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Abstract— We study a problem of simultaneous system iden-
tification and model predictive control of nonlinear systems.
Particularly, we provide an algorithm for systems with unknown
residual dynamics that can be expressed by Koopman opera-
tors. Such residual dynamics can model external disturbances
and modeling errors, such as wind and wave disturbances to
aerial and marine vehicles, or inaccurate model parameters.
The algorithm has finite-time near-optimality guarantees and
asymptotically converges to the optimal non-causal controller.
Specifically, the algorithm enjoys sublinear dynamic regret,
defined herein as the suboptimality against an optimal clair-
voyant controller that knows how the unknown dynamics will
adapt to its states and actions. To this end, we assume the
algorithm is given Koopman observable functions such that the
unknown dynamics can be approximated by a linear dynamical
system. Then, it employs model predictive control based on the
current learned model of the unknown residual dynamics. This
model is updated online using least squares in a self-supervised
manner based on the data collected while controlling the system.
We validate our algorithm in physics-based simulations of a
cart-pole system aiming to maintain the pole upright despite
inaccurate model parameters.

I. INTRODUCTION

In the future, mobile robots will leverage their on-board
control capabilities to complete tasks such as package de-
livery [1], target tracking [2], and inspection and mainte-
nance [3]. Such tasks require accurate and efficient tracking
control under uncertainty, particularly, under unknown dy-
namics and external disturbances. This is challenging since
the uncertainty is versatile across different environments and
is possibly adaptive to robots’ actions and states. Examples of
such tasks are: quadrotors to (i) pick up and carry packages
of unknown weight, (ii) chase a moving target at high speeds
where the induced aerodynamic drag is hard to model, and
(iii) inspect and maintain outdoor infrastructure exposed to
turbulence and wind gusts.

State-of-the-art methods for control under unknown dy-
namics and disturbances include: robust control [4]–[8];
adaptive control and disturbance compensation [9]–[13]; and
online learning [14]–[21]. The robust control methods, given
a known upper bound on the magnitude of the noise, can
be conservative due to assuming worse-case disturbance
realization [22], instead of planning based on an accurate
predictive model of the disturbance. Similarly, the adaptive
control and the online learning control methods may exhibit
sub-optimal performance due to only reacting to the history
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Fig. 1: Overview of Pipeline for Model Predictive Control
with Online Learning of Koopman Operator. The pipeline
is composed of two interacting modules: (i) a model predictive
control (MPC) module, and (ii) an online Koopman learning module
with predefined Koopman observable functions. The MPC module
uses the estimated unknown dynamics from the Koopman learning
module to calculate the next control input. Given the control input
and the observed new state, the online Koopman learning module
then updates the estimate of the unknown dynamics.

of observed disturbances, instead of planning based on
an accurate predictive model of the disturbance [9], [10],
[14]. A relevant work on simultaneous system identification
and model predictive control is [21], where the model of
unknown dynamics and disturbances are learned by random
Fourier features [23]. The method is suitable when we
have no prior knowledge about the unknown dynamics,
i.e., no knowledge about what features are representative to
approximating the unknown dynamics, since random Fourier
features can be sampled from predefined distributions. In
the case where we can identify suitable features, control
performance can be benefited by using such features to learn
unknown dynamics.

In this paper, we leverage the success of Koopman
operator in modeling and learning of nonlinear dynam-
ics [24]. Koopman operator represents nonlinear dynam-
ics as a (potentially infinite-dimensional) linear system by
evolving functions of the state of interest, i.e., Koopman
observables, in time. Such representations can be incre-
mentally updated computationally efficiently, enabling online
learning of Koopman operator. Moreover, due to the linear
representation, the learned model can be incorporated into
model predictive control for real-time applications. There-
fore, we propose a self-supervised method to learn online
a predictive model of the unknown uncertainties approxi-
mated by Koopman operator (Fig. 1). The proposed method
promises to enable: one-shot online learning (as opposed
to offline or episodic learning); online adaptation to the
actual disturbance realization (as opposed to the worst-case);
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and control planned over a look-ahead horizon of predicted
system dynamics and disturbances (as opposed to the their
past). We elaborate on our contributions next.

