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ABSTRACT

The objective of transfer learning is to enhance estimation and inference in a target data by leveraging
knowledge gained from additional sources. Recent studies have explored transfer learning for inde-
pendent observations in complex, high-dimensional models assuming sparsity, yet research on time
series models remains limited. Our focus is on transfer learning for sequences of observations with
temporal dependencies and a more intricate model parameter structure. Specifically, we investigate
the vector autoregressive model (VAR), a widely recognized model for time series data, where the
transition matrix can be deconstructed into a combination of a sparse matrix and a low-rank one.
We propose a new transfer learning algorithm tailored for estimating high-dimensional VAR models
characterized by low-rank and sparse structures. Additionally, we present a novel approach for
selecting informative observations from auxiliary datasets. Theoretical guarantees are established,
encompassing model parameter consistency, informative set selection, and the asymptotic distribution
of estimators under mild conditions. The latter facilitates the construction of entry-wise confidence
intervals for model parameters. Finally, we demonstrate the empirical efficacy of our methodologies
through both simulated and real-world datasets.

1 INTRODUCTION
In many applications, Vector Autoregressive (VAR) model provides a principled framework for a wide range of tasks,
including analyzing speech signal (Juang and Rabiner, 1985; Shannon et al., 2012), investigating causality between
economics variables (Granger, 1969), reconstructing gene regulatory interactions (Michailidis and d’Alché Buc, 2013),
extracting classifiable features for neuroscience data (Anderson et al., 1998), and finding connectivity between brain
regions (Van Den Heuvel and Pol, 2010). A simple form of VAR model is Xt = BXt−1 + ϵt where B is a p × p
transition matrix and ϵt is the error term at time t. Sparse transition matrices are among popular choices considered
in high-dimension regime (the dimension of variables is significantly greater than the number of observations). To
get a sparse estimation, there are plenty of studies using penalty for the transition matrix, such as the popular ℓ1
penalty (lasso), group lasso type penalties employed in Melnyk and Banerjee (2016) and non-convex penalties akin to a
square-root lasso (Jiang, 2018). A low-rank transition matrix is assumed in hidden factor model (Bai, 2003). In this
scenario, B can be written as the product of two rank-r (r ≪ p) matrices U , V , i.e B = UV

′
so that the resulting model

specification of the original p time series is expressed as linear combinations Zt = V
′
Xt of the original ones and U

specifies the dependence between Xt and Zt; namely Xt = UZt−1 + ϵt. Zt is in fact the hidden factor with dimension
r, driving the evolution of the process (as a simple example, Xt can be the GDP of each country, and the hidden factors
can reflect the general state of the economics at a continent scale). Recent works have generalized the mentioned model
by assuming a low-rank plus sparse structure for the transition matrix, i.e. B = L+ S where L is the low-rank part and
S is the sparse component (Basu et al., 2019; Bai et al., 2020). This decomposition is a natural assumption for dynamic
imaging since the L and S components can represent the background and the dynamic foreground, respectively (Otazo
et al., 2015). To include the low-rank structure, the estimation is achieved by imposing a nuclear penalty. However the
algorithm requires relatively large amount of data for training and testing purposes to guarantee a consistent estimation,
i.e. number of observations N should have at least the same order as the dimension p. An important question then
arises: when insufficient data is provided, is there a way to estimate L and S with high accuracy? A nature idea of
solving the data shortage is leveraging knowledge from additional sources whose observations have similar behavior
as original ones. This is where transfer learning comes in. There has been a growing body of literature on transfer
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learning under high-dimension regime with sparse transition matrices. For example, Cai and Wei (2021) studies transfer
learning in the context of nonparametric classification, while Tian and Feng (2022) provides theoretical analysis of
transfer learning algorithm, a transferable source detection approach, as well as constructing confidence intervals for
model parameters for generalized linear models. Also, a low-rank transfer learning algorithm is proposed by Tian et al.
(2023), while they mainly focus on low-rank component instead of a decomposed structure and/or the model parameters
are p-dimensional vectors as opposed to squared matrices of dimension p in our paper. Other related works include
investigating transfer learning in large-scale Gaussian graphical models with false discovery rate control (Li et al.,
2022b), and leveraging big data information via weighted estimator for logistic regression (Zheng et al., 2019); see also
related works on hypothesis transfer and meta-learning (Kuzborskij and Orabona, 2013; Wang et al., 2016; Kuzborskij
and Orabona, 2017; Aghbalou and Staerman, 2023; Lin and Reimherr, 2024; Tripuraneni et al., 2021). To the best of
our knowledge, theoretical analysis of transfer learning for VAR models has not been investigated in the literature.
The main goal of this paper is to bridge this gap. To that end, in this work, we focus on VAR models with low-rank
plus sparse structure for the transition matrix and propose a transfer learning algorithm to improve the estimation and
inference for target model.

Suppose that we have K + 1 groups of observations, X(i)
t = B

′

iX
(i−1)
t−1 + ϵ

(i)
t , 0 ≤ i ≤ K while the first one is the

target group. Hence, B0 is the transition matrix of the target model while Bi, i ≥ 1 is the transition matrix of the
i-th auxiliary model. We assume that Bi can be decomposed as L+ Si. In other words, all models have a common
low-rank component, which can be interpreted as a background information, while Si varies across different models.
For example, if the i-th group is collected in chronological order, Si captures a dynamic evolution across time and our
model can be applied in a dynamic imaging problem as mentioned before (see more details in Section 5).

The main goal of this paper is estimating sparse component of the target model S0 with high accuracy while also
estimating the shared low-rank structure L. To address this problem, we propose a transfer learning algorithm by using
observations from those informative models whose Si is close to S0. To be more specific, our algorithm comprises of
two main steps. First, since L is a common part over all groups, we merge all observations from target and auxiliary
sets to estimate the low-rank component denoted by L̂. With more observations, our theory verifies that the first step
derives a more accurate estimation of L compared with the result of estimating L with only the target data (Theorem 1).
In the second step, we remove the effect of the low-rank component by defining Y

(i)
t := X

(i)
t − L̂

′
X

(i)
t−1 and then apply

a transfer learning algorithm for the remaining sparse part. It should be noticed that different from merging all collected
data, observations from informative models are merged in the transfer learning step. Taking into account observations
from non-informative models whose sparse component Si deviates far away from S0 could damage the estimation
performance, which is a phenomenon often called as negative transfer (Torrey and Shavlik, 2010). Since it is crucial to
have a correct informative set, we also propose a novel algorithm to select informative groups from all auxiliary groups.
Under some mild condition, it is shown that informative groups and non-informative groups can be separated perfectly
with high probability using the proposed algorithm (Theorem 2). Finally, inference for model parameters is performed
by adding an additional debiasing step.

In summary, the main contributions of this work include: (1) propose a new algorithm to perform transfer learning
for VAR models with low-rank plus sparse structure with theoretical guarantees; (2) develop a novel algorithm for
selecting informative sets from all auxiliary groups; (3) constructing confidence intervals for model parameters. These
developments came with addressing important challenges due to the complex model structure and temporal dependence.
More specifically, (a) due to existence of a shared low rank component, an additional step to the transfer learning
algorithm had to be added to estimate that shared piece consistently; (b) inclusion of temporal dependence makes
the theoretical development more complicated. We need to design new (A1) Restricted Strong Convexity and (A2)
Deviation Bound Conditions. The original version of such conditions are written for single group data while we deal
with multiple groups in transfer learning scenarios. As such, these conditions had to be adjusted to the multi-group
cases where models from different groups are not same but only similar. Further, these two conditions had to be verified
for the proposed model. This is done successfully in the paper by listing appropriate sufficient conditions under which
they are satisfied. Certain type of Hanson–Wright inequality is applied to prove that (A1) and (A2) hold for VAR
models; (c) certain parts of the algorithm need to be adapted to respect the temporal dependence. For example, the last
step on debiasing the estimate to get confidence intervals had to be adjusted appropriately using an “online debiasing"
method so that Martingale-type CLT can be used to derive the asymptotic distribution. A simple debiasing step is not
appropriate here since the usual CLT will not work for such models. It is worth noting that developing inferential
framework is not only for theoretical purposes, but can also be utilized in practice, i.e. in real data analysis. For example,
in Figure 2, we illustrate how the inferential framework helps in finding pixels with potential changes in the surveillance
video data, i.e. locating potential root cause of changes in the video data by checking significantly different from zero
parameter estimates. Using invalid confidence intervals can potentially ruin this analysis and either select additional
unchanged pixels by mistake or fail to select important/changed pixels (see more details in Section 5).
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The remainder of the paper is organized as follows. In Section 2, we present the modeling framework, introduce
some prior knowledge for VAR models and background for transfer learning algorithm. In Section 3, we introduce
the two-step transfer learning algorithm and establish its theoretical properties, introduce an strategy of selecting
informative set as well as making inference for sparse component. Section 4 presents our simulation results while a real
data is analyzed using our algorithm in Section 5. Finally, some concluding remarks are summarized in Section 6.

Notation: For a p× p matrix A, Λmin(A), Λmax(A) denote the smallest and largest eigenvalues of A, respectively.
∥A∥2 denotes the operator norm for matrix A, i.e. ∥A∥2 =

√
Λmax(A

′A). ∥A∥∞ denotes the infinity norm ∥A∥∞ =

maxi,j |Aij |. ∥A∥F denotes the Frobenius norm, i.e ∥A∥F =
√∑

i,j A
2
ij . ∥A∥∗ denote the nuclear norm, i.e.∑p

j=1 σj(A), the sum of the singular values of a matrix. A∗ denotes the conjugate transpose of a matrix A. ∥A∥0
denotes the number of non-zero entry in A. ∥A∥1 denotes the ℓ1 norm of A, i.e ∥A∥1 =

∑
i,j |Ai,j |. For a vector

u ∈ Rp, ∥u∥2 =
√∑

u2
i and ∥u∥1 =

∑
|ui|. For two sequences (at)t≥1 and (bt)t≥1, we write at ≲ bt if there exists

a constant c ≥ 1 such that at ≤ cbt for all t. If both at ≲ bt and bt ≳ at, we write at ≍ bt. Also, at = o(bt) implies
at/bt → 0 as t → ∞; at = O(bt) implies at/bt < ∞; at = Ω(bt) implies bt/at → 0. For two real numbers a and b,
a ∨ b denotes max{a, b} and a ∧ b denotes min{a, b}. Finally, let ej be a vector such that its j-th element is 1 and all
other elements are zero.

2 MODEL FORMULATION
As mentioned, we focus on transfer learning for the VAR model. To that end, assume that we observe samples from the
target model and K other auxiliary models. Each model has the following expression

X
(i)
t = B

′

iX
(i)
t−1 + ϵ

(i)
t , Bi = L+ Si, rank(L) = r, (1)

where X
(i)
t is the p dimensional vector of observed time series at time t for the i-th group. Observations from different

models are assumed to be independent with each other. L represents the low-rank matrix while Si represents the sparse
matrix and the transition matrix Bi is low-rank plus sparse. We assume that the number of none-zero entries in Si is s
with s ≪ p2. We further assume that the rank of low-rank component L is far less than p, r ≪ p. The length of i-th
group is defined by ni. Let N :=

∑K
i=0 ni be the overall sample size. We can rewrite (1) as(X

(i)
ni )

′

...
(X

(i)
1 )

′


︸ ︷︷ ︸

Yi

=

(X
(i)
ni−1)

′

...
(X

(i)
0 )

′


︸ ︷︷ ︸

Xi

Bi +

(ϵ
(i)
ni )

′

...
(ϵ

(i)
1 )

′


︸ ︷︷ ︸

Ei

. (2)

This model is a generalization of standard sparse VAR model and is able to deal with the setting where there is
an invariant cross-autocorrelation structure L across target groups and auxiliary groups. Si captures the additional
cross-sectional autocorrelation structure for each group. Basu et al. (2019) consider the low-rank plus structured sparse
model in one-group case and propose an algorithm to estimate L and S accurately. Our goal is to improve the estimation
accuracy for sparse component of the target group S0 and the shared low-rank L provided that more information from
auxiliary groups are available.

