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Abstract

Stochastic interpolants are efficient generative models that bridge two arbitrary probability
density functions in finite time, enabling flexible generation from the source to the tar-
get distribution or vice versa. These models are primarily developed in Euclidean space,
and are therefore limited in their application to many distribution learning problems de-
fined on Riemannian manifolds in real-world scenarios. In this work, we introduce the
Riemannian Neural Geodesic Interpolant (RNGI) model, which interpolates between two
probability densities on a Riemannian manifold along the stochastic geodesics, and then
samples from one endpoint as the final state using the continuous flow originating from the
other endpoint. We prove that the temporal marginal density of RNGI solves a transport
equation on the Riemannian manifold. After training the model’s the neural velocity and
score fields, we propose the Embedding Stochastic Differential Equation (E-SDE) algorithm
for stochastic sampling of RNGI. E-SDE significantly improves the sampling quality by re-
ducing the accumulated error caused by the excessive intrinsic discretization of Riemannian
Brownian motion in the classical Geodesic Random Walk (GRW) algorithm. We also pro-
vide theoretical bounds on the generative bias measured in terms of KL-divergence. Finally,
we demonstrate the effectiveness of the proposed RNGI and E-SDE through experiments
conducted on both collected and synthetic distributions on S2 and SO(3).

1 Introduction

Stochastic interpolants (Albergo & Vanden-Eijnden, 2023; Albergo et al., 2023; Chen et al., 2024) are a type
of generative models that use continuous-time stochastic processes with smooth path to precisely bridge two
arbitrary probability density functions in finite time. These interpolants theoretically follow a transport
equation from source distribution to target distribution, and their structures leads to simpler optimization
loss function compared to the normalizing flow approach in the stage of training and leverages efficient
numerical schemes of stochastic differential equations in the stage of sampling. It is regarded as a unifying
framework for flow-based and diffusion-based generative models and demonstrates its efficiency on practical
density estimation or image generation tasks.
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Stochastic interpolants are primarily developed in the Euclidean space, but in many real applications, it’s
more mathematically rigorous to regard the livespace of data as a curved Riemannian manifold instead
of Euclidean space. For example, the data distributed on earth lives in the spherical surface (i.e., S2)
in geoscience (Karpatne et al., 2019), and the molecular data satisfying 3d rotational equivariance live in
SO(3) group in molecular biology(Jumper et al., 2021). Generative modeling for these data with geometric
structure benefits from the specialized geometric model, which is established in the Riemannian rather
than the Euclidean sense to approximate stochastic law latently dominated by the curvature of space more
accurately. Without the prior-encoding of specific Riemannian structures, conventional Euclidean models
fail to adequately capture the intrinsic spatial information embedded in data when directly applied to non-
Euclidean tasks, e.g., assigning a non-zero probability to regions outside the desired manifold.

To ensure appropriate representation learning and better generation performance on Riemannian manifolds,
we developed a generative model named Riemannian Neural Geodesic Intepolant in this work. The RNGI
is a continuous-time stochastic process defined on a Riemannian manifold M, connecting two probability
distributions along the stochastic geodesics in the finite temporal interval [0, 1], then can generate from the
endpoint distribution via efficient samplers. We summarize the main technical contributions based on the
proposed RNGI as follows.

• We extend the theoretical framework of stochastic interpolants to Riemannian manifolds, and prove
that the temporal marginal probability density of RNGI solves a transport equation on Riemannian
manifold under mild integrable condition of the velocity field.

• By specifying the interpolating path as geodesics, we design a quadratic loss function for learning the
velocity field of the RNGI and apply implicit score matching technique for learning the score field.
We further provide theoretical bounds on the generative bias measured in terms of Wasserstein-2
distance between target and the neural approximated probability distributions in Proposition 10.

• We explore efficient sampling algorithms based on the learned vector field. We apply both Geodesic
Random Walk method and Embedding SDE method to numerically simulate the stochastic dif-
ferential equation corresponding to the transport equation, where the Embedding SDE method is
proposed to reduce the accumulated error caused by the excessive discretization of Riemannian
Brownian motion in the GRW method.

• We conduct experiments on benchmark datasets which are distributed on manifolds S2 and SO(3).
Results show the flexible interpolating ability, higher likelihood compared to the baseline generative
models and the improved generation performance with E-SDE method of RNGI.

1.1 Related Work

We briefly review the related work on generative models on Riemannian manifolds. One type of work is
to generalize the flow-based generative models to Riemannian manifold. The RCNF (Mathieu & Nickel,
2020) and RNODE (Lou et al., 2020) generalize the two famous Euclidean flow-based model Normalizing
Flow (Rezende & Mohamed, 2015) and Neural ODE (Chen et al., 2018) to Riemannian setting. Both
works build ODE flow path for sampling and train the model with log likelihood-related loss, relying on
adjoint computation of projected ODE solver on M. In (Rezende et al., 2020), the proposed method
straightforwardly constructs normalizing flow on S2 and T2 by combining geometric operation blocks. (Rozen
et al., 2021; Ben-Hamu et al., 2022) formulate the flow process via transport equations and approximate the
path of transportation by divergence-based loss functions. (Chen & Lipman, 2024) generalizes the Euclidean
flow matching technique to Riemannian setting by defining the conditional flow as the integral curve of
vector field, then matches the field via Riemannian distance on M.

The other type of work constructs the diffusion-based generative models on Riemannian manifolds. The
RSGM (De Bortoli et al., 2022) model generalizes the score-based diffusion model (Song et al., 2021), deriving
the forward-backward perturbing-sampling SDE and approximates the unknown heat kernel on manifold by
both Sturm-Liouville decomposition and Varadhan’s asymptotic. And concurrently (Huang et al., 2022)
establish the Riemannian diffusion model from the perspective of variational inference by optimizing the
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proposed Riemannian CT-ELBO, which is proven to be equivalent to the score-matching loss. (Jo & Hwang,
2024) generalizes diffusion bridges (Liu et al., 2023a) to manifold setting, conditioning the destination of
SDE at empirical distribution of training samples then matching the bridge model from both endpoints.
As another genre, (Park et al., 2022) doesn’t rely on the forward-backward scheme but directly consider
parameterized Riemannian SDE, expressed in local coordinates, as universal transformer from the initial
to the terminal distribution, and tunes the NN-surrogated drift and diffusion coefficient based on optimal
transportation.

Different from these methods, our proposed RNGI model generalizes the stochastic interpolants to Rieman-
nian manifolds, which can be regarded as a unifying framework for flows and diffusions.

2 Preliminaries

2.1 Stochastic Interpolant

We begin by recalling the stochastic interpolant on Euclidean space (Albergo & Vanden-Eijnden, 2023). Let
{Ω,F ,P} be a probability space, x0 and x1 be two random variables from Ω to Rd. A stochastic interpolant
between x0 and x1 is a stochastic process defined as:

xt = I(t; x0, x1), (1)

where I ∈ C2([0, 1]; C2(Rd × Rd)) denotes a differentiable bridge process such that

I(0; x0, x1) = x0, I(1; x0, x1) = x1.

The stochastic interpolant xt is a continuous-time stochastic process whose realizations are samples from
the distribution of x0 at t = 0 and from the distribution of x1 at t = 1 by construction. Specifically, the
initial distribution x0 can, but not necessarily, be chosen as simple uniform distribution U(Rd) or Gaussian
distribution N(Rd), while x1, may be fairly complex, models the unknown distribution of the observational
data.

2.2 Riemannian Manifold

This paper considers complete, connected, smooth Riemannian manifolds M equipped with Riemannian
metric g as basic domain over which the generative model is learned. The tangent space of M at point
x is denoted by TxM and g defines an inner product over the tangent space denoted ⟨u, v⟩g, u, v ∈ TxM.
TM = ∪x∈M{x}×TxM is the tangent bundle that collects all the tangent space of the manifold. The norm
on Euclidean space and tangent space will be both denoted by | · |. We use ∇ and div to denote the gradient
operator and divergence operator with respect to the spatial variable x on M, respectively. Readers may
refer to Appendix A or (Lee, 2013) for a more comprehensive background on Riemannian manifolds.

Throughout this paper, X (M) is the space of vector fields onM, C(M) is the space of continuous functions
on M, Cn(M) is the space of n-th continuously differentiable functions on M. Cn([0, 1];Y) denotes the
space of n-th continuously differentiable functions from [0, 1] to some function space Y mentioned above.

3 Geodesic Interpolant on Riemannian manifold

We first define Stochastic Interpolant on Riemannian manifold by replacing Euclidean space with M :

xt = I(t; x0, x1) : [0, 1]×M×M→M.

