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Abstract

Edge detection has attracted considerable attention
thanks to its exceptional ability to enhance performance in
downstream computer vision tasks. In recent years, var-
ious deep learning methods have been explored for edge
detection tasks resulting in a significant performance im-
provement compared to conventional computer vision al-
gorithms. In neural networks, edge detection tasks require
considerably large receptive fields to provide satisfactory
performance. In a typical convolutional operation, such
a large receptive field can be achieved by utilizing a sig-
nificant number of consecutive layers, which yields deep
network structures. Recently, a Multi-scale Tensorial Sum-
mation (MTS) factorization operator was presented, which
can achieve very large receptive fields even from the ini-
tial layers. In this paper, we propose a novel MTS Dimen-
sional Reduction (MTS-DR) module guided neural network,
MTS-DR-Net, for the edge detection task. The MTS-DR-
Net uses MTS layers, and corresponding MTS-DR blocks
as a new backbone to remove redundant information ini-
tially. Such a dimensional reduction module enables the
neural network to focus specifically on relevant information
(i.e., necessary subspaces). Finally, a weight U-shaped re-
finement module follows MTS-DR blocks in the MTS-DR-
Net. We conducted extensive experiments on two bench-
mark edge detection datasets: BSDS500 and BIPEDv2 to
verify the effectiveness of our model. The implementation
of the proposed MTS-DR-Net can be found at https:
//github.com/LeiXuAI/MTS-DR-Net.git.

1. Introduction
Edge detection aims to locate edges or boundary pixels

of objects from various images, which plays a pivotal role

Figure 1. ODS vs. GFLOPs on BSDS500 dataset under “Thin”
setting.

in the area of computer vision. Usually, edges are defined as
discontinuities in surface reflectance, illumination, surface
normal, and depth [26] in an image. This research topic
has a wide range of applications because edge detection is
a critical low-level computer vision task for the beneficiary
of higher-level downstream tasks, such as remote sensing
image segmentation [51, 50], image enhancement [6], and
intelligent transportation [46, 41]. There are several exist-
ing challenges of the edge detection task derived primar-
ily from the characteristics of available benchmark datasets.
Firstly, the edges defined in an image can arise in different
ways [26] with diverse representations. The second is the
uncertainty problem of the benchmark datasets due to mul-
tiple annotations, such as BSDS500 [1] and Multicue [18].
Moreover, the imbalance problem is a significant character-
istic of these benchmark datasets that needs more consider-
ation for robustness [4, 41].

To effectively extract edge features from images cap-
tured in different environments, intense efforts have been
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devoted by the studies [3, 38, 26, 4]. Generally, edge de-
tection algorithms can be classified as traditional methods
and deep learning-based methods. Traditional edge detec-
tion techniques are mainly based on differential operators or
high pass filtration [9], such as the Sobel operator [9] or the
Canny operator [31, 14]. The widely known shortcomings
of these operators are computational complexity and lack
of robustness [9]. Then, various variants have been pro-
posed that cooperate with local and/or global information
from images to learn richer descriptors of edges [1, 28, 17].

With the prosperous development of deep neural net-
works (DNN) during the last decade, various multi-scale
DNN structures have been widely investigated for edge de-
tection tasks [40, 39, 34]. In these methods, the edge fea-
tures are learned from coarse to fine levels by producing a
final output through the fusion of multi-scale additional side
estimations. Multi-scale structures have remarkable char-
acteristics of high computational complexity, redundant pa-
rameters, and the need for pre-training [16, 36]. To address
computational complexity, novel light-weight DNN struc-
tures are proposed to trade-off between accuracy and effi-
ciency, such as Pixel Difference Networks (PiDiNet) [36],
Tiny and Efficient Edge Detector (TEED) [32], XYW-Net
[24], and Lightweight Dense CNN (LDC) [33]. Moreover,
the crispness of the results is also taken into account in
DiffusionEdge [47] and Ye’s work [48]. In addition, la-
bel uncertainty and imbalance problems are explored us-
ing ranking-based losses in [4], pixel-level noise transi-
tions [42], and edge granularity estimation [52]. The main
shortcomings of these state-of-the-art (SOTA) proposals are
as follows: (i) it is difficult to ensure both the efficiency
of the model and high qualitative results [47, 27], (ii) a
post-processing step, i.e., non-maximum suppression mor-
phological scheme (NMS) [32, 36, 24] is used to ensure
the crispness and precision of the results, and (iii) transfer
learning is indispensable in the current SOTA for challeng-
ing BSDS500 dataset.