Contributions. We provide a real-time and asymptotically
optimal algorithm for the simultaneous Koopman learning
and control of nonlinear systems. The algorithm is self-
supervised and learns unknown residual dynamics that can be
expressed by Koopman operator. Specifically, the algorithm
is composed of two interacting modules (Fig. 1): (i) a Model
Predictive Control (MPC) module, and (ii) an online Koop-
man learning module with pre-specified Koopman observable
functions. At each time step, the MPC module uses the
estimated unknown residual dynamics from the Koopman
learning module to calculate the next control input. Given
the control input and the observed new state, the online
Koopman learning module then updates the estimate of the
unknown dynamics by least-squares estimation via online
gradient descent (OGD) [25].

The algorithm has no dynamic regret, that is, it asymp-
totically matches the performance of the optimal controller
that knows a priori the unknown dynamics.1 Particularly, we
provide the following finite-time performance guarantee for
Algorithm 1 (Theorem 1):

Regret of MPC ≤ O
(
T

3
4

)
.

Numerical Evaluations. We validate the algorithm in
physics-based simulations in simulated scenarios of a cart-
pole system that aims to stabilize at a setpoint despite
inaccurate model parameters (Section VI). We compare our
algorithm with a nominal MPC (Nominal MPC) that ignores
the unknown dynamics or disturbances, the Gaussian process
MPC (GP-MPC) [26], and the MPC with random Fourier fea-
tures (RFF-MPC) [21]. Our method achieves better tracking
performance than GP-MPC and RFF-MPC.

II. RELATED WORK

We discuss work on adaptive control; robust control; non-
stochastic control; and Koopman operator for control.

Adaptive control: Adaptive control methods often as-
sume parametric uncertainty additive to the known system
dynamics, e.g., parametric uncertainty in the form of un-
known coefficients multiplying known basis functions [9],
[10], or directly estimate the value of unknown distur-
bances [11]–[13]. They update online the coefficients or the
value of unknown disturbances, and generate an adaptive
control input to compensate for the estimated disturbances.
In contrast, we leverage the Koopman operator to learn a
model of the residual dynamics online to enable adaptive
model predictive control.

1This definition of dynamic regret differs from the standard one in the
non-stochastic control literature, e.g., [14]–[17], where the optimal controller
and the Algorithm experienced the same realization of disturbances, instead
of different realizations given that the unknown dynamics can be adaptive
to states and actions (Remark 2).

Robust control: Robust control algorithms select control
inputs based on the assumption of worst-case realization
of disturbances with an upper bound of its magnitude [4]–
[8]. However, assuming the worst-case disturbances can be
conservative. In this paper, instead, we incorporate a learned
model of disturbances to reduce conservativeness caused by
the worst-case disturbances assumption.

Non-stochastic control: Online learning algorithms,
also known as non-stochastic control algorithms, provide
controllers with bounded regret guarantees, upon employing
the OCO framework to capture the control problem as a
sequential game between a controller and an adversary [14]–
[20]. They typically select control inputs based on past
information [14]–[19], instead of using MPC as in this
paper. [20] provides a MPC method for target tracking,
focusing on learning unknown trajectories of the target,
as opposed to learning unknown dynamics/disturbances in
our paper. Additionally, it focuses on linear systems and
linear MPC. Instead, we utilize nonlinear MPC for control-
affine systems. [21] learns the residual dynamics with ran-
dom Fourier features [23] for MPC, where those features
are sampled randomly from prespecified distributions. The
method is suitable when we have no prior knowledge about
the unknown dynamics and what features are representative
to approximating the unknown dynamics. By contrast, we
leverage Koopman operator theory to learn residual dynamics
with properly selected Koopman observable functions, and
demonstrate better performance than [21].

Koopman Operator for control: Koopman operator [24]
represents a nonlinear dynamical system as a (potentially
infinite-dimensional) linear system by evolving functions
of the state, namely, observables, in time. Such Koopman
dynamics can be found through data-driven methods [27]–
[29] that generate a finite-dimensional approximation to
the theoretical infinite-dimensional Koopman operator. Their
methods typically aim to represent the whole system dynam-
ics by Koopman operator learned offline [30]–[36], while we
focus only on the online learning of residual dynamics. We
can enable online adaptation in the case of distribution shift
between the data collected offline and encountered during
employment, upon combining with those methods of offline
Koopman operator learning (Remark 3). We also provide a
no-dynamic-regret guarantee for the provided simultaneous
Koopman learning and MPC algorithm.

