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THE ESSENTIAL NORM OF TOEPLITZ OPERATORS BETWEEN BERGMAN
SPACES INDUCED BY DOUBLING WEIGHTS

PEIYING HUANG AND GUANGFU CAOT

ABSTRACT. This paper investigates the essential norm of Toeplitz operators 7, acting from the
Bergman space A, to AY, (1 < p < g < o) on the unit ball, where u is a positive Borel measure and
w € D (aclass of doubling weights). Leveraging the geometric properties of Carleson blocks and
the structure of radial doubling weights, we establish sharp estimates for the essential norm in terms
of the asymptotic behavior of i near the boundary. As a consequence, we resolve the boundedness-
to-compactness transition for these operators when 1 < ¢ < p < oo, showing that the essential
norm vanishes exactly. These results generalize classical theorems for the unweighted Bergman
space (w = 1) and provide a unified framework for studying Toeplitz operators under both radial and
non-radial doubling weights in higher-dimensional settings.

Keywords: Bergman space, essential norm, Toeplitz operator, doubling weight.

1. INTRODUCTION

Let B be the open unit ball of C" and S denote its boundary. Let w be a weight, that is, a
non-negative, measurable and integrable function, defined on [0, 1). For 1 < p < oo, the radially
weighted Bergman spaces A?, consists of holomorphic functions f € H(B) satisfying

I, == fBlf(z)l”w(z)dV(z)< 00,

where dV is the normalized volume measure on B. Notably, when p = 2, AfJ becomes a Hilbert
space with its canonical inner product (-, -),> defined through the standard integral representation.
Recall that the reproducing kernel

B = Ly (o L

2n! Y P Wonsopy-1

(€2,

where (-, -) is the standard inner product on C", and wy := fol r*w(r) dr.
The Toeplitz operator T, with symbol i, a given positive Borel measure, is defined by

T @) = fB FOBI@ du(e).

Luecking [9] introduced Toeplitz operators 7, with measures as symbols and characterized their
Schatten class membership on the unit disk ID. These operators play a pivotal role across diverse
disciplines, with foundational applications spanning mathematical physics (e.g. [1,5]), probability,
complex analysis and operator theory (e.g. [2,11,12,25]).

In this paper, we will restrict our attention to a special class of weights called (radially) doubling
weights, defined as follows.

Definition 1. Let w be a weight on [0, 1) and &(r) := fr : w(t)dt, r €0, 1). We say that:
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e we D, ifthere exists C > 1 such that

. f1+r
a)(r)st( ), YO<r<lI,;
e weD, if there exist C, K > 1 such that
1 —
&)(r)ZCd)(l—Tr), Vo<r<l. (1)

Denote
K, :=inf{K : K satisfies the above condition (1)} .
We define D := DN D.

A radial and continuous weight w is regular if there exists C > 0 and ¢ € (0, 1) such that
1 w(r)

C < (1 = rw(r)
We denote the collection of regular radial weights by R. It is easy to see that R € D. The weight
class D was introduced by Peldez in [14], where he systematically studied the weighted Bergman
spaces A”(DD). For further details on 9, D and operator theory on weighted Bergman spaces in-
duced by these classes, we refer readers to [14-21].

For any z € B \ {0}, let P, be the orthogonal projection of C" onto the one-dimensional subspace
[z] := {4z : A € C} generated by z, and let P; be the orthogonal projection from C" onto C" © [z].
Explicitly,

<(C, forre(s,l).

P,(w) = o, Z>Z, P:(w)=w-— (w:2) Z>z, w € B.
|22 |22
For z = 0, we define Py(w) = 0 and Pj(w) = w. The pseudo-hyperbolic distance between z, w € B
is given by
7= P.(w) = V1 —1zPP;(w)
p(z,w) = .
1 —(w,z)
The Bergman metric S(-, -) on B is defined as
1 1+ p(z,w)
> == 1 T, s € B’
plam)i=7loey “pw) OV

and the Bergman metric ball centered at z with radius r > 0 is
D(z,r) :={weB:B(z,w) <r}.
To be more explicit on our results, we recall the Carleson measure associated with the weight w.
Forany é,7 € B, define the nonisotropic metric d(&, 1) = |1 — (&, T>|%. Forre (0,1)and £ € S, let
o, r)={reS:d1)<r}.