To overcome the above drawbacks, we propose a novel
Multi-Scale Tensorial Summation and Dimensional Reduc-
tion (MTS-DR) guided Neural Network for edge detection
called the MTS-DR-Net. The proposed architecture com-
prises a novel MTS-DR module as the backbone and a re-
finement network. The MTS layer is the fundamental unit
of the MTS-DR module, which is inspired by the summa-
tion of tensors on multiple scales [43] based on the Tucker-
Decomposition [37]. The MTS layer works as a compact
substitute for a complex CNN or transformer structure. The
MTS-DR module is feasible to learn required submanifolds
using multiple patch sizes strategy as input and generate the
summation of multi-scale feature maps as output. In ad-
dition, a Multi-Head Gate operation (MHG) is introduced
into the MTS-DR module to add nonlinearity. In general,
the main contributions of our proposal are as follows.

• To the best of our knowledge, this is a pioneer work
utilizing tensorial summation strategy to solve edge
detection tasks.

• Compared to the SOTA methods [36, 33, 32, 24, 34],
the novelty of our model is to first remove unneces-
sary features rather than extract the necessary features
directly from the input.

• The proposed MTS-DR-Net approach can satisfy the
efficiency of the model and the precision of the results
simultaneously without any post-processing step.

• The proposed approach can surpass previous methods
on benchmark datasets even without the use of transfer
learning.

2. Related works
2.1. Edge Detection

As a long-standing low-level vision task, early edge de-
tection works aim to utilize gradients or derivative opera-
tors to discrete edge pixels from an image. For example,
Canny proposes a Canny edge detector based on the Gaus-
sian filter for arbitrary edges [3]. In order to address the
drawbacks existing in gradient operators, Martin et al. [17]
use a combination of brightness and texture cues for lo-
cal boundary detection with pixel-level posterior probabil-
ity maps. Bertasius et al. [2] propose a unified multi-scale
DNN approach, which uses high-level object features with
a multi-scale bifurcated convolutional neural network. A
holistically-nested network [39] is proposed with a single-
stream convolutional neural network along with multiple
side outputs [39]. The multi-scale structures [16] are pop-
ular for learning richer representations for edge detection
tasks. More recently, lightweight structures have been ex-
plored with promising performance. For example, Sun et
al. [36] propose a lightweight pixel difference convolutions
network (PiDiNet) derived from the extended local binary
patterns for edge detection. The proposed TEED [32] with
double fusion and double loss is notable for its simplicity
and efficiency for edge detection. More recently, Pang et al.
propose a lightweight encoding-decoding structure named
XYW-Net [24] for edge detection. The XYW-Net is de-
signed based on physiological mechanisms with three par-
allel pathways.

2.2. Efficiency in Neural Networks

Efficiency is an essential concern in the success of the
deployment of neural networks to solve real-world tasks on
edge devices. Hence, researchers have investigated solu-
tions to improve the efficiency of the model without sacrific-
ing the performance of the model. Firstly, various compact
neural network structures have been explored by optimizing
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MTS Layer

Figure 2. An Example of the MTS Layer with Window Scales [8,
16, 32]

the redundancy and complexity of standard network struc-
tures. MobileNets [29] proposed by Howard et al. is built
on the basis of a streamlined architecture for mobile and
embedded vision applications. The proposed structure uses
the depthwise separable convolutions strategy [30], which
can be trained with highly optimized general matrix mul-
tipliers. Han et al. propose a lightweight GhostNet [10],
in which a novel Ghost module generates more features by
fewer parameters, and a series of lightweight linear transfor-
mations generates more feature maps. Sun et al. propose a
dynamic group convolution [35] to select connection paths
from input channels to feature selector groups adaptively.
The structure of Mixture-of-Experts (MoE) proposed by Ja-
cobs et al. [13] aims to learn a complete set of training data
in different subsets with separate networks initially. With
the rise of large models, the MoE strategy has been widely
used to scale the capacity of the model while suppressing
the surge in computational costs [8].