For a generation task in practice, the initial distribution usually is chosen as a simple distribution on M,
e.g., uniform distribution U(M) or Wrapped-Gaussian distribution N(M) for sampling convenience. The
marginal probability density ρ(t, x) of the stochastic interpolant xt can bridge the initial probability density
ρ0 and final probability density ρ1 corresponding to x0 and x1 respectively. Although connecting x0 and x1,
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the interpolant I is unfeasible to directly be used for sampling since the distribution of x1 is intractable. In
the next section, we will establish ways for sampling through analyzing the evolution of the intermediate
probability density ρ(t, x).

Firstly, we define the velocity field of a stochastic process as follows.
Definition 1 (Velocity field). Let xt be a stochastic process on Riemannian manifold M which is differen-
tiable with respect to the time variable t. The velocity field v(t, x) of xt is defined as:

v(t, x) ≜ E(∂txt|xt = x), (2)

where ∂txt : Ω→ TM is a stochastic tangent field along the stochastic differentiable curve xt.

Please note that in the above definition, the conditional expectation is taken by given xt = x and it can
be locally calculated in a single tangent space TxM, which is the normal integral in the Euclidean space.
With the well-defined velocity field, we now introduce a fundamental theorem of the evolution of the density
ρ(t, x), on which almost all of properties and algorithms of the model are based.
Theorem 2. For Riemannian Stochastic Interpolant xt on manifold M with Riemannian metric g, we
assume that its spatial-temporal probability density function ρ(t, x) exists and ρ(t, x) ∈ C1([0, 1]; C2(M)).
Denote the velocity field defined above by v(t, x), and if v(t, x) satisfies the integrable condition∫

M
|v(t, x)|ρ(t, x)dM(x) <∞, (3)

then ρ(t, x) solves the transport equation on M as below:

∂tρ + div[ρ · v(t, x)] = 0. (4)

Readers may refer to the supplementary materials for complete proof of Theorem 2 and the detailed veri-
fication of 3. Next, we generalize the score function in Euclidean case to the score field on M, which is a
gradient field generated by scalar function ρ(t, x).
Definition 3 (Score field). Let xt be a stochastic process living on Riemannian manifold M, and its score
field s(t, x) is defined as:

s(t, x) ≜ ∇ log ρ(t, x). (5)

Consider the perturbation of velocity field as

vF (t, x) = v(t, x) + ϵ(t)s(t, x), (6)

then the transport equation (4) can be transformed into the following Fokker-Planck Equation which is also
solved by ρ

∂tρ + div(ρ · vF ) = ϵ(t)(∆M)ρ, (7)

where ϵ(t) ≥ 0 is a coefficient and ∆M denotes the Laplace-Beltrami operator onM. Parallel with classical
stochastic analysis theory, Fokker-Planck equation (7) on M also corresponds to a stochastic differential
equation on M. More precisely, the solution ρ(t, x) to 7 is concurrently the time-marginal probability
density of −→X t that follows the stochastic differential equation as:

d−→X t = vF (t,−→X t)dt +
√

2ϵ(t)dBM
t , (8)

−→
X t|t=0 = x0,

where BM
t is the Brownian motion onM. And for the backward perturbation and backward Fokker-Planck

equation

vB(t, x) = v(t, x)− ϵ(t)s(t, x),
∂tρ + div(ρ · vB) = −ϵ(t)(∆M)ρ,
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there is an associated backward SDE

d←−X t = −vB(1− t,
←−
X t)dt +

√
2ϵ(t)dBM

t , (9)
←−
X t|t=0 = x1

whose solution ←−Y t = −→X 1−t. As there is no essential difference between equation 8 and equation 9, so
we mainly discuss equation 8 as representative in following sections. And when we set ϵ(t) = 0, both of
equation 8 and equation 9 degenerate to an ODE

d←→X t = vF (←→X t, t)dt, (10)

which can be bi-directionally solved between t = 0 and t = 1.

The induced SDE (8, 9) and ODE (10) establish surrogate models Xt, equivalent to stochastic interpolant
xt in the sense of distribution and they can be used for simulation by leveraging SDE or ODE solvers on
Riemannian manifold.

Till now the information of unknown data distribution ρ1 is fully carried by the drift vector field vF , which
can be learned from data. We will introduce the learning and sampling algorithms in Section 4. Before that,
we introduce the Geodesic Interpolant and its explicit form on example manifolds.

As the velocity field relies on the partial derivative of the interpolating path I(t; x0, x1), we need to specify
the form of I for constructing the learning algorithm of the velocity for computational tractable. In this
section, we specify the stochastic interpolant I(t; x0, x1) onM as the geodesic, the shortest path connecting
two random points on manifold.
Definition 4 (Riemannian Geodesic Interpolant). Given a probability space {Ω,F ,P} and two random
variables x0, x1 : Ω→M, the Geodesic Interpolant I(t; x0, x1) between x0 and x1 is defined as

I(t; x0, x1) = Expx0(t · Logx0x1), (11)

where Expx0 and Logx0 denote the exponential and logarithm map at point x0 respectively.

To construct the geodesic interpolant rigorously, we must ensure that the geodesics are ’uniquely reachable’
on (almost) the entire M. But generally speaking, the exponential and logarithm map are usually only
defined in a small neighborhood of x0. As stochastic points on M, x0 and x1 are not assumed to be closed
with each other. Therefore, we must extend the locally defined exponential and logarithm map to almost the
entire manifold, except for at most the cut locus of zero measure, which requires the manifold is geodesically
complete(Lee, 2013).
Definition 5 (Geodesic completeness). Let M be a connected manifold equipped with Riemannian metric
g. If for any geodesic γt on M, the domain of γ can be extended from [0, 1] to R+, then M is called as
geodesically complete.

The following theorem and its corollaries guarantee the well-posedness of the geodesic interpolant 4 even for
’distant’ random points x0 and x1 on our concerned manifolds.
Proposition 6 ((Hopf & Rinow, 1931)). If M is a connected manifold equipped with Riemannian metric g,
and dg(·, ·) is the Riemannian distance on M induced by g, then

M is geodesically complete⇔ (M, d) is complete metric space.

Corollary 7. (1) If M is a compact manifold, then M is geodesically complete. (2) If M is a compact and
complete manifold, the there exists a geodesic on M joining any two points p, q on M.

Now for a wide range of Riemannian manifolds, especially the compact ones like hypersphere, the geodesics
are ’reachable’ between the initial random variable x0 and the target random variable x1 on them. We still
to make geodesics unique by discard a few singular points, i.e. the cut locus.

5



Definition 8 (Cut locus). On a Riemannian manifold M, a point q is called cut point to the point p if
there are two or more minimizing geodesics joining p and q. The set of all such q, denote by C(p) is defined
as the cut locus of p.

Actually, C(p) is the collection of the points which make the exponential map Expp from p not injective, so
the logarithm map Log[C(p)] cannot be defined. As for constructing geodesic interpolant, we must exclude
{x1(ω) : x1(ω) ∈ C[x0(ω)]} from the target dataset, and project them back into M− C(x0) to keep the
information contained in them as much as possible.

4 Neural Geodesic Interpolant Algorithm

To parameterize the geodesic interpolant model 11 and improve its generalization ability, we use neural
networks as the approximators of latent vector fields on Riemannian manifold, which leads to a NN-based
surrogate model - Riemannian Neural Geodesic Interpolant (RNGI).

4.1 Network training

The construction of sampling SDE 8 is based on the perturbation in Equation 6, which consists two unknown
vector fields on M to be learned. We use two neural networks to approximate velocity field v(t, x) and the
score field s(t, x) and denote the approximate value as v̂ and ŝ respectively. For the learning of velocity field,
we minimize the following quadratic loss function Lv[v̂]:∫ 1

0
Ext

[
1
2 |v̂(xt, t)|2g − ⟨∂tI(t; x0, x1), v̂(xt, t)⟩g

]
dt. (12)

From the properties of quadratic function, the vector field defined in Definition 1 is the unique minimizer
of Lv in X (M). And for the learning of the score field, we optimize the implicit score-matching (ISM) loss
Ls[ŝ]: ∫ 1

0
Ext

[
1
2 |ŝ(xt, t)|2g + divŝ(xt, t)

]
dt, (13)

then the vector field defined in Definition 3 is the unique minimizer of Ls in X (M), which has been proven
in (Hyvärinen, 2005). Note that unlike denoising score-matching (DSM) loss in Diffusion Models, ISM allows
for score approximation of general stochastic process xt, without any structural constraint like Brownian
motion or Ornstein-Uhlenbeck process.