III. MODEL PREDICTIVE CONTROL WITH
ONLINE LEARNING OF KOOPMAN OPERATOR

We formulate the problem of Model Predictive Control
with Online Learning of Koopman Operator (Problem 1). To
this end, we use the following framework and assumptions.

Control-Affine Dynamics. We consider control-affine
system dynamics of the form

xt+1 = f (xt) + g (xt)ut + wt, t ≥ 1, (1)

where xt ∈ Rdx is the state, ut ∈ Rdu is the control input, f :
Rdx→Rdx , g : Rdx→Rdx ×Rdu are known locally Lipschitz
functions, wt ≜ h (wt−1, zt) : Rdx × Rdz → Rdx is an



unknown locally Lipschitz function with bounded magnitude,
and zt ∈ Rdz is a vector of features chosen as a subset of
[x⊤

t u⊤
t ]

⊤.
We refer to the undisturbed xt+1 = f (xt) + g (xt)ut as

the nominal dynamics, and wt or h as the residual dynamics.
wt represents unknown disturbances or system dynamics.
Examples of such unknown disturbances or system dynamics
are given in [37].

Model Predictive Control (MPC). MPC selects a control
input ut by simulating the nominal system dynamics over a
look-ahead horizon N , i.e., MPC selects ut by solving the
optimization problem [38]:

min
ut, ..., ut+N−1

t+N−1∑
k=t

ck (xk, uk) (2a)

subject to xk+1 = f (xk) + g (xk)uk, (2b)
uk ∈ U , k ∈ {t, . . . , t+N − 1}, (2c)

where ct (·, ·) : Rdx ×Rdu→R is the cost function, and U is
a compact set that represents constraints on the control input
due to, e.g., controller saturation.

The optimization problem in eq. (2) ignores the residual
dynamics h. To improve performance in the presence of h,
in this paper we propose a method to estimate h online so
eq. (2) can be adapted to the optimization problem:

min
ut, ..., ut+N−1

t+N−1∑
k=t

ck (xk, uk) (3a)

subject to xk+1 = f (xk) + g (xk)uk + ŵt, (3b)
uk ∈ U , k ∈ {t, . . . , t+N − 1}, (3c)

where ŵt is the estimate of wt. Specifically, ŵt ≜
h (·, · ; α̂) where α̂ is the parameter that is updated online
by our proposed method to improve the control performance.

We define the notion of MPC’s value function and state
the assumption on the cost function and value function.

Definition 1 (Value Function [39]). Given a state x and
parameter α̂, the value function Vt (x; α̂) is defined as the
optimal value of eq. (4):

min
ut, ..., ut+N−1

t+N−1∑
k=t

ck (xk, uk) (4a)

subject to xk+1 = f (xk) + g (xk)uk + ŵt, (4b)
xt = x, uk ∈ U , k ∈ {t, . . . , t+N − 1}.

(4c)

Assumption 1 (Bounds on Cost Function and Value Func-
tion [39]). There exist positive scalars λ, λ, and a contin-
uous function σ : Rdx → R+, such that (i) ct (x, u) ≥
λσ (x), ∀x, u, t; (ii) Vt (x; α̂) ≤ λσ (x), ∀x, t, and (iii)
lim∥x∥→∞ σ (x) → ∞.

Under Assumption 1, the MPC policy in eq. (3) can be
proved to ensure that the system in eq. (3b) is globally
asymptotic stable [39].

A cost function that satisfies Assumption 1 is the quadratic
cost ct (xt, ut) = xtQx⊤

t + utRu⊤
t when, for example,

the system dynamics is linear [39, Lemma 1], or when the
quadratic cost is (exponentially/asymptotically) controllable
to zero with respect to σ : Rdx → R+ [39, Section. III].

Assumption 2 (Lipschitzness). We Assume that ct (x, u) is
locally Lipschitz in x and u, ĥ (·) is locally Lipschitz in α̂.

Assumption 2 will be used to establish the Lipschitzness
of the value function Vt (x; α̂) with respect to the initial state
x and parameter α̂.