In the context of transfer learning, to improve the estimation accuracy, we need to select useful observations that have
similar behavior as target data. Those observations from auxiliary models that have similar behavior as target data are
named as informative observations and their corresponding models are named as informative groups. In this work,
similarity is characterized by the difference between the sparse component of transition matrices Si, i.e δk := Sk − S0.
A small δk implies a high level of similarity. When δk is relatively small, taking into account observations from k−th
group via transfer learning could improve the estimation accuracy of transition matrices. On the contrary, incorporating
information from non-informative groups will damage the transfer learning performance, which is known as negative
transfer (Zhang et al., 2022). Informative groups are mathematically defined as A = {k ∈ {1, 2, · · · ,K} : ∥δ(k)∥1 ≤
h} where h is some positive number. We also define A0 := {0} ∪ A to simplify the notation. We use nA to denote
the sample size of informative sets, i.e nA :=

∑
i∈A ni, and similarly nA0

:=
∑

i∈A0
ni. We also define XA0

as the
design matrix constructed by Xi, i ∈ A0.

3 ESTIMATION PROCEDURE AND THEORETICAL RESULT

In this section, we introduce the proposed transfer learning algorithm and present theoretical results. As an overview,
our estimation procedure comprises of two steps. First, we estimate low-rank matrix given all observations. Since all
models share one low-rank matrix, considering all observations could improve estimation accuracy. Then we focus on
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informative set and apply transfer learning to estimate sparse matrix of the target model. Our algorithm is shown in
Algorithm 1.

Algorithm 1 : Transfer learning for sparse component

Input : observations from target model and auxiliary model {X(i)
t }, i = 0, 1, · · ·K; penalty parameters λβ ,λδ;

informative set A and some θ > 0.
Output : coefficient estimator for the target model β̂.

Step 1 Let Ω := {L ∈ Rp×p : ∥L∥∞ ≤ θ}

L̂, Ŝ1, · · · , ŜK = argmax
L,S1,··· ,SK

L∈Ω

∑
i

1

N
∥Yi −Xi(L+ Si)∥2F

+ λ∥L∥∗ +
∑
i

1√
N

µi∥Si∥1
(3)

Step 2
S̃ = argmin

S∈Rp2

∑
i∈A

1

2nA0

∥Yi −Xi(L̂+ S)∥2F + λβ∥S∥1 (4)

Ŝtran := S̃ − δ̃, where

δ̃ := argmin
δ∈Rp2

{ 1

2n0
∥Y0 − (L̂+ S̃ + δ)X0∥2F + λδ∥δ∥1} (5)

3.1 Step 1: Estimating The Low-rank Component

The first step is a low-rank plus sparse decomposition problem takes the form of (3) , where λ and µi are non-negative
tuning parameters controlling the regularizations of low-rank and sparse parts. The parameters θ controls the degree
of non-identifiability of decomposition of the low-rank and sparse matrices. For example, if the sparse component
{Si}1≤i≤K is also low-rank and low-rank component L is sparse itself, there will be multiple choices of decomposition
L+ Si without imposing any further constraints. Larger values of θ provide sparser estimates of sparse component
and allow both sparse and low-rank components to be absorbed in L̂. A smaller value of θ, on the other hand, tends to
produce a matrix L with smaller rank and pushes both low-rank and sparse components to be absorbed in {Ŝi}1≤i≤K .
We refer to Agarwal et al. (2012) for more details about this identifiability issue. In the low-rank plus sparse regime,
consistent estimation relies on the following assumption:

(A1) Restricted Strong Convexity (RSC): There exist α > 0 and τ ≥ τ
′
> 0 such that for all ∆ ∈ Rp×p.

1

2N

∑
i

∥Xi∆∥2F ≥ α∥∆∥2F − τ
′
Φ2(∆),

1

2ni
∥Xi∆∥2F ≥ α∥∆∥2F − τ∥∆∥21

where Φ(∆) = infL+S=∆{∥L∥∗ + µ
λ∥S∥1}, µ = max{µ0, · · · , µK} and τ = O( log p

maxini
).

(A2) Deviation Bound Condition (DBC): There exists a constant ϕ depending on the model parameters B0, · · · , BK

and Σ0, · · · ,ΣK such that

∥ 1

N

K∑
i=0

X
′

i Ei∥2 ≤ ϕ

√
p

N

max
0≤i≤K

1

N
∥X

′

i Ei∥∞ ≤ ϕ

√
log p

N
RSC and DBC are basic assumptions for low-rank plus sparse models (Basu et al., 2019). We show that all stable VAR
models satisfy these assumptions with high probability in Proposition 1 in the Appendix. Applying the above deviation
bounds, we obtain the consistency result for both sparse and low-rank parts.
Theorem 1. Suppose that the low-rank matrix L has rank at most r, while the sparse matrix Si has at most s nonzero

entries for i ∈ {0, 1, · · · ,K}. Assume that p = O(N) and log p = O(ni). Let µi = 2c0ϕ
√

log p
N + θ, λ = 2c0ϕ

√
p
N

4
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and θ = o(
√

p
N ). Under Conditions (A1) and (A2), the estimator of (3) satisfies ∥L− L̂∥2F +

∑K
i=0

ni

N ∥Si − Ŝi∥2F ≲

s log p
N + r p

N .

Remark 1. The convergence rate is a combination of low-rank component and sparse component. The result implies that
the upper bound on low-rank component ∥L− L̂∥2F is s log p+rp

N and the upper bound on sparse component ∥Si − Ŝi∥2F
is s log p+rp

ni
. When there is no auxiliary observations, the upper bound becomes ∥L−L̂∥2F +∥S0−Ŝ0∥2F ≲ s log p

n0
+r p

n0
.

In this case, the upper bound on ∥L− L̂∥2F is s log p+rp
n0

and the upper bound on ∥S0 − Ŝ0∥2F is s log p+rp
n0

. Comparing
the conclusions of these two scenarios, we can see that auxiliary observations help improve the estimation accuracy of
L but not for S0. An additional step is required to improve the estimation for the sparse components, see Theorem 2
and the discussion after the theorem for more details.

Theorem 1 provides estimation consistency for the first step. Since all auxiliary models have a common low-rank
component, merging all observations is helpful for estimating L. We next show that a better estimator of S0 could be
obtained from a transfer learning algorithm utilizing the better estimator L̂ we found in the first step.
3.2 Step 2: Transfer Learning for Sparse Component

In the second step, we estimate sparse component of the target model S0 via the transfer learning method summarized
in equations (4) and (5). S̃ is an intermediate estimator in transfer learning method calculated by merging target
observations and informative observations as source data. This estimator will slightly deviates from S0 due to the usage
of informative observations. We show that S̃ converge to S̄ := (

∑
i∈A0

Γi)
−1(
∑

i∈A0
ΓiSi), Γi := Cov(X

(i)
1 , X

(i)
1 )

in the Appendix. To get a consist estimator for S0, we need to debias S̃ further, as shown in (5). Next, we introduce the
form of Restricted Eigenvalue and Deviation Bound Condition we need in the analysis of this high-dimensional transfer
learning problem.

(B1) Restricted Eigenvalue(RE):

α
′

2∥∆∥2F + τnA0
∥∆∥21 ≥ 1

nA0

∥XA0∆∥2F

≥ α2∥∆∥2F − τnA0
∥∆∥21

, where α > 0, α
′
> 0 and τnA0

= O( log p
nA0

).

(B2) Deviation Bound Condition:
1

nA0

∥
∑
i∈A

X
′

i Ei∥max ≤ ϕA0

√
log p

nA0

, where ϕA0
is a constant depending on {Bi}i∈A0

and {Σi}i∈A0
.

Proposition 2 in the Appendix shows that (B1) and (B2) are satisfied with high probability in the high-dimensional
regime.

Theorem 2. Assume that ∥S0∥0 ≤ s and ∥Si − S0∥1 ≤ h for all i ∈ A. We take µ = 2(c3 + cΣ)(1 ∨ h2)
√

log p
nA0

,

λδ = c
√

log p
n0

. Assume that nA0
(pr+s log p)

Nn0
= o(1) and n0(pr+s log p)

N log p = o(1). Under the condition (B1) and (B2), the
estimator of (5) satisfies

∥Ŝtran − S0∥2F ≲ h

√
log p

n0
∧ h2 + (1 ∨ h4)

s log p

nA0

+
nA0

(pr + s log p)2

n0N2

with high probability.

Theorem 2 provides the convergence rate of S0. This consistency rate underscores the non-trivial nature of our method
and theoretical developments, as it deviates from existing rates in the literature (Li et al., 2022b; Tian and Feng,
2022; Li et al., 2022a). This distinctive consistency rate offers valuable insights into how the similarity between
target and informative groups —quantified by h— affects the overall estimation error. Specifically, it elucidates the
interplay among the similarity metric h, dimensionality p, sample sizes of the target and informative groups (n0 and
nA0

), rank r, and sparsity level s. Further, the upper bound on estimation error consists of two parts. First part,

h
√

log p
n0

∧ h2 + (1 ∨ h4) s log p
nA0

, which we call the transfer learning error, is coming from transfer learning steps. This
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rate is the same as the rate of traditional transfer learning algorithm (Li et al., 2022a) when no low-rank component is
present in the model. Second part is the last term representing the error due to the estimation error of L in our first step.
When we estimate L with high accuracy given enough observations (i.e N ≳

nA0
(pr+s log p)√
sn0 log p

), the third term will be
dominated by the transfer learning error. When the informative set A is empty (h = 0 and nA0

= n0), transfer learning
error becomes s log p

n0
, which is the same as the rate of traditional lasso method (Basu and Michailidis, 2015). As we can

see, using extra information received from informative groups improves the estimation accuracy when h = o(s
√

log p
n0

).

3.3 Selecting Informative Set

Algorithm 1 is based on a known informative set, while informative set is typically unknown in practice. Misclassifying
non-informative observations as informative observations does harm to the performance of transfer learning. Therefore,
we need to select useful observations before applying Algorithm 1. The goal of this section is to determine informative
models from all auxiliary models. This algorithm is inspired by Tian and Feng (2022).

The basic idea of selecting informative set comes from cross validation. We evenly split target data into two groups
X

(0)
I and X

(0)
Ic where I plays the training set role and Ic as testing set. For each k, we estimate transition matrices for

the k-th auxiliary model based on observations from both k-th group and I. Then, we compute squared residual on the
testing set, i.e. R(k) = ∥Y (0)

Ic −X
(0)
Ic β̂(k)∥22. A lower test error R(k) implies a closer transition matrix Sk to S0, and

thus the ones with lower R(k) is selected as informative set. The proposed algorithm is summarized in Algorithm 2 in
the Appendix. Next, we make some additional assumptions before presenting the theoretical properties of R(k).
Assumption 1. There exists some constant M > 0, such that, supk∥Sk − S0∥1 ≤ M.

Assumption 2. For k ∈ A, ∥δ(k)∥22 = O(
√

log(p)
n0/2

); For k ∈ Ac, ∥δ(k)∥22 = Ω(
√

log(p)
n0/2

).