Both the finding of the optimal neural network solution of 12 and 13 make up the neural approximation of
geodesic interpolant, and the detailed training process is shown in Algorithm 1.

Algorithm 1 Training of velocity field v(t, x) and score field s(t, x)
Input: Prior samples {x(n)

0 }, Data samples {x(n)
1 }, Interpolating path I(t; x0, x1), Initialized velocity field

network vθ0(t, x), Initialized score field network sη0(t, x), Epoch number M , Batch size N

1: for j = 1, . . . , M do
2: Sample {t(i)} ∼ Uniform[0, 1]
3: Draw a batch of data {x(i)

0 } and {x(i)
0 }

4: for i = 1, . . . , N do
5: Create coupled triples [ti, xi

0, xi
1]

6: Calculate interpolation point xi
t = I(ti; xi

0, xi
1) and velocity ∂tI(ti; xi

0, xi
1)

7: Calculate loss function Lv(vθ) and take gradient descent step on hyperparameter θ
8: Calculate loss function Ls(sη) and take gradient descent step on hyperparameter η
9: end for

10: end for
11: Return Neural network vθ∗ and sη∗ with the optimal parameter θ∗ and η∗
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4.2 Samples generation

The marginal probability density of xt is equal to that of XSDE
t defined in Equation (8) at any time t, so

sampling from the terminal distribution of x1 with abstract form I can be realized by sampling from XSDE
t ,

which further can be approximately implemented by numerically solving the neural parameterized stochastic
differential equation on [0, 1]:

dX̂t = vθ∗,η∗

F (X̂t, t)dt +
√

2ϵ(t)dBM
t , X̂0 = x0. (14)

4.2.1 Geodesic Random Walk

In the context of Riemannian generative modeling, Geodesic Random Walk (GRW), as an intrinsic approach
to solving Riemannian SDE without any dependencies on the ambient space, is a widely-used discretization
scheme. GRW’s step is based on the sampling on tangent bundles TM and projecting the sampled tangent
vector to ambient space M:

X̂t+1 = Exp
X̂t

(vθ∗,η∗

F (X̂t, t)∆t +
√

2ϵ∆t · Zt), (15)

where ∆t is time step and Zt is a Gaussian random variable in T
X̂t
M, and

√
∆t comes from the second-order

approximation of Riemannian Brownian motion BM
t .

It’s provable that GRW defined as 15 will converge to the exact solution of 14 in the sense of semi-groups
(JØrgensen, 1975). Based on the convergence result, intuitively, GRW implements a numerical scheme to
model the stochastic dynamics governed by Riemannian SDE like its Euclidean counterpart. In the following
context, when we mention ODE method for sampling, we mean that ϵ = 0 in Equation (14).

4.2.2 Embedding SDE

Despite being a classical method for SDE discretization onM, the GRW scheme may produce biased samples
due to the intrinsic approximation of Brownian motion. When M is compact, the exponential map used in
GRW can only be bijective in a bounded domain D ∈ T

X̂t
M. But Zt, as an unbounded Gaussian random

variable in T
X̂t
M to simulate the Brownian part in 14, still has probability to escape from D. Then the

overstepping tangent vector will be Exp-mapped to a circular point on M, generating unexpected image
point and being iterated into wrong sample after multi-step updates.

So in brief, the insufficient expressivity of local coordinates injects systematic error into the GRW simulation
of 14, preventing the stochastic generation scheme of SI models from competing with the deterministic
scheme. Fortunately, stochastic analysis theory opens a broader view to deal with the simulation of SDE on
manifold, establishing a new way to fix the locality issue.

From the perspective of topology, both of classical Whitney’sWhitney (1936) and Nash’s theorem (Nash,
1954) state that a m-dimensional Riemannian manifold can always be embedded in a Euclidean space with
higher dimension d ≥ m + 1, then extrinsically parameterized by the global frame in Rd as

M = {p|p = (x1, . . . , xd) ∈ Rd}.

Based on such embedding, Proposition 9 gives another construction of Brownian motion on manifold.
Proposition 9 ((Hsu, 2002)). If M is a sub-manifold of Rd, then we can construct the Brownian Motion
BM

t on M by projecting the d−dimensional Euclidean Brownian Motion Wt in Rd onto M:

dBM
t = Pα(BM

t ) ◦ dW α
t , (16)

where Pα(·) denotes the α−th orthonormal projection operator from Rd to the tangent space T(·)M, ’◦dWt’
denotes the Stratonovich stochastic differential and the index α follows the Einstein summation convention.

Proposition 9 generatesM-Brownian motion BM
t by solving Stratonovich SDE 16 in ambient Euclidean space

Rd without local Gaussian sampling, avoiding the accumulation of errors due to the incomplete expressiveness
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of the local coordinate used by GRW. Having composed the embedding diffusion term dBM
t and learned

drift term vθ∗,η∗

F :M→ TM, we complete the Embedding SDE (E-SDE) scheme of 14 as

dXSDE
t = vθ∗,η∗

F (t, XSDE
t )dt +

√
2ϵ(t)P (XSDE

t ) ◦ dWt. (17)

Contrast to the conventional GRW scheme for stochastic generation, our proposed E-SDE scheme not only
achieves higher accuracy by globally simulating Riemannian Brownian motion BM

t instead of locally sampling
Zt

√
∆t ≈ dBM

t , but also enjoys faster convergence with the help of the developed numerical solvers of 17 in
Rd. (Cheng et al., 2022) has proven that the convergence order of GRW is O(

√
∆t) as the stepsize ∆t→ 0,

and for the convergence order of various discretization schemes(Kloeden & Platen, 2011) of E-SDE, readers
may refer to Table 1.

Table 1: The relation between the error and discretization stepsize of numerical schemes for SDE on Rie-
mannian manifolds.

schemes orders

GRW: Geometric Euler-Maruyama O(
√

∆t)

E-SDE: Euler-Maruyama O(
√

∆t)
E-SDE: Euler-Heun O(

√
∆t)

E-SDE: Milstein O(∆t)
E-SDE: Stochasitc Runge-Kutta O[(∆t)1.5]

We summarize the entire sampling process in Algorithm 2 below.

Algorithm 2 Sampling of new data from objective distribution x1

Input: velocity field network vθ∗ , score field network sη∗ , number of steps N , diffusion coefficient ϵ(t),
number of samples M , prior distribution x0 ∼ ρ0

1: Calculate the perturbed drift: vθ∗,η∗

F = vθ∗ + ϵ(t)sη∗ and time interval △t = 1
N

2: for i = 1, . . . , M do
3: Draw new sample xi

0 from prior distribution ρ0
4: for t = 0, ∆t, . . . , N∆t = 1 do
5: Numerical simulate SDE: dXt = vθ∗,η∗

F dt +
√

2ϵ(t)dBM
t with initial value xi

0 by GRW or ESDE
6: end for
7: end for
8: Return New samples {xi

1}M
i=0 from data distribution ρ1

4.3 Error estimation

For the parameterized surrogate generating process X̂t, there is always unavoidably some systematic error
due to the suboptimal neural network approximation of vF (t, x). As both the interpolating process and
generating process be modeled as SDE, we can bound the gap between the target distribution and the
sampled distribution in the sense of Wasserstein-2 distance.
Proposition 10. For two Riemannian stochastic process Xt and X̂t living on M, whose time marginal
probability density function are denoted by ρ(t, x) and ρ̂(t, x) and corresponding velocity field denoted by
v(t, x) and v̂(t, x) respectively. If both of their density evolution satisfy transport equation, i.e.

∂tρ + div[ρ · v(t, x)] = 0,

∂tρ̂ + div[ρ̂ · v̂(t, x)] = 0.
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Then the KL divergence between the target distribution ρ1 and generated distribution ρ̂1 can be integrated as:

KL(ρ1||ρ̂1) =
∫ 1

0
dt

∫
M
⟨s− ŝ, v − v̂⟩gρ(t, x)dM(x). (18)

Then from 18, the generative discrepancy can be jointly controlled by the approximation error of v and s.
Proposition 11. Consider two SDEs with same initial data x0 and Brownian motion BM

t on M:

dXt = vF (Xt, t)dt +
√

2ϵ(t)dBM
t ,

dX̂t = v̂F (X̂t, t)dt +
√

2ϵ(t)dBM
t .

Let µt and µ̂t be the probability measures induced by Xt and X̂t respectively, assume that v and v̂ both are
Lipschitz with constant L, we have

Wp(µt, µ̂t) ≤ eLt sup
s∈[0,t]

sup
x∈M

|vF (x, s)− v̂F (x, s)|g, (19)

where Wp denotes the Wasserstein p−distance for p ≥ 1. Let t = 1 in 19 then we have the final error
estimation of µ̂1.

