
Generated using the official AMS LATEX template v6.1

This Work has been submitted to Journal of the Atmospheric Sciences. Copyright in this Work

may be transferred without further notice.

A Stochastic Lattice Model for Convective Self-aggregation

Incorporating Longwave Radiative Effect

Takuya Jinno,a Hiroaki Miura,b

a Faculty of Sustainable Design, University of Toyama, Toyama, Japan1

b Graduate School of Science, The University of Tokyo, Tokyo, Japan2

Corresponding author: Takuya Jinno, jinno@sus.u-toyama.ac.jp3

1

ar
X

iv
:2

50
4.

15
77

8v
1 

 [
ph

ys
ic

s.
ao

-p
h]

  2
2 

A
pr

 2
02

5



ABSTRACT: Self-aggregation of tropical convection is a universal feature observed in a diverse

range of atmospheric environments. Several preceding models conceptualized the self-aggregation

of convection as a phase transition driven by collisions between cold pool gust fronts. However,

self-aggregation may also be influenced by various physical processes, such as surface fluxes,

radiation, and moisture perturbations in the planetary boundary layer, and it remains unclear which

process plays a dominant role. In this study, we develop a simple stochastic lattice model for

the pattern formation of deep convection, inspired by the two-dimensional Ising model. Here, in

addition to the process of cold pool collisions, which have an effect of triggering new convection,

we incorporate the process of clear-sky radiative cooling that has an effect of suppressing deep

convection as an interaction between clouds. Our results show that by amplifying the intensity of the

clear-sky radiative cooling effect, the transition from a quasi-uniform to an inhomogeneous cloud

field can be reproduced. The model also successfully explains the dependence of self-aggregation

on several model parameters, such as the experimental domain size and the characteristic size of

cold pools. Furthermore, by varying the distance over which the subsidence induced by radiative

cooling extends, we succeed in capturing a pattern formation that closely resembles the convective

clusters observed in the real atmosphere and three-dimensional numerical model simulations.
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1. Introduction

The cloud self-aggregation observed in radiative-convective equilibrium (RCE) experiments us-

ing cloud-resolving models (CRMs) is initiated and maintained through the complex interplay of

various physical processes, including surface fluxes, radiation, moisture perturbations in plane-

tary boundary layers, and convective entrainment and detrainment (e.g. Coppin and Bony 2015;

Windmiller and Craig 2019). A defining characteristic of cloud self-aggregation is the emergence

of macroscopic structures at specific spatial and temporal scales through the collective behavior

of microscopic clouds. To elucidate the relationships among multiple physical processes and

the mechanisms of self-aggregation as a form of pattern formation, it is essential to account for

interactions between clouds. These cloud-cloud interactions have been extensively studied by

incorporating them into a variety of theoretical and numerical models.

One way to investigate the interactions between clouds is to represent large-scale cloud organi-

zation as a bifurcation of steady solutions of nonlinear equations. In this approach, the behavior

of self-aggregation has been analyzed as a dynamical system. Haerter (2019) developed a theo-

retical model that adopted an assumption that the effect of precipitation-induced cold pools scaled

quadratically with local number density in the vicinity of existing convection cells. It was shown

that a continuous phase transition from unaggregated to aggregated regimes occurred depending

on the strength of interaction among clouds through the cold pool collisions. Khouider and Leclerc

(2019) investigated the chaotic dynamics of the cloud work function, the cloud base mass flux,

and the cloud area fraction on the horizontal scale of 100 km by relaxing the quasi-equilibrium

assumption of Arakawa and Schubert (1974) to allow the system to have memory of a finite time

scale. As a result, multiple equilibria of cloud area fraction having various regimes of the cloud

organization were demonstrated, depending on the strength of the interaction between different

cloud types.

The other way is to construct numerical models that represent spatial distribution of clouds

or moisture by taking into account the amplitude of interactions based on the distance between

simulated clouds. The self-aggregation of clouds is characterized by a horizontally heterogeneous

distribution of thermal energy and water vapor, which are separated into dry and moist regions.

Not only in atmospheric convection but also in a wide variety of emergent systems, it is known

that the necessary elements for such spatial separation are the existence of bistable equilibria and
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local interactions (Muller et al. 2022). With these two elements, the spatial distribution of some

physical variables in the system can be separated into two stable phases, which correspond to the

moist and dry equilibria in the tropical atmosphere (Sobel et al. 2007; Sessions et al. 2010). It

is observed that the characteristic size of each moist and dry cluster grows with time, and this

tendency is called coarsening (Hutt and Haken 2020, p. 49).

