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Abstract

We construct cosmological model in nonmetricity scalar functional gravitational
Lagrangian f(Q) which describes the dynamical evolution of the late accelerating
universe. Cosmological models are constructed considering different functional
of f(Q) gravity where Q in the gravitational action. We obtain cosmological
model probing late universe with a constant jerk parameter. The observational
constraints that are imposed on the model parameters for a realistic scenario
estimated using the observational Hubble data and the Pantheon dataset. The
evolution of the deceleration parameter, energy density and the equation of state
(EoS) parameter are also explored. The transition of the universe from a decel-
eration to an accelerating phase is investigated in different framework of f(Q)
theories. We also analyzed the variation of the effective EoS parameter and found
that the matter content in the universe favours quintessence type fluid in all the
f(Q)-gravity. The energy conditions for a realistic scenario are examined and
noted that the effective fluid violates the strong energy condition.

Keywords: f(Q) gravity Observational constraints Cosmoligical parameters

1 Introduction

In modern cosmology it is accepted that the universe emerged out from an inflationary
phase in the past entered into matter dominated phase and thereafter at a later phase
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entered into accelerating universe. The prediction of late acceleration originated ana-
lyzing the recent advances in observational cosmology namely the type Ia supernovae
[1–3], Cosmic Microwave Background Radiation [4] and large-scale structure observa-
tions [5–7]. Although the early universe is understood with homogeneous scalar field
in particle physics, the late accelerating phase cannot be understood with fields in the
standard model of particle physics. Inspite of the fact that the General relativity (GR)
is the most successful fundamental gravitational theory which describes the large-scale
structure of the universe, it fails to accommodate the late universe behaviour unless
one considers a theory beyond GR or exotic matter in the matter sector. Initially the
late acceleration is examined introducing a cosmological constant term in GR. Such
cosmological model is known as the Lambda cold dark matter or ΛCDM model, which
yields the late-time cosmic acceleration of the universe that was found to fit well with
the observations. But in the ΛCDM model conceptual issues namely, fine-tuning and
cosmic coincidence problems [8–11] emerged. Consequently, in the literature alterna-
tive cosmological model is explored without Λ. A spurt in research activities is found
with a modified theory of gravity beyond GR that accommodate late acceleration.

Since normal matter in GR fails to accommodate the late acceleration of the
universe, the matter sector of the EFE with different dynamical Dark Energy (DE)
models , namely, models consisting of one or more scalar fields namely, quintessence
[12–14], Chaplygin gas [15] and its variations [16, 17] are considered. Alternatively,
there are proposals to modify the gravitational sector with different gravitational the-
ories, namely, f(R) theories of gravity [18, 19] where R is the Ricci scalar, f(R, T )
gravity [20] with T being the trace of the energy-momentum tensor, modified Gauss-
Bonnet gravity [21–23], Brane world gravity [24, 25], Horava-Lifshitz theory of gravity
[26]. In the literature [27–35] different modified gravitational theories are considered
to describe several issues in astrophysical and cosmological observations and viability
of the models are also examined using astronomical observations.

