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Abstract
Large language models (LLMs) with different architectures
and sizes have been developed. Serving each LLM with ded-
icated GPUs leads to resource waste and service inefficiency
due to the varying demand of LLM requests. A common prac-
tice is to share multiple LLMs. However, existing sharing sys-
tems either do not consider the autoregressive pattern of LLM
services, or only focus on improving the throughput, which
impairs the sharing performance, especially the serving la-
tency. We present SeaLLM, which enables service-aware and
latency-optimized LLM sharing. SeaLLM improves the over-
all sharing performance by (1) a latency-optimized scheduling
algorithm utilizing the characteristics of LLM services, (2) a
placement algorithm to determine the placement plan and an
adaptive replacement algorithm to decide the replacement in-
terval, and (3) a unified key-value cache to share GPU memory
among LLM services efficiently. Our evaluation under real-
world traces and LLM services demonstrates that SeaLLM
improves the normalized latency by up to 13.60×, the tail
latency by up to 18.69×, and the SLO attainment by up to
3.64× compared to existing solutions.

1 Introduction

The fast development of large language models (LLMs) is
changing modern applications, including chatbot [16], code
generation [31], text process [13], and embodied AI [41].
Many organizations [8, 13, 19, 54] have proposed their foun-
dation LLMs with different architectures and model sizes.
Service providers usually deploy different LLMs for specific
tasks [3, 18, 51]. However, LLM services have a higher de-
mand for GPU resources in computation, memory, and com-
munication than classical deep learning (DL) models. The
service providers need clusters with high-performance GPUs
to provide high-quality LLM services, leading to high costs
in building, using, and maintaining the clusters.

The request traffic of LLM services is dynamic for different
time and services according to the data from production LLM
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Figure 1: The request traffic of four production LLM services
during seven days [42, 48].

services [42, 48] as shown in Figure 1. Therefore, serving
each LLM with dedicated GPUs leads to substantial wastes
of expensive GPU resources and impacts the serving perfor-
mance [18, 32]. Some systems [4, 18, 22, 32] share resources
to improve serving performance and resource utilization.

Most existing sharing systems [4, 22, 32] are designed for
serving classical DL models like the convolutional neural
network (CNN) and they usually use the first-come-first-serve
(FCFS) scheduling algorithm. However, LLM services have a
unique autoregressive pattern, i.e., generating the output to-
kens one by one. The autoregressive pattern results in various
output lengths and serving time for different LLM services
and requests. Therefore, the FCFS scheduling algorithm faces
the head-of-line blocking problem for the shared LLM ser-
vices, where a long request can block the following requests
and affect the overall serving performance [27, 50].

Recently, MuxServe [18] is proposed for sharing LLM ser-
vices. MuxServe utilizes spatial and temporal multiplexing
to improve the system throughput. However, it influences
the request latency, which is important to LLM services [56].
The reasons are mainly two-fold. First, MuxServe adopts the
round-robin (RR) scheduling algorithm for the prefill phase
and the FCFS scheduling algorithm for each service. The
RR scheduling algorithm can avoid the head-of-line block-
ing problem [10, 14], but is still not adequate to serve mul-
tiple LLM services. For long and bursty requests, the RR
scheduling algorithm introduces a heavy burden on mem-
ory because LLM serving systems usually use the key-value
cache (KV cache) to speed up serving and it requires storing
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the key-value pairs (KV pairs) of all requests. Besides, the
RR scheduling algorithm increases the latency for bursty re-
quests. Second, MuxServe predefines a quota of computation
resources for each LLM service to enable spatial multiplex-
ing. The predefined quota cannot react to the dynamic request
traffic timely, leading to GPU waste and an increase in latency.

This paper presents SeaLLM to support service-aware and
latency-optimized resource sharing for LLM services. The key
observation is that LLM services usually have their specific
characteristics, including the iteration time and the distribu-
tions of input and output lengths. Based on the characteristics,
we place the LLM services and schedule the requests to alle-
viate the head-of-line blocking problem caused by FCFS and
the burden of GPU memory caused by RR.

SeaLLM exploits a service-aware and latency-optimized
scheduling algorithm for the shared LLM services. We assign
a priority based on the executed time and the service char-
acteristics to each request. Then we schedule the requests
preemptively according to the priority. The scheduling al-
gorithm is proved to minimize the normalized latency with
accurate profiling information. However, in practice, some re-
quests may deviate from the service characteristics and break
the optimality of the scheduling algorithm. Intuitively, for
the overall performance, if one request exceeds the estimated
execution time, its priority should be decreased to allow other
requests to be processed. With this intuition, we propose a
doubling budget (DB) scheduling algorithm, which assigns a
budget of execution time based on the profiled characteristics
of each LLM service. The DB scheduling algorithm gradually
decreases the priority of one request when its budget is run
out and doubles the budget to continue serving the request.

SeaLLM leverages a search-based placement algorithm to
generate the placement plan, i.e., how to place the LLM ser-
vices in a cluster. The time complexity of finding the optimal
placement plan grows exponentially along with the cluster
size and the number of LLM services. To address this prob-
lem, we separate the search process into two stages, i.e., GPU
group partition and LLM service allocation. We also propose
several heuristics to reduce the search time further. With paral-
lel execution, we can decrease the search time to minutes and
fully hide the search process with service execution. Besides,
due to the time-varying request traffic, a fixed replacement is
not a panacea. Commonly, the solution to this problem is to
replace the placement periodically [52, 55]. However, prior
methods leverage a fixed replacement interval, which is hard
to decide. SeaLLM adopts an adaptive replacement algorithm,
which changes the replacement interval according to the esti-
mated performance and the real-achieved performance.

We implement SeaLLM as a cluster system with both a
cluster manager to orchestrate the LLM services and requests,
and local engines to execute the shared LLM services. For
the shared LLMs, memory management is a knotty problem,
especially the dynamic KV cache. A cluster system should
share the KV cache of different LLM services to improve the

serving performance [18]. However, the cache block shape is
determined by the LLM architecture and is not identical for
all LLMs, making it difficult to share the KV cache. SeaLLM
utilizes a unified KV cache with merged cache blocks to
balance the block table size, locality, and fragmentation.

We evaluate SeaLLM on a 32-GPU cluster with real-world
traces [39] and widely-used LLMs [44, 54]. The experiment
results show that SeaLLM improves the normalized latency by
up to 13.60×, the tail latency by up to 18.69×, and the service
level objective (SLO) attainment by up to 3.64× compared to
existing state-of-the-art (SOTA) systems. At the token level,
SeaLLM improves the average time-to-first-token (TTFT) by
up to 51.98× and reaches a similar average time-per-output-
token (TPOT) with SOTA systems.

In summary, this paper makes the following contributions:
• We identify the limitations of existing sharing solutions and

propose to utilize the characteristics of LLM services for
service placement and request scheduling.

• We propose a latency-optimized scheduling algorithm uti-
lizing the service characteristics for shared LLM services.

• We propose a placement algorithm and an adaptive replace-
ment algorithm to determine the placement plan.

• We conduct a comprehensive evaluation of SeaLLM with
real-world traces and LLM services.