One of the simplest models that represent coarsening is the reaction-diffusion equation

𝜕𝑞(r)
𝜕𝑡

= −𝛿𝐹𝐿

𝛿𝑞
= −𝛿𝑉

𝛿𝑞
+𝐷∇2𝑞(r) (1)

where 𝑞 is humidity content, 𝐹𝐿 is Landau free energy, 𝑉 is some kind of potential function of

𝑞, and 𝐷 is a diffusion constant. Eq. (1), which is called the time-dependent Ginzburg-Landau

equation, describes the evolution of 𝑞 at a location r as a derivative of 𝐹𝐿 . By setting 𝑉 to

have a double-well structure that depends on 𝑞, the humidity content at each location has bistable

equilibrium and the diffusion process represented by the second term on the right-hand side induces

self-aggregation with coarsening as a mesoscale structure. Craig and Mack (2013), Bretherton et al.

(2005), and Windmiller and Craig (2019) developed the reaction-diffusion model and reproduced

cloud self-aggregation as coarsening of the moisture field. These previous studies formulated the

local interaction among clouds in different ways, but they commonly employed an assumption to

establish a double-well structure for the form of the potential 𝑉 .

In addition to the reaction-diffusion models, two-dimensional grid models that explicitly simulate

the expansion and collision of cold pool gust fronts have also been proposed. For example,

the models by Haerter et al. (2019) and Böing (2016) represented cold pool collisions and the

development of new convective cells as a result. They also showed that the effect of cold pool

dynamics acts to promote the aggregation of convective cells.

Past studies on the development of the simplified numerical models have focused primarily on

the local effects via cold pool outflows developed around convective clouds, as described above. In

the existing object-based numerical models for the cold pool interaction such as Haerter (2019) and

Böing (2016), the remote effect of longwave cooling in the subsidence region is not incorporated

as an interaction between clouds. However, it is known that there are also interactions that work

remotely between clouds through the large-scale field (Wing and Emanuel 2014; Emanuel et al.

2014). In the dry regions, subsidence needs to be strengthened to generate adiabatic heating in the
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upper troposphere that compensates increased longwave radiative cooling in the lower troposphere.

This process increases the convective stability of the atmosphere and suppresses the generation of

new convection cells in the cloud-free regions. This clear-sky subsidence couples with the lower-

tropospheric convergence of moisture in the moist regions. The connection between radiation

and large-scale circulation is suggested to explain the characteristic length of aggregated cloud

clusters (e.g. Coppin and Bony 2015; Yanase et al. 2020). Therefore, formulating the effect of

subsidence as a feedback from the smaller-scale convection to the larger-scale field will lead to a

better understanding of the interactions between scales in the atmospheric system.

In this paper, we propose a framework of the lattice model that enables a unified representation of

the interactions of convection across different scales. In section 2 the details of the stochastic lattice

model is described. Our model is based on the one presented by Randall and Huffman (1980).

Their original model was designed to reproduce cloud fields that exhibit various characteristics

such as squall lines, non-squall bands, open cells and cloud streets, which are on spatial scales of

10-100 km and time scales of 2-10 h. This study formulates the effects of precipitation cold pools

and subsidence drying so that the model can reproduce the self-aggregation of deep convection

observed in RCE experiments. This model configuration enables one to investigate how the

relative intensity of multiple interaction processes between clouds determines the transition from

the phase of random convection to the phase of aggregated convection. In section 3, we present

results on changes in the quasi-steady state in response to model parameters, along with a theoretical

interpretation of the model’s behavior from the perspective of bifurcations in steady-state solutions.

It is shown that the amplitude of the subsidence effect, the characteristic size of cold pools, and

the size of the experimental domain play important roles in determining whether the separation

of moist and dry regions occurs. Additionally, by varying the distance over which the subsidence

induced by radiative cooling extends, we obtain indications regarding the spatial pattern formation

of cloud clusters. Discussion and conclusions are given in section 4.

2. Model description

This section presents a stochastic model that represents local and remote interactions between

convective cells. The underlying model was developed by Randall and Huffman (1980) and we

modified it to better represent the physics of the self-aggregation of deep convection. In this study,
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the focus is on conceptualizing the effects of the spatial distribution of an ensemble of convection,

which may be determined by relative positions between all of the pairs of clouds. To ensure that

the model is simple, the statistical variations of cloud properties such as the intensity or the size

are neglected.

The model describes the time evolution of two variables on a horizontal two-dimensional grid

space. One is the two-state variable 𝐼 (r) that indicates whether a convection occurs or not at

a position r. The other is 𝐽 (r) that represents the amplitude of boundary layer turbulence that

triggers convection, which is offset so that the threshold of convection initiation becomes zero. It

is interpreted as the degree to which a convection actively develops at a position r. We assume that

deep convection is generated among convectively active grid points at a prescribed probability 𝑝𝛾

, which is formulated as

𝐼 (r) =


1 if 𝐽 (r) > 0 and 𝛾(r) < 𝑝𝛾

0 otherwise.
(2)

The variable 𝛾(r) is a stochastic variable assigned to each grid point with the uniform distribution

over the range from 0 to 1.