Both of the proof of proposition 10 and 11 are collected in the Appendix B.

4.4 Interpolant construction

Next, we show the analytic form of the geodesic interpolant and construct E-SDE scheme on two important
kinds of Riemannian manifolds: Hypersphere Sn and (matrix) Lie group SO(3) for their broad-application
in geometric data science. And the detailed completeness analysis of Sn and SO(3) are in supplementary
materials.

Hypersphere Sn The hypersphere Sn can be naturally embedded in the Euclidean space Rn+1, and the
exponential map Exp(·) on Sn can be written as

Expp(v) = cos(|v|)p + sin(|v|) v

|v|
, (20)

where p is a point on Sn and v is a tangent vector in tangent space TpSn at p. Similarly the logarithm map
Log(·) can be written as:

Logp(q) = arccos⟨p, q⟩
|q − ⟨p, q⟩p|

[q − ⟨p, q⟩p], (21)

where p and q both denote points on Sn and ⟨·, ·⟩ denotes the standard inner product in Rn+1.

Thanks to geodesic completeness of Sn, the locally defined exponential and logarithm map can be extended
to the entire Sn − {−p} only by continuously lengthening v from |v| = 1 to |v| → π, and for the sparsity
of a single point −p in Sn, we do not need to exclude any point from the target dataset. Therefore, the
interpolating process I(t; x0, x1) on Sn can be written as:

I(t; x0, x1) = Expx0(t · Logx0x1)
= cos(t · |Logx0x1|)x0

+ sin(t · |Logx0x1|)
Logx0x1

|Logx0x1|
. (22)

Now we consturct E-SDE scheme on Sn. For any fixed point x = (x1, . . . , xn+1) on Sn ⊂ Rn+1 and any
separated point ξ ∈ Rn+1, the projection operator Px from Rn+1 to the tangent space TxSn at x is given by:

Px(ξ) = ξ − ⟨ξ, x⟩x,

9



where ⟨·, ·⟩ denotes the standard inner product in Rn+1. So from above P ’s expression in the form of
geometric operator, we can also derive the matrix form of P as (P (x)ij) by entries:

P (x)ij = δij − xixj .

where δ denotes Kronecker symbol. And substituting P (x)ij into 16 gives a SDE in Rd+1

dBi
t =

n+1∑
j=1

(δij −Bi
tB

j
t ) ◦ dW j

t ,

where Bi
t is the i−th component of Bt. The solution process Bt, also known as Stroock’s representa-

tion(Stroock, 2000), is a Brownian motion living on the hypersphere Sn.

Lie group: SO(3) The Lie algebra so(3) of SO(3) is the space of skew-symmetric matrices, whose matrix
element ω can also be expressed as a vector ω̂ = [ω1, ω2, ω3]. The Rodrigues’ rotation formula (Murray et al.,
1994) bridges 3D rotation vector and 3D orthogonal matrix, which gives the exponential map from so(3) to
SO(3):

Expe(ω) = I + sin θ · ω + (1− cos θ) · ω2, (23)

where θ =
√

ω2
1 + ω2

2 + ω2
3 denotes the Frobenius norm of ω, e denotes the identity element in the group.

Inversely, the logarithm map from SO(3) to so(3) at e is given by:

Loge

 R11 R12 R13
R21 R22 R23
R31 R32 R33

 = γ

2 sin γ

 R32 −R23
R13 −R31
R21 −R12

 , (24)

where the rotation matrix R ∈ SO(3) is expressed by entries and rotation angle γ is calculated by

γ = arccos(tr(R)− 1
2 ).

For any point p ∈SO(3), the Exp and Log map at p are translated from those at e:

Expp(v) = p · Expe(p−1v),
Logp(q) = p · Loge(p−1q),

where v ∈ TpSO(3) and q ∈ SO(3). For the random variable x0 and x1, the geodesic interpolant I(t; x0, x1)
on SO(3) is expressed as

I(t; x0, x1) = Expx0(t · Logx0x1)
= x0 · Expe[t · Loge(x−1

0 x1)]. (25)

The compactness of SO(3) makes it geodesically complete, and to ensure the uniqueness, note that the
orthogonality of SO(3)’s matrix elements has a constraint on their trace that tr(R) ∈ [−1, 3], so choose the
main value of arccos then we get a mapped γ ∈ [0, π]. But for those matrices with tr = −1, which represents
a rotation with angle = π, the bijection between rotation vectors and orthogonal matrices does not hold
anymore, leading to nan value of 27. So for those datapoints (x−1

0 x1)(ω) satisfying tr[(x−1
0 x1)(ω)] = −1, we

must truncate their trace when directly construct geodesic interpolant on SO(3).

To construct E-SDE scheme on SO(3), as the embedding of SO(3) into Rd is not as trivial as that of Sn, we
introduce the ’truncation-orthogonalization’ embedding of SO(3) into R6 proposed by (Zhou et al., 2019).

For a 3-d orthogonal matrix R = (r1, r2, r3), the truncating map P : SO(3)→ R6 is defined by

P(R) =
(

r1
r2

)
.
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And for a vector l =
(

l1
l2

)
∈ R6, the Gram-Schimit orgonalization of the two 3-d vectors l1 and l2 gives two

orthogonal 3-d unit vectors r1 and r2. Additionally, the cross product gives another unit vector r3 = r1×r2,
which is orthogonal to both r1 and r2. Then the orthogonalizing map Q : R6 → SO(3) is defined by

Q(l) = (r1, r2, r3).

P and Q establish a bijection between SO(3) and a submanifold M of R6. Such bijection cannot be
implemented by the Euler angle embedding, axis-angle embedding or quaternion embedding. Specifically,
M can be further embedded as a submanifold of S5 in R6, so the probability distribution on SO(3) can be
transformed to be supported onM⊂ S5, which enables us to construct RNGI model and its E-SDE scheme
in R6.

5 Experiment

We apply the RNGI model to datasets living on two Riemannian manifolds: S2 and SO(3) to validate its
effectiveness. Both of the geographical and synthetic density generation experiment aim to demonstrate
the improved accuracy of RNGI models in terms of log-likelihood and E-SDE in terms of distance metric,
and the distribution connection experiment aims to demonstrate the flexibility of RNGI models to generate
samples of target distribution from arbitrary initial distributions. All of experiments run on a single Nvidia
Geforce RTX 4090/3090 GPU.

5.1 Geographical data on earth

Many geographical and climatic events, such as volcanic eruptions (NOAA, 2020b), earthquakes (NOAA,
2020a), floods (Brakenridge, 2017), and wild fires (EOSDIS, 2020), whose occurrence can be represented as
geographical coordinates on the surface of the earth, can be naturally modeled as samples drawn from latent
probability distributions ρevent on S2. We use the RNGI model to bridge the uniform distribution U(S2)
and the unknown ρevent. Then we transform new samples from U(S2) into high-quality samples from ρevent

by the generative schemes of RNGI model.

Figure 1: Generative visualization on flood dataset. From left to right there are the ground truth data,
samples from ODE, GRW and E-SDE. The diffusion coefficient of GRW and E-SDE is set to ϵ = 0.01 and
the sampling steps are N = 100.

We use two fully-connected neural network to respectively predict the velocity field and score field of the
geodesic interpolant on S2, and both of the inputs and outputs are extrinsic 3-d vector representation of
spherical points. We employ ’RiemannianAdam’ optimizer in package geoopt(Becigneul & Ganea, 2019)
on volcano, earthquake and flood and AdamW on fire datasets after tuning, and train each experiment for
60000 iterations on the first three experiments and 120000 iterations on the last one. The detailed parameter
settings are listed in Table 7 in the appendix C.1. The stochastic sampling via E-SDE is conducted by
Euler-Heun solver of 0.5 order or Heun solver of 1.5 order in package torchsde(Kidger et al., 2021). And
the deterministic sampling via ODE is conducted by Euler or dopri5 solver in package torchdiffeq(Chen,
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2018). The generation results are measured by negative log-likelihood (NLL) in Table 2, which are computed
from solving the likelihood ODE, parallel with the sampling ODE, by the adjoint method implemented by
torchdiffeq, and the generative visualization is shown in Figure 1.

Table 2: Negative log-likelihood (↓) results on four earth datasets. The best result is marked in bold. All
numbers are averaged over 5 runs of experiments and each run contains 10 rounds of sampling. Each time
of sampling generates samples of the same size as that of the primary datasets. The diffusion coefficient is
fixed at ϵ = 0.01 and the likelihood step is adaptive for Dopri5 solver.