2 Background and Motivation

2.1 LLM Service
LLMs have been widely deployed for different tasks, such
as chatbot, search engine, text process, etc [13, 16]. In prac-
tice, the foundation LLMs are usually finetuned with domain-
specific data to serve specific tasks [51]. The LLM developed
and deployed for a specific task is called an LLM service.

LLMs generate the output in an autoregressive pattern, i.e.,
the LLM generates one token in one step and the process is
repeated until meeting the termination conditions. Naturally,
the generation process is separated into two phases: prefill
phase and decoding phase. The prefill phase processes all the
input tokens concurrently and gets the first output token. The
decoding phase only generates one output token in each step.
To avoid the redundant computation brought by the attention
layers, LLMs usually adopt KV cache [37] to cache the inter-
mediate data, i.e., the KV pairs, in the GPU memory. The KV
cache is formed by multiple cache blocks and the block shape
is decided by the number of attention layers, the number of
attention heads, and the hidden sizes. To conclude, LLM ser-
vices have two main characteristics. First, the serving latency
varies with different model architectures, input lengths, and
output lengths. Second, the serving process requires large
amounts of GPU memory to store the KV pairs.

LLM serving systems usually aim to reduce the serving
latency, improve the SLO attainment, and improve the serv-
ing throughput. To achieve these goals, existing LLM serving
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Figure 2: Four execution strategies of serving two LLM ser-
vices on two GPUs. The blocks with dark colour are of the
prefill phase and the blocks with light colour are of the decod-
ing phase. L0 and L1 represent the average latency of service
S0 and S1, respectively. LN represents the normalized latency
of S0 and S1, defined in Equation 1.

systems leverage techniques including kernel-level optimiza-
tion [11,17,24], batching [20,53], disaggregation [56], model
parallelism [37, 53], etc. These techniques improve the per-
formance of a single LLM service and they are orthogonal to
the cluster setting which contains multiple LLM services.

2.2 LLM Sharing Systems
Figure 1 shows the dynamic nature of LLM services. The
data are from two public traces of four production LLM ser-
vices [42, 48]. The request traffic of LLM services is time-
varying and different services show different popularities. The
dynamic nature of LLM services brings opportunities for shar-
ing LLM services to improve resource utilization and reduce
costs for LLM service providers [18, 32]. Additionally, re-
source sharing can also benefit end users by improving the
serving performance. The example in Figure 2 further illus-
trates the benefits of sharing LLM services. For two LLM
services (S0 and S1) and five requests (A−E), the execution
strategy without sharing has many blanks, indicating the waste
of GPU resources. To better utilize the GPUs, we can collo-
cate S0 and S1 on both GPUs by tensor parallelism as shown
in Figure 2(b)-(d). The average latencies of both services (L0
for service S0 and L1 for service S1) are decreased.

Most existing sharing systems [22, 32] are designed for
classical models. These models do not use the autoregressive

Service Dataset
Avg input

length
Avg output

length
Chatbot ShareGPT [5] 73.0 426.9

Summarization LongBench [12] 13186.8 21.1
Code HumanEval [15] 156.5 66.9

Table 1: The average input length and output length of differ-
ent LLM services.

pattern, i.e., for each request, the inference is only performed
once. Previous systems utilize the FCFS scheduling algo-
rithm which has the lowest scheduling overhead. However, as
shown in Figure 2(b), the FCFS scheduling algorithm has the
head-of-line blocking problem when applied to LLM services.
Specifically, the long request C blocks the following requests
D and E, and influence the average latency of S0. As a result,
the L0 of FCFS is 2.3× longer than the L0 of (d).

Recently, MuxServe [18] is proposed for sharing LLM
services. It utilizes the RR scheduling algorithm to select
services for the prefill phase, and uses spatial multiplexing
to share the decoding phase. These mechanisms alleviate the
problem of the FCFS scheduling algorithm. However, it still
influences the serving performance, especially the latency,
because of two reasons. First, the RR scheduling algorithm
increases the request latency and the memory requirements
for bursty requests. As shown in Figure 2, (c) RR has a larger
average latency L0 than (d), because requests D and E are not
finished as soon as possible. Besides, (c) RR needs to store
the KV pairs of at most three requests (CDE), while (d) only
needs to store the KV pairs of at most two requests (CD or
CE). The performance can be worse for more bursty requests.
Second, MuxServe assigns a quota of computation resources
to each shared LLM service. However, as the request traffic
is dynamic, the preassigned quota increases the latency for
bursty services and wastes GPUs for services at the traffic
trough. Although MuxServe improves the system throughput
through sharing LLM services, it neglects the latency which
is usually the primary goal of LLM serving systems.

2.3 Challenges
As we analyzed in §2.2, existing sharing methods do not
perform well for LLM services. We summarize the challenges
in designing an efficient and latency-optimized sharing system
for LLM services as follows.
Various characteristics of LLM services. LLM services
have various characteristics decided by the LLM architecture,
and the distributions of the input and output lengths. For
example, Table 1 shows that the chatbot service (ShareGPT)
has shorter inputs and longer outputs on average, while the
summarization service (LongBench) has longer inputs and
shorter outputs. The optimal placement and parallelism plan
can be different for different LLM services. As shown in
Figure 3, a larger tensor parallelism (TP) size decreases the
iteration time for long inputs served by Llama2-13B, while a
larger TP size may increase the iteration time for short inputs
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(a) Prefill phase, Llama2-7B.
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(b) Decoding phase, Llama2-7B.
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(c) Prefill phase, Llama2-13B.
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(d) Decoding phase, Llama2-13B.

Figure 3: The iteration time of the prefill phase and the decod-
ing phase under different TP sizes. Len represents the number
of input tokens and the batch size is 8.

served by Llama2-7B. Besides, the speedups of TP are also
different between the prefill phase and the decoding phase.
Hence, there is a critical need to consider the characteristics of
LLM services for service placement and request scheduling.

Large search space of service placement. For a cluster with
multiple LLM services, allocating resources properly for each
service is crucial for the overall cluster performance. How-
ever, the search space of service placement is extremely large.
Even without sharing and parallelism, n LLM services in a
m-GPU cluster can have

(m−1
n−1

)
kinds of possible placements,

which is factorial to n and m. For example, there are more
than 3× 108 placements for 16 services in a 32-GPU clus-
ter. Parallelism configuration influences the serving speed as
shown in Figure 3, and thus, we need to choose the proper
parallelism configuration for each LLM service. Additionally,
LLM services are different in request traffic and the sharing
group can affect the performance of each LLM service in it.
The parallelism configuration and the sharing group make
the search space larger and more complex. Therefore, how to
place multiple LLM services efficiently is challenging.

Compound requirements of scheduling. Efficiency and per-
formance are two main requirements of the scheduling al-
gorithm. First, the scheduling algorithm should have low
time complexity, i.e., efficiency. We cannot design complex
scheduling algorithms for LLM services as the inference pro-
cess of requests only takes seconds or milliseconds.