The tendency of 𝐽 at a position r is assumed to be the sum of (i) the interaction between

clouds, denote by 𝐹 (r), which is determined by the relative positions of convective cores around

the position r, (ii) the large-scale forcing due to non-cloud processes 𝛼, which is assumed to be

horizontally uniform regardless of spatial distribution of convection, and (iii) the linear dissipation

of 𝐽 with a constant time scale 𝜏𝑑 . Then, the prognostic equation of 𝐽 is described as

𝑑𝐽 (r)
𝑑𝑡

= 𝐹 (r) +𝛼− 1
𝜏𝑑

𝐽 (r) (3)

for each grid point.

The interaction term 𝐹 (r) is given as follows. We assign a positive integer index 𝑖 to one of the

grid points satisfying the condition 𝐼 (r) = 1 in Eq. (2) and refer to it as a convective grid point

r𝑖. A convective grid point r𝑖 superimposes the interaction effects illustrated in Fig. 1 onto the

surrounding field. We assume that 𝐽 (r) is increased if r is located within the radius 𝑟𝑐 from the

convective grid point r𝑖 since the spreading fronts of precipitation-driven cold pools have an effect
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Fig. 1. Schematic illustration for the promotion and suppression effects of a cloud on the surrounding field as

a function of the distance from a convective site.
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to promote the generation of new convective cells. On the other hand, we assume that 𝐽 (r) is

decreased due to the drying of subsidence if r is located farther than 𝑟𝑐 from the convective grid

point r𝑖. Thus, the magnitude of interaction effect from the 𝑖-th convective grid point r𝑖 onto r is

formulated as

𝐹𝑖 (r,r𝑖) =


𝑓𝑐 > 0 ( |r− r𝑖 | < 𝑟𝑐)

𝑓𝑠 < 0 ( |r− r𝑖 | ≥ 𝑟𝑐).
(4)

At each time step, the interaction term is calculated at all model grid points as the sum of the

influences from the convective grid points, 𝐹 (r) = ∑𝑁
𝑖=1 𝐹𝑖 (r,r𝑖). Here, 𝑁 is the total number of

convective cells in the model domain at each time step, which is equivalent to the number of grid

points satisfying the condition of convection, 𝐼 (r𝑖) = 1.

The grid resolution 𝑑𝑥, which corresponds to the size of a single convection core is set to 2 km for

both directions of the two orthogonal axes. A square domain with doubly periodic lateral boundary

conditions spans 256 km by 256 km in the horizontal dimensions. The domain edge length is

denoted by 𝐿 in the following. The interval of the time levels is set to 1 hour, which is roughly on
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Parameter Description Value
𝑓𝑐 Forcing in the vicinity of convection sites 0.1
𝑓𝑠 Forcing in the subsidence region −0.0005 to −0.0045
𝛼 Spatially uniform effect of non-cloud processes 0.1
𝜏𝑑 Constant dissipation timescale [hour] 2
𝑝𝛾 Seeding rate of convection 0.01
𝑟𝑐 Radius of local interaction from existing clouds [km] 20

Table 1. List of the model parameters and their values.

the same order of lifetime of a deep convective cell. The initial conditions of both 𝐼 and 𝐽 are zero

everywhere. Each simulation is performed for 500 time steps, which is sufficiently long to reach

quasi-equilibrium states (justified later in Fig. 3). Here, the default value of the parameter 𝑟𝑐 is set

to 20 km. The “vicinity” of convection 𝑟𝑐 is estimated to be 20 km as a product of the time interval

and the typical initial velocity of cold pool gust fronts ∼ 5 m s−1 (Zuidema et al. 2017; Romps and

Jeevanjee 2016). In the real atmosphere, cold pools reach maximal radii of 10 to 100 km over the

ocean surface (Haerter 2019). Other parameters are summarized in Table 1. They are determined

so that the value of 𝐽 in quasi-steady state is on the order of unity.

We will conduct a series of sensitivity tests that varies the value of 𝑓𝑠 from −0.0005 to −0.0045

to investigate the convection suppression effect of the clear-sky subsidence on the self-aggregation.

The values of 𝑓𝑠 are at least one order of magnitude smaller than the value of 𝑓𝑐. Subsequently, to

investigate the influence of other model parameters on self-aggregation, the results of sensitivity

experiments in which the values of 𝑟𝑐 and 𝐿 are varied independently are also presented in Section

3. In Eq. (4), the effective range of the subsidence effect 𝑓𝑠 is set as |r− r𝑖 | > 𝑟𝑐. Exceptionally,

for experiments with larger domain sizes than the default (𝐿 = 512 km and 1024 km), this range is

modified to 𝑟𝑐 < |r− r𝑖 | < 200 km. This condition is introduced with the intention of examining

how the spatial pattern formation of cloud clusters changes in response to the typical size of the

subsidence region induced by a single convection cell.