3. Learnable Tensor Decomposition
Tensor decomposition [25, 23] is extended from conven-

tional linear operation to multilinear ones, i.e., multilinear
dimensional reduction [21] for higher-order tensors. The
tensor decomposition strategy has been intensively explored
for deep neural network compression using tensor map-
pings with efficient network structures and a lower com-
putational cost. To reduce the memory need of the fully-
connected layers, Novikov et al. [20] propose tensorizing
neural networks on the basis of Tensor-Train decomposi-
tion [22]. Tucker convolutions [23] using the Tucker de-
composition [37] can replace standard convolutional layers
with low-rank layers. Phan et al. propose [25] a stable
compressive CNN with Canonical Polyadic decomposition.
Although tensor decomposition can achieve efficient CNN
structures [53, 49], information loss is an inevitable prob-
lem that limits the widespread application of the strategy.
More recently, Yamac et al. introduce a generalized ten-
sor summation strategy [43] as a backbone structure, which
can directly extract features in the spatial domain. The gen-
eralized tensor summation has T number of different map
tensors representing the learned features in a multi-linear
way, which corresponds to linear representation equivalent

in summed factorization of multiple mod products.

3.1. MTS Layer for multi-linear feature extraction

Let X ∈ Rn1×n2×...×nJ represent a multi-dimensional
signal, where J indicates the dimensionality of the signal on
which we wish to perform a linear operation. For example,
in the case of an RGB image, we have J = 3 and n3 = 3. If
X is a feature map with dimensions H×W ×C, then it fol-
lows that n1 = H , n2 = W , and n3 = C. In a traditional
MLP layer, matrix multiplication is applied on vectorized
tensor, vec(X), i.e., MLP (X),A = Avec(X). However,
such an operation is infeasible for large-scale signal-like
feature maps in computer vision tasks. In [43], the authors
proposed a tensorial summation factorization of such linear
mappings, i.e.,

GTS(X) =

T∑
t=1

X×1A
(t)
1 ×2A

(t)
2 . . .×J−1A

(t)
J−1×JA

(t)
J ,

(1)
where multi-linear transformation is done via learnable
weight matrices, A(t)

1 . The study [43] was proposed for
a learnable compressive sensing system, focusing solely
on RGB images for dimensional reduction. However, ap-
plying the GTS operation to each feature map in a neural
network becomes computationally infeasible when dealing
with large-resolution feature maps. To overcome this is-
sue, the authors of [44] propose to apply GTS operation on
patch-wise. They also proposed to apply such an opera-
tion for varying patch-sizes in order to enhance the repre-
sentation power of the new neural network layer which is
equipped with a large receptive field and multi-scale view.
Mathematically speaking,

MTS(X) =

SC∑
sc=1

f−1
wsc

(
T∑

t=1

fwsc
(X)×1 A

(t,sc)
1

×2A
(t,sc)
2 ×3 . . .×J−1 A

(t,sc)
J−1 ×J A

(t,sc)
J

)
(2)

where fwsc
patch-embedding of size wsc, f−1

wsc
is inverse

of this operation, SC is the number of different patch (or
window sizes) sizes and T is the number of summed tensor
in each scale. For instance, if window size list is set as
w = [8, 16, 32], it means that GTS operation with learnable
matrices is applied to 8 × 8, 16 × 16 and 32 × 32 paths of
the feature map independently.

3.2. MHG Layer as Activation Free Non-linear Op-
erator

The study of [44] proposes a multi-head-gate opera-
tion. In recent years, there has been a notable trend
within the machine learning community, particularly in
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Figure 3. Overall framework of the proposed MTS-DR-Net. It consists of two modules: a MTS-DR backbone and a refinement network.

the domain of computer vision, to replace traditional non-
linear activation functions, e.g., Rectified Linear Units [19]
(ReLU), with gated operations. This shift is primarily due
to the considerable improvement in network performance
across various applications that the gated operations offer.
Gated Linear Units [7] (GLU) are nothing but element-
wise multiplication of outputs of two linear units, where
at least one of these is applied to a non-linear activa-
tion, Gate(X , g1, g2, σ) = g1(X ) ⊙ σ(g2(X )), where ⊙
is element-wise multiplication, g1 and g2 are linear oper-
ators, and σ is a non-linear activation function, e.g., Sig-
moid. The non-linearity is also applied directly on feature
maps in many works, i.e., Gaussian Error Linear Unit [12]
(GELU) is defined as GELU(X ) = X ⊙ Ψ(X ), where Ψ
is the cumulative distribution function of Gaussian distribu-
tion. On the other hand, recent works [5] shows that simple
gate operations, SGate(X , g1, g2, σ) = g1(X ) ⊙ (g2(X )),
where g1 and g2, are learned linear maps implemented by
1 × 1 conv are enough for improved performance in many
computer vision tasks.