Dataset Volcano Earthquake Flood Fire
Size 827 6120 4875 12810
RCNF (Mathieu & Nickel, 2020) −6.05± 0.61 0.14± 0.23 1.11± 0.19 −0.80± 0.54
Moser Flow (Rozen et al., 2021) −4.21± 0.17 −0.16± 0.06 0.57± 0.10 −1.28± 0.05
CNFM (Ben-Hamu et al., 2022) −2.38± 0.17 −0.38± 0.01 0.25± 0.02 −1.40± 0.02
RFM (Chen & Lipman, 2024) −7.93± 1.67 −0.28± 0.08 0.42± 0.05 −1.86± 0.11
M-FFF (Sorrenson et al., 2024) −2.25± 0.02 −0.23± 0.01 0.51± 0.01 −1.19± 0.03
StereoSGM (De Bortoli et al., 2022) −3.80± 0.27 −0.19± 0.05 0.59± 0.07 −1.28± 0.12
RSGM (De Bortoli et al., 2022) −4.92± 0.25 −0.19± 0.07 0.45± 0.17 −1.33± 0.06
RDM (Huang et al., 2022) −6.61± 0.97 −0.40± 0.05 0.43± 0.07 −1.38± 0.05
RSGM-improved (Lou et al., 2023) −4.69± 0.29 −0.27± 0.05 0.44± 0.03 −1.51± 0.13
LogBM (Jo & Hwang, 2024) −9.52± 0.87 −0.30± 0.06 0.42± 0.08 −2.47± 0.11
RNGI(Ours) −13.03± 0.64 −0.79± 0.08 0.10± 0.07 −2.31± 0.05

Under different settings of diffusion intensity coefficient ϵ, the proposed E-SDE algorithm keeps more fine-
grained features compared to ODE sampler and outperforms conventional spherical GRW scheme in stochas-
tic generative quality without sacrificing on computing efficiency. As shown in Table 3, the larger choice of
ϵ perturbs the sampling results from the GRW scheme more seriously than those from the E-SDE scheme,
which illustrates the improvement of sampling quality by the global construction of the diffusion part of
E-SDE.

The weakness of local simulation used in GRW scheme can also be obvious when there are more discretzation
steps. Table 4 shows the results of the ablation study of N , where the sampling precision of E-SDE scheme
benefits from the finer stepsize, but the performance of GRW scheme conversely decreases, which suffers
from the inaccurate Gaussian stochastic step magnified by too much exponetial projections.

Table 3: Wasserstein-2 distance (↓) between the ground truth distribution and the generated distribution.
The sampling steps are fixed at N = 100.

Sampler ϵ
Dataset

Volcano Earthquake Flood Fire

ODE 0 0.3154 0.2088 0.2141 0.1729
0.1 0.8180 0.7432 0.7588 1.0596

GRW 0.01 0.5467 0.5006 0.5321 0.6466
0.001 0.3674 0.2952 0.3178 0.3546
0.1 0.4299 0.3460 0.3122 0.6883

E-SDE 0.01 0.3326 0.2084 0.2095 0.2920
0.001 0.3112 0.2035 0.2147 0.1583
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Table 4: Wasserstein-2 distance (↓) between the ground truth distribution and the generated distribution.
Generated samples have the same size as that of the primary datasets. The diffusion coefficient of GRW and
E-SDE is fixed at ϵ = 0.01.

Sampler Steps
Dataset

Volcano Earthquake Flood Fire

10 0.3680 0.2578 0.2572 0.2637
ODE 100 0.3154 0.2088 0.2141 0.1729

1000 0.3074 0.1975 0.2118 0.1742
10 0.3923 0.3055 0.3291 0.4569

GRW 100 0.5467 0.5006 0.5321 0.6466
1000 0.8375 0.7486 0.7679 0.9543
10 0.4493 0.2528 0.2453 0.3389

E-SDE 100 0.3326 0.2084 0.2095 0.2920
1000 0.2938 0.2114 0.2044 0.2947

5.2 Density generation on SO(3)

In this experiment, we bridge the uniform distribution and various synthetic probability distributions µi(i =
1, . . . , 7) on SO(3). There are four target densities named as peak, cube, cone, line, which are designed from
the symmetry of exact geometry objects in R3, and three multi-modal target densities W16,W32,W64 which
distribute as ’Wrapped Gaussian’ on SO(3).

We train three RNGI models with different representation methods of the velocity and score field. As
the element on SO(3) is represented by a 3 × 3 matrix, the RNGI-D model learns the maps between the
3× 3 matrices, and then project the output matrix onto SO(3). The RNGI-EM and RNGI-ES models rely
on the ’truncation-orthogonalization’ embedding (Zhou et al., 2019) of target distributions µi into R6 as
µ̄i = µi ◦P−1. The difference between RNGI-EM model and RNGI-ES model is that the initial distribution
of RNGI-EM is embedded as Ū [SO(3)] = U [SO(3)] ◦ P−1 and that of RNGI-ES is directly U(S5).

Table 5: Log-likelihood (↑) results(1) in density generation experiments on SO(3). The log-likelihood of
initial samples are converted to 0 uniformly. All numbers are averaged over 5 runs of experiments and each
run contains 10 rounds of sampling. Each time of sampling generates samples of the same size as that of the
primary datasets. All of ODEs are numerically solved by dopri5 solver.

Dataset peak cube cone line
Size 600000 600000 600000 600000
RCNF(Mathieu & Nickel, 2020) 13.47 1.02 8.82 -0.0026
RELIE(Falorsi et al., 2019) 0.00 3.27 5.32 -6.97
IPDF(Murphy et al., 2021) 7.30 4.33 4.75 1.12
Mixture-MF(Mohlin et al., 2020) 10.52 4.52 8.36 0.77
Moser Flow(Rozen et al., 2021) 11.15 4.42 8.22 1.38
SO(3)-NF(Mobius)(Liu et al., 2023b) 13.93 4.81 8.98 1.38
SO(3)-NF(Affine)(Liu et al., 2023b) 13.50 0.00 8.84 0.00
RNGI-D 14.52 1.84 6.05 0.00
RNGI-EM 20.46 5.06 12.08 2.87
RNGI-ES 26.27 14.16 19.76 10.15

While training RNGI-D model, we parameterize the velocity and score field with two fully-connected neural
networks vθ(t, x) and sη(t, x) whose depth is 6 and width is 512. The spatial input of vθ are the 9-d flatten
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Table 6: Log-likelihood (↑) results(2) in density generation experiments on SO(3). The log-likelihood of
initial samples are converted to 0 uniformly. All numbers are averaged over 5 runs of experiments and each
run contains 10 rounds of sampling, and ± represents the standard deviation of the interval with a 95%
confidence level. Each time of sampling generates samples of the same size as that of the primary datasets.
All of ODEs are numerically solved by dopri5 solver.

Dataset W16 W32 W64

Size 600000 600000 600000
Moser Flow(Rozen et al., 2021) 5.21± 0.03 4.53± 0.03 3.87± 0.02
SO(3)-NF(Liu et al., 2023b) 5.17± 0.01 4.48± 0.004 3.75± 0.01
M-FFF(Sorrenson et al., 2024) 5.23± 0.02 4.57± 0.02 3.91± 0.02
StereoSGM(De Bortoli et al., 2022) 5.23± 0.04 4.52± 0.03 3.78± 0.04
RSGM(De Bortoli et al., 2022) 5.25± 0.03 4.56± 0.03 3.87± 0.02
RNGI-D 3.04± 0.03 2.56± 0.02 2.01± 0.03
RNGI-EM 7.76± 0.04 5.43± 0.03 3.98± 0.01
RNGI-ES 14.94± 0.05 13.89± 0.04 12.64± 0.05

vector of the 3× 3 matrix for stronger expressivity, and that for sη are 3-d axis-angle vector of 3-d rotation
matrix for more efficient divergence computation. Both of the dimensionality of the output of vθ(t, x) and
sη(t, x) are as same as the input. Then we optimize the networks with linear-scheduled AdamW and train
50000 iterations. In the sampling stage, we directly apply Dopri5 solver in torchdiffeq package to solve
matrix-valued ODE 10, and implement the geometric Euler-Maruyama solver for matrix-valued SDE in
pytorch.

For RNGI-EM and RNGI-ES models, the parameterization of velocity and score field is established on S5.
Therefore the two neural vector field, similarly parameterized by MLPs of size 6×512, take 6-d representation
both as their input and output, whose expressivity and computational effiency come from the flat geometry
of R6. The optimizers and samplers are the same as RNGI-D, besides that the solver for E-SDE is Heun’s.
Both of the detailed parameter settings used for RNGI-D, RNGI-EM and RNGI-ES models are listed in
Table 8 in the appendix C.1.