Compared to the numerical model by Randall and Huffman (1980), the current model is modified

to have a dynamical memory on a finite time scale 𝜏𝑑 by introducing the dissipation term in Eq.

3. This formulation allows us to analyze the behavior of the system with stochastic fluctuations

around steady states, which correspond to the radiative-convective quasi-equilibrium in the cloud-
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resolving model simulations. This model also generates an intermittent and chaotic oscillatory

behavior depending on the settings of certain parameters. Three-dimensional RCE simulations

have shown that a competition between the two lower-tropospheric divergent flows, which are

respectively driven by cold pools and dry subsidence, determines whether dry regions can exist as

a steady state (Yanase et al. 2020; Coppin and Bony 2015). In our lattice model, the formulation of

the interaction term (Eq. (4)), which is simpler than that of Randall and Huffman (1980), proposes

an advantage to allow for a linear stability analysis of the dry and moist solutions depending on the

relative strength of the two processes. Results of a linear stability analysis and its relevance to the

bifurcating behavior of our lattice model will be discussed in subsection 3d.

3. Results

a. Model behavior of self-aggregation

In all simulations, the spatial distributions of 𝐽 and 𝐼 reach quasi-equilibria after about 100

steps and show different spatial patterns depending on the values of 𝑓𝑠. Stronger suppression

of convection in the subsidence region, i.e., smaller values of 𝑓𝑠, result in the heterogeneous

distributions of 𝐼 and 𝐽, which is similar to the self-aggregation observed in the RCE simulations.

Figure 2 shows snapshots of 𝐽 and 𝐼 in each simulation after 300 steps. With 𝑓𝑠 = −0.0005,

𝐽 is positive almost everywhere in the domain (Fig. 2a), and convective events are distributed

randomly at least apparently (Fig. 2b). We can see a small portion of convectively stable region in

𝑓𝑠 = −0.0015 (Fig. 2c), but those small dry patches have a very short lifetime and disappears within

several hours. In the three cases with smaller values of 𝑓𝑠 (−0.0025, −0.0035, and −0.0045), the

cluster of convection is surrounded by a convection-free region (Fig. 2e-2j), which persists stably

longer than 10 days, with the edges of the clusters moving back and forth slowly.

The smaller 𝑓𝑠, the larger the area fraction of the subsidence region. In the subsidence region,

the value of 𝐽 is negative, and it results in a smaller number of convective sites in the domain.

The time evolution of domain averaged 𝐽 and 𝑁 are displayed in Fig. 3. In the two cases of

𝑓𝑠 = −0.0005 and −0.0015, the variations of 𝑁 is steadily in the range of about 150 to 170 (Fig.

3a). This number is close to the expected value of 𝑁 (𝑝𝛾𝐿2/𝑑𝑥2 = 0.01 · 1282 = 163.84) which is

derived by assuming positive 𝐽 in the whole domain. This case corresponds to the regime where

convective sites scattered over the entire domain. In the two aggregated cases of 𝑓𝑠 = −0.0035 and
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Fig. 2. Snapshots of the horizontal distribution of 𝐽 (left column) and 𝐼 (right column) at 𝑡 = 300. The

convective grid points (𝐼 = 1) are marked as yellow dots in the 𝐼 fields. The values of 𝑓𝑠 are (a, b) −0.0005, (c,

d) −0.0015, (e, f) −0.0025, (g, h) −0.0035, and (i, j) −0.0045,
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Fig. 3. Time evolution of (a) the number of convective grid points and (b) the domain mean of 𝐽.

−0.0045, the area average of 𝐽 in the quasi-steady state falls below 0, because of the increase in

the area fraction of the subsidence region (𝐽 < 0). The region of 𝐽 < 0 is maintained because that

location is too far from convective cells to receive the influence of cold pools. In the simulation

with 𝑓𝑠 =−0.0025, there is a small but persistent subsidence region. We can regard the quasi-steady

state as an intermediate one between the aggregated and the scattered convection states.

In the cases where the self-aggregation solution is reproduced, the frequency distribution of 𝐽

becomes to have double peaks. This is similar to the results of the RCE studies where the horizontal

distributions of precipitable water or convective available potential energy become double-peaked.