Such a non-linear operator simply aims to approximate
the true nature of curved spaces where the signal of interest
lives. We may interpret a gate operation as a second-order
Taylor approximation with a constrained Hessian tensor. In
addition, while the 1× 1 conv are computationally efficient
in low-channel settings, they can still be costly when the
number of feature maps is large. To increase the representa-
tive power of the gate operation, multi-head-gate operation
introduced in [?], applies

MHG(X , g1, g2) =

H∑
i=1

(f2i (g1i(X )))⊙ (f2i(g2i(X )))

(3)
where, H is the number of heads, gji, fji are implemented
via 1×1 gconv and 3×3 dconv, respectively. In this imple-
mentation, the group convolution split feature maps on the
channel dimension, and the depthwise convolutions collect
information from adjacent pixels. The corresponding MHG
layer is illustrated in Figure 4.

4. Methods
In this section, we first describe the overall architecture

of MTS-DR-Net. The MTS-DR backbone and the refine-
ment network are then presented in detail. Finally, we de-
scribe the loss function.

4.1. MTS-DR-Net Framework

As illustrated in Figure 3, the proposed MTS-DR-Net
consists of a MTS-DR backbone and a refinement network.
The MTS-DR backbone constitutes four MTS-DR blocks,
which are built mainly by the MTS layer and the MHG
layer shown in Figure 4. The proposed backbone aims to
eliminate unnecessary major-class features from the input
images. The backbone produces an MTS feature map X̃ as
the input of the refinement network. The refinement net-
work is built using a lightweight U-net architecture with a
side fusion of three scales [39, 36] to learn multi-scale edge
features from coarse to fine. The basic unit of the refinement
network is a convolution bottleneck structure [11] without
residual connection. Finally, the predicted edge map X̂ is
generated by side fusion.

4.2. MTS-DR Blocks

MTS-DR block is an essential unit of the backbone,
which consists of an MTS layer followed by an MHG layer
and another MTS layer sequentially, as shown in Figure
4. Given an image input X ∈ RH×W×3, MTS Layer-
1 in the MTS-DR block reduces the dimension of X to
Ẋ ∈ Rh×w×C1 , where h << H,w << W . The h and
w are calculated based on the compressing ratio. Then, the
MHG layer is used to introduce non-linearity in Ẋ. Fi-
nally, MTS Layer 2 maps the Ẋ back to the original size
H×W ×C where C = 2×C1. The output of the MTS-DR
backbone is X ∈ RH×W×3, which is expected to contain
major-class features. Then, a MTS feature map is generated
as follows:

X̃ = X− Sigmoid(X)⊗X. (4)
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block implementations

4.3. Refinement Network

The U-shaped refinement network comprises an encoder
and a decoder with three scales, as shown in Figure 5. The
MTS feature map X̃ is used as input and side fusion input
on three scales. This design is capable of generating a final
hierarchical feature map for edge representations from the
learned necessary subspace with efficiency. Starting from
the input, a 3 × 3 convolution layer followed by a ReLU
layer is used to extract shallow features from X̃. Then,
the shallow features are gradually downsampled at three
scales with a growing number of channels for the encoder
part. At each scale, the decoder part takes the concate-
nated features from the corresponding encoder and upsam-
ples the learned features. Especially a conditional convolu-
tional layer (CondConv) with four experts [45] is used for
side feature fusion to increase the learning capacity of each
scale. The three side feature maps are concatenated after
upsampling to the original size as Ŷi, i = 1, 2, 3. Finally, a
fused edge map Ŷ is produced using two convolutional lay-
ers followed by a Sigmoid function. The values in the edge
maps range from 0 to 1 as probability maps. In this work,
upsampling is implemented by transposed convolution with
strides, and downsampling is max-pooling.