Q(Z,r)is aball in S. More information about d(-, -) and Q(Z, r) can be found in [22, 26].
For a € B\{0}, define Q, = Q(ﬁ, V1 — |a]) and the associated Carleson block

Sa:S(Qa):{zeB:ieQa,la|<|z|<1}.

|z]

Fora = 0, set O, = S and S, = B. The measure of a set E C B with respect to w is given
by w(E) = fE w(z)dV(z). Further details on Carleson block and related analysis can be found
in [7,22,26].
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Throughout this paper, the letter C denotes a constant whose value may vary between different
occurrences but remains independent of relevant parameters. The notation A < B signifies that
A < CB for some positive constant C. Similarly, A ~ Bmeans A < B and B < A.

We summarize key properties of doubling weights below.

Lemma 1. Let w be a radial weight and define w*(z) := J; w(s)log ésdsfor z € B\ {0}. Then the
following conditions are equivalent:
(i) weD;
(i) w*(2) = (1 = |zDo(z) as |zl — 1;
(iii) There exist C = C(w) > 0 and B = B(w) > 0 such that

. 1-r\
w(r)<C 1= w®), 0<r<t<l.

Proof. The assertions follow from [21, Lemma A]. O

Lemma 2. ( [6, Lemma 2.2]) Let w € D. Then:
(i) Forany a > =2, (1 — r)*w*(r) € R;
(i) w(S,) = (1 —la])*&(a);
(iii) O(z) = &(a), if 1 —|z| = 1 —al.
Lemma 3. Let w € D. Then:

(i) Forall z € B, ||BY||y~ =
on B.
(ii) Forallz € Band 1 < p < co, ||BY|| 4 =

@, where H” is the space of all bounded holomorphic functions

1
-1
w(Sz) P

(iii) There exist constants C = C(w) > 0 and 6 - O0(w) € (0, 1) such that |B&(z)| > ﬁ Z€S8,,
a € B\ {0}, where as = (1 — (1 — |a|))ﬁ

Proof. The first statement is a consequence of [6, Lemma 2.3]; the last two statements follow
from [6, Lemma 3.2]. O

Lemma 4. ( [6, Lemma 2.4]) Suppose that | < p,q < o and w € D. If u is a positive Borel
measure and T, : Al, — AL is bounded, then T, is compact if and only if for every sequence {f;}
bounded in A?, that converges to 0 uniformly on compact subsets of B,

Lim {7, fellay, = O.
Lemma 5. ( [7, Lemma 4]) Let 0 < p < co, w € D. When |rz| > 1,

7zl 1
MP?(r, B®) =~ dt.
p( B2 fo ORI

Lemma 6. Let w be a radial weight. Then w € D if and only if there exist C = C(w) > 0 and
a = a(w) > 0 such that

1-1\"
(D(I)SC(:) (2)(}"), O<r<t<l.

Proof. Adapt the proof of [14, Lemma 2.1] with minor adjustments. O

Lemma 7. ( [13, Lemma 4]) Let w,v € D, and denote o = o, = wV/®w. Then & ~ ¥ on [0, 1),
and consequently o € D.
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Lemma 8. Let 0 < p < 00, w € D, and —a < k < oo, where @ = a(w) > 0 is as in Lemma 6. Then
flf(Z)l”(l = l2)*w(2) dV(z) ~ flf(Z)l”(l - )@@ dV(z),  f e H®B). (2)
B B

Proof. The function (1 — | - |)"'@ is a weight for each x > —a by Lemma 6. For the left-hand side
of (2), expressing the integral in polar coordinates and applying integration by parts shows that