Figure 4 shows (a) the PDF of 𝐽 during quasi-steady state for 𝑡 > 100 hours and (b) the time

evolution of the variance of 𝐽. The two simulations of scattered convection, 𝑓𝑠 = −0.0005 and

−0.0015, have single-peaked PDFs. In the other three cases, there are two prominent peaks, one
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Fig. 4. (a) PDFs of 𝐽 under the quasi-steady states. (b) Time evolutions of the variance of 𝐽.

is negative and the other is positive. The variance of 𝐽 in the aggregated cases is larger than the

scattered cases. Considering the correspondence with the reaction-diffusion model Eq. (1), this

double-peaked distribution function can be considered as the counterpart of the double-well shape

of the reaction potential of water vapor 𝑉 (𝑞) (Fig. 5). A single stable solution corresponds to a

state of unorganized convection ensembles while two stable solutions correspond to a regime with

a dry convection-free state and a moist convectively active state.
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b. Dependence of the self-aggregation on the size of cold pools

In this subsection, we investigate how the criteria for self-aggregation change depending on the

parameter for the typical size of the cold pool (𝑟𝑐). The radius of cold pools is suggested to be a

key factor that determines the geometry and scale of self-aggregation events (Haerter et al. 2019).

Here, the value of 𝑟𝑐 in Eq. (4) is set to 10 km, 20 km, 30 km, and 40 km, while 𝑓𝑠 is fixed at

−0.0045 (the value of the aggregated case in the previous subsection) and the other parameters

remain the same as in Table 1.

The time series of the number of convection and the domain average of 𝐽, and the horizontal

distribution of 𝐽 in quasi-steady state shows noticeably different features depending on the size of

the cold pool (Figs. 6 to 9). In the experiment with the cold pool radius of 𝑟𝑐 = 10 km, a relatively

small number of convective cells are generated in close proximity (Fig. 6a). The time series of the

number of convection and domain mean of 𝐽 show a chaotic behavior with intermittent oscillatory

events that generate numerous convection simultaneously (Fig. 6b). As the radius of the cold

pool is increased, the organized convective clusters become larger (Figs. 7a, 8a, and 9a), and the

number of convective grid points increases (Figs. 7b, 8b, and 9b). In the experiment with a cold

pool radius of 40 km, the whole domain is covered by the convectively active region (𝐽 > 0) and the

persistent subsidence branch in the large-scale circulation is not maintained (Fig. 9). This suggests

that the size of the cold pool is one of the factors that determines whether the potential 𝑉 (𝑞) has
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points 𝑁 in the simulation with 𝑟𝑐 = 10km.
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Fig. 7. Same as Fig. 6, but for the simulation with 𝑟𝑐 = 20km.

a local minimum for the dry state (right panel of Fig. 5) and consequently the self-aggregation is

reproduced.

c. Dependence of spatial patterns on the domain size

Here, the relationship between the model domain size and the spatial pattern of cloud field is

examined. It is known that for RCE simulations, the geometry of the simulation domain is supposed

to be one of the major factors to determine whether the convective self-aggregation occurs or not

(Muller and Held 2012; Yanase et al. 2020). Here, we examine how the quasi-steady states of the

current model depend on the different domain sizes when the value of 𝑓𝑠 is fixed.
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Fig. 10. Snapshots of the horizontal distribution of (a) 𝐽 and (b) 𝐼 at t = 300 with a smaller domain 𝐿 = 128km.
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(b) 𝐿 = 1024 km. In these cases, the strength of interaction between clouds is truncated at 200 km, and assumed

to be zero beyond this distance.
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While keeping 𝑓𝑠 at -0.0045, which is the subsidence forcing that produced an aggregated

convection state with 𝐿 = 256km, the domain size is reduced to 128km, which is the half of the

original. The other parameters are identical to Table 1. With this configuration, the quasi-steady

state of 𝐽 changes to a scattered case (Fig. 10). This behavior is consistent with the results observed

in the RCE experiments that the self-aggregation is less likely to occur when the region size is

smaller (Yanase et al. 2020; Hung and Miura 2021; Muller and Held 2012).

Conversely, a set of experiments in larger model domains with sizes 𝐿 = 512km and 1024km

are conducted. For these cases, we limit the reach of the effect of subsidence to a finite distance

following the interaction profile adopted in Randall and Huffman (1980). Here, the application