Theorem 3. Suppose ∥S0∥0 ≤ s, s log(p)
n0

= o(1) and K = o(p2). Taking λk = C1(1 ∨M2)
√

log(p)
nk+n0/2

, where C1

depends on M and m. Under Assumption 1, We have

∥δ(k)∥22 −

√
log(p)

n0/2
≲ R(k) −R

(0)
1 ≲ ∥δ(k)∥22 +

√
log(p)

n0/2
, (6)

with high probability. R
(0)
1 is defined in Algorithm 2. Further, suppose that Assumption 2 holds. Then, we have

P{supk∈AR
(k) < infk∈AcR(k)} → 1.

Theorem 3 implies that informative groups and non-informative groups can be perfectly separated based on R(k)−R
(0)
1 .

Since R(k) −R
(0)
1 can be treated as testing error, models with lower R(k) −R

(0)
1 will be preferred for transfer learning.

Basically, we can set a threshold and select models with the value of R(k) −R
(0)
1 below the threshold as informative

set. In Algorithm 2, we use |R(0)
1 −R

(0)
2 | as a threshold to select models. As we can see in (6), |R(0)

1 −R
(0)
2 | is lower

than
√

log p
n0

with high probability, which implies any model in Ac will be excluded from the estimated informative set
by our proposed algorithm.
3.4 Inference for Sparse Component

We propose an additional debiasing step to help with inference. The explicit form of debiased estimator is Ŝon =

Ŝtran + 1
n0

∑n0

i=1 MiX
(0)
i (X

(0)
i+1 − X

(0)
i (L̂ + Ŝtran))

′
, where Mi is called the debiasing matrix and needs to be

estimated by target model. If observations are i.i.d, setting M1 = M2 · · · = Mn0
is an effective way to debias L̂

(Javanmard and Montanari, 2014). However, for VAR models, the existence of dependency destroys the asymptotic
normality. To fix this problem, we follow the online procedure in Deshpande et al. (2021) in estimating Mi by past
observations, {Xt}t<i, which makes Mi predictable. This online algorithm works for any estimator Ŝ as long as

∥Ŝ − S∥1 = o(s
√

log p
n0

). For the proposed transfer learning estimator, such a rate holds when h = o(s
√

log p
n0

). Details
are deferred to the Appendix due to page limits.

4 SIMULATION RESULTS
In this section, we compare the performance of the proposed transfer learning algorithms with the lasso method (see
also additional simulation studies on improvement for recovering the low-rank part utilizing the proposed transfer
learning algorithm as well as reporting on computation time in the appendix). Transfer learning algorithms include the
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Oracle Trans-Lasso (Algorithm 1 with known A), Trans-Lasso (Algorithm 1 with A selected by Algorithm 2), and
naive Trans-lasso (Algorithm 1 with A = {1, 2, · · · ,K}). The lasso method is applied only for the target data. Discuss
on hyperparameter selection and their sensitivity analysis are summarized in the Appendix due to space consideration.

We focus on both estimation and inference performances of oracle transfer learning algorithms with the lasso method.
All simulations are repeated 200 times. In this simulation setting, the entries of S0 are generated independently from
a Bernoulli distribution with success probability q = 0.02, multiplied by b · uniform({+1,−1}) with b = 0.25, i.e.
b · Bernoulli(q) · uniform({+1,−1}). L is generated by L = UDV

′
, where D := diag(0.2, r) is a diagonal matrix.

Rank of L, r is set to be 8, We set p = 100, n0 = 200, n1 = n2 = · · · = nK = 100, and K = 10. Note that in
this setting, the total number of parameters in the target model is p2 = 10, 000 while there are only 200 time points.
Thus, this can be regarded as the high-dimensional case. Let A denote the informative set. We define J as the set
of non-zero entries in S0, and J c as the set of zero entries. For the transition matrices of auxiliary models Sk, we
construct them by modifying entries of S0 in J and J c separately. For a given k, let Hk be a random subset of
J such that |Hk| = γ|J |, and Gk be a random subset of J c such that |Gk| = γ|J c|, where γ = γ1 if k ∈ A,
and γ = γ2 otherwise, and it ranges from 0 to 1. If (i, j) ∈ Hk, we set S(k)

ij = −S
(0)
ij . If (i, j) ∈ Gk, we set

S
(k)
ij = S

(0)
ij + ηij ,where ηij ∼ uniform(−0.1, 0.1). The two terms γ1 and γ2 are the percentage of changes we make

for entries of A0. We set γ1 = 0.04, γ2 = 0.4 and |A| = {0, 2, 4, · · · , 10}.

The estimation error is shown in Figure 3 in the Appendix. We present the absolute estimation error, i.e ∥S0 − Ŝ∥1,
for lasso, Oracle Trans-lasso, naive Trans-lasso and Trans-lasso with an increasing samples in informative set. As
excepted, Trans-lasso has better estimation error than lasso method when we consider enough informative samples.
The similar behavior of Oracle Trans-lasso and lasso implies that Algorithm 2 selects informative set accurately. As
for naive Trans-lasso, it outputs the worst estimation when the size of informative set |A| is small and reach the same
accuracy level when |A| increases. This is because naive Trans-lasso takes non-informative set into consideration,
which damages the estimation performance.

In addition, we construct entry-wise confidence interval for sparse matrix based on Trans-lasso and lasso separately.
To make comparison for inference performance, we consider four metrics: True Positive Rate (TPR), False Positive
Rate (FPR), coverage rate of confidence intervals and average confidence interval length (Avg CI length). Figure 1
summarizes the results for all methods at significance level α = 0.05. As we can see, Trans-lasso shows a comparable
result with lasso method when |A| = 0 (all auxiliary sets are non-informative). This is because transfer learning with
no informative set is equivalent to lasso method. As more informative sets are provided, Trans-lasso performs better in
terms of FPR, TPR and coverage rate. The coverage rate gradually goes up to 0.95 as |A| increases, which is consistent
with our significant level α = 0.05. Since both lasso and transfer learning use the same method to generate conditional
variance Vn, the length of confidence intervals for lasso and transfer learning are at the same level all the time.

5 A REAL DATA EXAMPLE
The proposed transfer learning algorithm is applied to a surveillance video data set obtained from the CAVIAR project1.
A number of video clips record different actions by people in diverse settings, including walking alone, meeting with
others, entering and exiting a room, etc. The data set we analyze is “Two other people meet and walk together". The
original data set has 837 images in total and the resolution of each image is half-resolution PAL standard (384 × 288
pixels, 25 frames per second). Before applying our proposed algorithm, we re-sized the original images from 384 × 288
pixels to 32 × 24 pixels and used a gray-scaled scheme instead of the original colored image to accelerate computations.
We then digitalize and vectorize 32 × 24 image to be a 768 dimension vector. Therefore, the resulting time series
process has n = 837 time points and p = 768 features.

The whole video data can be divided into 12 segments depending on human activities in the video (see more details in
Bai et al. (2020)). The background (mainly the lobby) seems fixed during the time while certain human movements
occur during the video. When our model is applied to this data, the low-rank part will capture the background (lobby)
while the sparse components will capture the additional human movements during the video clip. To ensure the proposed
model is a good fit, we compared it with several additional parameterizations (including low-rank only, sparse only, etc.)
and concluded that the proposed algorithm coupled with low rank plus sparse model parameters outperforms all other
competing models. More specifically, we consider five scenarios in total: Trans-lasso(L+S), Trans-lasso(S), lasso(L+S),
lasso(S) and Low-rank. Trans-lasso(L+S) and lasso(L+S) refer to methods that we model VAR with low-rank plus
sparse structure, with and without transfer learning, respectively. Trans-lasso(S) and lasso(S) refer to methods that we
model VAR with sparse components only, with and without transfer learning, respectively. Low-rank method implies
that we model VAR with only low-rank component for each segment. Results of this comparison are summarized in

1http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
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Figure 1: FPR (False Positive Rate), TPR (True Positive Rate), Coverage Rate and Average Length of Confidence
Intervals (Avg CI Length) at significance level α = 0.05. The x axis is the size of informative set |A|.

Table 4 in the Appendix. As seen from this table, the proposed modeling framework with the help from the proposed
transfer learning algorithm achieves the best prediction error overall.

First row of Figure 2 shows the start time point for four of these segments/movements: 1st segment, 4th segment,
6th segment and 9th segment. We apply Algorithm 1 to estimate the low-rank component (dimension is 768× 768)
for each segment. Since non-changing low-rank component corresponding to the stationary background of the space
surveyed and the changing sparse component corresponds to movement of people in and out of the space in the evolving
foreground, the sparse component can imply the position of people in the lobby. To visualize the information contained
in sparse component, we (1) construct entry-wise 95% confidence interval of the sparse estimator Ŝ, (2) count the
number of significant entries in each row, i.e V := (v1, · · · , v768), vi = #{j : Ŝij is significant}, (3) map vector V
back to a 32× 24 matrix M . Figure 2(e) -2(h) shows the heatmap of M . As we can see, the dark region of the heatmap
perfectly matches the position of people in original image. Results for other segments are summarized in the Appendix.
Further, Table 4 summarizes out-of-sample mean squared prediction error (each segment is split such that its first
2/3 observations are used as training and the remaining parts as testing data) obtained from lasso and Trans-lasso
(T-lasso) algorithms which clearly illustrates the great reduction of prediction error when similar images are used in the
estimation procedure for each segment.

6 DISCUSSION

In this paper, we propose an step-wise algorithm for implementing transfer learning for VAR models with low-rank plus
sparse structure. Theoretical results confirm that our transfer learning algorithm can improve the estimation accuracy
for the low-rank and sparse components given known informative set. We also provide an approach based on prediction
error for properly selecting the informative sets when it is unknown. Numerical experiments and real data applications
support the theoretical findings. In our model, all auxiliary models have a common low-rank component. How to relax
to the case where auxiliary models have different but similar low-rank components is an interesting future research
direction. Measuring the similarity according to the column space of low-rank components (Tian et al., 2023) can be a
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Table 1: Mean Squared Prediction Error for Each Segment; Standard Errors Are Shown in Parentheses.

seg1 seg2 seg3
T-lasso 7.205(0.015) 0.133(0.003) 2.177(0.012)
lasso 8.660(0.017) 0.241(0.004) 4.484(0.017)

seg4 seg5 seg6
T-lasso 0.468(0.005) 0.092(0.002) 0.916(0.008)
lasso 1.928(0.011) 0.450(0.005) 2.686(0.013)

seg7 seg8 seg9
T-lasso 0.372(0.005) 0.233(0.004) 0.146(0.003)
lasso 1.653(0.010) 1.235(0.009) 0.523(0.006)

seg10 seg11 seg12
T-lasso 0.094(0.002) 0.071(0.002) 0.139(0.002)
lasso 0.189(0.004) 0.102(0.004) 0.153(0.002)

feasible approach. Another limitation of our work is considering a VAR model with single lag. Extensions to VAR
model of general lag, i.e. VAR(d) models (utilizing techniques in Lütkepohl (2005)) is of interest.
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Appendix

In this section, some prior information about VAR models are summarized in Section 7, some useful lemmas with
their proofs are provided in Section 8 while some propositions with their proofs are summarized in Section 9. Proof of
main theorems are stated in Section 10 while additional details on the proposed algorithms are described in Section 11.
Further, some additional details on numerical studies and a new simulation study are explained in Section 12. Finally,
computer information is summarized in Section 13.

7 Prior Knowledge for VAR Model in High-dimensions

For a p-dimensional centered, covariance-stationary process {Xt}t∈Z with autocovariance function ΓX(h) =
Cov(Xt, Xt+h), its spectral density is defined as fX(θ) = 1

2π

∑∞
−∞ ΓX(h)e−ihθ. For the VAR model (1) in the

main file, the spectral density has the closed form fX(k)(θ) = 1
2π (B

−1
k (eiθ))Σk(B−1

k (eiθ))∗ where Bk(z) = Ip −B
′

kz
is the characteristic polynomial and Σk is the covariance matrix of the error term. To introduce some useful properties
for VAR model, we need the following quantities

M(fX(k)) := sup
θ∈[−π,π]

Λmax(fX(k)(θ))

m(fX(k)) := sup
θ∈[−π,π]

Λmin(fX(k)(θ))

µmax(Bk) := max
|z|=1

Λmax(B∗
k(z)Bk(z))

µmin(Bk) := min
|z|=1

Λmax(B∗
k(z)Bk(z)).