Koopman operator. A Koopman operator [24] represents
a nonlinear dynamical system h by a (potentially infinite-
dimensional) linear system. Consider first the residual dy-
namics without dependence on zt: wt ≜ h (wt−1); and define
the observable function Φ ∈ O, where O is the infinite-
dimensional function space of all observation functions.
Then, the Koopman operator κ : O → O is an operator
acting on Φ such that

Φ (wt+1) = κΦ (wt) . (5)

Typically, κ cannot be implemented due to infinite di-
mensionality. Instead, a finite subspace approximation Ak ∈
RdΦ × RdΦ acting on a subspace F ⊂ O is used such that

Φ (wt+1) = AkΦ (wt) + r, (6)

where r ∈ O is the error due to a finite dimensional
approximation of κ. In principle, the error r → 0 as F →
O [40], [41]. If F is an invariant subspace, then r can be
zero [42].

To recover wt from Φ (wt), we often use wt as part of
observables such that wt = CkΦ (wt), where Ck = [Inx

, 0].
In the case where h also depends on zt, eq. (6) can be

extended as [35], [37]

Φ (wt+1) = AkΦ (wt) +BkΨ(wt, zt+1) + r. (7)

We assume the following for the residual dynamics h.

Assumption 3 (Linear Representation of h by Koopman
Operator). There exist nonlinear functions Φ : Rdx→RdΦ

and Ψ : Rdx × Rdz → RdΨ such that

Φ (wt) = AkΦ (wt−1) +BkΨ(wt−1, zt) , (8)

where Ak : RdΦ × RdΦ , Bk : RdΦ × RdΨ , and Φ (·) are
locally Lipschitz, and Ψ(·, ·) is uniformly bounded.

We require Ψ(·, ·) to be uniformly bounded as we assume
that wt is bounded, and therefore Φ (wt) is bounded, which
means Ψ(·, ·) is also bounded. Examples of such function
include, e.g., sin (·), cos (·), and tanh (·).

Assumption 3 assumes that r = 0 and that we can
represent h by a linear model given in eq. (7).

Remark 1 (Approximation Error). When the approximation
error r ̸= 0, we can generalize the regret guarantee in
Theorem 1 using [21, Corollary 1] such that it depends on
the approximation error.



Control Performance Metric. We design ut to ensure a
control performance that is comparable to an optimal clair-
voyant (non-causal) policy that knows the residual dynamics
a priori. Particularly, we consider the metric below.

Definition 2 (Dynamic Regret). Assume a total time horizon
of operation T , and loss functions ct, t = 1, . . . , T . Then,
dynamic regret is defined as

RegretDT =

T∑
t=1

ct (xt, ut, wt)−
T∑

t=1

ct (x
⋆
t , u

⋆
t , w

⋆
t ) , (9)

where the cost ct explicitly dependent on the residual dynam-
ics wt, u⋆

t is the optimal control input in hindsight, i.e., the
optimal (non-causal) input given a priori knowledge of the
unknown h, and x⋆

t+1 is the state reached by applying the
optimal control inputs (u⋆

1, . . . , u
⋆
t ), and w⋆

t is the residual
dynamics experienced by the optimal controller.

Remark 2 (Adaptivity of h). In the definition of re-
gret in eq. (9), h adapts (possibly differently) to the
state and control sequences (x1, u1), . . . , (xT , uT ) and
(x⋆

1, u
⋆
1), . . . , (x

⋆
T , u

⋆
T ) since h is a function of the state and

the control input. This is in contrast to previous definitions of
dynamic regret, e.g., [14]–[17] and references therein, where
the optimal state x⋆

t+1 is reached given the same realization
of w as of xt+1, i.e., x⋆

t+1 = f (x⋆
t ) + g (x⋆

t )u
⋆
t + wt.

Problem 1 (Model Predictive Control with Online Learning
of Koopman Operator). At each t = 1, . . . , T , estimate the
residual dynamics function h, and identify a control input ut

by solving eq. (3), such that RegretDT is sublinear.

A sublinear regret means limT→∞ RegretDT /T → 0,
which implies the algorithm asymptotically converges to the
optimal (non-causal) controller.

IV. ALGORITHM

We present the algorithm for Problem 1 (Algorithm 1).
The algorithm is sketched in Figure 1. The algorithm is
composed of two interacting modules: (i) an MPC module,
and (ii) an online Koopman operator learning module. At
each t = 1, 2, . . . , the MPC module uses the estimated h
from the Koopman operator learning module to calculate
the control input ut. Given the current control input ut and
the observed new state xt+1, the Koopman operator learning
module updates the estimate h. To this end, it employs online
least-squares estimation via online gradient descent, where
h is parameterized as a linear system by Koopman operator.