𝐹 (r,r𝑖) = −0.0045 is limited from 20km to 200km. 𝑓𝑠 outside of the 200km circle is set to

zero, representing no interaction. The snapshots at 𝑡 = 300 hours are displayed in Fig. 11. There

are multiple clusters of clouds that do not interfere with each other, and they are surrounded by

subsidence regions in honeycomb pattern. The pattern formation is presumably related to setting

a characteristic length scale of the effect of subsidence. This result is similar to that of Randall

and Huffman (1980), who suggested that the pattern formation of clouds and moisture is strongly

influenced by the horizontal profile of the cloud interaction. The spatial distribution of the cloud

clusters resembles that of open cells of shallow convection presented by Feingold et al. (2010)

using LES, or that of multiple cloud clusters in the RCE simulation with extremely large domains
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Fig. 12. Same as Fig. 3, but for the simulations with different domain sizes. 𝑁 is rescaled to match the relative

area of the experimental domain compared to the 𝐿 = 256 km simulation.
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(Wing et al. 2020; Yanase et al. 2022). Interestingly, such hexagonal or mesh-like structures are not

limited to atmospheric phenomena. They are universally observed in a variety of self-organizing

systems such as Bénard convection (Bénard 1901), buckling of metals (Carlson et al. 1967), and

chemical reaction of chlorite-iodide-malonic acid (Ouyang and Swinney 1991).

Figure 12 shows the time evolution of 𝑁 and the domain mean of 𝐽 for each domain size. As

in the case with varying 𝑓𝑠, there is a clear difference between the regimes where convection is

aggregated or not. For the case of scattered convection (𝐿 = 128km), the number of convective

grid points lies in the range of approximately 150 to 170, similar to the cases with 𝑓𝑠 = −0.0005

and −0.0015 in the 𝐿 = 256 km experiments, and the domain-mean 𝐽 remains positive. In the
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aggregated cases (𝐿 = 256 km, 512 km, and 1024 km) the number of convective grid points is less

than half of that in the 𝐿 = 128km case, and the domain-mean 𝐽 remains negative.

d. Stability analysis of the steady states

In this subsection, a stability analysis for the steady solutions of 𝐽 is conducted. We examine if the

persistent separation of the moist and dry regions are stable in terms of dynamical systems. Taking

the horizontal profile of the interaction between clouds (Eq. (4)) into account, the prognostic

equation for 𝐽 may be rewritten as

𝑑𝐽 (r)
𝑑𝑡

= 𝑓𝑐𝑛𝑐 (r) + 𝑓𝑠 (𝑁 −𝑛𝑐 (r)) +𝛼− 1
𝜏𝑑

𝐽 (r)

= − 1
𝜏𝑑

𝐽 (r) + ( 𝑓𝑐 − 𝑓𝑠)𝑛𝑐 (r) +𝛼+ 𝑓𝑠𝑁,

(5)

where 𝑛𝑐 (r) denotes the number of convective grid points within a circle of the 20-km radius

centered at the position r. Since Eq. (5) involves the local variable 𝑛𝑐 (r) and the large-scale

variable 𝑁 on the dynamics of 𝐽 (r), a few assumptions are additionally made to simplify the

problem and to classify the number of stable solutions for 𝐽 (r). Here, we neglect the local

variability of 𝐽 in the vicinity of the position r and assume that 𝐽 takes a uniform value 𝐽 (r) within

the circle of 20 km radius centered at r. By this assumption, the expected value of 𝑛𝑐 (r) can be

described in terms of 𝐽 (r) as

𝑛𝑐 (r) ≃
𝑎𝑝𝛾

𝑑𝑥2 𝑌 (𝐽 (r)), (6)

where 𝑎 is the area of a cold pool with the maximum radius, and 𝑌 is a Heaviside step function.

Thus, an approximation of Eq. (5) may be written as

𝑑𝐽 (r)
𝑑𝑡

≃ − 1
𝜏𝑑

𝐽 (r) +
( 𝑓𝑐 − 𝑓𝑠)𝑎𝑝𝛾

𝑑𝑥2 𝑌 (𝐽 (r)) +𝛼+ 𝑓𝑠𝑁. (7)

Using this form, the tendency of 𝐽 (left-hand side) is evaluated as a function of 𝐽, and it is displayed

in Fig. 13 for four different values of 𝑓𝑠. The parameters except for 𝑓𝑠 are the same as Table 1. 𝑁

is estimated by the time average in each simulation in Section 3a. The case of 𝑓𝑠 = 0 is added as

another example of scattered convection. The steady solutions of Eq. (7) that satisfy the condition
𝜕
𝜕𝐽
( 𝑑𝐽
𝑑𝑡
) < 0 are stable by definition. The scattered cases (Fig. 13a, b) have a single stable solution
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with 𝐽 > 0, while the aggregated cases (Fig. 13c, d) have two stable solutions for moist (𝐽 > 0) and

dry (𝐽 < 0) states.

The form of corresponding potentials for the dynamics of 𝐽 are obtained by integrating Eq. (7)

with respect to 𝐽 (Fig. 14). The potential of the current model is expressed by two quadratic

functions connected at 𝐽 = 0. The scattered cases have a single equilibrium (Fig. 14a, b). On

the other hand, the aggregated cases have a double-well potential (Fig. 14c, d), in which the

perturbation of 𝐽 is amplified near the boundary of dry and moist regimes as illustrated in Fig. 1.