Gravity based on torsion is considered to obtain cosmological model in recent times.
The torsion is the field describing gravity, called the teleparallel equivalent of general
relativity (TEGR) [36, 37]. In TEGR, the curvature and non-metricity are zero and
the Weitzenböck connection is the affine connection [38–40]. The fundamental objects
are tetrads by which one can derive the affine connection, the torsion invariants, and
finally the field equations. TEGR is also modified further similar to the modification
of Einstein Hilbert (EH) action based on curvature formulation (the action that yields
the Einstein field equations). The simplest modification is the f(T ) gravity [41], where
T is the torsion scalar. An important advantage of the f(T ) gravity theory is that
the field equations are of second order, unlike in f(R) gravity, which in the metric
approach is a fourth order theory. f(T ) gravity theories have been widely applied to
the study of astrophysical objects and cosmic observations, and in particular, they
are extensively used to explain the late-time accelerating expansion of the Universe
without the need to introduce DE [42–47]. Chaudhary et al. obtained cosmological
models with two different forms of DE, namely modified Chaplygin-Jacobi (MCJ) and
modified Chaplygin-Abel (MCA) gases, in the context of f(T ) gravity in a non-flat
FLRW universe [48]. The nature of the DE in the context of f(T ) gravity (a detailed
discussion of teleparallel theories see [49]) is explored for the evolution of the late
universe.
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In recent times, another equivalent formulation of GR based on non-metricity in
which a flat spacetime is considered in cosmology with total curvature and vanish-
ing torsion. This formulation is called the symmetric teleparallel equivalent of GR
(STEGR) [50–53]. Similar to f(R) theories, an extension of STEGR is f(Q) gravity
[54], where modifications based on a Lagrangian density which is a function of the
non-metricity scalar Q. However when f(Q) = Q one recovers STEGR. The class
of theories obtained from the generalized Friedmann equation is found to accommo-
date the accelerated expansion of the universe. The modified f(Q) gravity is studied
phenomenologically in the literature [55–60]. It is shown that the f(Q) theory is one
of the most promising alternative gravity formulations for interpreting cosmological
observations[61–65]. The scalar, vector, and tensor modes of linear perturbations are
studied in f(Q) gravity [56], and the modified gravity is found to support the con-
straints imposed by Big Bang Nucleosynthesis (BBN) [66]. Recently, f(Q) gravity is
taken up [67] to accommodate the late-time acceleration of the universe and DE (DE)
[62, 63, 68, 69]. In [70], a bulk viscous cosmological model is studied in the framework of
f(Q) gravity, where it is shown that the cosmological model favours quintessence-type
behaviour which can describe the late-time scenario. The dynamical system analysis
is used to study cosmological dynamics in f(Q) theory at the background and per-
turbative levels [71–73]. Recently, f(Q) theories with Q coupled non-minimally to the
matter Lagrangian and the trace of the stress-energy tensor are developed to study
the evolutionary dynamics [74, 75].

Motivated by the exciting features of the f(Q) gravity, we investigate the late-
time acceleration of a spatially flat universe with a constant cosmological perturbation
namely, jerk parameter in the present paper and estimate the observational constraints
of model parameters. We estimate the observational constraints on the the cosmolog-
ical model parameters for a viable scenario making use of the observational data. We

consider three different forms of f(Q): (i) the power-law model, f(Q) = Q+α
(

Q
Q0

)n

,

where α and n are the free parameters and Q0 is the present value of non-metricity

scalar Q [56], (ii) f(Q) = Q+nQ0

√

Q
λQ0

ln
(

λQ0

Q

)

, where n and λ are free parameters

[66] and (iii) f(Q) = Qeβ
Q0
Q , where β is the model parameter [63]. In the paper we

consider a universe with a constant jerk parameter j [76], the concept of jerk parame-
ters in cosmology provides valuable insights into the dynamics of the universe and the
nature of DE. The fourth term of the Taylor series expansion of the scale factor a(t)
around the present time t0 represents the jerk parameter. Mathematically, we obtain
for the scale factor of the universe at t, which is Taylor expanded about t0 is

a(t)

a(t0)
= 1 +H0(t− t0)−

1

2!
q0H

2
0 (t− t0)

2 +
1

3!
j0H

3
0 (t− t0)

3 +O[(t− t0)
4], (1)

where

H0 ≡
(

1

a

da

dt

)

t=t0

, q0 ≡ −
(

1

aH2

d2a

dt2

)

t=t0

, j0 ≡
(

1

aH3

d3a

dt3

)