1
fB If@PP(1 = |zl w(z) dV(z) ~ fo > dr fs IFGOI (1 = rYw(r) do ()

1
= f PN = D w(r)ME(r, ) dr
0

1 1
- — f M, f)d( f (l—t)"w(t)dt)
0

16( 2n— lMP(r f)
:f = (f (1-1 w(t)dt)dr
0

1
where M, (r, f) = ( fs lf(rO do (& ))” and do is the normalized area measure on S. Applying the
analogous treatment to the right-hand side of (2) yields

16( 2n— IMP(}" f)
fBlf(Z)l”(l — 2l 1A(Z)dV(Z)—f (f (1-0< 1A(t)dt)

0

Now, we just need to prove

la( 2n— 1Mp(rf) 16( 2n— lMp(l"f)
f o (f (1-1) w(t)dt)dr ~f (f (1 -1y 1&)(t)dt)
0 0

which can be simplifed to show that

1 1
f (1 -tw) dt ~ f (1 -0 () dt. 3)

From one hand, since w € D, according to integration by parts and Lemma 1, we get

1 1
f (1 -tw) dt = —f (1 =" ddr)

1
= -nrow) - Kf (1 =0 &(ndt

N 1
< (1 = Pfor - X0 f (1 = 1y dy

(1-rp
3 . k(r) (1 —r)<?
={d=new - 1-r¥ «k+pB

= (1 - nfa(),
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and

1 A~ 1
f (l—t)"_lcb(t)dtz(lw_(rr) v f (1 = 0y ds

o) (1 =ry

T (- k+B
~ (1 = PFOP.

Combining Lemma | with Lemma 7, we obtain

: 0 K+
fﬂﬁﬂmmz U ta- )%m

(1- (1)
N a)(r) ke
T - r)ﬁ(l r)

= (1 = r)*a(r).

From the other hand, since w € ZV), Lemma 6 implies that

! o 1
f (1= ') drt < (lw_(rr))a f (1 = et gy

) (=)
(-1 k+a

= (1 = r)o(r).

The desired conclusion is therefore immediately obtained.

Proposition 1. Let 0 < g < oo, 1 + L =1 and w € D. Take h = &, then

fB IBZ(OIn(2)w(2) dV(2) < h(€)!, &€B
and

‘ﬂW@WWMEW@SWﬁ < e B.
B
Proof. Take h = &, then
1 1
f h(s)? w(s)ds = f d)(s)_éw(s) ds

1
—_ f O(s)77 do(s)

1
= O(t)7

for 0 < ¢ < 1. Therefore, the fact w € O and Lemma 6 yields

1 4
r | h(s)T w(s)ds 4 1 ,
fft dt2f dt < =h(r)?, 0<r<l.
0

on1 -1 o H@i(l—1) o)

“4)

&)

(6)
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On the other hand, owing to w € D, we may Lemma 5 and asymptotic inequality (6) to deduce

1
fB |BE(&)|h(&)T w(&) dV(€) ~ fo s 1ds fs |BC(s)lh(s)? w(s) do ()

1
~ f s h(s)! w(s)M] (s, BY) ds

0

1 sz 1
~ ()7 w(s)d f ———d
fo S () w(s)ds , T—0a) t

e (! h(s) d
. f ft ()2 w(s) Sdt
0

o1 —1)
<h@Y, zeB.
As symmetry, a reasoning similar to that above yields (4). O

Auxiliary results will be needed to deduce our main result. The following theorem, proven in [6],
is essential for our analysis.

Theorem A. Let 1 < p, g < 00, w € D, and u be a positive Borel measure on B. The following
assertions hold.
M If1 < p <q< oo, then:
(i) T, : Al — AL is bounded if and only if
7,0 = sup—202 < oo,
B w(§,) P e

which is equivalent to u being a (;f — ‘5" + s)-Carleson measure for A: for some (or
equivalently, for all) 0 < s < oo.
(i) T, : AL, = AL is compact if and only if
1' M(SZ)
im —-
s

(I) If1 <g < p < oo, then T, : Al, > Al is bounded if and only if it is compact.