Whether the self-aggregation occurs with a given set of the parameters is estimated by taking the

summation of Eq. (5) over the whole domain, which equals to

∑︁
r

𝑑𝐽 (r)
𝑑𝑡

= − 𝐴

𝑑𝑥2
𝐽

𝜏𝑑
+ 𝑓𝑐

𝑎

𝑑𝑥2 𝑁 + 𝑓𝑠
𝐴− 𝑎

𝑑𝑥2 𝑁 + 𝐴

𝑑𝑥2𝛼, (8)

where 𝐴 is the area of the model domain, and 𝐽 is the domain mean of 𝐽. For the case with the

scattered convection, 𝑁 =
𝑝𝛾𝐴

𝑑𝑥2 and 𝐽 > 0 are reasonably expected. Then, the necessary condition

for the scattered regime is

− 𝐽

𝜏𝑑
+
[
𝑓𝑐
𝑎

𝐴
+ 𝑓𝑠

(
1− 𝑎

𝐴

)] 𝑝𝛾𝐴
𝑑𝑥2 +𝛼 = 0 (𝐽 > 0). (9)

When 𝑓𝑠 is free and the other parameters are fixed as in Table 1, the condition of 𝑓𝑠 for the scattered

convection can be computed as

𝑓𝑠 > − 1
1− 𝑎

𝐴

(
𝑓𝑐
𝑎

𝐴
+ 𝛼𝑑𝑥2

𝑝𝛾𝐴

)
= −0.0026. (10)

Although this critical value of 𝑓𝑠 is somewhat smaller than that of the simulations results (Fig. 4b),

the above estimation successfully explains the results that smaller values of 𝑓𝑠 is favorable for the

aggregated state.

Similarly, the critical values can be derived from Eq. (7) when 𝑓𝑠 is fixed and one of the other

parameters are free. For instance, the larger values of the size of the cold pools 𝑎 introduced in

Eq. (6) is favorable for the scattered state, while the larger values of the domain size 𝐴 in Eq. (8)

is favorable for the aggregated state. These results are consistent with the current lattice model

simulation in Section 3b and Section 3c, respectively.
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Fig. 13. 𝑑𝐽
𝑑𝑡

as a function of 𝐽 for the four cases (a) 𝑓𝑠 = −0, (b) 𝑓𝑠 = −0.0005, (c) 𝑓𝑠 = −0.0035, and (d)

𝑓𝑠 = −0.0045.
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Fig. 14. The potential 𝑉 as a function of 𝐽 for the four cases (a) 𝑓𝑠 = −0, (b) 𝑓𝑠 = −0.0005, (c) 𝑓𝑠 = −0.0035,

and (d) 𝑓𝑠 = −0.0045.
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4. Conclusions and discussions

In this paper, a simple stochastic two-dimensional lattice model for the pattern formation of a

deep convection ensemble has been developed. A series of simulations was conducted by changing

the magnitude of the effect of subsidence enhanced around convection. The results showed that

the strong contrast between the promotion of convection in the vicinity of the existing convection

and the suppression elsewhere caused a heterogeneous spatial distribution of convective cells in

the quasi-steady state, which resembled the aggregated cloud clusters in the RCE simulations and

the cloud fields in the real atmosphere. The model also successfully explained a variety of spatial

patterns of cloud field according to the relationship between the geometrical structure of the model

domain and the length scale of the effect of subsidence to reach.

One of the limitations of this lattice model is that the number of convective cells over the entire

domain in quasi-equilibrium state cannot be determined from large scale parameters. This makes it

difficult to treat the cumulus ensemble as a canonical ensemble described in equilibrium statistical

mechanics. In addition, since this model has a time scale of dissipation of two hours, the oscillatory

behavior on the time scale of tens of days observed in idealized experiments using CRMs (Patrizio

and Randall 2019) are not incorporated. The multi-scale nature of the dynamics of cloud systems

should be pursued in the future studies.

21



Acknowledgments. This work was supported by JSPS KAKENHI Grant Number 23K25939,

20H05731, 20J11246. The authors have no conflicts to disclose.

Data availability statement. All code used in this study will be made available on GitHub after

completing the peer review process for this article.

References

Arakawa, A., and W. H. Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-

scale environment, part i. Journal of the Atmospheric Sciences, 31 (3), 674–701, https://doi.org/

10.1175/1520-0469(1974)031⟨0674:ioacce⟩2.0.co;2.