t=t0

(2)
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represent the present-day values of the Hubble parameter, deceleration parameter,
and jerk parameter, respectively. It is known that the jerk parameter (j) is useful for
studying the instability of a cosmological model along with the state finder diagnostic
[77]. The deviations from the standard cosmological model can be tested from the
evolutionary feature of j. Alternatively, if one assumes a constant j, it yields the
Hubble parameter that can be used for a good fit with the observed data. In the
paper, the latest compilation of 31 Hubble data (HD) measured by the differential
age (DA) method ( also known as cosmic chronometer (CC)) in the redshift range
0.07 ≤ z ≤ 1.965 [78] and 1048 Pantheon data set of apparent magnitude in the redshift
range 0.01 ≤ z ≤ 2.26 [79] are used to study the confrontation of the cosmological
model with the observation, which however, determines the constraints on the model
parameters. The best-fit present values of the jerk parameter (j0), the deceleration
parameter (q0), and the Hubble parameter (H0) are explored using the CC and a
joint analysis of CC and the Pantheon data set. The evolution of the cosmological
parameters, specifically the energy density and the equation of state (EoS) parameters
for the cosmological models are also tested. The viability of these models is probed
using energy conditions to ensure consistency with observation for a modified gravity
f(Q).

The paper is organized as follows: In section 2 the basic field equations are given.
As we do not know suitable f(Q) we consider three different models to study the
late universe in section 3. In section 4, the Hubble parameter is estimated using the
constant value of the jerk parameter. Using cosmic chronometers (CC), combined CC
+ Pantheon datasets the present value of Hubble parameter H0, the jerk parameter
j0 and the deceleration parameter q0 are constraints in the section 5. In section 6,
the evolution of cosmological parameters are studied. The energy densities and EoS
parameters of DE and the effective fluids for different f(Q) models are described in
subsection 6.3 and all the energy conditions for the validation of the models are studied
in section 7 . Finally, in section 8, we give a brief discussion.

2 Field Equations

The general action in f(Q) gravity is [54]

S = −1

2

∫

f(Q)
√−g d4x+

∫

Lm

√−gd4x, (3)

where f(Q) is an arbitrary function of the non-metricity scalar Q, g is the determi-
nant of the matric gµν and Lm is the matter Lagrangian density. In this case, the
fundamental object is the non-metricity tensor which defined by

Qαµν = ∇αgµν . (4)

From the non-metricity tensor Qαµν , the disformation can be defined as

Lα
µν =

1

2
Qα

µν −Qα
(µν), (5)
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which measures the separation of the Levi-Civita connection the symmetric part of
the full connection with it. The non-metricity conjugate is defined as

Pα
µν = −1

2
Lα

µν +
1

4
(Qα − Q̃α)gµν − 1

4
δα(µQν), (6)

whereQα ≡ Q µ
α µ and Q̃α ≡ Qµ

αµ are the trace of the non-metricity tensor. Therefore,
the non-metricity scalar that will play a central role in f(Q) gravity is defined as

Q = −QαµνP
αµν . (7)

Variation of the action (3) with respect to components of the metric tensor leads
to the modified field equations for f(Q) gravity which is given by

2√−g
∇α

(√
−gfQP

α
µν

)

+
1

2
gµνf + fQ

(

PµαβQν
αβ − 2QαβµP

αβ
ν

)

= Tµν , (8)

where fQ ≡ ∂f(Q)
∂Q

and Tµν = − 2√
−g

δ(
√
−gLm)
δgµν is the energy-momentum tensor. We

consider matter described by a perfect fluid whose energy-momentum tensor is,

Tµν = (ρ+ p)uµuν + pgµν , (9)

where uµ is the four-velocity satisfying uµu
µ = −1, ρ and p are the energy density

and pressure of the perfect fluid, respectively.
We consider a homogeneous, isotropic and spatially flat Friedmann-Lema?tre-

Robertson-Walker (FLRW) universe, which is given by

ds2 = −dt2 + a2(t)δµνdx
µdxν , (10)

where a(t) denotes the scale factor of the universe. The non-metricity scalar is given by
Q = 6H2, where H = ȧ

a
is the Hubble parameter and the upper dot denotes derivative

with respect to cosmic time t. The modified gravity is described by f(Q) = Q+F (Q),
where F (Q) is a non-linear function of Q. Using the FLRW metric, the corresponding
Friedman equations become

3H2 = ρ+
F

2
−QFQ, (11)

