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Abstract— Despite the remarkable achievements in object de-
tection, the model’s accuracy and efficiency still require further
improvement under challenging underwater conditions, such
as low image quality and limited computational resources. To
address this, we propose an Ultra-Light Real-Time Underwater
Object Detection framework, You Sense Only Once Beneath
(YSOOB). Specifically, we utilize a Multi-Spectrum Wavelet
Encoder (MSWE) to perform frequency-domain encoding on
the input image, minimizing the semantic loss caused by
underwater optical color distortion. Furthermore, we revisit
the unique characteristics of even-sized and transposed convo-
lutions, allowing the model to dynamically select and enhance
key information during the resampling process, thereby im-
proving its generalization ability. Finally, we eliminate model
redundancy through a simple yet effective channel compression
and reconstructed large kernel convolution (RLKC) to achieve
model lightweight. As a result, forms a high-performance
underwater object detector YSOOB with only 1.2 million
parameters. Extensive experimental results demonstrate that,
with the fewest parameters, YSOOB achieves mAP50 of 83.1%
and 82.9% on the URPC2020 and DUO datasets, respectively,
comparable to the current SOTA detectors. The inference
speed reaches 781.3 FPS and 57.8 FPS on the T4 GPU
(TensorRT FP16) and the edge computing device Jetson Xavier
NX (TensorRT FP16), surpassing YOLOv12-N by 28.1% and
22.5%, respectively.

I. INTRODUCTION

Deep learning has made remarkable advancements in
fields such as autonomous driving [1]–[3], with real-time
object detection technologies, exemplified by YOLOs and
DETRs, gaining widespread adoption [4], [5]. However,
due to factors such as light attenuation, color distortion,
and difficulty distinguishing targets from coral reefs, mud,
and other underwater structures, the development of high-
performance real-time underwater object detection (UOD)
has been relatively slow [6]. Moreover, embedded devices’
limited storage and computational capabilities make it chal-
lenging to deploy models similar to Vision Transformers
(ViT) [7]. Achieving an effective balance between accuracy
and efficiency in underwater object detection remains a
critical challenge.

A common strategy for improving UOD performance
involves underwater image enhancement (UIE) for image
preprocessing. However, the primary goal of UIE is to
enhance visual quality, and this approach not only increases
computational overhead and latency but may also introduce
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Fig. 1. Comparison of accuracy (top), parameters (bottom), and inference
latency (TensorRT FP16) on Jetson Xavier NX (left) and T4 GPU (right)
against other popular SOTA methods. The red arrows in the radar chart
indicate the direction of optimal extension for the model.

artifacts that, in turn, degrade detection performance [8].
Some researchers have attempted to combine image en-
hancement with object detection end-to-end, building mul-
titask networks to alleviate the computational burden [9],
[10]. However, these methods still face challenges, such
as increased model complexity and a heavy reliance on
synthetic data for supervised learning, leading to insufficient
generalization ability in real-world applications.

In this work, we propose an Ultra-Light Real-Time Un-
derwater Object Detection method, YSOOB, which aims to
eliminate the reliance on UIE through image frequency-
domain signal processing, achieving greater robustness
in real-world applications. YSOOB extends the attention-
centered YOLO framework and further achieves model
lightweight through resampling, large kernel convolution re-
construction, and channel compression, striking an excellent
balance between real-time inference speed and detection
accuracy. Fig. 1 provides a detailed comparison between
YSOOB and other models. The contributions are summarized
as follows.

1) A multi-spectrum wavelet encoder (MSWE) is intro-
duced to efficiently extract features and reconstruct
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Fig. 2. Overall architecture of YSOOB. ’#’ and ’R ’ represent the channel compression operation and RLKC. For the input image I, S represents the
target signal, and N represents the additive noise.

degraded underwater images by leveraging frequency-
domain feature transformations, thus eliminating the
dependency on UIE processing. Additionally, the dy-
namic perceptual properties of even-sized and trans-
posed convolutions are re-examined as viable replace-
ments for traditional upsampling and downsampling
operations, effectively reducing the loss of edge fea-
tures while cutting down on model parameters. To
further streamline the model, a simple yet effective
channel compression and reconstructed large kernel
convolution (RLKC) to remove redundancy, achieving
the final lightweight model design while maintaining
sensitivity to small targets.