Stability is always a basic assumption in time series model to ensure consistent estimation. Basu and Michailidis (2015)
provide a new measure of stability described by M(fX) and shows that a larger M(fX) implies a less stable process.
M(fX) and m(fX) capture the dependence among the univariate components of the vector-valued time series and
help quantify dependence among the columns of the design matrix in our analysis. For VAR model, the boundness of
M(fX) and m(fX) are related to µmax(B) and µmin(B): M(fX(k)) ≤ 1

2π
Λmax(Σk)
µmin(Bk)

, m(fX(k)) ≥ 1
2π

Λmin(Σk)
µmax(Bk)

.

Notations. For a matrix A, its transpose is denoted by A
′

while vec(A) is the vectorized version of matrix A. Λmin(A),
Λmax(A) denote the smallest and largest eigenvalues of A, respectively. Define ΓX(k)(i − j) := Cov(X

(k)
i , X

(k)
j ).

ΥX(k)

nk
= Cov(vec((X (k))

′
), vec((X (k))

′
)). From Proposition 2.3 in Basu and Michailidis (2015), we know that

2πm(fX(k)) ≤ Λmin(Υ
X(k)

nk
) ≤ Λmax(Υ

X(k)

nk
) ≤ 2πM(fX(k))

2πm(fX(k)) ≤ Λmin(Γk) ≤ Λmax(Γk) ≤ 2πM(fX(k)).
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Similarly, for {ϵ(k)0 , · · · , ϵ(k)nk }, we have

2πm(fϵ(k)) ≤ Λmin(Υ
ϵ(k)

nk
) ≤ Λmax(Υ

ϵ(k)

nk
) ≤ 2πM(fϵ(k))

2πm(fϵ(k)) ≤ Λmin(Σk) ≤ Λmax(Σk) ≤ 2πM(fϵ(k)).

We define Mϵ := maxkM(fϵ(k)) and mϵ := minkm(fϵ(k)). For two matrices A and B, the inner product of A and B

is defined as < A,B >:=
∑

i,j(AB
′
)ij .

8 Useful Lemmas with Proofs

lemma 1. Consider model (1). Recall the following notation 2πM = maxk Λmax(Υ
X(k)

nk
), Γk = Cov(X

(k)
0 , X

(k)
0 ).

Suppose v0, · · · , vK ∈ Rp. We have that,

P

 1

N

∣∣∣∣∣∣∣∣
∑

k=0,··· ,K
i=1,··· ,nk

v
′

k[(X
(k)
i )(X

(k)
i )

′
− Γk]vk

∣∣∣∣∣∣∣∣ ≥ 2πMmax
k

(∥vk∥22)t

 ≤ 2 exp[−cN min{t, t2}], (7)

P

 1

N

∣∣∣∣∣∣∣∣
∑

k=0,··· ,K
i=1,··· ,nk

u
′

k[(X
(k)
i )(X

(k)
i )

′
− Γk]vk

∣∣∣∣∣∣∣∣ ≥ 6πM(max
k

(∥vk∥22) + max
k

(∥uk∥22))t


≤ 6 exp[−cN min{t, t2}].

(8)

Proof. Let V (k)
i = (X

(k)
i )

′
vk and Q = Var(V

(0)
1 , · · · , V (0)

n0 , V
(1)
1 , · · · , V (1)

n2 , · · · , V (K)
1 , · · · , V (K)

nK ). The entry of Q
is shown as follow:

Cov(V
(k)
i , V

(k)
j ) = v

′

kΓX̄(k)(i− j)vk; Cov(V
(k1)
i , V

(k2)
j ) = 0.

Define Q(k) = Var(V
(k)
1 , · · · , V (k)

nk ). We can see that Q is a block diagonal matrix,

Q =


Q(0) 0 · · · 0
0 Q(1) · · · 0
...

...
. . .

...
0 · · · · · · Q(K)

 .

For Q(k) and any ∥w∥2 = 1, we have

w
′
Q(k)w =

nk∑
r=1

nk∑
s=1

wrwsQ
(k)
rs =

nk∑
r=1

nk∑
s=1

wrws(v
(k))

′
ΓX̄(k)(r − s)v(k)

= (w ⊗ v(k))
′
ΥX(k)

nk
(w ⊗ v(k))

≤ Λmax(Υ
X(k)

nk
)∥vk∥22 ≤ 2πM(fX(k))∥vk∥22.

(9)

Since ∥Q∥2 ≤ maxk(∥Q(k)∥2), we obtain ∥Q∥2 ≤ 2πMmaxk(∥vk∥22). By the Hanson–Wright inequality (Rudelson
and Vershynin, 2013)

P

 1

N

∣∣∣∣∣∣∣∣
∑

k=0,··· ,K
i=1,··· ,nk

v
′

k[(X
(k)
i )(X

(k)
i )

′
− Γk]vk

∣∣∣∣∣∣∣∣ ≥ η

 ≤ 2 exp[−cmin{N
2η2

∥Q∥2F
,
Nη

∥Q∥2
}]. (10)

Setting η = ∥Q∥2t and using ∥Q∥2F ≤ N∥Q∥2, we get (7).
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To prove (8), notice that

1

N

∣∣∣∣∣∣∣∣
∑

k=1,··· ,K
i=1,··· ,nk

u
′

k[(X
(k)
i )(X

(k)
i )

′
− Γk]vk

∣∣∣∣∣∣∣∣ ≤
1

N

∣∣∣∣∣∣∣∣
∑

k=1,··· ,K
i=1,··· ,nk

u
′

k[(X
(k)
i )(X

(k)
i )

′
− Γk]uk

∣∣∣∣∣∣∣∣
+

1

N

∣∣∣∣∣∣∣∣
∑

k=1,··· ,K
i=1,··· ,nk

v
′

k[(X
(k)
i )(X

(k)
i )

′
− Γk]vk

∣∣∣∣∣∣∣∣
+

1

N

∣∣∣∣∣∣∣∣
∑

k=1,··· ,K
i=1,··· ,nk

(u
′

k + v
′

k)[(X
(k)
i )(X

(k)
i )

′
− Γk](uk + vk)

∣∣∣∣∣∣∣∣ .
By applying (7) on each of three terms separately, we get (8).
lemma 2. Consider model (1), we have

P

 1

N
∥

∑
k=0,··· ,K

(X (k))
′
E(k)∥∞ ≥ 6π(M+Mϵ)t

 ≤ 6p2exp(−cNmin{t, t2}).

Proof. Note that
1

N
∥

∑
k=0,··· ,K

(X (k))
′
E(K)∥∞ =

1

N
∥

∑
k=0,··· ,K
i=1,··· ,nk

(X
(k)
i )(ϵ

(k)
i )

′
∥∞.

Next we get the upper bound for

P

 1

N

∣∣∣∣∣∣∣∣
∑

k=0,··· ,K
i=1,··· ,nk

u
′
X

(k)
i (ϵ

(k)
i )

′
v

∣∣∣∣∣∣∣∣ ≥ t

 ,

where u, v ∈ Rp and ∥u∥2, ∥v∥2 = 1. Since Cov((X
(k)
i )′u, (ϵ

(k)
i )

′
v) = 0, we have the following decomposition:

1

N

 ∑
k=0,··· ,K
i=1,··· ,nk

u
′
X

(k)
i (ϵ

(k)
i )

′
v

 =

 1

N

∑
k=0,··· ,K
i=1,··· ,nk

((X
(k)
i )′u+ (ϵ

(k)
i )

′
v)2 −Var((X

(k)
i )′u+ (ϵ

(k)
i )

′
v)


︸ ︷︷ ︸

(a)

−

 1

N

∑
k=0,··· ,K
i=1,··· ,nk

((X
(k)
i )′u)2 −Var((X

(k)
i )′u)


︸ ︷︷ ︸

(b)

−

 1

N

∑
k=0,··· ,K
i=1,··· ,nk

((ϵ
(k)
i )

′
v)2 −Var((ϵ

(k)
i )

′
v)


︸ ︷︷ ︸

(c)

.

We can apply (7) to obtain that

P

 1

N

∣∣∣∣∣∣∣∣
∑

k=0,··· ,K
i=1,··· ,nk

u
′
[(X

(k)
i )(X

(k)
i )

′
− Γk]u

∣∣∣∣∣∣∣∣ ≥ 2πMt

 ≤ 2 exp[−cN min{t, t2}],

P

 1

N

∣∣∣∣∣∣∣∣
∑

k=0,··· ,K
i=1,··· ,nk

v
′
[(ϵ

(k)
i )(ϵ

(k)
i )

′
− Γk]v

∣∣∣∣∣∣∣∣ ≥ 2πMϵt

 ≤ 2 exp[−cN min{t, t2}].

13
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For (a), similar to the proof of Lemma 1, we let

Q = Var((X
(0)
1 )

′
u+ (ϵ

(0)
0 )

′
v, · · · , (X(K)

nK
)
′
u+ (ϵ(K)

nK
)
′
v),

Qk = Var((X
(k)
1 )

′
u+ (ϵ

(k)
0 )

′
v, · · · , (X(k)

nk
)
′
u+ (ϵ(k)nk

)
′
v), k = 1, · · · ,K.

Since Q is a block diagonal matrix

Q =


Q0 0 · · · 0
0 Q1 · · · 0
...

...
. . .

...
0 · · · · · · QK

 .

We have that ∥Q∥2 ≤ maxk{∥Qk∥2}. For every k, we define

Q
′

r = Var((X
(k)
1 )

′
u− (ϵ

(k)
0 )

′
v, · · · , (X(k)

nr
)
′
u− (ϵ(k)nk

)
′
v)

Qk,1 = Var((X
(r)
1 )

′
u, · · · , (X(k)

nk−h)
′
u)

Qk,2 = Var((ϵ
(k)
0 )

′
v, · · · , (ϵ(k)nk

)
′
v).

Note that Qr, Q
′

r, Qr,1, Qr,2 are positive definite. Since Qr +Q
′

r = 2Qr,1 +2Qr,2, we have that ∥Qr∥2 ≤ 2∥Qr,1∥2 +
2∥Qr,2∥2. Using the same method as (9), we get ∥Qr,1∥2 ≤ Λmax(Υ

X(r)

nk
), ∥Qr,2∥2 ≤ Λmax(Σϵ(r)). Therefore,

∥Q∥2 ≤ maxr{2∥Qr,1∥2 + 2∥Qr,2∥2} ≤ 4πM∗ + 4πMϵ ≤ 4πM+ 4πMϵ. Applying Hanson–Wright inequality
(Rudelson and Vershynin, 2013) again, we obtain that

P (|(a)| ≥ 4π(M+Mϵ)t) ≤ 2 exp[−cN min{t, t2}].

By the probability inequalities derived for (a), (b), (c), we have that

P

 1

N

∣∣∣∣∣∣∣∣
∑

k=0,··· ,K
i=1,··· ,nk

u
′
X

(k)
i (ϵ

(k)
i )

′
v

∣∣∣∣∣∣∣∣ ≥ 6π(M+Mϵ)t

 ≤ 6 exp[−cN min{t, t2}].