2 (2QFQQ + FQ + 1) Ḣ +
1

2
(Q+ 2QFQ − F ) = −p, (12)

where FQ ≡ dF
dQ

and FQQ ≡ d2F
dQ2 . Also, the matter fluid satisfies the conservation

equation

ρ̇+ 3H(1 + ω)ρ = 0, (13)

with ω ≡ p
ρ
the matter equation of state (EoS) parameter. First, we consider a universe

filled with pressureless matter and radiation fluids, therefore we can write the total
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energy density and pressure as

ρ = ρm + ρr; p =
1

3
pr, (14)

where ρm and ρr denote the energy density for pressureless matter and radiation,
respectively. The above equations (11) and (12) can be expressed as

3H2 = ρm + ρr + ρDE , (15)

2Ḣ + 3H2 = −1

3
pr − pDE , (16)

where ρDE and pDE are the DE density and pressure, which can be expressed as

ρDE =
F

2
−QFQ, (17)

pDE = 2 (2QFQQ + FQ) Ḣ − ρDE . (18)

Therefore, the EoS parameter of DE is given by

ωDE =
pDE

ρDE

= −1 +
4(2QFQQ + FQ)

F − 2QFQ

. (19)

The EoS parameter ωDE for DE provided (i) the ΛCDM model for ωDE = −1, (ii) a
quintessence model for −1 < ωDE < − 1

3 , (iii) phantom model for ωDE < −1.
Equations (15) and (16) yields the effective energy density ρeff and effective

pressure peff of the total fluids which are

ρeff = ρm + ρr +
F

2
−QFQ (20)

and

peff =
1

3
ρr +

(

QFQ − F

2

)

−
(

ρm +
4

3
ρr

)(

2QFQQ + FQ

2QFQQ + FQ + 1

)

. (21)

Thus, the effective EoS parameter ωeff becomes

ωeff =
peff
ρeff

= −1 +
Ωm + 4

3Ωr

2QFQQ + FQ + 1
, (22)

where Ωm ≡ ρm

3H2 and Ωr ≡ ρr

3H2 are the energy density parameters for pres-
sureless matter and radiation, respectively. The EoS parameter ωeff represents the
matter-dominated if ωeff = 0, whereas radiation-dominated phase if ωeff = 1

3 . It
is also helpful in distinguishing a decelerating universe from an accelerating one.
For an accelerated universe one requires ωeff < − 1

3 . Thus the EoS parameter clas-
sifies three possible states for the accelerating universe which are (i) quintessence
(−1 < ωeff < − 1

3 ), (ii) phantom (ωeff < −1) and (iii) the cosmological constant
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(ω = −1). The recent observational data employed to estimate constraint on the
present value of the EoS parameter: ωeff = −1.29+0.15

−0.12 [80], Supernovae Cosmol-

ogy Project, ωeff = −1.035+0.055
−0.059 [81], Plank 2018, ωeff = −1.03 ± 0.03 [82]. For a

non-interacting pressureless matter and radiation we obtain the following eqs. (13) :

˙ρm + 3Hρm = 0, ρ̇r + 4Hρr = 0. (23)

On integrating the above equation, we get ρm = ρm0a
−3 and ρr = ρr0a

−4, where ρm0

and ρr0 denote the matter and radiation energy density at the present time.
The system of field equations (17) - (19) and (20) - (22) are non-linear which are

taken up to investigate the dynamical evolution of DE and the effective fluids of the
universe for a specific form of F (Q). In the next section, we consider different F (Q)
forms and use them to explore the behaviour of the late Universe.

3 Cosmological models in f(Q) gravity

In this section, we consider three different functions of f(Q) = Q + F (Q) gravity to
probe the late time evolution of the universe, which are as follows:

3.1 Model-I

In this case we consider power-law model of F (Q): [54, 56, 72] as,

F (Q) = α

(

Q

Q0

)n

, (24)

where α and n are constant parameters and Q0 = 6H2
0 is the present value of Q. For

n = 0, the F (Q) model is equivalent to the cosmological constant, while for n = 1
the model reduces to the symmetric teleparallel equivalent of GR (STEGR) [54]. The
power-law model is relevant for the early universe description when n > 1, however,
the late accelerating scenario can be realized when n < 1. When n = −1, the theory
is confronted with late universe observations [83]. For the constraints 0 < n < 1, the
evolutionary feature of the universe in f(Q) gravity can be studied using autonomous
differential equations obtained from the field equations, afterwards we investigate those
solutions using perturbations outlined for its dynamical behaviour [72].