4.4. Loss Function

To highlight the importance of edge pixels in minors, we
adopt the weighted binary cross-entropy loss function as in
[16, 36]. The loss L is calculated with three side edge maps
and the fused edge map. The weighted binary cross-entropy

is defined as

Lbce(Y, Ŷ ) =


α ·

N∑
i=0

log(1− ŷi), if yi = 0

0, if 0 < yi < η

β ·
N∑
i=0

log(ŷi), otherwise,

(5)
where η is a threshold to mitigate uncertainty problems
caused by multiple annotations in the ground-truth edge
maps Y and ŷi is the probability value on the ith pixel in
the predicted edge map Ŷ. The weight parameters α and β
are used to balance the contribution between positive pixels
y+ (edges) and negative pixels y− (non-edges), defined as:

α = λ

∑
y+i∑

y+i +
∑

y−i
,

β =

∑
y−i∑

y+i +
∑

y−i
.

(6)

Then the total loss function is

L =

3∑
i=1

Lbce(Y, Ŷi) + Lbce(Y, Ŷ ) (7)

5. Experiments
We evaluate the MTS-DR-Net on two benchmark

datasets: BSDS500 [1] and BIPEDv2 [34] using statistics
metrics and semantic segmentation metrics. The exper-
imental results are presented with four competing meth-
ods: TEED [32], Pidinet [36], DexiNed [34], and XYW-Net
[24].

5.1. Datasets

BSDS500 [1]: initially consists of 200 training im-
ages, 100 validation images, and 200 test images of size
321 × 481. This dataset is annotated by 4 to 9 partici-
pants. We follow the previous publications by taking the
average values of the multiple annotations as the ground
truth. In this work, 300 images from the training and valida-
tion datasets are cropped and augmented for training. Orig-
inal images are cropped with overlap to 256× 256 and then
flipped and rotated. Eventually, 11600 images are generated
for training, while 200 images are used for testing.

BIPEDv2 [34]: contains 250 outdoor images with an-
notations for edge detection tasks specifically. Each ini-
tial image has 1280 × 720 pixels, 200 images for training,
and 50 for testing. In this work, we randomly cropped 20
patches with 384 × 384 pixels of each image of the train
set. In addition, each cropped image is rotated by 90◦, 180◦

and 270◦. Hence, the total number of images for training is
16000. This dataset is deliberately annotated pixel by pixel
for edge detection.
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Figure 5. The architecture of the Refinement Network

(a) Original image. (b) Ground truth. (c) MTS feature map. (d) Side 1. (e) Side 2. (f) Side 3. (g) Fused output
Figure 6. Some examples of feature maps on BSDS500 with MTS-DR-1.

5.2. Implementation Details

We carry out our experiments with Pytorch on the
NVIDIA GPU cluster platform. The proposed models
are trained for 30 epochs on BIPEDv2 and 20 epochs on
BSDS500 with a batch size of 4. The models are trained
with the Adam optimizer [15]. The learning rate is initially
set to 0.005 and decays at epoch 15 with an exponential
schedule. In this work, the final results are from a single
scale fused feature map and non-pre-training involved. The
hyperparameter value of λ is set to 1.1 for both datasets,
whereas η is 0.3 for the BSDS500 dataset.

The number of MTS-DR Blocks in the Backbone is M ,
and the number of channels in MTS-DR-Net is C. We adopt
different M and C to perform ablation studies. The back-
bone contains three additional hyperparameters: T is the
number of mode products in the matrix factorization, the
compressing ratio (CR) presents the percentage of informa-
tion preserved, and the window scales (WS) in the MTS
layer. The hyperparameters of the MTS-DR-1 baseline are
set as: M = 2, C = 32, CR = 0.4, WS = [8, 16, 32, 64],
and T = 3.