= 0.

A distinctive feature of the proof in [6, Theorem 1.3] is its reliance on Carleson squares, diverging
from the traditional use of the (pseudo-)hyperbolic ball techniques in weighted Bergman space
analysis. For any weight w € R and parameter 8 € (0, 1), there exists a constant C = C(5, w) > 0
such that

C™'w (D (a,B(1 = a)))) < w(S,) < Cw (D (a,B(1 - al))), VYaeB.

Hence, a (1—57 - 3 + s)—Carleson measure for A} can be equivalently characterized either Carleson
blocks or (pseudo-)hyperbolic balls. Therefore, for w € R, Theorem A (I) can be restated as
follows:

Theorem A (I) (Restated). If 1 < p < g < 0o, w € R and u be a positive Borel measure on B. The
following assertions are equivalent.
() T, : AL, — AL is bounded.

> (D)
(i) [IT,ll = sup,ep ——1-r

T 1., < 00,
w(D(z,n)P 1



THE ESSENTIAL NORM OF TOEPLITZ OPERATORS 7
(i) puisa (1—2 - ;" + s)—Carleson measure for A}, for some (or equivalently, for all) 0 < s < oco.

Furthermore, if 7, : AP — A% is bounded, then the equivalence

u(s ) u(D(z, 1))
SUp ————— =~ sup

1_1 1_1
B w(S )it = w(D(z, )

holdsfor 1 < p < g < ooand w € R.
Recall that the essential norm of a bounded linear operator 7 : X — Y is the distance from 7 to
the space of compact operators. Namely,

IT|l. = inf {||T — K|| : K is compact from X to Y}.

(7

The essential norm of a linear operator 7, is intrinsically linked to its boundedness and compact-
ness. Specifically, we know that ||T’||, < +oco if and only if T is bounded, and ||T||, = O if and only
if T is compact. Consequently, estimating ||T||, provides a criteria for determining whether 7 is
bounded or compact. The study of essential norms for operators on holomorphic function spaces
is of significant importance in complex analysis and operator theory, see [3, 4, 10,23, 24] and the
references therein for related works.

2. MAIN RESULTS AND PROOFS

A careful inspection of the Theorem A (II) in hand states that 7, : AP — A% is bounded if and
only if it is compact whenever 1 < g < p < oo, and hence its essential norm is either O or +co.
Consequently, it suffices to consider the case 1 < p < g < co.

With above preparations we can state the main result of this paper.

Theorem 1. Let 1 < p < g < co, w € D and p be a positive Borel measure on B. If T,, : AL, — AL,
is bounded, then

. (S ;)
|, = lim sup Wliu

Proof of the lower estimate. For fixed a € B, we define functions f,(z) and g,(z) as following:

1_1 1_1
B;J(Z)“; g BZ)(Z)HP g

and g,(79) = ——m———,
|Bey i =],

A

ﬁAZ):

Af

where é + ? = 1. Note that f, € A? and g, € AZ: with [|fall4z = lgall,» = 1. Lets =1 + é - é, then
by Lemma 3 (ii),

i), :( fB IBZ’(Z)I(”%_é)pw(Z)dV(Z))F = 1B ﬁ

N
Al

Further, using Lemma 3 (i), for |z] < r < 1,

1-1
W(Sa) ¥

1_1°
W(S ) TP

1+

e
£ S w(S ) T7IBLl

1

This yields that {f,} is bounded in A? and converges to 0 uniformly on compact subsets of B as
lal — 1. Let K be an arbitrary compact operator from A?, into AZ. Then || K f,|| 41 = 0aslal — 1.
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By the Cauchy-Schwarz inequality,

fB Kfu(2)8(2)(2) dV(@)| = [(K fus 82| < 11K fulls lIgall .o = 0 as lal — 1.