From equations (17) and (18), we determine the DE (DE) density and pressure as,

ρDE(z) =
α(1 − 2n)

2

(

H2(z)

H2
0

)n

, (25)

pDE(z) =
αn(1 − 2n)

3

(

H2(z)

H2
0

)n
(1 + z)H ′(z)

H(z)
− ρDE(z), (26)

7



where prime denotes differentiation with respect to z. Using the above expressions,
the EoS parameter of DE of the form

ωDE(z) = −1 +
2n(1 + z)

3

H ′(z)

H(z)
. (27)

The effective energy density and pressure given by equations (20) and (21) can be
expressed in terms of the redshift parameter (z) which yield:

ρeff (z) = 3H2
0

[

Ωm0(1 + z)3 +Ωr0(1 + z)4
]

+
α(1− 2n)

2

(

H2(z)

H2
0

)n

, (28)

peff (z) = H2
0Ωr0(1 + z)4 +

[

−1 +
2n(1 + z)

3

H ′(z)

H(z)

]

×α(1− 2n)

2

(

H2(z)

H2
0

)n

. (29)

The effective EoS parameter ωeff for the power-law model is obtained from equations
(28) and (29). In the above, there are two parameters namely, α and n; one of them can
be eliminated using the present value of the cosmological parameters. Using equations
(11) and (24), the parameter α becomes

α =
6H2

0 (1− Ωm0 − Ωr0)

1− 2n
. (30)

For n = 1
2 , α becomes infinity which is not acceptable.

3.2 Model-II

In this case we consider a Log-square-root model of F (Q) which is given by [66],

F (Q) = nQ0

√

Q

λQ0
ln

(

λQ0

Q

)

, (31)

where n and λ are free parameters, and Q0 = 6H2
0 with H0 the present value of the

Hubble parameter and λ > 0. Analyzing the model with observations we found that
the model passes through the BBN constraints [66]. In this case, the DE density and
pressure are given by

ρDE(z) =
6nH2(z)

λ
√

H2(z)
λH2

0

, (32)

pDE(z) =
2n(1 + z)H(z)H ′(z)− 6nH2(z)

λ
√

H2(z)
λH2

0

. (33)
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The EoS for DE can be determined which is

ωDE(z) = −1 +
1

3
(1 + z)

H ′(z)

H(z)
. (34)

Using equations (20), (21) and (22), we obtain the following

ρeff (z) = 3H2
0 [Ωm0(1 + z)3 +Ωr0(1 + z)4] + 6nH0

√

1

λ
H(z), (35)

peff (z) =
λH2

0Ωr0(1 + z)4
√

H2(z)
λH2

0
+ 2n(1 + z)H(z)H ′(z)− 6nH2(z)

λ
√

H2(z)
λH2

0

, (36)

ωeff (z) =
λH2

0Ωr0(1 + z)4
√

H2(z)
λH2

0
+ 2n(1 + z)H(z)H ′(z)− 6nH2(z)

λ
√

H2(z)
λH2

0

(

3H2
0 [Ωm0(1 + z)3 +Ωr0(1 + z)4] + 6nH0

√

1
λ
H(z)

) . (37)

The parameter λ can be expressed in terms of the other cosmological parameters using
equations (11) and (31) which is given by

λ =
4n2

(1− Ωm0 − Ωr0)2
. (38)

3.3 Model-III

Consider an exponential functional F (Q) [63], given by

F (Q) = Q eβ(
Q0
Q ) −Q (39)

where β is a constant, and Q0 = 6H2
0 with H0 representing present Hubble parameter.