Second, the scheduling algorithm should generate an execu-
tion sequence of requests with optimized serving performance.
Scheduling algorithms can influence the overall performance
of all services in a cluster. Note that the three scheduling
algorithms in Figure 2(b)-(d) have different performances.

The main reason is that the characteristics of the services
are different, where the requests of S0 are more bursty and
shorter than those of S1. Latency is one of the most important
metrics for LLM services, because the output of LLM is long
and users care about the response speed. To better evaluate
the overall performance, we compare the average latency of
request A−E. However, since the output lengths vary greatly,
it is unfair to simply calculate the average latency of differ-
ent requests. Therefore, we use normalized latency, LN , as a
metric of overall performance, which can be formulated as,

LN = ∑
s∈S

∑
r∈Rs

Lr/L̂s, (1)

where S is the set of LLM services, Rs is the requests of service
s, Lr is the real latency of request r, and L̂s is the average
request execution time of service s. The request latency Lr
can be decomposed into token-level metrics, including TTFT
and TPOT. Thus optimizing LN can also improve these token-
level metrics to some extent.

As we analyzed in §2.2, the commonly used scheduling
algorithms for serving workloads, i.e., FCFS and RR, are
not suitable for shared LLM services. As shown in Figure 2,
the normalized latency LN of (d) is 2× faster than that of
FCFS and 1.3× faster than that of RR. Therefore, finding
the latency-optimized execution order for the shared LLM
services is both important and challenging.
Large and complex memory requirements. LLMs require
large GPU memory to store the KV cache, the model weights,
and the intermediate data, which makes it difficult to serve
multiple LLMs simultaneously on one GPU. For example, a
Llama2-7B model needs 14GB to store a half-precision model.
Besides, modern LLM serving systems usually leverage the
KV cache, and the KV pairs for only one request with 4,096
input tokens and 4,096 output tokens need 4GB to store. The
large memory requirements of LLM services constrain the
efficacy of resource sharing. Moreover, the KV cache consists
of multiple cache blocks and the block shape is decided by
the LLM architecture. As a result, we cannot simply share the
KV cache of different LLM services. We need to maintain the
KV cache carefully for the shared LLM services.

3 SeaLLM Overview

We propose an LLM service management system, SeaLLM,
which enables efficient multi-LLM sharing, automatic LLM
placement and replacement, and latency-optimized request
scheduling. Figure 4 shows the overall architecture of
SeaLLM. SeaLLM consists of a global manager and a set
of local engines on the GPU nodes.
Global manager. SeaLLM’s global manager is responsible
for generating placement plans for LLM services, dispatch-
ing requests, and monitoring LLM services. There are three
components in the global manager, i.e., placement controller,
request dispatcher, and service monitor.

4



123

SeaLLM Global Manager

Placement
Controller

Service
Monitor

Request
Dispatcher

Request
of LLM 𝑆!

SeaLLM Local Engine

Request Scheduler

Unified KV Cache

Local
Engine

Local
Engine

Multi-LLM Executor
𝐿𝐿𝑀	𝑆! 𝐿𝐿𝑀	𝑆"

Figure 4: SeaLLM architecture.

Placement controller. The placement controller generates the
placement plan for all the LLM services in the cluster. A
placement plan contains the used GPUs and the parallelism
configuration for each LLM service. As the request traffic of
LLM services is time-varying, a fixed placement plan can-
not react to the change of request traffic timely. Therefore,
the placement controller generates placement plans periodi-
cally based on the historical characteristics of services. For a
new LLM service, the placement controller allocates the min-
imum number of GPUs dedicatedly as an initial placement
plan. Note that a fixed replacement interval is not optimal
for the system performance and is difficult to choose man-
ually. Specifically, a short replacement interval can lead to
excessively frequent replacements, which increases system
overhead. In contrast, a long replacement interval cannot react
to the dynamic request traffic timely, resulting in performance
deterioration. Hence, we propose an adaptive replacement
algorithm to change the replacement interval automatically.

Service monitor. The service monitor monitors the LLM ser-
vices in the cluster and collects their characteristics contin-
uously. The collected data include the model information
(including the iteration time of prefill and decoding phases
with different TP sizes), the request information (including the
average and standard variance of the input and output lengths),
and the execution information (including the latency of each
request and the SLO attainment of each service). These data
are passed to the placement controller for periodical replace-
ment and adjustment of the replacement interval.

Request dispatcher. When a new request arrives, the request
dispatcher decides the proper local engine for the request
according to its service type. If multiple local engines can
serve the arrived request, we select the local engine with the
least number of requests.

Local engine. The local engine is responsible for scheduling
and executing the requests dispatched by the global manager.

The local engines share the LLM services in time. Each local
engine consists of three components, i.e., request scheduler,
multi-LLM executor, and unified KV cache.

Request scheduler. The request scheduler makes scheduling
decisions for the dispatched requests. There are two basic
requirements for the scheduling algorithm. First, the schedul-
ing algorithm should be fast, considering the short inference
time of LLM requests. Second, the policy should provide
high serving performance. Due to the unique characteristics
of LLM services, simply applying FCFS or RR cannot reach
optimal performance as shown in Figure 2. We propose a DB
scheduling algorithm by utilizing the service characteristics
to achieve better scheduling performance.

Multi-LLM executor. Each batch of requests selected by the
request scheduler is sent to the multi-LLM executor for exe-
cution. The executor holds the shared models and invokes the
corresponding model for inference.

Unified KV cache. In practice, the block shape of the KV cache
is set according to the model architecture, e.g., the number of
attention heads and layers, and the hidden size. As a result,
the block shape is not identical for LLMs. SeaLLM exploits a
unified KV cache to address this problem and the unified KV
cache performs similarly to the KV cache for a single model.

4 Design

The goal of SeaLLM is to provide latency-optimized resource
sharing for multiple LLM services in a GPU cluster. Specifi-
cally, SeaLLM needs to decide how to place the LLM services
in a given cluster and how to schedule the requests of each
LLM service to improve the normalized latency.

First, we formulate the problem and our goal. Assume
there is a cluster with GPUs G and multiple LLM services
S. For each service s ∈ S, its requests are represented as Rs
and its SLO is SLOs. We use sharing group to represent a
set of LLM services that share the same set of GPUs. The
placement of the i-th sharing group can be represented by a
tuple (Si,Gi, pi), where Si is the LLM services in this sharing
group, Gi is the GPUs used by this sharing group, and pi is
the parallelism configuration for this group. A placement plan
P for the cluster and all services S can be defined as a set of
placements for sharing groups, i.e., P = {(Si,Gi, pi)}. With
the above definition, our goal is to find the optimal placement
plan P∗ and the execution order of requests E∗ to minimize
the normalized latency under SLO constraints. We formulate
the problem as follows,

P∗,E∗ = argmin
P,E

LN(S,P,E), (2)

where LN(·, ·, ·) represents the normalized latency for services
S using placement plan P and execution order E. LN is defined
in Equation 1. Besides, we have three constraints,

∪Si = S, (3)

5



∪Gi ⊆ G, (4)

∑
r∈Rs

I(Lr < SLOs)/|Rs| ≥ ∆,∀s ∈ S, (5)

where I is an indicator function and it is one when the fol-
lowing condition is satisfied. Equation 3 constraints that all
LLM services should be placed in the cluster. Equation 4
constraints that the number of used GPUs should not exceed
the number of all GPUs in the cluster. Equation 5 denotes that
the SLO attainment of all LLM services in the cluster should
be larger than a threshold ∆.