2) Experimental results show that YSOOB, with only
1.2 million parameters, achieves accuracies of 83.1%
and 82.9% on the URPC2020 and DUO datasets.
It performs comparably to the baseline model
YOLOv12n while reducing the number of parame-
ters and FLOPs by 53.85% and 25.40%. Further-
more, YSOOB achieves impressive real-time inference
speeds of 781.3 FPS on the T4 GPU and 57.8 FPS on
the edge computing device Jetson Xavier NX.

II. RELATED WORK

A. Lightweight Underwater Object Detection

Several approaches have achieved remarkable accuracy in
underwater object detection within complex environments
[11], [12]; however, they often overlook model portability

and do not enable rapid detection. Li et al. [13] optimized
the YOLOv5 backbone through network pruning and distil-
lation techniques and employed specialized network search
algorithms to develop an efficient model that improved
detection speed by 12 times. Ouyang et al. [14] developed
the lightweight feature extraction network Mobile-bone, re-
sulting in a final DU-MobileYOLO model with only 4.7M
parameters. Cheng et al. [15], building upon YOLOv11n,
introduced a multi-sampling point mechanism to enhance ef-
ficiency, with the final model having only 2.58M parameters.
Based on previous studies, this paper proposes an Ultra-
Light Real-Time YOLO detector that balances detection
performance with model efficiency.

B. Image Frequency-Domain Analysis

With the advancement of deep learning, frequency domain
transformations [16] and optical flow descriptions [17] have
been increasingly applied in visual perception. Xu et al.
[18] proposed a Haar Wavelet Downsampling module, which
can be seamlessly integrated into CNNs. In response to
the degradation issues of underwater optical images, fre-
quency domain transformations have gradually emerged as
an alternative for image enhancement. Zhang et al. [19]
optimized feature maps through techniques such as frequency
domain weighting. Zhao et al. [20] thoroughly explored the
frequency domain features of the original image pixels, per-
forming preliminary enhancement of the underwater image
frequency information in the wavelet domain.



III. METHOD

This section provides a detailed overview of the proposed
method YSOOB. We use the SOTA single-stage object
detector YOLOv12-N [21] as the baseline model to balance
real-time performance and accuracy. The overall framework
of YSOOB is shown in Fig. 2. The Multi-Spectrum Wavelet
Encoder (MSWE) first processes the input image for fre-
quency domain feature extraction and encoding reconstruc-
tion without relying on image enhancement techniques. Next,
we revisited the dynamic perceptual characteristics of even-
sized and transpose convolutions, replacing all downsam-
pling and upsampling operations in YOLOs framework. This
significantly optimizes the model parameters and reduces the
loss of object edge features. Finally, a simple yet effective
channel compression and reconstructed large kernel convo-
lution (RLKC) are applied to eliminate model redundancy,
achieving the final Ultra-Light design.

A. Multi-Spectrum Wavelet Encoder

In signal communication, spectrum analysis can effectively
eliminate noise interference. Compared to UIE methods,
frequency domain analysis of images has significant advan-
tages in real-time underwater target detection tasks. Inspired
by [18], we propose the Multi-Spectrum Wavelet Encoder
(MSWE), which efficiently performs space-frequency joint
embedding and encoding reconstruction of the original input
underwater degraded image. To reduce the image resolution
during frequency domain transformation while maintaining
the translational invariance of the original image spatial
features as much as possible, for a given input image I ∈
RH×W×C, we directly apply a 2×2 convolution with a stride
of 2 for downsampling to obtain feature X0 ∈ RH/2×W/2×C′

,
where C′ is the intermediate hidden channel number. Subse-
quently, we perform a 2D discrete wavelet transform using
the Haar wavelet basis function to obtain low-frequency
components YL and three high-frequency components YHL,
YLH, and YHH, which correspond to the detail features in the
horizontal, vertical, and diagonal directions, respectively. In
response to scattering noise interference, we cross-optimize
high-frequency feature representations:

ỸH = Fcompress ([YHL ⊕YLH ⊕YHH]) (1)

where ⊕ denotes channel concatenation, and Fcompress
represents the convolution operation. The enhanced high-
frequency features are combined with low-frequency signals
to perform dual-path spectrum interaction, resulting in the
reconstructed spectral feature Pfreq . After channel mapping,
the spatial structural position encoding information is aligned
to produce Pres . Finally, the feature fusion output Z is
obtained by constructing a path dominated by low-frequency
components and a residual path.