The generative visualization are shown in the appendix C.3, where the visualization follows (Murphy et al.,
2021; Liu et al., 2023b). Particularly, when sampling via ODE scheme, we use the adjoint method in (Mathieu
& Nickel, 2020) to evaluate the log-likelihood as quality measure. The results are reported in shown in Table
5 and Table 6 with baselines taken from (Liu et al., 2023b) and (Sorrenson et al., 2024), which shows that
both of RNGI-EM and RNGI-ES models reach higher log-likelihood than baseline methods, and RNGI-ES
model reports the best performance.

The RNGI-EM/ES models can not only generate new samples with higher accuracy, but also produce less
computational cost in both training and sampling stage. One single training iteration of RNGI-D model takes
2.5s - 3s on a NVIDIA RTX 3090 GPU but that of RNGI-EM/ES model only takes 0.025s - 0.4s, because
the flatten representation used by the velocity network and the axis-angle representation used by the score
network of RNGI-D model make the loss surface stiff and the gradient computation harder, therefore slow
down the back propagation. In the sampling stage, to generate 600000×20% = 120000 new samples, RNGI-
E model takes 9.5s and 4.3s using E-SDE and ODE schemes respectively, and the time cost for the GRW
and ODE schemes of RNGI-D model are 12.6s and 5.6s. Note that RNGI-E and RNGI-D models take 6-d
vector and 3×3 matrix as their data format separately, thus the former consumes a third less memory usage
compared to the latter.

5.3 Interpolation between mixture densities

Another advantage of RNGI models is that it does not restrict the sampling process to start from the uniform
distribution or any projected distribution from a single tangent space like wrapped Gaussian distribution
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(Mardia & Jupp, 2009) as traditional diffusion models. To demonstrate the flexibility on the initial distri-
bution, we also use the RNGI models to interpolate between the two multi-modal densities with different
modals on S2 and SO(3). Intuitively, the models are trained to push different density centers to merge or
pull them to split, which is a challenging task due to the non-flat geometry of S2 and SO(3).

On S2, we train RNGI model to connect two K-center VMF mixture distributions VK (Mardia & Jupp,
2009). The setting of two endpoint distributions are V32 ↔ V8, V64 ↔ V8, V64 ↔ V16 and V32

{µi} → V32
{νi}

respectively, where ↔ means the generation is conducted for both directions. The K centers of VK are
random points on S2 that are drawn from U(S2) and all of the concentration parameters κ are uniformly
set to 256. As for SO(3), we train RNGI-D and RNGI-E model for the interpolation between wrapped K-
mixture Gaussian distributions WK . The setting of K for WK is the same as that of VK , and the position
of centers and scaling parameters are pi ∼ U [SO(3)] and σ2

i = 0.01.

We use MLPs of size 6× 1024, who are also optimized by linear-scheduled AdamW with 50000 iterations, to
paramerize the two vector fields in both S2 and SO(3) experiments. All of the parameter settings of network
training are same and shown in Table 8 in Appendix C.1. And we calculate the K− L divergence between
ground truth distribution and generated distribution as the metric of precision.

The bi-directional numerical results and generative visualization are collected in Appendix C.2 and C.3.
As shown in them, both of RNGI model on S2 and RNGI-D/E models on SO(3) can connect and convert
two complex densities on their living manifolds. On S2, the E-SDE scheme generates the most realistic two
endpoint VMF mixture densities, where ODE scheme distorts the centers into ’ribbons’ and GRW scheme
generates many points out of distributions. And on SO(3), while the training of RNGI-D model is similarly
much slower than RNGI-E model, both models capture the main feature of the two multl-modal endpoint
densities. The generative style of the two models are slightly different that RNGI-D are more serrated and
RNGI-E are more diffusive, and RNGI-E model and its E-SDE scheme suffer from much less computational
burden as their training is not as computationally-intensive as RNGI-D model and its GRW scheme.

6 Conclusion

In this work, we propose Riemannian Neural Geodesic Interpolant, a generative model capable of bridging
two arbitrary probability distributions on Riemannian manifolds. Based on the RNGI, we design learning
and sampling algorithms for density generation on Riemannian manifold S2 and SO(3). Our model shows
significant flexibility in bridging complex distributions and exhibits observable improvement in sampling
quality with the E-SDE sampler. Furthermore, the RNGI model still has the potential to be practically
deployed in broader generation tasks defined on various Riemannian manifolds. For instance, we will extend
the RNGI from point generation to point cloud generation on general submanifolds in Rd in the future.
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A Stochastic Differential Geometry

In this section, we list some fundamental concepts and notations in stochastic differential geometry.

We begin with some preliminaries of smooth manifold. And see Lee (2013) for a more detailed and compre-
hensive account. A smooth d-dimensional manifold is a topological space M and a family of pairs (called
charts) {(Ui, φi)}, where the {Ui} are open cover of M and φi is a homeomorphism from Ui to an open
subset of Rd. The charts are required to satisfy a compatibility condition: if Ui ∩Uj = U , then φi ◦φ−1

j |U is
a smooth map from φj(U) to φj(U). The set of smooth functions on M is denoted C∞(M) whose element
has type f :M→ R such that for any chart (U, φ) the map f ◦ φ−1 is smooth.
Definition 12. For a given point x ∈M, a derivation at x is a linear operator D : C∞(M)→ R such that
for all f, g ∈ C∞(M),

D(fg) = f(x)D(g) + g(x)D(f).

The derivation at x is also called the tangent vector at x. The set of all tangent vectors is a d-dimensional
real vector space called the tangent space TxM. The tangent bundle is denoted by TM, consists of the
tangent space TxM at all points x in M:

TM =
⊔

x∈M
TxM = {(x, vx)|x ∈M, vx ∈ TxM}.

Every smooth manifold can be embedded in Rm with m > d for some suitably chosen m. We can view TxM
as a linear subspace of TxRm, thus a tangent vector can be written as:

D =
d∑

j=1
dj

∂

∂xj
.

A vector field X is a continuous map such that for each point x on the manifold, X(x) ∈ TxM. Such a
vector field can also map any smooth function f to a function, via the assignment x ∈M→ X(x)(f) ∈ R. If
X(·)(f) is smooth we say that the vector field is smooth. The space of smooth vector fields onM is denoted
by X (M).

Every smooth manifold M can be equipped with a Riemannian metric g. g is a metric tensor field such
that for each x ∈ M, g defines an inner product g(x) : TxM × TxM → R on the tangent space. For
any X, Y ∈ X (M), we denote ⟨X, Y ⟩g = g(X, Y ) with g(X, Y )(x) = gx(X(x), Y (x)). Note that in local
coordinates we can define G = {gij} = {g(Xi, Xj)} where {Xi}1⩽i⩽d is a basis of the tangent space. This
allows us to write the metric using the coordinates

⟨X, Y ⟩g =
∑
i,j

xiyjgij .

The Riemannian metric allows us to define a measure over measurable subsets of the manifold. For a single
chart (U, φ) and any smooth function f supported in U, consider the following positive linear functional:

f 7−→
∫

φ(U)
(f

√
|detG|) ◦ φ−1dx =

∫
U

fdMU ,

where MU is a unique Borel measure given by Riesz representation theorem. Then a partition of unity
method allows us to extend MU to be defined over the entireM, which leads to the Riemannian measure M .
A probability density function p overM can be thought of as a non-negative function satisfying

∫
M pdM = 1.

A crucial structure closely related to the Riemannian metric is the gradient operator on M. For any f ∈
C∞(M) and Y ∈ X (M), the gradient operator ∇ is defined via ⟨∇f, Y ⟩g = Y (f). The divergence operator
div (or ∇·) can be obtained via the following Stokes formula: for any f ∈ C∞(M) and any X ∈ X (M),∫

M divXfdM = −
∫

M
X(f)dM . The Laplace-Beltrami operator ∆M is given by ∆Mf := div(∇f).
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We now turn to stochastic differential equations onM. Solutions of stochastic differential equations on man-
ifolds should be sought in the space of manifold-valued semimartingales. A continuousM-valued stochastic
process Xt is called a M-valued semimartingale if for any f ∈ C∞(M) we have that f(Xt) is a real valued
semimartingale.

A stochastic differential equation on M is defined by l vector fields V1, . . . , Vl ∈ X (M), an Rl-valued
semimartingale Z, and an M- valued random variable X0, serving as the initial value of the solution. For
more details we refer to Hsu (2002).
Definition 13. AM-valued semimartingale Xt is said to be the solution of SDE(V, Z; X0) up to a stopping
time τ if for any f ∈ C∞(M) and t ∈ [0, τ ],

f(Xt) = f(X0) +
∫ t

0

l∑
i=1

Vi(f)(Xs) ◦ dZi
s.