The number of all placement and execution orders is facto-
rial to the number of GPUs and services. Finding the optimal
placement plan P∗ and execution order E∗ is a complex com-
binatorial optimization problem and it is almost impossible
to find within an acceptable time. Hence, we split the above
problem into two stages, i.e., (1) generate the placement plan
for each LLM service (§4.1), and (2) given the placement plan,
decide the execution order of the requests submitted to each
LLM service (§4.2). Additionally, we propose an adaptive
replacement algorithm for the dynamic traffic (§4.3). In the
last, we introduce how we manage the unified KV cache for
efficient service sharing (§4.4).

4.1 Service Placement
A placement plan includes the sharing groups, the used GPUs
for each sharing group, and the parallel configurations for
each sharing group. The number of all possible placements is
factorial to the number of GPUs and services. For example, a
cluster with 32 GPUs and 16 services has more than 108 pos-
sible placements even without considering the sharing groups
and the parallelism configurations. Thus, it is impossible to
search all placements and find the optimal one within a rea-
sonable time. We propose a two-stage placement algorithm
similar to AlpaServe [32], but we extend it for LLM services.
First, we propose two heuristics to improve the searching
speed because the cluster size and the number of parallel
configurations of LLMs are getting larger than previous mod-
els. Second, we utilize the normalized latency and our pro-
posed latency-optimized scheduling algorithm to evaluate the
searched placement plans. Algorithm 1 in Appendix A.1 is
the pseudocode of our placement algorithm. First, we partition
the whole cluster into GPU groups by enumerating the paral-
lelism configuration. Then, we allocate LLM services to the
GPU groups to form sharing groups. With a simulator estimat-
ing the serving performance based on the historical request
information, we can select the optimal placement with the
lowest normalized latency. The simulator uses our scheduling
algorithm introduced in §4.2.

Group partition. For the first stage, we enumerate all pos-
sible parallelism configurations to split the whole cluster.
Existing practice mainly uses tensor parallelism for LLM in-
ference services [29, 51], and thus we only consider tensor

parallelism here. Note that our placement algorithm can be
generalized to other parallelisms by enumerating their possi-
ble sizes. Assume the cluster has N nodes and each node has
m GPUs, i.e., the cluster has Nm GPUs in total. The partition
space has 2Nm−1 partitions, which is almost impossible to
enumerate for a large cluster. We introduce two heuristics
to prune the search space. First, we only select the power
of two as the parallelism size which is commonly used in
practice [32, 56]. Besides, the tensor parallelism size cannot
exceed m because tensor parallelism needs large amounts of
communication among GPUs and inter-node communication
is slower than intra-node communication. SeaLLM can be
generalized to cross-node serving by enabling other paral-
lelisms, like pipeline parallelism. Second, we set all groups
with the same tensor parallelism size. If the tensor parallelism
size is too small for some services, we will merge two small
groups into a larger one until all services can be placed.

Service allocation. In the second stage, we allocate LLM
services to the GPU groups partitioned by the first stage.
Similar to the first stage, enumerating all possible allocations
is time-consuming. Therefore, we use a heuristic to speed up
the process. We allocate services to the GPU group iteratively,
and we select the most unserved service for each iteration.
We find that only using the normalized latency to choose the
most unserved service is misleading and cannot satisfy the
constraint of SLO attainment (Equation 5). Because during
the allocation process, some services may not be allocated
yet and their requests cannot be served, which leads to a fake
small normalized latency. To address this problem, we use
the number of unserved requests as the main metric and the
normalized latency as a secondary metric. The unserved index
UI of service s can be defined as follows,

UIs = ∑
r∈Rs

I(Lr > SLOs)+αLs
N , (6)

where Ls
N is the normalized latency of service s. With the

above definition of unserved index UIs, SeaLLM allocates the
service with the highest UIs to the GPU group which has the
lowest request rate. We set α << 1 to ensure that the SLO
attainment is more important than the normalized latency.
This setting can improve the overall serving performance and
avoid starvation of services with long output lengths. When
allocating an LLM service to a GPU group, SeaLLM first
checks if the GPU memory is enough for serving the shared
LLMs with profiled memory usage.

4.2 Latency-Optimized Scheduling

Given the placement, we need to decide the optimal execution
order of requests for each LLM service, i.e., scheduling the
requests of each LLM service to minimize the normalized
latency. There are two main requirements for the schedul-
ing algorithm, i.e., efficiency and performance. First, as the
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execution time of LLM services is only seconds or even mil-
liseconds, the scheduling algorithm should be simple and fast,
without bringing significant overhead for each request. As a
result, the complex scheduling algorithms for long-running
tasks [21, 55] are not suitable for LLM services.

Second, the scheduling algorithm should provide high-
performance scheduling decision for shared LLM services.
Existing LLM engines mainly use FCFS [29, 32] or RR [18,
50] schedul ing algorithms. FCFS serves the requests in their
arrival order. It introduces almost no scheduling overhead for
requests. However, it is notorious for the head-of-line block-
ing problem, i.e., a long request in the head of the queue can
block other requests. This makes FCFS unsuitable for shared
LLM services, especially when the services have highly di-
verse characteristics. For example, in Figure 2, the requests
of service S1 have longer execution time than the requests
of service S0. Using FCFS, the request C blocks the requests
D and E, which greatly increases the latency of service S0.
Some approaches use the RR scheduling algorithm. They
place the requests into different queues and execute them in a
round-robin pattern. These approaches can alleviate the head-
of-line blocking problem, but can be inefficient for bursty
and long requests with frequent preemptions. Although Fast-
Serve [50] adopts the multi-level feed-back queue to avoid
frequent preemptions, it does not consider the characteristics
of each shared LLM service. Thus, its improvement is limited
when sharing LLM services. Additionally, these approaches
also impose a heavy burden on GPU memory, because many
requests are executed in turn and the KV pairs of these re-
quests should all be stored in GPU memory.

To address the above problems, we propose the doubling
budget (DB) scheduling algorithm for shared LLM services.
Our key observation is that LLM services usually have dif-
ferent characteristics, e.g., the distributions of the input and
output lengths, as shown in Table 1. Based on this observation,
we can execute short requests first to decrease the normalized
latency. Specifically, we set the priority of request r as

Or = T ′r L̂r, (7)

where T ′r is the estimated remaining time of r and L̂r is the pro-
filed execution time of r on one GPU. Smaller Or represents
higher priority and requests with higher priority are served
first. To avoid the head-of-line blocking problem, we use
preemptive scheduling and schedule requests before each iter-
ation. The proposed scheduling algorithm is proven to reach
the optimal normalized latency under certain conditions.

Theorem 1. The proposed scheduling algorithm can mini-
mize the normalized latency with the following assumptions:
(1) requests can be preempted at any time, and (2) all requests
of the same service have identical execution time.