5.3. Evaluation Metrics

We implement the qualitative evaluation with four met-
rics: optimal dataset scale (ODS), optimal image scale
(OIS), mean Accuracy, and mean IOU. ODS and OIS are
both based on F-measures, which are widely used for edge
detection evaluation. Given a dataset, the ODS is calcu-
lated with a fixed threshold for all images [52], and the OIS
is the average F-score of all images with the best thresh-
old [41]. The number of parameters and GFLOPs are used
for complexity evaluation. In this work, we do not adopt
the post-processing NMS for evaluation as in [16, 36, 24]
but use the “Thin” and “Raw” settings directly, because our
proposal can generate edges with sufficient accuracy. The
tolerance values are 0.0075 and 0.0011 for BSDS500 and
BIPEDv2, respectively.

5.4. Comparison with other SOTA works

We compare our MTS-DR-Net with TEED [32], Pidinet
[36], DexiNed [34], and XYW-Net [24] on BSDS500 and
BIPEDv2. The baseline of our method is MTS-DR-1. The
best result is colored blue, and the second best is colored
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(a) Original image. (b) Ground truth. (c) MTS feature map. (d) Side 1. (e) Side 2. (f) Side 3. (g) Fused output
Figure 7. Some examples of feature maps on BIPEDv2 with MTS-DR-1.

Method Thin Raw mean
Precision

mean
IOU Params GFLOPs

ODS OIS ODS OIS
TEED [32] 0.704 0.711 0.614 0.614 0.8294 0.5378 58.91K 0.955
Pidinet [36] 0.691 0.693 0.612 0.613 0.7926 0.5848 710.149K 10.56
DexiNed [34] 0.707 0.710 0.636 0.642 0.8073 0.5913 35.215M 66.943
XYW-Net [24] 0.720 0.737 0.639 0.648 0.8202 0.5861 808.831K 11.042

MTS-DR-1
(M = 2, C = 32)

0.734 0.750 0.677 0.683 0.8404 0.6036 1.599M 15.112

MTS-DR-2
(M = 4, C = 32)

0.744 0.758 0.692 0.695 0.8524 0.6079 1.717M 19.735

MTS-DR-3
(M = 2, C = 16)

0.735 0.750 0.674 0.682 0.8416 0.6023 478.419K 4.758

MTS-DR-4
(M = 4, C = 16)

0.735 0.750 0.686 0.695 0.8428 0.6004 610.579K 12.027

Table 1. Comparison with competed methods on BSDS500 dataset.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 8. Visual results on BSDS500. (a) Input image. (b) Ground
truth. (c) MTS-DR-1. (d) TEED [32]. (e) XYW-Net [24]. (f) Pidinet [36].
(g) DexiNed [34].

red.

BSDS500: The qualitative evaluation results are shown
in Table 1. Our MTS-DR-2 achieves the best ODS and OIS
(for both “Thin” and “Raw”), Mean Precision, and Mean
IOU. The MTS-DR-3 and MTS-DR-4 obtain the second-
best ODS and OIS. The baseline MTS-DR-1 outperforms
XYW-Net [24] with ODS by 1.9% and OIS by 3.1% in the
“Thin” setting, by 5.9% and OIS by 5.4% in the “Raw” set-

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Figure 9. Visual results on BIPEDv2. (a) Input image. (b) Ground
truth. (c) MTS-DR-1. (d) TEED [32]. (e) XYW-Net [24]. (f) Pidinet [36].
(g) DexiNed [34].

ting. The MTS-DR-3 obtains 2.6% higher Mean Precision
and 2.8% higher mean IOU than XYW-Net but with 40.9%
less parameters and 56.9% lower GFLOPs. As shown in
Figure 8, the baseline produces edge maps with richer de-
tails and less noise compared to other methods. Figure 6
illustrates two examples of side feature maps and MTS fea-
ture maps on BSDS500. It is noteworthy that the MTS-DR
backbone can remove homogeneous features and highlight
discontinuities preliminarily. Hence, the raw edge maps
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Method
Thin Raw mean

Precision
mean
IOU Params GFLOPs

ODS OIS ODS OIS
TEED [32] 0.849 0.853 0.480 0.480 0.8124 0.5384 58.91K 2.144
Pidinet [36] 0.889 0.896 0.773 0.786 0.7926 0.5848 710.149K 23.76
DexiNed [34] 0.893 0.899 0.810 0.820 0.8600 0.5812 35.215M 148.081
XYW-Net [24] 0.899 0.909 0.730 0.800 0.8202 0.5861 808.831K 24.845

MTS-DR-1
(M = 2, C = 32)

0.897 0.905 0.811 0.829 0.8689 0.6038 1.599M 33.999

MTS-DR-2
(M = 4, C = 32)

0.903 0.909 0.824 0.838 0.8698 0.6022 1.717M 44.403

MTS-DR-3
(M = 2, C = 16)

0.894 0.901 0.810 0.822 0.8632 0.5973 478.419K 10.706

MTS-DR-4
(M = 4, C = 16)

0.883 0.898 0.797 0.826 0.8626 0.5957 610.579K 27.060

Table 2. Comparison with competed methods on BIPEDv2 dataset.