Let ej be a vector such that its j-th element is 1 and all other elements are zero. Observe that

1

N
∥

∑
k=0,··· ,K

(X (k))
′
E(K)∥∞ = max

1≤r,s≤p

1

N
|
∑

k=1,··· ,K
i=1,··· ,nk

e
′

r(X
(k)
i )(ϵ

(k)
i )

′
es|.

Taking a union bound over r, s yields the final result.
lemma 3. Consider model (1), we have

P
(

1

ni
∥(X (k))

′
X (k) − Γk∥∞ ≥ 2πMt

)
≤ 6p2exp(−cnimin{t, t2}).

Proof. Similar to lemma 2, we can prove that for u, v ∈ Rp

P

 1

ni

∣∣∣∣∣∣
∑

i=1,··· ,nk

u
′
(X

(k)
i (X

(k)
i )

′
− Γk)v

∣∣∣∣∣∣ ≥ 2πMt∥u∥2∥v∥2

 ≤ 2 exp[−cni min{t, t2}].

Observe that
1

ni
∥X (k))

′
X (k) − Γk∥∞ = max

1≤r,s≤p

1

ni
|e

′

r(
∑

i=1,··· ,nk

X
(k)
i (X

(k)
i )

′
− Γk)es|.

Taking a union bound over r, s yields the final result.
lemma 4. Consider model (1). Under the conditions of Theorem 1, we have

∥ 1

nA0

∑
i∈A0

(Si − S̄)X
′

iXi∥∞ ≤ cM

√
log p

nA0

(1 + h2) (11)

with high probability
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Proof. Define δi := vec(Si − S̄). Notice that

vec

(
1

nA0

∑
i∈A0

(Si − S̄)X
′

iXi

)
= vec

(
1

nA0

∑
i∈A0

(Si − S̄)(X
′

iXi − Γi)

)

=
1

nA0

∑
i∈A0

δ
′

i(Ip ⊗X
′

iXi − Ip ⊗ Γi).

Therefore, we have∥∥∥∥∥ 1

nA0

∑
i∈A0

(Si − S̄)X
′

iXi

∥∥∥∥∥
∞

= max
s∈{1,··· ,p2}

∥∥∥∥∥∑
i∈A0

αkδ
′

k[
1

nk
(Ip ⊗X

′

iXi)− Ip ⊗ Γk]es

∥∥∥∥∥
∞

. (12)

Similar to lemma 2, we can prove that

P

(∣∣∣∣∣ ∑
k∈A0

αku
′

k[
1

nk
(Ip ⊗X

′

iXi)− Ip ⊗ Γk]vk

∣∣∣∣∣ ≥ 6πM(max
k

∥vk∥22 +max
k

∥vk∥22)t

)
≤ 6p exp[−cnA0

min{t, t2}],

(13)

where αk := nk

nA0
and uk, vk ∈ Rp2

. Recall that ∥δk∥1 ≤ h, and thus ∥δk∥2 ≤ h. Applying (13) to (12), we arrive at

P

(∣∣∣∣∣∑
i∈A0

αkδ
′

k[
1

nk
(Ip ⊗X

′

iXi)− Ip ⊗ Γk]es

∣∣∣∣∣ ≥ 6πM(1 + h2)t

)
≤ 6p exp[−cnA0

min{t, t2}].

Setting t =
√

6 log p
cnA0

and taking the union bound over s yield the final result.

9 Propositions with Their Proofs

proposition 1. Consider model (1). Define

ϕ((B0,Σ0) · · · , (BK ,ΣK)) = max
0≤i≤K

Λmax(Σ
(i))[1 +

1 + µmax(Bi)

µmin(Bi)
].

We will write ϕ instead of ϕ((B0,Σ0) · · · , (BK ,ΣK)) when the meaning of the deterministic constant is clear from the
context. Then, there exist universal positive constants ci > 0 such that

(1) for N ≳ p,

P

[
∥ 1

N

∑
i

X
′

i Ei∥2 > c0ϕ

√
p

N

]
≤ c1exp[−c2 log p] (14)

and for N ≳ log p

P

[
max

i

1

N
∥X

′

i Ei∥∞ ≥ c0ϕ

√
log p

N

]
≤ c1exp[−c2 log p] (15)

(2) for N ≳ p,

P

[
Λmin(

1

N

∑
i

X
′

iXi) >
miniΛmin(Σi)

2maxiµmax(Bi)

]
≤ c1exp[−c2 log p] (16)

and for ni ≳ max{1, t−2} log p

P
[
1

ni
∥XA0

∆∥2F ≤ α∥∆∥2F − τni
∥∆∥21

]
≤ exp{− c

2
nimin{1, t2}} (17)

where α = πm(fX(i)), t =
m(f

X(i) )

54M(f
X(i) )

, τni
=

3m(f
X(i) ) log p2

cnimin{1,t2} and c > 0

15
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proposition 2. Let M := maxi∈A0M(fX(i)) and m := mini∈A0m(fX(i)). If m > 0 and M < ∞, then there exists
universal constants c3, c4, c5 > 0 such that

(1) For nA0
≳ log p

P

[
∥X

′

i Ei∥∞ ≥ ϕA0c3

√
log p

nA0

]
≤ c4exp[−c5 log p]

(2) For nA0 ≳ max{1, t−2} log p

P
[

1

nA0

∥XA0∆∥2F ≤ α2∥∆∥2F − τnA0
∥∆∥21

]
≤ exp{− c

2
nA0min{1, t2}} (18)

P
[

1

nA0

∥XA0
∆∥2F ≥ α

′

2∥∆∥2F + τnA0
∥∆∥21

]
≤ exp{− c

2
nA0

min{1, t2}} (19)

where α2 = πm, α
′

2 = 3πM, t = m
54M , τnA0

= 3m log p2

cnA0
min{1,t2} and c > 0.

Remark 2. The assumption m(fX(i)) > 0 and M(fX(i)) < ∞ are fairly mild and hold for stable, invertible ARMA
processes. In our case, all auxiliary models are VAR model. Therefore, it is reasonable to assume that these models are
uniformly bounded by some constant m and M.

9.1 Proof of Proposition 1

Proof of Proposition 1 (14) and (16) are simple modifications of Proposition 3 in Basu et al. (2019). Also, (17) is
a special case of (18). So we omit their proofs. We next prove (15). Using Proposition 3.2 in Basu and Michailidis
(2015), we know that

P
[
1

ni
∥XiEi∥∞ > c0ϕη

]
≤ 6pexp[−cnimin{η2, η}].

With the choice of η =
√

(1+c1) log p
cN , we arrive at

P

[
1

N
∥XiEi∥∞ > c0ϕ

ni

N

√
log p

N

]
≤ 6pexp[−(c1 + 1)

ni log p

N
] = 6exp[−c1

ni log p

N
].

Taking the union set over i, we have

P

[
max

i

1

N
∥XiEi∥∞ > c0ϕ

√
log p

N

]
≤
∑
i

6exp[−c1
ni log p

N
]

≤
∑
i

6
ni

N
exp[−c1 log p] = 6exp[−c1 log p].

This implies that

P

[
max

i

1

N
∥X

′

i Ei∥∞ ≥ c0ϕ

√
log p

N

]
≤ c1exp[−c2 log p] (20)

for some universal constants ci > 0.

9.2 Proof of Proposition 2

Proof of Proposition 2. Let αk = nk

nA0
. According to the definition of M and m, we have that

2πM ≥ Λmax

(∑
k∈A0

nk

nA0

Γk

)
≥ Λmin

(∑
k∈A0

nk

nA0

Γk

)
≥ 2πm.

For every u ∈ Rp2

, ∥u∥2 ≤ 1, we obtain the following inequality from Lemma 2,

P

(∣∣∣∣∣u′

(∑
k∈A0

αk[
1

nk
(Ip ⊗X

′

iXi)− Ip ⊗ Γk]

)
u

∣∣∣∣∣ ≥ 2πMt

)
≤ 2pexp(−cnA0

min{t, t2}).
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To simplify the notation, we define Γ̂A0 :=
∑

k∈A0
αk[

1
nk

(Ip ⊗X ′

iXi)]. Then the inequality can be simplified as

P

(∣∣∣∣∣u′

(
Γ̂A0 − Ip ⊗

∑
k∈A0

α
′

kΓk

)
u

∣∣∣∣∣ ≥ 2πMt

)
≤ 2pexp(−cnA0

min{t, t2}).

Applying Supplementary Lemma F.2 in Basu and Michailidis (2015), we have

P

(
1

nA0

sup
u∈K(2s)

∣∣∣∣∣u′

(
Γ̂A0 − Ip ⊗

∑
k∈A0

αkΓk

)
u

∣∣∣∣∣ ≥ 2πMt

)

≤ 2pexp[−cnA0{t, t2}+ 2smin{log p2, log(21ep
2

s
)}]

≤ 2exp(−cnA0
min{1, t2}+ 3s log p2).

(21)

Setting t = m
54M , we have

sup
u∈K(2s)

∣∣∣∣∣u′

(
Γ̂A0 − Ip ⊗

∑
k∈A0

αkΓk

)
u

∣∣∣∣∣ ≤ 2πm

54
, (22)

with probability greater than 1− 2exp(−cnA0min{1, t2}+ 3s log p2). Given (22), applying supplementary Lemma
12 in Loh and Wainwright (2011), we have that for all u ∈ Rp2

,∣∣∣∣∣u′

(
Γ̂A0 − Ip ⊗

∑
k∈A0

αkΓk

)
u

∣∣∣∣∣ ≤ 2πm

2
∥u∥22 +

2πm

2s
∥u∥21. (23)

Note that

2πM∥u∥22 ≥ u
′

(
Ip ⊗

∑
k∈A0

αkΓk

)
u ≥ 2πm∥u∥22. (24)

By (23) and (24), we have that

3πM∥u∥22 −
πm

s
∥u∥21 ≥ u

′
Γ̂A0u ≥ πm∥u∥22 −

πm

s
∥u∥21, for all u ∈ Rp2

,

with probability greater than 1−2exp(−cnA0
min{1, t2}+3s log p2). Setting s =

cnA0
min{1,t2}

6 log(p2) yields the final result.

lemma 5. Recall that S̄ := (
∑

i∈A0
Γi)

−1(
∑

i∈A0
ΓiSi) and S̃ defined in Algorithm 1. Under the assumptions of

Theorem 2, we have

∥S̃ − S̄∥2F ≲
s log p

nA0

(1 ∨ h4) +

√
log p

nA0

h+
s log p+ rp

N

∥S̃ − S̄∥1 ≲ s

√
log p

nA0

(1 ∨ h2) + 2h+
pr + s log p

N

√
nA0

log p

proof According to (4), we have
1

2nA0

∑
i∈A

∥Yi −Xi(L̂+ S̃)∥2F + µ∥S̃∥1 ≤ 1

2nA0

∑
i∈A

∥Yi −Xi(L̂+ S̄)∥2F + µ∥S̄∥1 (25)

After some algebra
1

2nA0

∑
i∈A

∥Xi(S̃ − S̄)∥2F ≤ 1

nA0

∑
i∈A

< S̃ − S̄,X
′

i E1 > +
1

nA0

∑
i∈A

< Xi(S̃ − S̄),Xi(L− L̂) >

+
1

nA0

∑
i∈A

< Xi(S̃ − S̄),Xi(Si − S̄) > +µ∥S̄∥1 − µ∥S̃∥1

≤ ∥S̃ − S̄∥1∥
1

nA0

∑
iA

X
′

i Ei∥∞ +
1

4nA0

∑
i∈A

∥Xi(S̃ − Ŝ)∥2F +
1

nA0

∑
i∈A

∥Xi(L− L̂)∥2F

+ ∥S̃ − S̄∥1∥
1

nA0

∑
i∈A

(Si − S̄)X
′

iXi∥∞ + µ∥S̄∥1 − µ∥S̃∥1

(26)
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According to lemma 4, we know that