To present the algorithm, we first next provide background
information on online gradient descent for estimation.

A. Online Least-Squares Estimation

Given a data point (wt−1, zt, wt) observed at time t,
we employ an online least-squares algorithm that updates
the parameters α̂t ≜

[
Âk,t, B̂k,t

]
to minimize the approx-

imation error lt = ∥Φ (wt) − Φ (ŵt) ∥22, where Φ (ŵt) =
Âk,tΦ (wt−1)+ B̂k,tΨ(wt−1, zt). Specifically, the algorithm
uses the online gradient descent algorithm (OGD) [25]. At
each t = 1, . . . , T , it makes the steps:

Algorithm 1: Simultaneous Koopman Learning and
Model Predictive Control (Koopman-MPC).

Input: Koopman observable functions Φ and Ψ; domain set D;
gradient descent learning rate η.

Output: At each time step t = 1, . . . , T , control input ut.

1: Initialize x1, α̂1 ∈ D;
2: for each time step t = 1, . . . , T do
3: Apply control input ut by solving eq. (3) with

h (·, ·; α̂t) ≜ Ck

(
Âk,tΦ(·) + B̂k,tΨ(·, ·)

)
;

4: Observe state xt+1, and calculate residuals via
wt = xt+1 − f(xt)− g(xt)ut;

5: Formulate estimation loss
lt (α̂t) ≜

∥∥∥Φ(wt)− Âk,tΦ(wt−1)− B̂k,tΨ(wt−1, zt)
∥∥∥2

;

6: Calculate gradient ∇t ≜ ∇α̂t lt (α̂t);
7: Update α̂′

t+1 = α̂t − η∇t;
8: Project α̂′

t+1 onto D, i.e., α̂t+1 = ΠD(α̂′
t+1);

9: end for

• Given (wt−1, zt, wt), formulate the estimation loss
function (approximation error):

lt (α̂t) ≜
∥∥∥Φ (wt)− Âk,tΦ (wt−1)− B̂k,tΨ(wt−1, zt)

∥∥∥2 .
• Calculate the gradient of lt (α̂t) with respect to α̂t:

∇t ≜ ∇α̂t
lt (α̂t) .

• Update using gradient descent with learning rate η:

α̂′
t+1 = α̂t − η∇t.

• Project α̂′
t+1 onto a convex and compact domain set D:

α̂t+1 = ΠD(α̂
′
t+1) ≜ argmin

α∈D
∥α− α̂′

t+1∥22.

The above online least-squares estimation enjoys an
O
(√

T
)

regret bound, per the regret bound of OGD [25].

Proposition 1 (Regret Bound of Online Least-Squares Esti-
mation [25]). Assume η = O

(
1/
√
T
)

. Then,

RegretST ≜
T∑

t=1

lt (αt)−
T∑

t=1

lt (α
⋆) ≤ O

(√
T
)
, (10)

where α⋆ ≜ argmin
α∈D

∑T
t=1 lt (α) is the optimal parameter

that achieves lowest cumulative loss in hindsight.

The online least-squares estimation algorithm thus asymp-
totically achieves the same estimation error as the optimal
parameter α⋆ since limT→∞ RegretST /T = 0.

B. Algorithm for Problem 1

We describe the algorithm for Problem 1. The pseudo-
code is in Algorithm 1. The algorithm is composed of three
steps: initialization, control, and estimation. The control and
estimation steps are interacting and influence each other at
each time step (Fig. 1):

• Initialization step: Algorithm 1 first initializes the sys-
tem state x1 and parameter α̂1 ∈ D (line 1).



• Control steps: Then, at each t, given the current es-
timate h (·, ·; α̂t) ≜ Ck

(
Âk,tΦ (·) + B̂k,tΨ(·, ·)

)
, Al-

gorithm 1 applies the control inputs ut by solving
eq. (3) (line 3).

• Estimation steps: The system then evolves to state xt+1,
and, wt is calculated upon observing xt+1 (line 4).
Afterwards, the algorithm formulates the loss lt (α̂t) ≜∥∥∥Φ (wt)− Âk,tΦ (wt−1)− B̂k,tΨ(wt−1, zt)

∥∥∥2 (line 5),

and calculates the gradient ∇t ≜ ∇α̂t lt (α̂t) (line 6).
Algorithm 1 then updates the parameter α̂t to α̂′

t+1 (line
8) and projects α̂′

t+1 back to the domain D (line 9).