CR
Thin mean

Precision
mean
IOU Params GFLOPs

ODS OIS

0.2 0.739 0.754 0.8436 0.6076 1.566M 13.380
0.4 0.734 0.750 0.8404 0.5751 1.580M 15.112
Table 3. Results Comparison with MTS-DR-1 using different com-
pressing ratios on BSDS500

CR
Thin mean

Precision
mean
IOU Params GFLOPs

ODS OIS

0.2 0.900 0.906 0.8643 0.6032 1.566M 30.104
0.4 0.897 0.905 0.8689 0.6038 1.599M 33.999
Table 4. Results Comparison with MTS-DR-1 using different com-
pressing ratios on BIPEDv2

learned from the MTS feature maps achieve a comparable
performance as shown in Table 1.

BIPEDv2: The results on BIPEDv2 are illustrated in Ta-
ble 2, in which the baseline achieves the best mean IOU
as 0.6038 and the second-best mean Precision as 0.8689.
MTS-DR-2 achieves the best ODS and OIS (for both “Thin”
and “Raw”). The baseline outperforms XYW-Net [24] with
ODS by 11.1% and OIS by 3.6% in the “Raw” setting. The
visual result and examples of feature maps on BIPEDv2 are
illustrated in Figure 9 and Figure 7, respectively. As shown,
our method produces edge maps containing more exquisite
details and less unnecessary features. In particular, the MTS
feature map in 7 indicates the strong ability of the MTS-DR
backbone to learn the required subspace.

5.5. Ablation Studies

To further explore the effectiveness of the MTS-DR
module, we perform ablation studies using MTS-DR-Net
variants and MTS-DR modules with different CR.

Effects of Network Scalability: Firstly, we investi-
gate the scalability of the network with different settings

of M and C. As shown in Table 1 and Table 2, the MTS-
DR-2 with the most complex scalability has achieved the
best performance using the four metrics on BSDS500 and
BIPEDv2. It is noted that the small structure MTS-DR-3
still outperforms XYW-Net [24] by 2.1% with ODS and by
1.8% with OIS in the ”Thin” setting, by 5.5% with ODS
and by 5.2% with OIS in the ”Raw” setting on BSDS500.
Compared to MTS-DR-2, the computational complexity
of MTS-DR-3 decreases from 19.735 GFLOPs to 4.758
GFLOPs on BSDS500 and from 44.403 GFLOPs to 10.706
GFLOPs on BIPEDv2.

Effects of Compressing Ratio: We further explore the
effects of different CR with MTS-DR-1. We set CR as 0.2
on BSDS500 and BIPEDv2 and make a comparison under
the “Thin” setting. As shown in Table 3 and Table 4, the
performance of ODS and OIS with CR = 0.2 is better on
both datasets. In addition, the computational complexity of
the network is lower with a smaller CR.

6. Conclusions
In this work, we present a multi-scale tensorial summa-

tion and dimensional reduction guided neural network for
edge detection. The proposed MTS-DR-Net comprises two
modules: an MTS-DR backbone and a lightweight refine-
ment network. The MTS-DR backbone neglects the influ-
ence of unnecessary features and further emphasizes the im-
portance of edges with effectiveness and efficiency. There-
fore, MTS-DR-Net learns the necessary subspaces repre-
senting edges without pre-training and large-scale datasets.
Unlike previous related works, our method is capable of re-
moving unnecessary information preliminarily and preserv-
ing richer edge features. Moreover, we verify the potential
of the multi-scale tensorial summation factorization opera-
tor as an efficient backbone replacement of complex DNN
structures. Experiments on two benchmark datasets demon-
strate that MTS-DR-Net achieves SOTA performance with-
out post-processing. command, and and
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