Since 7, : A, - Al is bounded, by the triangular inequality and Holder’s inequality,

] fB T fu( D80 () dV(z)] _ fB Kf (5@ dV(z)]

<

f (T - K) fu(Dga@w(2) dV(2)
B

< fB (7, - K, @w@|dV()

< ( f (T3 - K, w(2) sz))q ( f
B B

= (7% - K.
<|i7. - &Il

1

2.0 w@) sz))q

Al ”gaHAZ:

Hence,

lim sup

lal—1

fB Tuf(D8aDw() a’V(z)' < 7. - k]| ®)

Now, we deal with the left-hand side of the inequality (8). Using Fubini’s theorem, and also the
dominated converge theorem, we see that

fB T Qa@w@ dV() = fB ( fB FEBD du(f)) 2@ dV()

= f ( f fA&BL(2) du(é))%w@dwz)
B B

= fB Ja(&) du(&) fB 8a(2) B¢ (2)w(2) dV (2)

= fB &) dp(€) fB 24@)BLQw(z) dV(2)
- [ ner@due)
= fB fu(2)8a(2) du(2).

Consequently, using Lemma 3 (ii) again, we deduce

|17 - K| = 1iﬁ sup f 1(2)84(2) du(z)
al— B

= w(S)"7 f
B

1_1

B‘;(z)|2(“ﬁ‘5) du(z).
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Let 6 € (0, 1) be the constant in Lemma 3 (iii), then

1 (Sa) = f dﬂ(z)sw(Sa)Z(”%_%)f
S S

as ags

1_1
S w(Sa)2(1+p q)

o) ducz)

25 ducz)

for a € B \ {0}, which together with Lemma 2 (iii) gives

,Ll( 615)

(S )1+
w(S )+"'

27 ducz).

Bearing in mind Theorem A (I) and the boundness of 7, we may take the supremum of |a;| over
the interval (1 — 6, 1), then

H O a; 1.1 q
sup (—1) < WS, f @7 duca),
1=6<lasl<1 (S, )
Then we get
: 1S ) -3)
lim sup——— < lim sup w(Sa) (Z)| d/J(Z) < ||T K”
-1 (S ) 7 lal—1

Since the compact operator K from A? into A is arbitrary, it follows that

lim sup M < ||‘T ||
=1 w(S) 7
This finishes the proof of the lower estimate. O

Proof of the upper estimate. For any fixed 0 < ¢t < 1 and f € AL, split the integral 7,/ into two
parts:

T f(@) = fB FEOB® du(@)

IBJ‘(§)B‘g’(§) du(é) + fB Bf(§)B‘g’(§) du(é)
=T f(2) + T>f(2),

where
T\ f() = fB FEOB@ du@),
Tof(2) = fB OB e

We first claim that T, : A}, — Af is compact. By Lemma 4, it suffices to prove that for arbi-
trary uniformly bounded sequence {f;} € A converging to 0 uniformly on compact subsets of B,
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T filla2 — 0 as k — co. With Lemma 3 (i), one readily sees that

T, fi2)] < fB |[f&)B(&)| du(@)
< u(®) ||B| - sup £i(€)

H(B)
S oS POk

This yields ||T fil| 41 — 0 as k — co, and then 7' should be compact.
We next consider T,. By the fact xype ) (4) = X pw,» (&), applying [26, Lemma 2.24] and Fubini’s
theorem, we deduce

T2 < fB OB due)

1 -
< f ! f |F()B@)| dV()du()
B-m (1 — D7)

|€:|)n+l
1 -
= fB N fB Xoen®) | f)BLw)| dV(wdu(é)
E=YYWEEN XD(u,r)(é:)
= B dv — .
fB |Fa)BE@)| dVw) fB AT

Note that B(u, &) < r,then 1 — |u| ~ 1 — |£] by [26, Lemma 2.20] and hence &(u) ~ @(€) by Lemma
2 (iii). This together with Lemma 2 (ii) gives

(1 = Jupy " +5a) w(u)”ﬁ v f XD (@)