Pfreq ,Pres = C1
(
YL + ỸH

)
,C ↓

3 (X0) (2)

Z = Plow ⊕Pres (3)

where C ↓
3 denotes the convolution and secondary downsam-

pling operations in this context, and C1 achieves channel
dimension mapping. After high-frequency noise suppression,
the final output retains both the original spatial structural
feature information and the frequency spectral features. For
underwater degraded images with noise input I = S+N after
wavelet decomposition:

∥YH∥F ∝ ∥∇S+∇N∥2 (4)

Through the feature cross-adjustment of high-frequency
channels, the model can adaptively suppress high-frequency
noise components that satisfy ∥∇N∥2 > ∥∇S∥2. MSWE
effectively separates high-frequency water scattering noise
from low-frequency target signal components using a wavelet
transform, thereby improving the model’s ability to resist
interference from aquatic media and enhancing its robustness
in complex underwater environments.

B. Resampling

1) Upsampling: In YOLO’s framework, the upsampling
method typically relies on nearest-neighbour interpolation
for linearly resizing the deep feature maps, which fails
to adapt to the complex variations in image content. As
a standard operation in Generative Adversarial Networks
(GANs) [22], transpose convolution uses learnable dynamic
kernels to maximally and adaptively recover high-frequency
details such as edges, textures, and delicate object contours
during the deconvolution process. We replace all upsampling
operations in the original framework with 2× 2 transpose
convolutions. Parametric upsampling allows the model to
learn the fusion of the target’s deep and shallow positional
information, effectively addressing the severe high-frequency
degradation caused by light scattering and suspended parti-
cles in underwater images, thereby enhancing the model’s
ability to perceive small underwater targets. Compared to
traditional methods, the increase in model parameters and
complexity is negligible.

2) Downsampling: In YOLOs, downsampling is typically
performed using a 3 × 3 convolution with a stride of 2.
However, we believe that a dedicated feature extraction
module should handle the task of capturing continuous spa-
tial representations. Given that underwater targets are often
small, blurred, and susceptible to noise, excessive feature
map compression can lead to the loss of edge and detail
information, resulting in overfitting. Therefore, we replace all
downsampling operations in YOLOs with 2×2 convolutions
with a stride of 2, which use only 44% of the parameters of
3× 3 convolution. The even convolution operation enables
a more refined focus on local features, helping to reduce
spatial information loss, improve feature map alignment, and
enhance the model’s generalization capability.

C. Model Parameter Optimization

1) Reconstructed Large-Kernel Convolution: Underwater
images suffer from spatial blur and colour distortion be-
tween channels caused by light scattering and suspended
particles. To address the underfitting caused by insufficient



TABLE I
COMPARISON WITH OTHER DETECTORS ON URPC2020 VAL SET

Model
mAP50

(%)
mAP
(%)

mAP (%) #Param.
(M)

FLOPs
(G)

LatencyTRT
T4

(ms)
LatencyTRT

NX
(ms)Holothurian Echinus Starfish Scallop

YOLOv12-N [21] (Baseline) 83.2 48.3 38.8 52.7 52.4 49.3 2.6 6.3 1.64 21.2
YOLOv8-N [23] 83.5 47.9 38.0 53.4 51.6 48.6 3.0 8.2 1.77 21.4
YOLOv10-N [24] 83.4 48.1 36.8 52.9 52.2 50.5 2.7 8.4 1.84 23.7
YOLOv11-N [23] 83.0 48.1 38.4 53.2 51.4 49.8 2.6 6.3 1.50 20.9

YOLOX-Nano [25] 48.8 21.3 16.7 24.1 23.4 21.0 0.9 1.1 1.89 19.7
RT-DETRv2-R18 [26] 85.4 49.7 39.7 54.4 53.8 50.9 20.0 60.0 4.58 42.5