∥ 1

nA0

∑
i∈A0

(Si − S̄)X
′

iXi∥∞ ≤ cM

√
log p

nA0

(1 + h2) (27)

From proposition 1, we know that

∥ 1

nA0

∑
i∈A0

XiEi∥∞ ≤ c0ϕ

√
log p

nA0

. (28)

Inserting (27) and (28) into (26) and setting µ = 2(c0 + cΣ)(1 ∨ h2)
√

log p
nA0

, we have

1

4nA0

∑
i∈A

∥Xi(S̃ − S̄)∥2F ≤ 1

2
µ∥S̃ − S̄∥1 + µ∥S̄∥1 − µ∥S̃∥1 +

pr + s log p

N

≤ 3µ

2
∥S̃ − S̄∥1,M1

− µ

2
∥S̃ − S̄∥1,Mc

1
+ 2µ∥S̄∥1,Mc

1
+

prs log p

N

≤ 3µ

2
∥S̃ − S̄∥1,M1

− µ

2
∥S̃ − S̄∥1,Mc

1
+ 2µh+

pr + s log p

N

(29)

(i) If ∥S̃ − S̄∥1,M1
≥ 2h+ pr+s log p

Nµ , we arrive at,

1

4nA0

∑
i∈A

∥Xi(S̃ − S̄)∥2F ≤ 5µ

2
∥S̃ − S̄∥1,M1 −

µ

2
∥S̃ − S̄∥1,Mc

1
(30)

This implies ∥S̃ − S̄∥1 ≤ 6∥S̃ − S̄∥1,M1 ≤ 6
√
s∥S̃ − S̄∥F . Using RE condition again, we have 1

4nA0

∑
i∈A ∥Xi(S̃ −

S̄)∥2F ≥ α
8 ∥S̃ − S̄∥2F . Using (30), we arrive at α

8 ∥S̃ − S̄∥2F ≤ 5µ
2

√
s∥S̃ − S̄∥F , which implies

∥S̃ − S̄∥2F ≲
s log p

nA0

(1 ∨ h4), ∥S̃ − S̄∥1 ≲ s

√
log p

nA0

(1 ∨ h2) (31)

(ii) If ∥S̃ − S̄∥1,M1 ≤ 2h + pr+s log p
Nµ , from (29) we know that ∥S̃ − S̄∥1,Mc

1
≲ 2h + pr+s log p

Nµ . This implies

∥S̃ − S̄∥1 ≲ h+ pr+s log p
Nµ . Applying RSC condition again for (29), we arrive at,

α

4
∥S̃ − S̄∥2F ≲

log p

nA0

(h+
pr + s log p

Nµ
)2 + hµ+

pr + s log p

N

≲
log p

nA0

h2 + hµ+
pr + s log p

N

(32)

Combining (i) and (ii), we have

∥S̃ − S̄∥2F ≲
s log p

nA0

(1 ∨ h4) + hµ+
pr + s log p

N

∥S̃ − S̄∥1 ≲ s

√
log p

nA0

(1 ∨ h2) + h+
pr + s log p

N

√
nA0

log p
.

(33)

lemma 6. Define δ = S0 − S̄. Under the assumptions of Theorem 2, we have

∥δ̃ − δ∥2F ≲ h

√
log p

n0
∧ h2 + (1 ∨ h4)

s log p

nA0

+
nA0

(pr + s log p)2

n0N2

∥δ̃ − δ∥1 ≲ h+ (1 ∨ h4)
s
√
n0 log p

nA0

+
nA0

(pr + s log p)2√
n0 log pN2

.

Remark 3. As shown in Theorem 1, the upper bound of estimation error for S0 is s log p+rp
n0

without transfer learning
algorithm. Under the above assumption, considering other informative set improves estimation result when h =

o( s log p+rp√
n0 log p

∨
(

nA0

n0

) 1
4

). For traditional lasso method, the estimation rate is Op(
s log p
n0

). Transfer learning has a faster

convergence rate when h ≲ s
√

log(p)
n0

and N ≳
√

nA0

s log p (pr + s log p).
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Proof According to (5), we have

1

2n0
∥Yi −Xi(L̂+ S̃ + δ̃)∥2F + λδ∥δ̃∥1 ≤ 1

2n0
∥Yi −Xi(L̂+ S̃ + δ)∥2F + λδ∥δ∥1 (34)

Similar to (26) and (28), we have

1

4n0
∥X1(δ̃ − δ)∥2F ≤ 2λδ∥δ∥1 −

λδ

2
∥δ̃ − δ∥1 +

pr + s log p

N
+

2

n0
∥X (S̃ − S̄)∥2F (35)

If (i) ∥S̃ − S̄∥1,M1
≥ 2h+ pr+s log p

Nµ , we know that ∥S̃ − S̄∥1 ≤ 6
√
s∥S̃ − S̄∥F from lemma 5. Using RSC condition,

we have

2

n0
∥X1(S̃ − S̄)∥2F ≲ ∥Ŝ − S̄∥2F +

log p

n0
∥Ŝ − S̄∥21

≲ (1 + 36s
log p

nA0

)∥S̃ − S̄∥2F
(36)

If (ii) ∥S̃ − S̄∥1,M1
≤ 2h+ pr+s log p

Nµ , using RE condition again we have

2

n0
∥X1(S̃ − S̄)∥2F ≲ ∥S̃ − S̄∥2F +

log p

n0
(2h+

pr + s log p

Nµ
)2

≲ ∥S̃ − S̄∥2F +
log p

n0
h2 +

nA0
(pr + s log p)2

N2n0

(37)

Inserting (i) and (ii) into (35), we arrive at

1

4n0
∥X1(δ̃ − δ)∥2F ∨ λδ

2
∥δ̃ − δ∥1 ≲ 2h

√
log p

n0
+ ∥S̃ − S̄∥2F +

log p

n0
h2 +

nA0(pr + s log p)2

N2n0

≲ 2h

√
log p

n0
+

s log p

nA0

(1 ∨ h4) +
nA0(pr + s log p)2

N2n0

(38)

Using RE condition again for X1(δ̃ − δ), we have

∥δ̃ − δ∥2F ≲ h

√
log p

n0
+

s log p

nA0

(1 ∨ h4) +
nA0

(pr + s log p)2

N2n0
(39)

Inserting ∥δ̃ − δ∥F ≤ ∥δ̃ − δ∥1 into (38), we have

∥δ̃ − δ∥2F ≲ h2 + (
s log p

nA0

(1 ∨ h4))2/λδ + (
nA0

(pr + s log p)2

N2n0
)2/λδ

< h2 +
s log p

nA0

(1 ∨ h4) +
nA0

(pr + s log p)2

N2n0

(40)

Using (39) and (40) yields the final result.

10 Proof of Theorems

10.1 Proof of Theorem 1

Proof According to (3), we have∑
i

1

N
∥Yi −XiBi∥2F + λ∥L̂∥∗ +

∑
i

µi

√
ni

N
∥Ŝi∥1 ≤

∑
i

1

N
∥Yi −XiBi∥2F + λ∥L∥∗ +

∑
i

µi

√
ni

N
∥Si∥1 (41)

Let ∆L = L̂− L and ∆S
i = Ŝi − Si. Using Yi = Xi(L+ Si) + Ei and simple algebra, we have
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1

N

∑
i

∥Xi(∆
L +∆S

i )∥2F ≤ 2

N

∑
i

< ∆̂L + ∆̂S
i ,XiEi > +λ∥L∥∗ +

∑
i

√
ni

N
µi∥Si∥1 − λ∥L̂∥∗ −

∑
i

√
ni

N
µi∥Ŝi∥1

≤
∑
i

2

N
∥∆S

i ∥1 · ∥X
′

i Ei∥∞ + ∥∆̂L∥∗

∥∥∥∥∥ 2

N

∑
i

X
′

i Ei

∥∥∥∥∥
2

+ λ(∥∆̂L
A∥∗ − ∥∆̂L

B∥∗)

+
∑
i

µi

√
ni

N
(∥∆S

i ∥1,Mi − ∥∆S
i ∥1,Mc

i
)

≤
∑
i

µi

2

√
ni

N
∥∆S

i ∥1 +
λ

2
∥∆L∥∗ + λ(∥∆L

A∥∗ − ∥∆L
B∥∗)

+
∑
i

µi

√
ni

N
(∥∆S

i ∥1,Mi − ∥∆S
i ∥1,Mc

i
)

=
3λ

2
∥∆L

A∥∗ −
λ

2
∥∆L

B∥∗ +
∑
i

3µi

2

√
ni

N
∥∆S

i ∥1,Mi −
∑
i

µi

2

√
ni

N
∥∆S

i ∥1,Mc
i

(42)

where the matrices (A,B) ∈ {(A,B) : AB
′
= 0 and A

′
B = 0}, Mi and M c

i corresponds to non-zero entries and zero
entries of matrices Li separately. The second inequality derives from Lemma 1 in Agarwal et al. (2012) and lemma 2.3

in Recht et al. (2010). The third inequality derives from Proposition 1, µi = 2c0ϕ
√

log p
N + θ and λ = 2c0ϕ

√
p
N . Now,

(42) implies

λ∥∆L
B∥∗ +

∑
i

µi

√
ni

N
∥∆S

i ∥1,Mi
≤ 3λ∥∆L

A∥∗ +
∑
i

µi

√
ni

N
∥∆S

i ∥1,Mc
i

(43)

Using RSC conditions and τ
′ ≤ τ , we have

∑
i

1

N
∥Xi(∆

L +∆S
i )∥2F =

∑
i

ni

N

1

ni
∥Xi(∆

L +∆S
i )∥2F

=
∑
i

1

N
∥Xi∆

L∥2F +
∑
i

ni

N

1

ni
∥Xi∆

S
i ∥2F +

∑
i

ni

N
< ∆L,

1

ni
XiX

′

i∆
S
i >

≥ α∥∆L∥2F − τ
′
∥∆L∥2∗ +

∑
i

ni

N
(∥∆S

i ∥2F − τ
µ2
i

λ2
∥∆S

i ∥21)

− ∥∆L∥∞(maxi∥Γi∥∞ + ϕ

√
log p

ni
)(
∑
i

ni

N
∥∆S

i ∥1)

≥ α∥∆L∥2F + α
∑
i

ni

N
∥∆S

i ∥2F − 2∥∆L∥∞(
∑
i

ni

N
∥∆S

i ∥1)

− 2τ∥∆L
A∥2∗ − 2τ∥∆L

B∥2∗ − 2τ
∑
i

ni

N

µ2
i

λ2
∥∆S

i ∥21,Mi
− 2τ

∑
i

ni

N

µ2
i

λ2
∥∆S

i ∥21,Mc
i

≥ α∥∆L∥2F + α
∑
i

ni

N
∥∆S

i ∥2F − 2∥∆L∥∞(
∑
i

ni

N
∥∆S

i ∥1)

− 2τ(∥∆L
A∥∗ +

∑
i

µi

λ

√
ni

N
∥∆S

i ∥1,Mi
)2 − 2τ(∥∆L

B∥∗ +
∑
i

µi

λ

√
ni

N
∥∆S

i ∥1,Mc
i
)2,

(44)
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where the first inequality comes from lemma 3 with the choice of t =
√

log p
ni

, ∥ 1
ni
XiX

′

i ∥∞ ≤ ∥Γi∥∞ + ϕ
√

log p
ni

.
Combining (43) and (44), we arrive at∑

i

1

N
∥Xi(∆

L +∆S
i )∥2F ≥ α∥∆L∥2F + α

∑
i

ni

N
∥∆S

i ∥2F − 2∥∆L∥∞(
∑
i

ni

N
∥∆S

i ∥1)