T < B« d
T2 f ()| f |f(w) ()l R R e e (O
f If(u)Bw(u)I(l )G @) 77 av () Xoun®
B3 [(1 - &) &(@)]" 77
~ f F B (1 — ) 4P st ava [ 2290 )
B B-B w(Sf)l »"a
< sup SO (BRG] 1~ )6 600 aviw
weDED (S ) TP
£eB-1B
= sup 2201 f |F@BE@)| (1 = uh~9)*D @) 575 dVw),
ueDEn w(S )5

where the last asymptotic equality follows by employing Lemma 8. Set

Ko f F@BZ@)] (1 = 57D w575 dV ).
B
Then
D
”TZfHAZ S sup M

ueD(&,r) w(S )
£EB-1B

17 fllg €))

and we proceed to estimate the norm ||7 f|| e for fe AP,



THE ESSENTIAL NORM OF TOEPLITZ OPERATORS 11

Now, Holder’s inequality together with (5) in Proposition 1 show that

B« h 11 11
T(2) = f POOBZ@IAG |y 155 aven
B

h(u)
, 7 Be(u)| I fwla(1 - | |)(%—1)(n+1) ( )]_z ;
S( fB | B ()| h(u)? a)(u)dV(u)) [ fB |Be )| If h(u)b‘tl oW
g _ (&)@ g ;
@) fIBz wlirora - ewt
B h(u)4

Further, Fubini’s theorem and (4) in Proposition 1 give
171} f 17T f@I w(z)dV(2)

BY ] — (%—1)(n+1) %
P f Ho (@ dV() f' “(u)]1f () (h(u|;|) L

f |f )21 - |u|) s )(n+1)w(u);_1]

h(u)? aviu) fB B ()| h(z)iw(z) dV(2)

< f F@IEC = ) D eo(u)s dV ().
B

Let W(t) = %, then W = &, W € R and Ilaz, = Illlaz, for 0 < p < co. The subharmonicity of f
follows

; z _ (—— )@n+1) 4
ITfIILq ~f(W(D(u,r)) fD(w) |f(§)|pW(§)dV(§)) (1 = up\» w()? dV(u).

Using the fact that W € R, W = & and [6, Proposition 3.1], we get
W (D@, ) =~ W(S,) =1 - [u)"Wu) = (1 - |u)"&u).

This observation, combined with Lemma 8 shows that
1 q
171y < f (— FOIPW© dV<§)) (1 = )G Do)t avia
(I = ul)"(u) Jp,r

1 »
~ f —1( f If(é)l”W(é)dV(e“)) dv(w)
B (1 - |I/t|) D(u,r)

! ;
:fBW(fBXDw,r)({)If({)I”W({)dV(g)) dV(u).
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Applying Minkowski’s integral inequality to the right-hand side and recognizing that y p(, () =
X (. (1), the above formula becomes

2\ 7»

X .t

P L
I A1, < f £ W(odwg)( G

d V(u))

<k

[ [vorwaae)
= IfI, ~ A1

From the estimate (9), the operator norm of 7, satisfies:
1 (D(u,r))
ITall s sup —————.
ueD(,r) w(Su) P4
£eB-1B

By the definition of the essential norm and subadditivity, we deduce

(D(u, 1))
|7, =172 + Tall, < ITall s sup Fomo (10)
ueDEn w(S,) *571
£eB—1B
Taking t — 1, we further refine the estimate to
||7'|| <11msupM ~1msupL”)l. (11)
ol w(S,)PTE el w(S )T
The last asymptotic equality in (11) follows from Lemma | and Lemma 2 (i), which asserts that
w(S,) = (1 —|u))?®&u) € Ras |u| — 1. This completes the proof of the upper estimate. O

Remark 1. It is noteworthy that when p = q = 2, the condition w € D can be relaxed to w € D
and the conclusion in Theorem [ still holds. This corresponds to the special case k = 0 of Theorem

4in[8].
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