Remark 3 (Combination with Offline Learned Koopman
Operator). The proposed online learning method can be
combined with offline learning of Koopman operator. For
example, we can learn a linear representation of the nominal
dynamics as Φ̄ (xt+1) = ĀkΦ̄ (xt)+B̄kuk [33] and use OGD
to learn online the residual dynamics in the lift space of the
form ∆ĀkΦ̄ (xt)+∆B̄kuk. To obtain Theorem 1, we require
Assumption 1, Assumption 2, and uniform boundedness of
xt. We replace Assumption 3 by the assumption of uniform
boundedness of xt since Φ̄ (·) typically is not an uniformly
bounded function and can violate the assumption of bounded
wt, which may cause the loss and gradient (lines 5-6 in
Algorithm 1) to be unbounded.

V. NO-REGRET GUARANTEE

We present the sublinear regret bound of Algorithm 1.

Theorem 1 (No-Regret). Assume Algorithm 1’s learning rate
is η = O

(
1/

√
T
)

. Then, Algorithm 1 achieves

RegretDT ≤ O
(
T

3
4

)
. (11)

The proof follows the steps in the proof of [21, Theorem 1]
Theorem 1 serves as a finite-time performance guarantee

as well as implies that Algorithm 1 converges to the optimal
(non-causal) control policy since limT→∞ RegretDT /T → 0.

VI. NUMERICAL EVALUATIONS

We evaluate Algorithm 1 in simulated scenarios of con-
trol under uncertainty, where the controller aims to track
a reference setpoint despite unknown residual dynamics.
Specifically, we consider a cart-pole aiming to stabilize
around a setpoint despite inaccurate model parameters, i.e.,
inaccurate cart mass, pole mass, and pole length.

Simulation Setup. We consider a cart-pole system, where
a cart of mass mc connects via a prismatic joint to a 1D
track, while a pole of mass mp and length 2l is hinged to
the cart. The state vector x includes the horizontal position
of the cart x, the velocity of the cart ẋ, the angle of the pole
with respect to vertical θ, and the angular velocity of the
pole θ̇. The control input is the force F applied to the center
of mass of the cart. The goal of the cart-pole is to stabilize
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Fig. 2: Simulation Results of the Cart-Pole Stabilization
Experiment under 25% Inaccurate Model Parameters. (a)
Average stabilization error over 20 runs with random initial-
ization. (b) Sample trajectory. The results demonstrate that
Algorithm 1 (Koopman-MPC) achieves the fastest stabiliza-
tion of the system among all tested algorithms. (c) Estimation
error of the residual dynamics. The results demonstrate that
the quick convergence of online learning of the Koopman
operator with appropriately chosen observables.
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Fig. 3: Sample Trajectory of the Cart-Pole Stabilization
Experiment under 45% Inaccurate Model Parameters.
Algorithm 1 (Koopman-MPC) successfully achieves stabiliza-
tion of the system despite 45% inaccuracy of the nominal
model, while GP-MPC and RFF-MPC fail.

at (x, ẋ, θ, θ̇) = (0, 0, 0, 0). The cart-pole dynamics are:

ẍ =
mpl

(
θ̇2 sin θ − θ̈ cos θ

)
+ F

mc +mp
,

θ̈ =
g sin θ + cos θ

(
−mplθ̇

2 sin θ−F
mc+mp

)
l
(

4
3 − mp cos2 θ

mc+mp

) ,

(12)

where g is the acceleration of gravity.
To control the system, we will employ MPC at 15Hz

with a look-ahead horizon N = 20. We use quadratic cost
functions with Q = diag ([5.0, 0.1, 5.0, 0.1]) and R = 0.1.
We use the fourth-order Runge-Kutta method for discretizing
the above dynamics. The true system parameters are mc =
1.0, mp = 0.1, and l = 0.5, but the parameters for the
nominal dynamics are scaled to 75% and 55% of the said true
values, which corresponding to 25% and 45% inaccuracy.

We use Φ (wt) = wt, Ψ(wt−1, zt) =[
tanhxt, tanh ẋt, tanh θt, tanh θ̇t, ut, tanh θt tanh θ̇t,

(tanh θ̇t)
2, ut tanh θt, ut tanh θ̇t

]⊤
, η = 0.01, and

initialize α̂ as zero. We simulate the setting for 6
seconds, performing the simulation 20 times with
random initialization of the state sampled uniformly
from x ∈ [−1, 1], ẋ ∈ [−0.1, 0.1], θ ∈ [−0.2, 0.2],
θ̇ ∈ [−0.1, 0.1].