The proof of Theorem 1 is in Appendix A.2. Briefly,
this problem is a special case of the queuing model
B|r j, pmtn|∑L j/L̂ j, where B is the batch size. We can prove

this theorem by contradiction. Assumption (1) can be ignored
as the execution time of one iteration is usually short, espe-
cially for the decoding phase. In practice, assumption (2)
is usually not the case. However, our priority Or is still the
optimal priority to minimize the expected normalized latency.
Theorem 2. For any scheduling moment, the proposed prior-
ity Or is optimal to minimize E(LN).

The proof of Theorem 2 is in Appendix A.2. However, in
practice, some requests have extremely long outputs, lead-
ing to performance degradation. For this, we modify our
DB scheduling algorithm as shown in Algorithm 2 in Ap-
pendix A.2. We introduce a budget of the execution time for
each request and define the budget as Q = (L̂s +Vars), where
L̂s and Vars are the average and standard variance of the exe-
cution time of requests belonging to service s. The budget Q
decreases with the request execution. The priority of a request
r is Or = QrL̂s, where r ∈ Rs and Qr is the left budget for
request r. We select the request with the highest priority, i.e.,
the smallest Or, to execute first.For better GPU utilization
and throughput, we batch the requests in the same phase and
of the same service.If one request does not finish within its
initial budget, we double its budget, i.e., Q′ = 2(L̂s +Vars),
and reset its priority to Q′L̂s.We repeat to double the budget
once the budget is used up until the request is finished. We set
a starvation threshold for each service and serve the starved
services first. Although our scheduling policy is probabilis-
tically optimal, it may not reach the minimum normalized
latency. Besides, it is difficult to tell how far our scheduling
decision is from the optimal scheduling decision, considering
the unpredictable request lengths in practice.

4.3 Adaptive Replacement
The request traffic of LLM services is time-varying as shown
in Figure 1. A fixed placement plan cannot respond to the
changing request traffic promptly, leading to performance de-
terioration when bursty requests come in. To address this prob-
lem, we replace the LLM services in the cluster periodically.
Periodical replacement is not new for cluster management.
However, existing methods [52, 55] usually adopt fixed re-
placement intervals, which are difficult to determine manually.
Specifically, a short replacement interval increases the sys-
tem overhead of migrating services, while a long replacement
interval cannot provide new placement plans timely.

SeaLLM introduces an adaptive replacement algorithm
to select the proper replacement interval automatically. Our
main idea is to change the replacement interval based on the
difference between the achieved performance metrics and
the estimated performance metrics. SeaLLM has a replace-
ment interval It for the t-th replacement interval, where I0 is
an initial hyper-parameter selected by the cluster manager.
Specifically, before each interval, our simulator calculates the
estimated performance metrics, including the SLO attainment
and the normalized performance, based on the historical data
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Figure 5: Comparison among (a) single LLM’s cache block, (b) split cache block, and (c) merged cache block.

of the last replacement interval. During the execution, the ser-
vice monitor records the performance metrics for each LLM
service. At the end of interval t, SeaLLM compares the real
performance Mreal and the estimated performance Mest , and
change the replacement interval It+1 as follows,

It+1 =

{
(1−β)It |Mreal−Mest |/Mest > β

(1+β)It |Mreal−Mest |/Mest < β,
(8)

where β is a parameter in (0,1). Intuitively, a larger differ-
ence between Mreal and Mest indicates the current request
rates vary from historical ones, suggesting that we should
shorten the replacement interval. On the other hand, a smaller
difference represents that the request rates remain relatively
stable, allowing us to increase the replacement interval.

4.4 Unified KV Cache
Sharing multiple LLMs requires an efficient and flexible
mechanism to manage the resources, especially the GPU
memory. GPU memory is mainly used to store three parts,
i.e., the model weight, activation, and KV cache. The model
weight and the activation are relatively stable given the model
information and the batch size. We allocate sufficient space
for both the model weights and the peak activation usage.
However, managing the KV cache for shared services is very
challenging. First, the KV cache is dynamic during model ex-
ecution, and separating the KV cache for each LLM can cause
memory fragmentation or memory scarcity. Besides, the KV
cache consists of multiple blocks whose shape is decided by
the LLM architecture, including the number of hidden layers,
the number of heads, and the hidden sizes. Different LLM
architectures result in different block shapes. Therefore, we
cannot directly share the KV cache of the shared services.

To efficiently manage the KV cache, SeaLLM introduces a
unified KV cache mechanism, which changes the cache block
shape to fit the shared LLMs. The hidden size is usually identi-
cal for widely-used models [18], e.g., 128 for Llamas [44] and
OPT over 2.7B [54]. For other dimensions, there are mainly
two possible methods, i.e., split a larger block into smaller
blocks (called split method) or merge smaller blocks into a

larger block (called merged method). Figure 5 shows an exam-
ple of these two methods. SeaLLM adopts the merged method
mainly due to three reasons. First, the merged method needs
much less space for the block table than the split method. For
example, the split method needs an 1,024× larger block table
for Llama2-7B which has 32 hidden layers and 32 attention
heads, and this number increases for larger LLMs. On the
other hand, the merged method only needs to add a second
index for each original block to indicate the place in a merged
block. Second, the merged method requires fewer read/write
operations to fetch/store the same amount of KV pairs. Con-
sequently, it achieves better locality in accessing the physical
space compared to the split method, leading to improved
read/write speeds. Third, although the merged method may
lead to more memory fragmentations than the split method,
the batched execution can alleviate this fragmentation issue.

5 Implementation

SeaLLM is implemented with approximately 12,000 lines of
code in Python, C++, and CUDA, and reuses some compo-
nents of vLLM [29]. There are three roles in our system, i.e.,
the global manager, node worker, and local engine.

Global manager. There is only one global manager for a clus-
ter and the global manager is mainly implemented in Python.
It contains a component for receiving requests, the placement
algorithm, the adaptive replacement algorithm, the request
dispatcher, and the service monitor. We run the placement
algorithm in parallel as there are no dependencies for allocat-
ing models and evaluating the performance among different
group patterns. The global manager uses gRPC [2] to commu-
nicate with other roles in the cluster. We use the Ray cluster
for the distributed local engines.

Node worker. There is one node worker for each node in
the cluster and the node worker is mainly implemented in
Python. The node worker plays as a middleware to bridge the
global manager and the local engine. Besides, the node worker
monitors the states of the local engines on the same node.
When abnormal states happen, e.g., one service crashes and
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Baseline Real testbed Simulator Difference
vLLM 13.03 13.05 0.2%

AlpaServe 11.20 11.18 0.2%
MuxServe 19.55 19.39 0.8%
SeaLLM 1.65 1.60 3%

Table 2: Comparison of the normalized latency from real
testbed and simulator.

affects the shared services, the node worker will report to the
global manager and help to restart the local engine. The node
worker collects service characteristics from local engines, and
reports to the service monitor of the global manager. When
replacement happens, the node worker starts to pull model
description files and weights from remote storage. The pulling
process is asynchronous to minimize the effect of running
services. Once all nodes in the cluster are ready for the new
placement plan, the node worker migrates ongoing requests
after the ongoing iteration and stops old local engines.