Bénard, H., 1901: Les tourbillons cellulaires dans une nappe liquide. Rev. Gen. Sci. Pure Appl.,

11, 1261–1271, https://doi.org/10.1051/jphystap:0190100100025400.
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Haerter, J. O., S. J. Böing, O. Henneberg, and S. B. Nissen, 2019: Circling in on con-

vective organization. Geophysical Research Letters, 46 (12), 7024–7034, https://doi.org/

10.1029/2019GL082092.

Hung, C.-S., and H. Miura, 2021: Ensemble of radiative-convective equilibrium simulations near

the aggregated and scattered boundary. Geophysical Research Letters, 48 (20), e2021GL095 279,

https://doi.org/10.1029/2021GL095279.

Hutt, A., and H. Haken, Eds., 2020: Synergetics. 1st ed., Encyclopedia of Complexity and Systems

Science Series, Springer.

Khouider, B., and E. Leclerc, 2019: Toward a stochastic relaxation for the quasi-equilibrium

theory of cumulus parameterization: Multicloud instability, multiple equilibria, and chaotic

dynamics. Journal of Advances in Modeling Earth Systems, 11 (8), 2474–2502, https://doi.org/

10.1029/2019MS001627.

Muller, C., and Coauthors, 2022: Spontaneous aggregation of convective storms. Annual Review

of Fluid Mechanics, 54 (1), 133–157, https://doi.org/10.1146/annurev-fluid-022421-011319.

Muller, C. J., and I. M. Held, 2012: Detailed investigation of the self-aggregation of convec-

tion in cloud-resolving simulations. Journal of the Atmospheric Sciences, 69 (8), 2551–2565,

https://doi.org/10.1175/jas-d-11-0257.1.

Ouyang, Q., and H. L. Swinney, 1991: Transition from a uniform state to hexagonal and striped

turing patterns. Nature, 352 (6336), 610–612, https://doi.org/10.1038/352610a0.

Patrizio, C. R., and D. A. Randall, 2019: Sensitivity of convective self-aggregation to domain size.

Journal of Advances in Modeling Earth Systems, 11 (7), 1995–2019, https://doi.org/10.1029/

2019MS001672.

23



Randall, D. A., and G. J. Huffman, 1980: A stochastic model of cumulus clumping. Journal of the

Atmospheric Sciences, 37 (9), 2068–2078, https://doi.org/10.1175/1520-0469(1980)037⟨2068:

asmocc⟩2.0.co;2.

Romps, D. M., and N. Jeevanjee, 2016: On the sizes and lifetimes of cold pools. Quarterly Journal

of the Royal Meteorological Society, 142 (696), 1517–1527, https://doi.org/10.1002/qj.2754.

Sessions, S. L., S. Sugaya, D. J. Raymond, and A. H. Sobel, 2010: Multiple equilibria in a cloud-

resolving model using the weak temperature gradient approximation. Journal of Geophysical

Research: Atmospheres, 115 (D12), https://doi.org/10.1029/2009JD013376.

Sobel, A. H., G. Bellon, and J. Bacmeister, 2007: Multiple equilibria in a single-column model

of the tropical atmosphere. Geophysical Research Letters, 34 (22), https://doi.org/10.1029/

2007GL031320.

Windmiller, J. M., and G. C. Craig, 2019: Universality in the spatial evolution of self-aggregation

of tropical convection. Journal of the Atmospheric Sciences, 76 (6), 1677–1696, https://doi.org/

10.1175/jas-d-18-0129.1.

Wing, A. A., and K. A. Emanuel, 2014: Physical mechanisms controlling self-aggregation of

convection in idealized numerical modeling simulations. Journal of Advances in Modeling

Earth Systems, 6 (1), 59–74, https://doi.org/10.1002/2013MS000269.

Wing, A. A., and Coauthors, 2020: Clouds and convective self-aggregation in a multimodel

ensemble of radiative-convective equilibrium simulations. Journal of Advances in Modeling

Earth Systems, 12 (9), e2020MS002 138, https://doi.org/10.1029/2020MS002138.

Yanase, T., S. Nishizawa, H. Miura, T. Takemi, and H. Tomita, 2020: New critical length for

the onset of self-aggregation of moist convection. Geophysical Research Letters, 47 (16),

e2020GL088 763, https://doi.org/10.1029/2020GL088763.

Yanase, T., S. Nishizawa, H. Miura, and H. Tomita, 2022: Characteristic form and distance in high-

level hierarchical structure of self-aggregated clouds in radiative-convective equilibrium. Geo-

physical Research Letters, 49 (18), e2022GL100 000, https://doi.org/10.1029/2022GL100000.

24



Zuidema, P., G. Torri, C. Muller, and A. Chandra, 2017: A survey of precipitation-induced

atmospheric cold pools over oceans and their interactions with the larger-scale environment.

Surveys in Geophysics, 38 (6), 1283–1305, https://doi.org/10.1007/s10712-017-9447-x.

25