The theory is equivalent to GR without a cosmological constant when β = 0. However,
the exponential model fits observations satisfactorily for a non zero β and absence of
a cosmological constant in the F (Q) function [63] leads to a realistic scenario. Here,
the past asymptotic behaviour (Q0

Q
≪ 1) of the model can be recovered by a pure GR

at an early time and hence the model trivially pass the BBN constraints test [66].
Using equation (39), we estimate the DE density and the pressure , which are

ρDE(z) =
1

2

(

6H2(z)− 6e
βH2

0
H2(z)H2(z) + 12H2

0βe
βH2

0
H2(z)

)

, (40)

pDE(z) = −(1 + z)H(z)H ′(z)

×
(

− 2 +
2e

βH2
0

H2(z)
(

36H2(z)− 36H2
0βH

2(z) + 72H4
0β

2
)

36H4(z)

)

− ρDE(z) (41)
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where (′) denotes differentiation w.r.t. z. The effective energy density and pressure are
determined from equations (20) and (21) using equation (39), which are

ρeff (z) = 3H2
0

[

Ωm0(1 + z)3 +Ωr0(1 + z)4
]

+3H2(z)−
[

3H2(z)− 6βH2
0

]

e
βH2

0
H2(z) , (42)

peff (z) = H2
0Ωr0(1 + z)4 − 3H2(z) + 2(1 + z)H(z)Hz(z) +

[

(

3H2(z)− 6βH2
0

)

−2(1 + z)H(z)Hz(z)

(

1 +
2β2H2

0 − βH2
0H

2(z)

H4(z)

)

]

e
βH2

0
H2(z) . (43)

The effective EoS (ωeff ), the ratio of peff and ρeff are determined from equations
(43) and (42), respectively.

The evolution of the dynamical quantities are analyzed with redshift parameter
z. We plot the scale factor, deceleration parameter and EoS parametrized quantities.
In the next section, we study variation of the Hubble parameter H(z) assuming a
constant jerk parameter.

4 The Hubble parameter

For a constant jerk parameter j = 1
aH3

d3a
dt3

, the scale factor can be determined [76].
Thus constraining jerk parameter yields a Hubble parameter which is a function of
the redshift parameter (z) can be used to study the evolutionary behaviour of the
universe. The deceleration parameter q provides information of the transition from
the decelerating to the accelerating phase. The deceleration parameter is related to
the jerk parameter which is

j(z) = q(z) + 2q(z) +
dq

dz
(1 + z). (44)

Using the equation we analyz the cosmological model in different f(Q)-gravity. For a
constant j(z) = j0 the deceleration parameter is given by

q(z) =
1

4

(

− 1 +
√

8j0 + 1 tanh
[1

2

(

2 ArcTanh
(4

√
8j0 + 1q0 +

√
8j0 + 1

8j0 + 1

)

+
√

8j0 + 1 log(1 + z)
)])

, (45)

where q0 = q(z = 0). The first derivative of the Hubble parameter w.r.t. z can be
expressed in terms of deceleration parameter which is given by

dH

dz
=

1 + q(z)

(1 + z)
H. (46)
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On integration we determine the Hubble parameter which is

H(z) = H0 exp

∫ z

0

(1 + q(z))

1 + z
dz

= Exp
[1

4

(

3 log(1 + z) + 2 log
[

cos
[

ArcTan
[ 1 + 4d√−1− 8j0

]

−1

2

√

−1− 8j0 log(1 + z)
]]

+ log
[8(j0 − d− 2d2)

1 + 8j0

])]

H0, (47)

where H0 is the present value. The late accelerating phase of the universe for three
different functional forms of f(Q) gravity are analyzed making use of observational
datasets and estimating H0, j0 and q0 in the next section.

5 Observational constraints on H0, j0 and q0

In this section, the observational Hubble data and Pantheon data are used to estimate
contraints H0, j0 and q0 here.