Local engine. Each group of shared LLM services has one
local engine on the specific node. The request scheduler is
implemented in Python and uses the PriorityQueue whose
complexities of adding a new element and getting the smallest
element are both O(logn), where n is the number of elements
in the PriorityQueue. The multi-LLM executor is based on
the LLM engine of vLLM and is implemented in Python,
C++, and CUDA. We add support for sharing LLMs, includ-
ing modifying the LLM engine and holding multiple model
runners. The weights of the shared LLMs are all stored in the
GPU memory for fast switch and execution. For the unified
KV cache, we implement a unified block manager in Python
and C++. The unified block manager can profile LLMs, calcu-
late proper block shape, and manage the cache blocks for the
shared LLM services. We use Ray workers for parallel execu-
tion and use NCCL for communication. The local engine also
supports profiling and collecting the service characteristics,
which are sent to the node worker and the global manager.

6 Evaluation

We evaluate SeaLLM with real-world request traces and LLM
services. The evaluation shows that SeaLLM consistently out-
performs the current SOTA systems. Under different request
rates, SeaLLM can improve the normalized latency by up to
13.60×, the tail latency by up to 18.69×, and the SLO attain-
ment by up to 3.64× (§6.2). Moreover, we show the efficacy
of the design choices of SeaLLM (§6.3) and we also analyze
the overhead of SeaLLM (§6.4).

6.1 Experiment Setup

Testbed. We conduct the testbed experiments on a cluster with
4 nodes and 32 GPUs. Each node has 8 NVIDIA A800 80GB
GPUs, 128 CPUs, 2048GB of host memory, four 200Gbps
InfiniBand NICs, and 400GBps NVLink bandwidth between

two GPUs. We use PyTorch 2.1.2, CUDA 12.2, HuggingFace
tokenizers 0.19.1, and Ray 2.35.0 for testbed experiments. We
set α in Equation 6 to 0.0001 and β in Equation 8 to 0.1. In
our evaluation, we share at most two LLM services per local
engine because of the GPU memory limitation.
Simulator. Similar to prior work [32,55], we build a simulator
to conduct the ablation study on a broader set of configura-
tions. We profile the prefill phase and the decoding phase for
each LLM service and request under different TP sizes. We
also profile the memory usage of LLMs. Table 2 shows that
the differences between our simulator and real testbed are less
than 3%, showing the high fidelity of our simulator.
LLM service setup. Each LLM service is identified by the
used LLM and the characteristics of requests. We select four
commonly used LLMs with model sizes ranging from 6.7B
to 70B. The selected LLMs are Llama2-7B&13B&70B [44]
and OPT-6.7B [54]. The input lengths and output lengths of
requests are sampled from the following real-world datasets:
(1) ShareGPT dataset [5] is a collection of conversations be-
tween users and ChatGPT. (2) LongBench dataset [12] is a
collection of summarization tasks. Requests in the ShareGPT
dataset have longer output lengths, while requests in the Long-
Bench dataset have longer input lengths. We use the K-means
clustering algorithm to partition the requests according to
their input and output lengths. For each request group, we
randomly assign an LLM to form the LLM service.
Traces. Similar to prior work [32, 51], we use the Microsoft
Azure function trace (MAF) [39] for arrival patterns. We
round-robin functions in MAF to LLM services and generate
traffic for each service. We vary the request arrival rate and
select requests from a fixed duration for each trace.
Metrics. For each request rate, we measure the normalized
latency (the average of end-to-end latency divided by the aver-
age execution time), the tail latency (the 99%-th latency), and
the SLO attainment (the percentage of requests that finish be-
fore their SLOs). Lower normalized latency, lower tail latency,
and higher SLO attainment represent better serving perfor-
mance. For the SLO attainment, we set the SLO to 5× of the
execution time for each request. Besides, we also evaluate two
widely used metrics for token-level serving performance, i.e.,
the average time-to-first-token (Avg TTFT) and the average
time-per-output-token (Avg TPOT).
Baselines. We compare SeaLLM with the following SOTA
LLM serving systems:
• vLLM [29] is one of the most popular LLM serving systems

for a single LLM. It cannot share services and uses FCFS for
scheduling. We allocate the GPUs evenly to LLM services.

• AlpaServe [32] proposes multiplexing for deep learning
model inference. As it is not designed for LLMs with the
autoregressive pattern, we implement AlpaServe with our
unified KV cache and FCFS as the scheduling algorithm.

• MuxServe [18] is designed for sharing LLM services. It
uses RR and FCFS to schedule requests. It adopts the split
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Figure 6: Testbed experiments on MAF traces.
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Figure 7: Comparison of TTFT and TPOT.

method for the KV cache. We use its open-sourced code,
which is also built upon vLLM, for evaluation.

6.2 End-to-End Performance
We first evaluate SeaLLM on a real cluster with 32 GPUs.
Figure 6 shows the normalized latency, the tail latency, and
the SLO attainment on the real-world MAF traces. We change
the average arrival rate of requests from 2 to 50 requests per
second. vLLM does not share LLM services and wastes GPU
resources. AlpaServe uses the FCFS scheduling algorithm for
the shared services, which has the head-of-line blocking prob-
lem and impairs the performance. Compared to vLLM and
AlpaServe, SeaLLM reaches up to 10.38× and 9.52× lower
normalized latency, 12.13× and 5.80× lower tail latency, and
1.82× and 3.64× higher SLO attainment.

MuxServe shares LLMs in both time and space dimen-
sions, but its performance is worse than SeaLLM, mainly due
to three reasons. First, MuxServe serves the services in the
RR and FCFS manner, leading to lower performance when
handling bursty requests. Second, MuxServe sets a fixed per-
centage of computational resources for each LLM service,
which means that it cannot adjust to fluctuating request traffic
timely, resulting in wasted computational resources. Third,
MuxServe uses the split KV cache, which increases execu-
tion overhead. Compared to MuxServe, SeaLLM utilizes the
service characteristics for latency-optimized scheduling, adap-
tive replacement for proper placement plans, and merged KV
cache for lower overhead. SeaLLM improves the normalized
latency by up to 13.60×, the tail latency by up to 18.69×, and
the SLO attainment by up to 2.11×.

The three metrics show that SeaLLM performs better than
the SOTA baselines. The normalized latency of SeaLLM is
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Figure 8: Impact of the SeaLLM design choices.

always lower than 3 and the SLO attainment of SeaLLM is
always higher than 90% under different request rates, demon-
strating the consistency of SeaLLM’s improvement. As the
service characteristics are greatly different as shown in Ta-
ble 1, the lower tail latency and higher SLO attainment indi-
cate that SeaLLM has better fairness for LLM services.