Faster-RCNN [27] 75.3 40.2 33.7 43.8 42.7 40.6 41.3 90.9 - -
YSOOB (Ours) 83.1 48.0 38.7 52.5 52.7 47.9 1.2 4.7 1.28 17.3

model parameters, we enhance the backbone by using large
kernel depthwise separable convolution layers to cover a
broader degraded region, thereby strengthening the multi-
scale contextual feature reconstruction ability between spatial
and channel dimensions. For input features:

Fdw(x,y,c) =
3

∑
i,j=−3

Wdw(c, i+3, j+3) ·X(x+ i,y+ j,c) (5)

Fpw
(
c′
)
=

cin

∑
c=1

Wpw
(
c′,c

)
·Fdw(c) (6)

where w1 and w2 represent the depthwise and pointwise
convolution kernels, respectively, c is the channel index,
while i and j denote the spatial offset positions of the con-
volution kernel. The reconstructed convolution embedding
provides prior spatial constraints that complement the area-
attention mechanism and helps mitigate the attention weight
divergence caused by water blur.

2) Channel Compression: When the total number of
model parameters falls below a certain threshold, the per-
formance gains from channel expansion exhibit a significant
diminishing marginal effect, with miniature models having
up to 40-60% channel redundancy [28], [29]. Considering
that the YOLOv12 backbone architecture, which incorporates
attention mechanisms, has sufficient capacity to capture the
most valuable information, we simply reduce the width of the
N-sized model backbone’s final layer and the neck’s last layer
to half of their original size. Removing redundant parameters
allows the network to focus more on core information,
improving training and inference efficiency.

IV. EXPERIMENT

This section is divided into three parts: experimental setup,
comparing accuracy and speed with current popular methods,
and an ablation study of the model construction process.

A. Experimental Setup

1) Datasets: We validated the proposed method on the
URPC2020 dataset [30], which contains a total of 7,543
images across four different categories: holothurian, echinus,
starfish, and scallop. After removing invalid images, the
dataset was divided into 5,907 training samples and 1,476

validation samples. We also evaluated the model’s general-
ization capability on the DUO dataset [31], which consists
of 6,671 training images and 1,111 test images, covering the
same four categories of URPC2020.

2) Implementation Details: The method was implemented
on a system equipped with an Intel(R) Xeon(R) Gold 6330
2.00GHz CPU, Ubuntu 20.04, and an NVIDIA RTX 4090
GPU, utilizing CUDA 12.4 and the PyTorch framework.
In the experiments, training parameters were standardized
across different models. The momentum was set to 0.937,
the momentum decay coefficient was set to 0.0005, and the
initial learning rate was set to 0.01. All models were trained
on input images of size 640× 640 for 200 epochs without
pre-loaded weights. The latency for all models was tested
using TensorRT FP16 on a T4 GPU [21] and Jetson Xavier
NX, with a batch size set to 1.

B. Comparison with State-of-the-arts

In this section, we compare YSOOB with currently popu-
lar SOTA detectors on the URPC2020 and DUO datasets to
verify the effectiveness of our method.

Table I presents the comparison results on the URPC2020
dataset. YSOOB achieves a mAP of 48.0% with only 1.2M
parameters, reaching a level comparable to that of YO-
LOs SOTA detectors with less than half the number of
parameters. YOLOX-Nano [25], which also has ultra-light
characteristics, suffers from an imbalance between efficiency
and accuracy, failing to meet the accuracy requirements for
practical applications. Due to its inefficient model frame-
work, it also does not achieve the desired inference speed.
In addition to inference tests on the T4 GPU, we deployed
the model on the Jetson Xavier NX edge computing device
to explore the practicality of different methods. YSOOB
outperforms all other compared models with an inference
latency of 17.3ms, achieving an excellent balance between
accuracy and lightweight design, making it particularly suit-
able for real-time applications. Given the complexity of
Faster-RCNN [27], we did not conduct deployment tests for
it. Although detectors based on the DETR framework [32],
with global attention mechanisms, have achieved outstanding
performance in various application scenarios, their FLOPs
under the ResNet-R18 minimal framework still reach 60G,
making them unsuitable for deployment on minimal hard-



Fig. 3. Comparison of underwater object detection performance between the baseline model YOLOV12-N, our method YSOOB, and the parameter-similar
YOLOX-Nano. The results above the dashed line are from the URPC2020 dataset, and those below are from the DUO dataset. The red dashed line indicates
missed or incorrectly detected targets.

