
Y. See, and W. Lo, “A highly manufacturable 28nm cmos low power
platform technology with fully functional 64mb sram using dual/tripe
gate oxide process,” in 2009 Symposium on VLSI Technology, 2009, pp.
210–211.

[72] S.-Y. Wu, C. Y. Lin, M. C. Chiang, J. J. Liaw, J. Y. Cheng, S. H. Yang,
M. Liang, T. Miyashita, C. H. Tsai, B. C. Hsu, H. Y. Chen, T. Yamamoto,
S. Y. Chang, V. S. Chang, C. H. Chang, J. H. Chen, H. F. Chen, K. C.
Ting, Y. K. Wu, K. H. Pan, R. F. Tsui, C. H. Yao, P. R. Chang, H. M.
Lien, T. L. Lee, H. M. Lee, W. Chang, T. Chang, R. Chen, M. Yeh,
C. C. Chen, Y. H. Chiu, Y. H. Chen, H. C. Huang, Y. C. Lu, C. W.
Chang, M. H. Tsai, C. C. Liu, K. S. Chen, C. C. Kuo, H. T. Lin, S. M.
Jang, and Y. Ku, “A 16nm finfet cmos technology for mobile soc and
computing applications,” in 2013 IEEE International Electron Devices
Meeting, 2013, pp. 9.1.1–9.1.4.

[73] S.-Y. Wu, C. Lin, M. Chiang, J. Liaw, J. Cheng, S. Yang, C. Tsai,
P. Chen, T. Miyashita, C. Chang, V. Chang, K. Pan, J. Chen, Y. Mor,
K. Lai, C. Liang, H. Chen, S. Chang, C. Lin, C. Hsieh, R. Tsui, C. Yao,
C. Chen, R. Chen, C. Lee, H. Lin, C. Chang, K. Chen, M. Tsai, K. Chen,
Y. Ku, and S. M. Jang, “A 7nm cmos platform technology featuring
4th generation finfet transistors with a 0.027um2 high density 6-t sram
cell for mobile soc applications,” in 2016 IEEE International Electron
Devices Meeting (IEDM), 2016, pp. 2.6.1–2.6.4.

[74] Q. Xiao, S. Zheng, B. Wu, P. Xu, X. Qian, and Y. Liang, “Hasco:
Towards agile hardware and software co-design for tensor computation,”
in 2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), 2021, pp. 1055–1068.

[75] Y. Yang, H. Zhang, S. Fan, H. Lu, M. Zhang, and X. Li,
“Poseidon: Practical homomorphic encryption accelerator,” 2023
IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pp. 870–881, 2023. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:257719794

[76] J. Zhang, X. Cheng, L. Yang, J. Hu, X. Liu, and K. Chen, “Sok:
Fully homomorphic encryption accelerators,” ACM Computing Surveys,
2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:
254247068

https://dl.acm.org/doi/10.1145/3466752.3480070
https://dl.acm.org/doi/10.1145/3466752.3480070
https://dl.acm.org/doi/10.1145/3470496.3527393
https://ieeexplore.ieee.org/document/8675244/
https://dl.acm.org/doi/10.1145/144965.145824
https://dl.acm.org/doi/10.1145/277652.277714
https://dl.acm.org/doi/10.1145/1772954.1772979
https://api.semanticscholar.org/CorpusID:257719794
https://api.semanticscholar.org/CorpusID:257719794
https://api.semanticscholar.org/CorpusID:254247068
https://api.semanticscholar.org/CorpusID:254247068

	Introduction
	Background
	RNS-CKKS FHE scheme
	Number Theoretic Transformation (NTT)
	Key-switching and Base Conversion (BConv)
	Prior FHE accelerators

	Opportunities and EFFACT proposals
	Removing BConv units
	Reusing function units at circuit level
	Fine-grained NTT units

	EFFACT Platform
	ISA overview
	Compiler Design
	Code Optimizations
	Static Scheduling & Memory Allocation
	Instruction Merging for Streaming Memory Access
	Machine Code Generation

	Streaming Memory Access
	EFFACT Architecture
	OoO core
	Memory and Interfaces
	Reconfigurable NTT units
	Auto units
	Merge computation into BConv

	Experimental Methodology
	Benchmarks and Parameters
	Compiler
	System-Level Integration & Experimental Platform

	Evaluation
	Area and Power Analysis
	Performance and Efficiency
	Scalibility of EFFACT
	Application to other schemes
	Sensitivity Study

	Related Work
	Conclusion
	References