We also evaluate the Avg TTFT and the Avg TPOT, which
can reflect the token-level serving performance, as shown in
Figure 7. Avg TTFT is the time to get the first token and
it is one of the most important metrics for online services.
SeaLLM can generate the first token up to 51.98× faster than
other baselines. Avg TPOT is the average time of generating
each output token. Sharing LLMs inevitably increases the
TPOT. SeaLLM is always faster than the temporal sharing
method, AlpaServe, showing SeaLLM’s efficiency. The TPOT
of SeaLLM is similar to that of the temporal-spatial sharing
method, MuxServe, and the dedicated method, vLLM. Note
that the Avg TTFT of MuxServe is the worst mainly due to
two reasons. First, its RR scheduling policy for the prefill
phase increases the TTFT. Second, MuxServe restricts the
used percentage of GPU computation units, which can greatly
prolong the compute-bound prefill phase.

6.3 Ablation Study

Impact of SeaLLM design. To show the efficacy of our de-
sign choices, we evaluate SeaLLM with four variants: (1)
SeaLLM using the FCFS scheduling algorithm (SeaLLM-F);
(2) SeaLLM using the skip-join MLFQ scheduling algorithm
used in FastServe [50] (SeaLLM-M); (3) SeaLLM without
the placement algorithm (SeaLLM-P); and (4) SeaLLM with-
out the adaptive replacement algorithm (SeaLLM-A); We use
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Figure 11: Impact of the cluster density.

the MAF traces and vary the average request rate from 2 to 50
req/s. SeaLLM-F uses the widely used FCFS scheduling al-
gorithm, while SeaLLM-M uses one of the SOTA scheduling
algorithms for single LLM services. These two variants have
up to 4.17× larger normalized latency and 1.37× lower SLO
attainment. Our latency-optimized scheduling algorithm out-
performs FCFS because SeaLLM alleviates the head-of-line
blocking problem, and outperforms skip-join MLFQ because
SeaLLM integrates the service characteristics into the schedul-
ing policy. SeaLLM-P does not share LLM services and thus
is degraded to vLLM. SeaLLM-A uses the fixed placement
and cannot change the placement according to the request
traffic. SeaLLM-A increases the normalized latency by up
to 2.44× and decreases the SLO attainment by up to 1.33×,
showing the benefit of our adaptive replacement algorithm.

To study the effectiveness of SeaLLM’s unified KV cache,
we compare the overhead of the multi-LLM executors with
the merged cache block and the split cache block as shown
in Figure 9. A-B represents the overhead of running LLM
A when sharing it with LLM B. L7 and L13 are short for
Llama2-7B and Llama2-13B, respectively. We select three
cases in which the used LLMs in L7-L7 have the same block
size and the used LLMs in L7-L13 and L13-L7 have differ-
ent block sizes. SeaLLM’s merged cache block consistently
brings lower overhead than the split cache block. The reason
is that the merged cache block uses smaller block table and
has better read/write locality than the split one.

Impact of the SLO scale. We also evaluate SeaLLM under
different SLO scales as shown in Figure 10. The SLO for each
LLM service is set to SLO scale times the average execution
time of each LLM service. SeaLLM always reaches better
SLO attainment than other baselines. The improvement shows
the generality of SeaLLM with different SLO strictness. Be-
sides, the lower SLO attainments of baselines indicate that
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Figure 12: Impact of the workload skewness.
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Figure 13: Impact of the profiling accuracy.

they need clusters with more GPUs than SeaLLM to meet
the SLO requirements. In other words, SeaLLM has better
resource utilization and serving performance than baselines.

Impact of the cluster density. To investigate the impact of
the cluster density, we evaluate SeaLLM over different clus-
ter sizes with the same LLM services and request trace as
shown in Figure 11. Densities 0.5−2 represent clusters with
64 GPUs, 48 GPUs, 32 GPUs, and 16 GPUs, respectively,
where a larger density number represents a more crowded
cluster. Overall, SeaLLM has better performance than all the
baselines, especially on the more crowded cluster. The perfor-
mance of AlpaServe degrades fast with larger cluster density
because its placement algorithm cannot find the optimal place-
ment on crowded clusters. MuxServe cannot find available
placement plans when the cluster density is 2.

Impact of the workload skewness. We evaluate SeaLLM
with different workload skewness as shown in Figure 12. We
use the number of consecutive requests from the same ser-
vice as the skewness. More consecutive requests from the
same service represent larger workload skewness. SeaLLM
has the best performance among all baselines under differ-
ent skewness. Besides, the performance for all baselines is
slightly decreased when the skewness increases. This is be-
cause larger skewness means more bursty requests, which is
more challenging for the serving system. The metric curves
of SeaLLM do not fluctuate much, illustrating that SeaLLM
is good at serving skew LLM services and bursty requests.

Impact of the profiling accuracy. As SeaLLM relies on the
profiled service characteristics to make scheduling decisions,
we also study the impact of the profiling accuracy. For each
request, we sample the delta length from a Gaussian distribu-
tion with average 0 and standard variance from 0 to 16× of
the output length. Figure 13 shows that all methods perform
worse under a high variance of the output length, because
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Figure 15: The overhead of
the multi-LLM executor.

there are longer requests under high variance and they can
impair the performance greatly. The benefits of SeaLLM get
smaller under a high variance of the output length because
the inaccurate profiling information affects our scheduling al-
gorithm. However, SeaLLM still outperforms other baselines
under different variances of the output length, showing the
efficacy and robustness of our system design.

6.4 System Overhead
Placement algorithm running time. We evaluate the running
time of our placement algorithm with different GPU numbers,
as shown in Figure 14. We can speed up the placement algo-
rithm with at most eight parallel processes, considering the
possible TP sizes and the number of shared LLM services.
The running time is shorter than one minute, which can be
fully overlapped by running before the replacement moment.

Multi-LLM executor. Figure 15 shows the increase in iter-
ation time when sharing multiple LLMs on the same set of
GPUs. A-B represents sharing LLM service A with LLM
service B. L7, L13, and O7 are short for Llama2-7B, Llama2-
13B, and OPT-6.7B, respectively. We select three cases to
demonstrate that the overhead is acceptable. The three cases
are sharing LLMs with the same architecture (L7-L7), sharing
LLMs with similar architecture but different model sizes (L7-
L13), and sharing LLMs with different architectures (L7-O7).
The increases in iteration time are under 4% for three out of
six LLMs and under 8% for all cases.

7 Related Work

LLM serving systems. The fast development of LLMs has
drawn great attention to LLM serving systems. Some systems
leverage efficient operators to improve the execution speed of
LLMs, e.g., TensorRT-LLM [6], LightSeq [47], Flash Atten-
tion [17], and Flash-Decoding [24]. Recent work, like Fast-
Transformer [1], Deepspeed-Inference [11], and TGI [7], has
explored intra- and inter-operator parallelism for fast serving.
Orca [53] and FastServe [50] propose scheduling algorithms
for LLMs. Besides, SplitWise [36], DistServe [56], and Tetri-
Infer [25] propose disaggregation of the prefill phase and
decoding phase of LLM serving. vLLM [29] manages the
memory usage of LLMs. LoongServe [49], SARATHI [9],
and DeepSpeed-FastGen [23] are optimized for long-context

settings. These systems optimize the execution of a single
LLM. Llumnix [43] notices the dynamic request traffic and
reschedules requests among multiple model instances. How-
ever, Llumnix optimizes multiple instances of the same LLM
service. SeaLLM explores the multiple-LLM-service setting
which is orthogonal to these single-LLM optimizations.