TABLE II
COMPARISON WITH OTHER DETECTORS ON DUO TEST SET

Model
mAP50

(%)
mAP
(%)

mAP (%)
Holothurian Echinus Starfish Scallop

YOLOv12-N [21] (Baseline) 83.1 63.6 59.5 74.3 73.1 47.5
YOLOv8-N [23] 83.2 63.8 60.4 74.0 73.2 47.6

YOLOv10-N [24] 83.3 63.6 59.5 75.0 73.5 46.4
YOLOv11-N [23] 83.0 63.4 60.3 74.1 72.5 46.7

YOLOX-Nano [25] 52.6 39.7 39.8 43.6 41.8 33.6
RT-DETRv2-R18 [26] 85.9 66.8 63.4 78.1 76.4 49.3

YSOOB (Ours) 82.9 63.4 59.2 74.1 72.6 47.7

ware platforms. YSOOB, on the other hand, is 3× faster than
DETR [32].

Fig. 3 visualizes the test results on the URPC2020 dataset.
YOLOX-Nano’s [25] inefficient and overly minimal model
parameters fail to fit the training data, leading to significant
missed detections. In contrast, YSOOB performs comparably
to the baseline model YOLOV12-N [21], showing only a few
minor errors.

To further demonstrate YSOOB’s generalization capabil-
ity, we conducted experiments on the DUO dataset, as shown
in Table II. The results indicate that YSOOB maintains
performance slightly below that of SOTA detectors. Due to
its refined characteristics, YSOOB performs exceptionally
well in complex underwater multi-target scenarios. It rarely
exhibits false detections and sometimes even outperforms
YOLOV12-N [21], as shown in Fig. 2.

TABLE III
ABLATION ON THE PROPOSED YSOOB

Ablations Baseline Ab1 Ab2 Ab3 YSOOB
WSME - ✓ - - ✓

Tran-Up - - ✓ - ✓
Even-Down - - ✓ - ✓
Chan-Comp - - - ✓ ✓
LKC-Recon - - - ✓ ✓

mAP50 (%) 83.2 83.7 83.1 82.7 83.1 ↓ 0.12%
mAP (%) 48.2 48.6 48.1 47.8 48.0 ↓ 0.63%

#Param. (M) 2.6 2.4 2.1 1.5 1.2 ↓ 53.85%
FLOPs (G) 6.3 6.3 5.9 5.5 4.7 ↓ 25.40%

C. Ablation Experiment

We present the construction process of YSOOB in Table
III. When we introduced WSME to the baseline model, the
mAP improved by 0.83%. WSME expands image features
to the frequency domain, allowing the model to perceive
spatial and frequency-domain variations simultaneously. It
weakens the high-frequency components adaptively, which
serves a similar function to UIE. When adjusting the model’s
resampling, even-sized convolution provided a significant
advantage regarding model parameters. By pairing it with
transposed convolution for dynamic spatial information mod-
elling, the model achieved preliminary lightweight with
almost no change in accuracy. In ablation 3, the model’s



parameters were reduced from 2.6M to 1.5M, and the ac-
curacy slightly decreased. However, experience tells us that
such trade-offs are acceptable in lightweight model design.
Ultimately, the final model, YSOOB, achieved an impressive
reduction of 53.85% in the number of parameters and 25.40%
in FLOPs compared to the baseline model, with a minimal
accuracy loss of less than 0.7%.

V. CONCLUSIONS

This study proposes an Ultra-Light Real-Time Underwater
Object Detection method, named YSOOB. To serve as an
effective alternative to UIE, we employ a MSWE that di-
rectly extends the feature perception of the original degraded
underwater image from the spatial domain to the frequency
domain for encoding and reconstruction while performing
high-frequency noise feature interaction and suppression.
Additionally, we introduce even-sized convolution and trans-
posed convolution to optimize the traditional resampling
method in YOLOs, giving the model dynamic perception
capabilities. Finally, we eliminate model redundancy through
simple yet effective channel compression and RLKC, achiev-
ing a lightweight design. With only 1.2 millions parameters,
YSOOB performs excellently in underwater object detection
tasks, balancing performance and efficiency. Future research
will optimize the model architecture and explore its gener-
alization ability in broader real-world scenarios.
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