− 20τ(∥∆L
A∥∗ +

∑
i

µi

λ

√
ni

N
∥∆S

i ∥1,Mi
)2

(45)

Since ∆L
A has rank at most 2r and Mi ≤ s, we have

∥∆L
A∥∗ +

∑
i

µi

λ

√
ni

N
∥∆S

i ∥1,Mi ≤
√
2r∥∆L∥F +

∑
i

µi

λ

√
s

√
ni

N
∥∆S

i ∥F

≤ (∥∆∥2F +
∑
i

ni

N
∥∆S

i ∥2F )
1
2 (2r + s

∑
i

µi

λ
)

1
2

(46)

Recall that µi = 2c0ϕ
√

log p
N + θ, λ = 2c0ϕ

√
p
N and θ = o(

√
p
N ). Thus

∑
i
µi

λ = o(1). With (45) and (46), we arrive
at ∑

i

1

N
∥Xi(∆

L +∆S
i )∥2F ≥ α

2
∥∆L∥2F +

α

2

∑
i

ni

N
∥∆S

i ∥2F − 2∥∆L∥∞(
∑
i

ni

N
∥∆S

i ∥1) (47)

Inserting (47) into (42), we have

α

2
∥∆L∥2F +

α

2

∑
i

ni

N
∥∆S

i ∥2F ≤ 3λ

2
∥∆L

A∥∗ +
∑
i

5µi

2

√
ni

N
∥∆S

i ∥1,Mi

≤ 3λ

2

√
2r∥∆L∥F +

∑
i

5µi

2

√
s

√
ni

N
∥∆S

i ∥F

≤
√
(3λ

√
2r)2 + (5µ

√
s)2 ·

√
1

2
∥∆L∥2F +

1

2

∑
i

ni

N
∥∆S

i ∥2F

(48)

Using θ = o(
√

p
N ) yields the final result.

10.2 Proof of Theorem 2

Proof Using lemma 5 and lemma 6 yields Theorem 2 directly.

10.3 Proof of Theorem 3

Proof Assumption 1 implies h = O(1). Using lemma 5, we have

∥Ŝk − (S0 + δ̃k)∥22 ≲
s log(p)

n0/2 + nk
+

√
log(p)

n0/2 + nk
+

s log p+ rp

N
(49)

∥Ŝk − (S0 + δ̃k)∥1 ≲ s

√
log(p)

n0/2 + nk
+ h+

pr + s log p

N

√
n0/2 + nk

log p
(50)

where

δ̃k = [(α0Γ0 + αkΓk)]
−1[αkΓkδ

(k)],

α0 =
n0/2

n0/2 + nk
, αk =

nk

n0/2 + nk

We can see that ∥δ̃(k)∥22 ≍ ∥δ(k)∥22 and ∥δ̃(k)∥1 ≤ C1h, where C depends on Σk and Σ(0). From assumption 1 and
equation (50), we know that ∥Ŝk − S0∥1 is bounded by C2, C2 depends on Σk and Σ1. We can prove ∥Ŝ0,I − S0∥1 is
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bounded by s
√

log(p2)
n0/2

+ pr+s log p
N

√
n0/2+nk

log p for the same reason as (50). With the boundness of ∥Ŝ0,I − S0∥1 and

∥Ŝk − S0∥1, we have that ∥Ŝ0,I − Ŝk∥1 ≤ CM .

According to the definition of R(k) and R
(0)
1 ,

R(k) −R
(0)
1 = ∥Y0,Ic −X0,Ic(L̂+ Ŝk)∥2F − ∥Y0,Ic −X0,Ic(L̂+ Ŝ0,I)∥2F

≤ 2 < E
′

0,IcX0,Ic , Ŝ0,I − Ŝk > +2 < (X0,Ic)(S0 − Ŝ0,I), (X0,Ic)(Ŝ0,I − Ŝk) >

+ 2 < (X0,Ic)(Ŝ0,I − Ŝk), (X0,Ic)(Ŝ0,I − Ŝk) > +2∥X0,Ic(L̂− L)∥2F

Using Proposition 1 for the first term, we know that

< E
′

0,IcX0,Ic , Ŝ0,I − Ŝk > ≤ ∥(E0,Ic)
′
X0,Ic∥∞∥Ŝ0,I − Ŝk∥1

≲ CM

√
log(p2)

n0/2

with probability greater than 1−O(p−2).

For the second term, we have∣∣∣< (X1,Ic)(S0 − Ŝ0,I), (X0,Ic)(Ŝ0,I − Ŝk) >
∣∣∣ ≤ 2 < (X0,Ic)(S0 − Ŝ0,I), (X0,Ic)(S0 − Ŝ0,I) >

+
1

2
< (X0,Ic)(Ŝ0,I − Ŝk), (X0,Ic)(Ŝ0,I − Ŝk) >

For the last term, ∥X0,Ic(L̂− L)∥2F ≤ s log p+rp
N Therefore,

R(k) −R
(0)
1 ≲ ∥(X0,Ic)(Ŝ0,I − Ŝk)∥2F + ∥(X0,Ic)(S0 − Ŝ0,I)∥2F +

√
log p

n0/2
+

s log p+ rp

N
(51)

Similarly, we have

R(k) −R
(0)
1 ≳ ∥(X0,Ic)(Ŝ0,I − Ŝk)∥2F + ∥(X0,Ic)(S0 − Ŝ0,I)∥2F +

√
log p

n0/2
+

s log p+ rp

N
(52)

Using Proposition 1 and the boundedness of ∥S0 − Ŝ0,I∥1, ∥Ŝk − Ŝ0,I∥1, we have with propbability greater than
1−O(exp(−n0))

∥Ŝ0,I − Ŝk∥2F −M2 log p

n0/2
− (s log p+ rp)2

N2
≲ ∥X0,Ic(Ŝ0,I − Ŝk)∥2F

≲ ∥Ŝ0,I − Ŝk∥2F +M2 log p

n0/2
+

(s log p+ rp)2

N2

∥S0 − Ŝ0,I∥2F −M2 log p

n0/2
− (s log p+ rp)2

N2
≲ ∥X0,Ic(S0 − Ŝ0,I)∥2F

≲ ∥S0 − Ŝ0,I∥2F +M2 log p

n0/2
+

(s log p+ rp)2

N2
.

(53)

Plugging (53) in (51) and (52), we arrive at

1

2
C0∥Ŝ0,I − Ŝk∥22 − 2C0∥S0 − Ŝ0,I∥22 −

√
log(p)

n0/2
− s log p+ rp

N

≤ R(k) −R
(0)
1 ≤

3

2
C1∥Ŝ0,I − Ŝk∥22 + 2C1∥S0 − Ŝ0,I∥22 +

√
log(p)

n0/2
+

s log p+ rp

N
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with probability greater than 1− O(p−2). From n0(pr+s log p)
N log p = o(1), we know that

√
log p
n0/2

≳ s log p+rp
N . Note that

∥S0 − Ŝ0,I∥F ≤ s
√

log p
n0

and ∥Ŝ0,I − Ŝk∥F ≤ ∥δ̃(k)∥F + ∥S0 − Ŝ0,I∥F . The upper bound for R(k) −R
(0)
1 is

R(k) −R
(0)
1 ≲ ∥δ̃(k)∥2F +

√
log(p2)

n0/2
≍ ∥δ(k)∥2F +

√
log p

n0/2

The lower bound for R(k) −R
(0)
1 is

R(k) −R
(0)
1 ≳ ∥δ̃(k)∥2F +

√
log(p2)

n0/2
≍ ∥δ(k)∥2F +

√
log p

n0/2

Taking the union bound over 1 ≤ k ≤ K yields the final result.

11 Additional Details For The Algorithms

11.1 Informative Set Selection Algorithm

Shown in Algorithm 2

Algorithm 2 : Selecting Informative Set

Input : observations from target model and auxiliary model {X(k)
t }, k = 0, · · ·K.

penalty parameters λk, k = 1, · · ·K. Some constant c > 0.
low-rank matrix estimator L̂ from algorithm 1

Output : Informative set Â.
Step 1 Split the target data into two parts X0,I and X0,Ic , where I = {1, 2, · · · , n0/2}, Ic = {n0/2 + 1, · · · , n0}.
Step 2 For each k ∈ {1, · · · ,K}, compute

Ŝk = argmin
S

1

nk + n0/2

(
∥Y0,I −X0,I(L̂+ S)∥22 + ∥Yk −Xk(L̂+ S)∥22

)
+ λk∥S∥1

Step 3 For k = 0, compute

Ŝ0,I = argmin
S

1

n0/2
∥Y0,I −X0,I(L̂+ S)∥22 + λ0∥S∥1

Ŝ0,Ic = argmin
S

1

n0/2
∥Y0,Ic −X0,Ic(L̂+ S)∥22 + λ0∥S∥1

Step 4 For k ∈ {1, · · · ,K}, R(k) = ∥Y0,Ic −X0,Ic(L̂+ Ŝk)∥22.
For k = 0, R(0)

1 = ∥Y0,Ic −X0,Ic(L̂+ Ŝ0,I)∥22 and R
(0)
2 = ∥Y0,Ic −X0,Ic(L̂+ Ŝ0,Ic)∥22

Step 5 Â = {k ∈ {1, 2, · · · ,K} : R(k) −R
(0)
1 ≤ c|R(0)

1 −R
(0)
2 |}

11.2 Inference for Model Parameter Algorithm

The first step is debiasing Ŝtran. The explicit form of debiased estimator is as below,

Ŝon = Ŝtran +
1

n0

n0∑
i=1

MiX
(0)
i (X

(0)
i+1 −X

(0)
i (L̂+ Ŝtran))

′
.

Mi is called debiasing matrix and needs to be estimated by target model. If observations are i.i.d, setting M1 =

M2 · · · = Mn0
is an effective way to debias L̂ (Javanmard and Montanari, 2014). However, for VAR model, the

existence of dependency destroy the asymptotic normality. To fix this problem, Deshpande et al. (2021) estimate Mi by
the past observations, {Xt}t<i, which makes Mi predictable. The term “online" comes from the imposed predictability.

We next introduce the first step specifically. We split processed target data {Xt}n0
t=1 into ℓ segments

{X(0)
t }t∈E0

, {X(0)
t }t∈E1

, · · · , {X(0)
t }t∈Eℓ−1
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where Ei := {mi + 1,mi + 2, · · · ,mi+1} and 0 = m0 < m1 < · · · < mℓ = n0. Define the length of Ei as ri,
ri := mi+1 −mi. Define the sample covariance of the observations in the first j segments,

Σ̂(j) :=
1

mj

∑
t∈E0∪···∪Ej−1

X
(0)
t (X

(0)
t )

′
, j = 1, · · · ℓ

The matrix M (j) = Mj is a p× p matrix. The a-th row of M (j) denoted as m(j)
a , a = 1, · · · p, is the solution of the

following optimization:

minimize m(j)
a Σ̂(j)(m(j)

a )
′

subject to ∥Σ̂(j)(m(j)
a )

′
− ea∥∞ ≤ µj , ∥m(j)

a ∥1 ≤ C

for appropriate values of µj , C > 0. Then constructing Ŝon as below,

Ŝon = Ŝtran +
1

n0

ℓ∑
j=1

∑
t∈Ej

M (j)X
(0)
t (X

(0)
t+1 −X

(0)
t (L̂+ Ŝtran))

′
(54)

r0 is selected to be
√
n0 and rj ≍ αj for some constant α > 1.