GPU sharing. GPU sharing has been widely studied for DL
models. Some existing approaches [34, 52, 55] are designed
for training DL models, which usually have a repeated pattern.
They are not suitable for sharing serving workloads which are
time-varying and bursty. Some systems [22, 32] are designed
for sharing serving workloads. These approaches do not con-
sider the autoregressive pattern of LLM serving and directly
applying them to LLM services can cause the head-of-line
blocking problem. dLoRA [51] is designed for sharing LLM
services. However, it is specifically designed for the multi-
LoRA scenario which cannot be applied to general scenarios.
MuxServe [18] is the closest work to SeaLLM, but it utilizes
a scheduling algorithm combining RR and FCFS, which in-
creases the request latency and the memory burden of GPUs.
Besides, MuxServe optimizes the system throughput and pre-
allocates GPU quota for each LLM service, which cannot
react timely to the fluctuations in request traffic. SeaLLM is
designed for sharing general LLM services. Besides, SeaLLM
utilizes a latency-optimized scheduling algorithm to minimize
normalized latency and an adaptive replacement algorithm
for the changing request traffic.

Model parallelism. As the model size of LLMs is extremely
large, model parallelism is required for training and serving
LLMs. Tensor parallelism [38, 40] splits operators on differ-
ent devices and is widely used for LLM workloads. Besides,
pipeline parallelism [26,33,35] splits LLM layers on different
devices. As the context is getting longer, sequence parallelism
is introduced to LLM workloads [28, 30, 49]. The model par-
allelisms are usually mixed for LLM training, while for LLM
serving, the most widely used parallelism pattern is tensor
parallelism. Note that the placement algorithm of SeaLLM is
not limited to tensor parallelism, and SeaLLM can integrate
new parallelism techniques into its placement algorithm.

8 Conclusion

In this paper, we presented SeaLLM, a service-aware
and latency-optimized sharing system for multiple LLMs.
SeaLLM uses a latency-optimized scheduling algorithm by
utilizing the service characteristics. SeaLLM exploits a place-
ment algorithm to find the placement plan and utilizes an
adaptive replacement algorithm to determine the replacement
interval. To execute shared LLMs, we propose the unified
KV cache to manage the memory resources. Evaluation with
real-world traces and LLM services shows that SeaLLM sig-
nificantly improves the normalized latency, tail latency, and
SLO attainment compared to prior SOTA solutions.
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A Appendix

A.1 Placement Algorithm

Algorithm 1 shows the pseudocode of SeaLLM’s placement
algorithm.

Algorithm 1 Placement algorithm
Input: LLM services S; cluster GPUs G; requests R.

1: P∗← /0

2: {p′}← GetParallelismCon f ig(G,S)
3: // Enumerate GPU groups
4: for p ∈ {p′} do
5: P← /0

6: B← GenerateGPUGroups(G, p)
7: // Allocate LLM services
8: while True do
9: UI← SimulateUI(R,P)

10: FindFlag← False
11: for b ∈ SortedByAvgRate(B) do
12: for s ∈ SortedByUI(UI,S) do
13: if b.CanAllocate(s) then
14: P.AddServices(b,s)
15: FindFlag← True
16: Break // To Line 17
17: if FindFlag == False then
18: Break
19: // Simulate and get the optimal placement
20: Mest ← SimulatePer f ormance(R,P)
21: if Mest .SLO > P∗.SLO then
22: P∗← P
23: else if Mest .SLO = P∗.SLO and
24: Mest .norm_latency < P∗.norm_latency then
25: P∗← P

A.2 Scheduling Algorithm

Algorithm 2 shows the pseudocode of SeaLLM’s DB schedul-
ing algorithm. The proof of Theorem 1 is as follows,

Proof. Our placement algorithm shares at most two services
for each sharing group, and assume they are s0 and s1. The
execution time on one GPU for s0 is L̂0 and for s1 is L̂1.
Assume one execution order R′ is better than the optimal
execution order R∗, and the scheduling decisions are different
for only two requests j and k at time t. Specifically, for time
t, request j is decided to execute in R∗, but not in R′. Request
k is decided to execute in R′, but not in R∗. Assume the left
time for j is Tj and for k is Tk. j is submitted at t j and k is
submitted at tk. According to the sorting rule of R∗, we can
get,

TjL̂ j < TkL̂k. (9)

The difference between the normalized latencies of R′ and R∗
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Algorithm 2 DB scheduling algorithm
Input: Requests R; LLM services S.

1: // Initialize
2: wait_queue← PriorityQueue
3: decoding_queue← PriorityQueue
4: while True do
5: // Process newly arrived requests
6: while a new request rnew arrives do
7: InitBudget(rnew)
8: InitPriority(rnew)
9: wait_queue.AddRequest(rnew)

10: // Schedule requests
11: to_run_batch← /0

12: r← GetHighestPriorityOrStarvedRequest()
13: if r ∈ wait_queue then
14: cur_queue← wait_queue
15: else
16: cur_queue← decoding_queue
17: while EnoughResource() do
18: if r.service = to_run_batch.service then
19: to_run_batch.AddRequest(r)
20: r← cur_queue.Get()
21: Execute(to_run_batch)
22: U pdateBudget(to_run_batch)
23: U pdatePriority(to_run_batch)

is,

D = (
t +Tk− tk

L̂k
+

t +Tk +Tj− t j

L̂ j
)

− (
t +Tj− t j

L̂ j
+

t +Tj +Tk− tk
L̂k

)

=
Tk

L̂ j
−

Tj

L̂k

< 0,

(10)

where we only consider requests j and k because other re-
quests have the same execution decisions. From Equation 10,
we can get TjL̂ j > TkL̂k, which is contradicted to Equation 9.
If there are more than two requests having different execution
orders, we can prove them pair by pair. To conclude, R∗ is the
optimal execution order.

The proof of Theorem 2 is as follows,

Proof.

Lemma 1. For a parallel single server queueing system with
infinite buffer, the optimal policy is the priority policy based
on the c-µ rule: The server selects the request r in queue
r∗ = argmax{crµr}, where cr is the marginal delay cost and
1/µr is the average processing time of request r.

Lemma 1 is proven in [45, 46]. In our scenario, the delay
cost function of request i that resides τ units of time is

Ci(τ) = τ/L̂r. (11)

The marginal delay cost function can be calculated as

ci =C′i(τ) = 1/L̂r. (12)

For any scheduling moment, the average processing time of
request i is the estimated remaining time T ′r . Consequently,
the optimal priority is

ci ∗µr = 1/L̂r ∗1/T ′r
= 1/(T ′r L̂r).

(13)

From the above equation, we should serve the request with the
maximum 1/(T ′r L̂r) first, i.e., minimum T ′r L̂r. To conclude,
our scheduling priority Or = T ′r L̂r is the optimal priority to
minimize the expected normalized latency E(LN) for any
scheduling moment.
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