Using the Laplace–Beltrami operator, we can give the definition of the Brownian motion onM as a diffusion
process.
Definition 14. Let BM

t be a M-valued semimartingale. We say BM
t is a Brownian motion on M if for

any f ∈ C∞(M), the following process is a real local martingale:

f(BM
t )− f(BM

0 )− 1
2

∫ t

0
∆Mf(BM

s )ds.

This definition considers Brownian motion as a diffusion process generated by the Laplace-Beltrami operator
∆M

2 , and is shown to be equivalent to several other descriptions, including the one stating that it is a
semimartingale whose anti-development with the Levi-Civita connection is a Euclidean Brownian motion.
Meanwhile, it is much more convenient to use equivalent characterizations such as embedding Euclidean
brownian motion or Stroock’s representation when considering realization.

B Theoretical guarantee of RNGI

Proof of Theorem 2 For a wide range of test function φ(x) on M, we have

Eφ(xt) =
∫

M
φ(x)ρ(t, x)dM(x),

d
dt

Eφ(xt) =
∫

M
φ(x)∂tρ(t, x)dM(x).

At the same time, the time derivative of expectation can also be calculated as
d
dt

Eφ(xt) = E[ d
dt

φ(xt)] = E[∇φ · ∂txt]

=
∫

M
∇φ · E[∂txt|xt = x]ρ(t, x)dM(x)

=
∫

M
∇φ · v(t, x)ρ(t, x)dM(x)

=
∫

M
−φ · divv(t, x)ρ(t, x)dM(x).

Combine above two equation we have∫
M

φ · {∂tρ(t, x) + div[v(t, x)ρ(t, x)]}dM(x) = 0.

Having proved Theorem 2, we only need to verify the integrable condition on manifold we are concerned
with to ensure our implement on them is theoretically solid.
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Hypersphere Sn We first state that Geodesic Interpolant is well-defined on almost the whole Sn. Note
that for p ∈ Sn and v ∈ TpSn, when |v| = π, the corresponding point on Sn is −p but the injective property
does not hold anymore as the non-uniqueness of the shortest path between p and −p. Therefore, only by
considering the ’almost complete’ alternative Sn − {−p}, we can construct RNGI model.

Now back to our context of integrable condition. For the anti-projection, denoted as Logx0x1, of the final
random variable x1, which is a tangent vector living in Tx0Sn, We have given the expression of Geodesic
Interpolant on Sn as

I(t; x0, x1) = Expx0(t · Logx0x1)

= cos(t · |Logx0x1|)x0 + sin(t · |Logx0x1|)
Logx0x1

|Logx0x1|
.

Then we can calculate the velocity field of the interpolating curve as:

∂tI(t; x0, x1) = cos(t · |Logx0x1|)Logx0x1 − |Logx0x1| sin(t · |Logx0x1|)x0.

Notice that x0 and Logx0x1 are orthogonal vectors in Rn+1, so

|∂tI(t; x0, x1)| = |Logx0x1| < 2π,

where ’<’ comes from the compactness of Sn. And from the conditional expectation definition of v(t, x) and
full expectation formula we have∫

M
|v(t, x)|ρ(t, x)dM(x) ≤ E(|∂tI(t; x0, x1)|).

Combine above two inequalities we finally reach the integrable condition on Sn:

E(|∂tI(t; x0, x1)|) <∞.

(Matrix) Lie group For theoretical completeness, we first introduce some basic knowledge about general
Lie group.

On a general Lie group G and its Lie algebra g, which can be seen as its tangent space at the identity element
e, the exponential map Exp is defined by the concept of single-parameter subgroup.

For any X in Lie algebra g, let expX(t) : R → G denotes the unique single-parameter subgroup whose
derivative at t = 0 is X (the existance and uniqueness of such subgroup can be found in any textbook of Lie
group theory), the exponential map is defined as

Exp(X) = expX(1),

and the logarithm map Log is locally defined as the inverse map of Exp without direct definition. And for
those concerning Lie groups take matrices as their elements, the exponential and logarithm map have more
explicit form

Exp(X) =
∞∑

k=0

1
k!X

k,

Log(R) =
∞∑

k=1

(−1)k+1

k
(R− I)k,

which are formally given by the exponential and power series of matrices and consistent with their name.
Note that the symbol Exp and Log without the lower index always refer to the Exp/Log map at e, and then,
carried by g = TeG, be translated to any point p by the group action induced by p.

Particularly, the Rodrigues’ rotation formula gives the connection between 3-D rotation vector and 3-D
orthogonal matrix, which can be used to construct the bijective map between SO(3) and so(3):

Expe(ω) = I + sin θ · ω + (1− cos θ) · ω2, (26)
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where θ =
√

ω2
1 + ω2

2 + ω2
3 denotes the norm of ω (Frobenius for ω and Euclidean for ω̂). And inversely, the

logarithm map from SO(3) to so(3) at e is given by:

Loge

 R11 R12 R13
R21 R22 R23
R31 R32 R33

 = γ

2 sin γ

 R32 −R23
R13 −R31
R21 −R12

 , (27)

where the rotation matrix R ∈ SO(3) is expressed by entries and rotation angle γ is calculated by

γ = arccos(tr(R)− 1
2 ).

Similarly to Sn, we also state that how we construct RNGI on almost the whole SO(3). The orthogonality
of SO(3) elements has a constraint on their trace that tr(R) ∈ [−1, 3], so choose the main value of arccos
then we get a mapped γ ∈ [0, π]. But for those matrices with tr = −1, which represents a rotation with
angle = π, the bijection between rotation vectors and orthogonal matrices does not hold anymore, leading
to nan value of γ

2 sin γ . Now we denote the set {R ∈ SO(3)|tr(R) = −1} and {ω ∈ so(3)||ω| < π} as R(−1)
and ω(π), the bijective Exp and Log can be constructed between

Exp : ω(π)→ [SO(3)−R(−1)] ⊂ SO(3),
Log : [SO(3)−R(−1)]→ ω(π) ⊂ so(3).

Every point p ∈SO(3) gives a group-translation by group multiplication p · SO(3), while the tangent space
TpSO(3) at p is concurrently given by the p-translation of Lie algebra. i.e.

p · TeSO(3) = TpSO(3).

And for any tangent vector v ∈ TpSO(3) and any other point q ∈ SO(3), their relative position of p is given
by p−1 · (p, v, q) = (e, p−1v, p−1q). Then the Exp and Log map at p are translated from those at e:

Expp(v) = p · Expe(p−1v),
Logp(q) = p · Loge(p−1q),

For the random variable x0 and x1, the geodesic interpolant I(t; x0, x1) on SO(3) is expressed as

I(t; x0, x1) = Expx0(t · Logx0x1)
= x0 · Expe[t · Loge(x−1

0 x1)].

We can easily verify that Exp− Log map is length-preservable. So as Loge(x−1
0 x1) ∈ so(3), the time-

derivative of geodesic interpolant I(t; x0, x1) is

∂tI(t; x0, x1) = x0 · Expe[t · Loge(x−1
0 x1)] · Loge(x−1

0 x1).

The left-invariant translation is given by matrix multiplication x0 · Expe[t · Loge(x−1
0 x1)], which is length-

preserving, so we have
|∂tI(t; x0, x1)| = |Loge(x−1

0 x1)|.
By the Rodrigues’ rotation formula and main value constraint, |Loge(x−1

0 x1)| ∈ [0, π), then the expectation
E(|∂tI(t; x0, x1)|) is also bounded, thus the integrable condition on SO(3) is verified.

Proof of proposition 10 By the definition of KL-divergence, we can calculate the time-derivative of
KL(ρ(t)∥ρ̂(t)) as

d
dt

KL(ρ(t)∥ρ̂(t)) = d
dt

∫
M

log ρ(t, x)
ρ̂(t, x)ρ(t, x)dM(x).

Commute the time-differential and integral symbol and apply the chain rule, and notice that∫
M

∂tρ(t, x)dM(x) = ∂t

∫
M

ρ(t, x)dM(x) = ∂t1 = 0,
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we have
d
dt

KL(ρ(t)∥ρ̂(t)) =
∫

M
log ρ(t, x)

ρ̂(t, x)∂tρ(t, x)dM(x)

−
∫

M

ρ(t, x)
ρ̂(t, x)∂tρ̂(t, x)dM(x).