We use the physics-based simulation environment
from [43] in PyBullet [44].

Compared Algorithms. We compare Algo-
rithm 1 (Koopman-MPC) with an MPC that uses the
nominal system parameters (Nominal MPC), the Gaussian
process MPC (GP-MPC) [26], and MPC with random
Fourier Features (RFF-MPC) [21]. The Nominal MPC
uses the nominal dynamics to select control input by

solving eq. (2). The GP-MPC learns ĥ (·) with a sparse
Gaussian process (GP) [45] whose data points are collected
online, i.e., GP fixes its hyperparameters and collects data
points (wt−1, zt, wt) online. The RFF-MPC learns ĥ (·)
with random Fourier features [23] also with data points
(wt−1, zt, wt) collected online.

Performance Metric. We evaluate the performance of
Nominal MPC, GP-MPC, RFF-MPC, and Algorithm 1 in
terms of their stabilization error ∥xt∥2.

Results. The results are given in Figure 2 and Figure 3.
In the case of 25% inaccurate model parameters (Fig-

ure 2), we observe that Algorithm 1 achieves stabilization
the fastest. RFF-MPC comes second, possibly because it
estimates residual dynamics with randomly sampled features
while our method uses suitable observables which enables
better learning of residual dynamics (Figure 2(c)). GP-MPC
is able to stabilize the system at the end but it incurs a larger
deviation during the transition period from the stabilization
goal (0, 0, 0, 0) than Algorithm 1.

In the case of 45% inaccurate model parameters (Figure 3),
Algorithm 1 successfully stabilizes the system in all 20 runs,
while GP-MPC and RFF-MPC fail. The result demonstrates
robustness of Algorithm 1 under such extreme disturbances.

VII. CONCLUSION

Summary. We provided Algorithm 1 for the problem of
Model Predictive Control with Online Learning of Koopman
Operator (Problem 1). Algorithm 1 guarantees no-regret
against an optimal clairvoyant policy that knows the residual
dynamics h a priori. (Theorem 1). The algorithm uses Koop-
man operator to approximate the residual dynamics. Then,
it employs model predictive control based on the current
learned model of h. The model of the unknown dynamics
is updated online in a self-supervised manner using least
squares based on the data collected while controlling the
system. We validate Algorithm 1 in physics-based PyBullet
simulations of a cart-pole aiming to maintain the pole
upright despite inaccurate model parameters (Section VI).
We demonstrate that our method achieves better tracking
performance than the state-of-the-art methods GP-MPC [26]
and RFF-MPC [21].

Future Work. The Koopman observable functions in the
paper are manually selected, and may not generalize to
settings with different unknown dynamics or disturbances.
We expect this can be resolved by using meta-learning (with
neural networks) to automate the discovery of Koopman
observable functions that can generalize to different h (·).
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[27] S. L. Brunton, M. Budišić, E. Kaiser, and J. N. Kutz, “Modern koop-
man theory for dynamical systems,” arXiv preprint arXiv:2102.12086,
2021.

[28] L. Shi, M. Haseli, G. Mamakoukas, D. Bruder, I. Abraham, T. Mur-
phey, J. Cortes, and K. Karydis, “Koopman operators in robot learn-
ing,” arXiv preprint arXiv:2408.04200, 2024.

[29] E. Kaiser, J. N. Kutz, and S. L. Brunton, “Data-driven approximations
of dynamical systems operators for control,” The Koopman operator

in systems and control: concepts, methodologies, and applications, pp.
197–234, 2020.

[30] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Sparse identification
of nonlinear dynamics with control (sindyc),” IFAC-PapersOnLine,
vol. 49, no. 18, pp. 710–715, 2016.

[31] J. L. Proctor, S. L. Brunton, and J. N. Kutz, “Dynamic mode
decomposition with control,” SIAM Journal on Applied Dynamical
Systems, vol. 15, no. 1, pp. 142–161, 2016.

[32] ——, “Generalizing koopman theory to allow for inputs and control,”
SIAM Journal on Applied Dynamical Systems, vol. 17, no. 1, pp. 909–
930, 2018.
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