The second step is constructing the variance of Ŝon. Corollary 3.7 in Deshpande et al. (2021) shows that the (a, i)-th
entry of Ŝon has the following variance

Va,i =

(
Σ

(0)
ϵ

)
i,i

n0

ℓ∑
j=1

∑
t∈Ej

(m(j)
a X

(0)
t )2

where a ∈ {1, 2 · · · , p} and i ∈ {1, 2, · · · , p}. Therefore, we can use the scaled residual
√
n0(Ŝ

on
a,i − S

(0)
a,i )/

√
Va,i as

the test statistics and construct entry-wise confidence intervals accordingly. Theorem is given as below.

Corollary 1. Let Ŝon be the debiased estimator (54) with µj = C1ω
√
log p/mj and Ŝ derived from Algorithm 1. Let

C = C0∥Ω∥1 for an arbitrary constant C0 ≥ 1, where Ω = (E[X(0)
t (X

(0)
t )

′
])−1. For any fixed sequence of integers

a(n) ∈ {1, · · · , p}, define the conditional variance Vn as

Va,i =

(
Σ

(0)
ϵ

)
i,i

n0

ℓ∑
j=1

∑
t∈Ej

(m(j)
a X

(1)
t )2 (55)

Assume that ∥Ω∥1 = o(
√
n0/ log p), h = o(s

√
log(p)/n0),

n0(s log p+rp)
N = o(1). For any fixed coordinate a ∈

{1, · · · , p}, i ∈ {1, 2 · · · , p} and for all x ∈ R, we have

lim
n→∞

∣∣∣∣∣P{
√
n0(Ŝ

on
a,i − S

(0)
a,i )√

Va,i

≤ x} − Φ(x)

∣∣∣∣∣ = 0,

where Φ is the standard Gaussian cdf.

Remark 4. For getting the conditional variance Vn, Corollary requires the knowledge of Σ(0)
ϵ . Typically, Σ(0)

ϵ is
estimated by the training error. Since transfer learning improves the estimation accuracy and lowers the training error,
confidence intervals constructed with transfer learning are always narrower than confidence intervals constructed with
typical lasso method without losing any confidence. More detailed comparison is provided in simulation experiments
section.

Proof of Corollary 1. The proof is similar to Corollary 3.7 in Deshpande et al. (2021), so we omit some details. We
rewrite (54) as

Ŝon − S0 =

I − 1

n0

ℓ∑
j=1

∑
t∈Ej

M (j)X
(0)
t (X

(0)
t )

′

 (Ŝ − S0)︸ ︷︷ ︸
∆

+
1

n0

ℓ∑
j=1

∑
t∈Ej

M (j)X
(0)
t (ϵ

(0)
t )

′

︸ ︷︷ ︸
W

+
1

n0

ℓ∑
j=1

∑
t∈Ej

M (j)X
(0)
t (X

(0)
t )

′
(L̂− L)

︸ ︷︷ ︸
U
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From Theorem 3.4 in Deshpande et al. (2021), we have that P(∥∆∥∞ ≥ Cs log(p)
n0

) ≤ (p)−4 which implies that
√
n0∆

is negligible with high probability. Lemma 3.6 in Deshpande et al. (2021) shows that
√
n0W is a martingale with

variance equal to Va,i. U can be decomposed as

1

n0

ℓ∑
j=1

∑
t∈Ej

M (j)X
(0)
t (X

(0)
t )

′
(L̂− L)

︸ ︷︷ ︸
U

=

 1

n0

ℓ∑
j=1

∑
t∈Ej

M (j)X
(0)
t (X

(0)
t )

′
− I

 (L̂− L)

︸ ︷︷ ︸
U1

+

(
L̂− L

)
︸ ︷︷ ︸

U2

Similar to ∆, we have that U1 ≤
√

log p
n0

√
s log p+rp

N with high probability. We also have ∥U2∥∞ ≤
√

s log p+rp
N , Thus

∥√n0U∥∞ ≤
√

n0(s log p+rp)
N = o(1). The final result derives from Martingale central limit Theorem in Hall and

Heyde (2014), i.e. Corollary 3.2.

12 Additional Numerical Results and Considerations

12.1 Figure for Section 4
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Figure 3: Absolute Estimation Error for Sparse Matrix
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12.2 Figure for Section 5

(a) T = 0(Video start) (b) T=115(First man walk
out of lobby)

(c) T = 173(Two man walk
in lobby)

(d) T=231(Two man walk in
lobby)

(e) T=289(Two man stand
together)

(f) T = 347(Two man stand
together)

(g) T=405(Two man walk to-
gether)

(h) T = 463(Two man walk
out of lobby)

(i) T = 521(Two man walk
to the door)

(j) T = 579(Two man walk
through the door)

(k) T = 637(Two man exit) (l) T = 695(Empty lobby)

Figure 4: View of Footage
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(k) T = 637(Two man exit) (l) T = 695(Empty lobby)

Figure 5: View of Footage

12.3 Additional Simulation Study

In this simulation, we show the accuracy of recovering low rank matrix in the first step of Algorithm 1 with increasing
dimension. Consider the VAR model

Target model: X(0)
t = (L+ S0)X

(0)
t−1 + ϵ

(0)
t ; Auxiliary model: X(k)

t = (L+ Sk)X
(k)
t−1 + ϵ

(k)
t , 1 ≤ k ≤ K,

where S0 is one-off diagonal matrix having the following structure

S0 =


0 0.5 0 · · · 0
0 0 0.5 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0.5
0 0 0 · · · 0


p×p

.

L is generated by L = UDV
′
, where D := diag(0.2, r) is a diagonal matrix. The dimension p is set to 20, 50 and 100,

respectively, while the rank r is fixed to be 4 for all p. Sk, k ≥ 1 is constructed by randomly replacing four entries
of S0. The sample size for each group is set to be 200, n0 = n1 = · · · = nK = 200. Define S as the set of non-zero
entries in S0. Let H be a random subset of {(i, j) : 1 ≤ i ≤ p, 1 ≤ j ≤ p} such that |H| = 4. If (i, j) ∈ H ∩ S, we
set (Sk)ij = 0; if (i, j) ∈ H ∩Sc, (Sk)ij = ηij +0.5, where ηij ∼ b · uniform({+1,−1}). Size of auxiliary set is set
to 0, 1, · · · , 9.

we utilize a grid search to select the optimal values of λ and µi. To simplify the selection procedure, we use the same
µi for all groups. We compare estimation error of low-rank matrix for different values of p. The squared Frobenius
norm error of estimation given by ∥L− L̂∥2F is shown in Table 2. As we can see, our proposed algorithm gets better
low-rank matrix estimator when more observations are provided. This result is consistent with Theorem 1.
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Table 2: Squared Frobenius Norm Error of L

p = 20 p = 50 p = 100
K = 0 0.639 0.639 0.639
K = 1 0.616 0.631 0.636
K = 2 0.546 0.612 0.628
K = 3 0.468 0.579 0.611
K = 4 0.414 0.529 0.597
K = 5 0.368 0.484 0.578
K = 6 0.320 0.451 0.555
K = 7 0.294 0.429 0.533
K = 8 0.274 0.407 0.508
K = 9 0.260 0.389 0.486

12.4 Computation Time

We provide average computation time for the proposed algorithm in Table 3.

N 200 400 600 800 1000
p = 20 0.1869 0.5492 1.115 2.040 3.351
p = 40 0.2011 0.5986 1.206 2.213 3.607
p = 60 0.2184 0.6418 1.314 2.378 3.848
p = 80 0.2284 0.6890 1.410 2.553 4.109
p = 100 0.2448 0.7413 1.499 2.722 4.381

Table 3: Computation time of algorithm 1. Each entry is the total time of 200 replicates. The unit of computation time is
second. We use the same target model as simulation 1 in our paper and consider only one auxiliary model. The sample
size of the target model is set to be 100 and sample size of auxiliary model take the value from {100, 300, 500, 700, 900}.

12.5 Alternative Models for the Real Data

In this part, for the real data analysis, we make a comparison with other parameterizations (results are provided in
Table 4). As we can see from these results, the proposed algorithm coupled with low rank plus sparse model parameters
outperforms all other competing methods.

seg1 seg2 seg3 seg4
Trans-lasso(L+S) 7.205(0.015) 0.133(0.003) 2.177(0.012) 0.468(0.005)

Trans-lasso(S) 7.415(0.015) 0.289(0.004) 3.398(0.014) 0.673(0.006)
lasso(L+S) 8.660(0.017) 0.241(0.004) 4.484(0.017) 1.928(0.011)

lasso(S) 8.686(0.017) 0.257(0.004) 4.579(0.017) 1.954(0.011)
Low-rank 14.090(0.021) 1.955(0.005) 6.854(0.018) 5.008(0.014)

seg5 seg6 seg7 seg8
Trans-lasso(L+S) 0.092(0.002) 0.916(0.008) 0.372(0.005) 0.233(0.004)

Trans-lasso(S) 0.251(0.004) 1.164(0.009) 0.920(0.008) 0.503(0.006)
lasso(L+S) 0.450(0.005) 2.686(0.013) 1.653(0.010) 1.235(0.009)

lasso(S) 0.476(0.005) 2.682(0.013) 1.683(0.010) 1.273(0.009)
Low-rank 2.388(0.007) 5.682(0.016) 3.938(0.012) 3.509(0.011)

seg9 seg10 seg11 seg12
Trans-lasso(L+S) 0.146(0.003) 0.094(0.002) 0.071(0.002) 0.139(0.002)

Trans-lasso(S) 0.297(0.004) 0.209(0.003) 0.163(0.003) 0.212(0.002)
lasso(L+S) 0.523(0.006) 0.189(0.004) 0.102(0.004) 0.153(0.002)

lasso(S) 0.529(0.006) 0.211(0.004) 0.117(0.003) 0.219(0.003)
Low-rank 2.377(0.007) 1.910(0.005) 1.815(0.004) 0.876(0.003)

Table 4: Mean squared prediction error for each segment. Standard errors are shown in parentheses. Trans-lasso(L+S)
and lasso(L+S) refer to methods that we model VAR(1) with low-rank plus sparse structure. Trans-lasso(S) and lasso(S)
refer to methods that we model VAR(1) without low-rank component. Low-rank methods in the last row implies that
we model VAR(1) with only low-rank component for each segment.

28



Running Title for Header

12.6 Hyperparameter selection

Using cross-validation to select hyperparameters (tuning parameters) in our model is difficult due to the time series
nature of the data. Also, it would be computationally demanding since each private sparse component corresponds
to one hyperparameter. It seems difficult to compute all cases when dealing with large groups. There are three
types of hyperparameters in the proposed algorithms. The first group is related to lasso penalty terms. For those,
we use suggestions in the literature for tuning parameter selection (Li et al., 2022a). Specifically, we set λβ =√

2 log p/(n0 + nA0) and λδ =
√

2 log p/(n0) . Second, there will be a tuning parameter for the low rank penalty.
For that, we set µ = τ ∗ √np. We performed several simulations with different τ . Empirically speaking, our algorithm
reaches a good result when τ ∈ (0.1, 2). We set τ = 0.1 in all numerical analyses. Further, there will be an additional
tuning parameter for the selection algorithm which is the constant c. We performed sensitivity analysis and given
c ∈ (0.01, 0.5), the algorithm always selects helpful groups for the next transfer learning step. We set c = 0.01 in
all numerical analyses. Finally, for the lasso method, we set λ =

√
2 log p/(n0) while for the inference part we use

r0 =
√
n0, ri = 2i and µj =

√
log p
2mj

for i, j ≥ 1 (Deshpande et al., 2021).

13 Additional Details on Numerical Experiments

Computer Information:
Processor: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz 2.59 GHz
Installed RAM: 16.0 GB (15.9 GB usable)
System type: Windows 10 Home 64-bit operating system, x64-based processor
Time of execution: 3h(one computer)
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