Substitute the two transport equations into above expression, and use the integration by parts formula, we
have

d
dt

KL(ρ(t)∥ρ̂(t))

=
∫

M
⟨∇ log ρ(t, x)−∇ log ρ̂(t, x), v(t, x)⟩gρ(t, x)dM(x)

−
∫

M
⟨∇ρ(t, x)

ρ̂(t, x) , v̂(t, x)⟩gρ̂(t, x)dM(x).

Apply the chain rule of Riemannian gradient to the second term, we have∫
M
⟨∇ρ(t, x)

ρ̂(t, x) , v̂(t, x)⟩gρ̂(t, x)dM(x)

=
∫

M
⟨∇ log ρ(t, x)−∇ log ρ̂(t, x), v̂(t, x)⟩gρ(t, x)dM(x).

Merge above two equations and base on the bilinear property of Riemannian metric g, we finally get the
exact expression of the time derivative

d
dt

KL(ρ(t)∥ρ̂(t))

=
∫

M
⟨s(t, x)− ŝ(t, x), v(t, x)− v̂(t, x)⟩gρ(t, x)dM(x).

Integration from t = 0 to t = 1, by the fact that ρ(0) and ρ̂(0) denote the same prior distribution so the
initial KL-divergence KL(ρ(x, 0)∥ρ̂(x, 0)) = 0, the proof is completed.

Furthermore, we can model the discrepancy of the interpolating process and generating process in the sense
of Wasserstein metric.

Proof of proposition 11 For any f ∈ C∞(M),

|f(Xt)− f(X̂t)| ≤
∫ t

0
|v(f)(Xs, s)− v̂(f)(X̂s, s)|ds

≤
∫ t

0
(|v(f)(Xs, s)− v(f)(X̂s, s)|+ |v(f)(X̂s, s)− v̂(f)(X̂s, s)|)ds

≤
∫ t

0
(L|f(Xs)− f(X̂s)|+ sup

s∈[0,1]
sup

x∈M
|v(f)(x, s)− v̂(f)(x, s)|)ds.

Gronwall’s lemma gives

|f(Xt)− f(X̂t)| ≤ eLt sup
s∈[0,1]

sup
x∈M

|v(f)(x, s)− v̂(f)(x, s)|.

Hence let dg be the metric induced by g, we have

dg(Xt, X̂t) ≤ eLt sup
s∈[0,t]

sup
x∈M

|v(x, s)− v̂(x, s)|g.

Then we have

Wp(µt, µ̂t) ≤[Edg(Xt, X̂t)p]
1
p ≤ eLt sup

s∈[0,t]
sup

x∈M
|v(x, s)− v̂(x, s)|g.
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C Experiment Details

Below we list the hyperparameters used to set RNGI model in various experiments in Table 7 and Table 8,
the generative performance metrics from Table 9 to Table 15, and the generative visualization from Figure
2 to Figure 7. We promise that all the experiments are reproducible and will release the code after the
acceptance of the paper.

C.1 Parameter setting

Below the tables are the hyperparameters used to set the RNGI model in various experiments. Learning
rate, weight decay, step and gamma, namely optimizing hyperparameters, are pre-searched by Optuna(Akiba
et al., 2019) and then uniformly decided. And the searching interval for the four optimizing hyperparameters
are [0.0001, 0.01], [0.001, 0.01], {2000, 2500, . . . , 4500, 5000} and {0.4, 0.45, . . . , 0.85, 0.9} respectively.

Table 7: Hyperparameters for the training of RNGI model on geographical datasets on S2. a/b means a
for velocity training and b for score training respectively and a single a means a for both velocity and score
training.

Parameters Volcano Earthquake Flood Fire
Layers 5 5 5 7
Hidden units 512 512 512 512
Activation relu relu relu tanh
Training steps 100000 100000 100000 150000
Batch size 512 512 512 512
Optimizer RiemannianAdam RiemannianAdam RiemannianAdam AdamW
Learning rate 0.003/0.0003 0.003/0.0003 0.003/0.0003 0.003/0.001
Weight decay - - - 0.004/0.01
Scheduler StepLR StepLR StepLR StepLR
Step 2500/1500 3000/1500 2500 4000/2500
Gamma 0.7/0.4 0.8/0.4 0.7 0.8/0.7

Table 8: Hyperparameters for the density generation experiment on SO(3) and modals interpolation exper-
iments on both S2 and SO(3).

Parameters Density generation Modals interpolation
Layers 6 6
Hidden units 512 1024
Activation relu relu
Training steps 50000 50000
Batch size 512 1024
Optimizer AdamW AdamW
Learning rate 0.0005 0.0005
Weight decay 0.01 0.01
Scheduler StepLR StepLR
Step 2500 2500
Gamma 0.7 0.7
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C.2 Distance metric results in density interpolation

Below the tables are the generation results measured by K−L divergence in the experiment of interpolation
between mixture distribution on S2 and SO(3). The number at row m column n denotes the ’K−L divergence
between the generated V̂n samples from Vm and the ground truth Vn’(as well as W), where the two numbers
in row 32 column 32 are forward/backward results respectively.

Table 9: Generation results from E-SDE scheme 17 in the experiment of interpolation between VMF mixture
distribution on S2.

centers 8 16 32 64
8 0 - 0.0174 0.0117
16 - 0 - 0.0140
32 0.0065 - 0.0071/0.0161 -
64 0.0335 0.0161 - 0

Table 10: Generation results from ODE scheme 10 in the experiment of interpolation between VMF mixture
distribution on S2.

Centers 8 16 32 64
8 0 - 0.0013 0.0088
16 - 0 - 0.0198
32 0.0130 - 0.0143/0.0254 -
64 0.0067 0.0302 - 0

Table 11: Generation results from GRW scheme 15 in the experiment of interpolation between VMF mixture
distribution on S2.

Centers 8 16 32 64
8 0 - 0.4586 0.2885
16 - 0 - 0.1976
32 0.3436 - 0.1155/0.0892 -
64 0.5521 0.1907 - 0
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Table 12: Generation results from ODE scheme 10 of RNGI-D model in the experiment of interpolation
between wrapped Gaussian mixture distribution on SO(3).

Centers 8 16 32 64
8 0 - 0.00091 0.00083
16 - 0 - 0.00098
32 0.00005 - 0.00241/0.00024 -
64 0.00003 0.00017 - 0

Table 13: Generation results from GRW scheme 15 of RNGI-D model in the experiment of interpolation
between wrapped Gaussian mixture distribution on SO(3).

Centers 8 16 32 64
8 0 - 0.00463 0.00360
16 - 0 - 0.00116
32 0.00088 - 0.00278/0.00092 -
64 0.00059 0.00168 - 0

Table 14: Generation results from ODE scheme 10 of RNGI-E model in the experiment of interpolation
between wrapped Gaussian mixture distribution on SO(3).

Centers 8 16 32 64
8 0 - 0.00336 0.00036
16 - 0 - 0.00093
32 0.00021 - 0.00320/0.00071 -
64 0.00013 0.00043 - 0

Table 15: Generation results from E-SDE scheme 17 of RNGI-E model in the experiment of interpolation
between wrapped Gaussian mixture distribution on SO(3).

Centers 8 16 32 64
8 0 - 0.01802 0.00513
16 - 0 - 0.00408
32 0.00102 - 0.01073/0.00139 -
64 0.00088 0.00684 - 0
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C.3 Visualization

Below the figures are the generative visualization of RNGI models in both density generation experiments
and density interpolation experiments. The order of subfigures in Figure 5 is EM-ODE, ES-ODE, EM-ESDE
and ES-ESDE, and that in Figure 6 is W32 →W8, W64 →W8, W64 →W16 and W32

{µi} →W32
{νi} respectively,

while the order in Figure 7 is the same but the generative directions are reversed.

Figure 2: The generative performance of RNGI model on S2 in the distribution connection experiment
V64 → V16. Both of the observation angle and the order of subfigure are the same as Figure 1.

Figure 3: The generative performance of RNGI model on S2 in the distribution connection experiment
V32

{µi} → V32
{νi}. Both of the observation angle and the order of subfigure are the same as Figure 1.

Figure 4: The backward generative performance by the E-SDE scheme of RNGI model on S2 in the four
distribution connection experiments. From left to right are V8 → V32, V8 → V64, V16 → V64 and V32

{νi} →
V32

{µi}
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(a) (b)

(c) (d)

Figure 5: Generative performance of RNGI models on the line dataset of density generation experiment(1)
on SO(3).

(a) (b)

(c) (d)

Figure 6: Generative performance of RNGI-E models by its ODE scheme equation 10 in the distribution
connection experiment on SO(3).
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(a) (b)

(c) (d)

Figure 7: Generative performance of RNGI-D models by its ODE scheme equation 10 in the distribution
connection experiment on SO(3).
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