5.1 For Hubble Dataset

The Hubble parameter H(z) is measured from the line-of-sight of BAO data which
includes the correlation functions of the luminous red galaxies and the differential age
(DA) of the galaxies. Recently, a list of 57 data points was compiled by Sharov and
Vasiliev for H(z) in the redshift range 0.07 ≤ z ≤ 2.42 [78]. The dataset includes
31 points measured by the DA method (also known as the cosmic chronometer (CC)
technique) and 26 from BAO and other measurements. Here we use 31 data points
of H(z) as shown in Table 1 in the redshift interval 0.07 ≤ z ≤ 1.965 to estimate
the best-fit values of the parameters making use of chi-square minimization technique.
Since the data points of H(z) are uncorrelated, we define χ2

CC , which is

χ2
CC(H0, j0, q0) =

57
∑

i=1

[Hth(zi, H0, j0, q0)−Hobs(zi)]
2

σ2
H(zi)

, (48)

where Hth is the theoretical value of the Hubble parameter estimated in equation (47),
Hobs(zi) is the observed Hubble parameter in redshift zi and σH(zi) is the standard
deviation.

5.2 Observational Analysis with Pantheon Dataset

Here the observed Pantheon supernovae type Ia (SNe Ia) dataset taken into account
to constrain the model parameters which consists of spectroscopically confirmed 1048
supernovae specimens compiled data by Scolnic et al. [79], the sample consists of
different supernovae surveys both at the high and the low redshift regimes, namely,
the CfA1-CfA4 surveys [90], the PanSTARRS1 (PS1) survey [79], Sloan Digital Sky
Survey (SDSS) [91], SuperNovae Legacy Survey (SNLS) [92], ESSENCE [93], Carnegie
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Table 1: H(z) − z dataset with standard errors using in the current analysis (the
Hubble parameters in km s−1Mpc−1)

Hubble data
z H(z) σH Ref. z H(z) σH Ref.

0.07 69 19.6 [84] 0.4783 80.9 9 [85]
0.09 69 12 [86] 0.480 97 62 [86]
0.120 68.6 26.2 [84] 0.593 104 13 [87]
0.170 83 8 [86] 0.6797 92 8 [87]
0.1791 75 4 [87] 0.7812 105 12 [87]
0.1993 75 5 [87] 0.8754 125 17 [87]
0.200 72.9 29.6 [84] 0.880 90 40 [86]
0.270 77 14 [86] 0.900 117 23 [86]
0.280 88.8 36.6 [84] 1.037 154 20 [87]
0.3519 83 14 [87] 1.300 168 17 [86]
0.3802 83 13.5 [85] 1.363 160 33.6 [88]
0.400 95 17 [86] 1.430 177 18 [86]
0.4004 77 10.2 [85] 1.530 140 14 [86]
0.4247 87.1 11.2 [85] 1.750 202 40 [86]
0.4497 92.8 12.9 [85] 1.965 186.5 50.4 [88]
0.470 89 34 [89]

Supernova project (CSP) [94] and other Hubble space telescope (HST) data [95], [96],
[97]. The range of redshift for Pantheon sample lies 0.01 < z < 2.26. (For detail please
see Ref. [98]). We define the χ2

SN function from the Pantheon sample of 1048 SNe Ia
as given by

χ2
SN (H0, j0, q0) = ∆FiC

−1
SN∆Fj , (49)

where ∆F = Fth − Fobs is the difference between the theoretical and the observed
values of the apparent magnitude for each SNe Ia at s redshift zi, and CSN is the total
covariance matrix [79]. For SNe Ia we take distance modulus formula:

m(z) = M + 5 log10

[ dL(z)

1Mpc

]

+ 25, (50)

where m, M are the apparent and absolute magnitudes and dL(z) is the luminosity
distance for a flat universe which is

dL(z) = c(1 + z)

∫ z

0

dz′

H(z′)
, (51)

with redshift z for SNe Ia in the CMB rest frame. Define Hubble free luminosity

distance as DL(z) ≡ H0dL(z)
c

, we get theoretical apparent magnitude which is

m(z) = M + 5 log10[DL(z)] + 5 log10

(c/H0

Mpc

)

+ 25. (52)
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However, a degeneracy between M and H0 are observed, thus a new parameter M
can be defined as,

M = M + 5 log10

[ c/H0

1Mpc

]

+ 25 (53)

A number of attempts have been made to marginalize the degenerate combination
and recently in [98] minimized the parameter using the Pantheon sample for a tilted
universe and M is close to 23.8.

We use here two different analyses for constraining the parameters H0, j0 and q0
using cosmic chronometers (CC) and jointly CC and Pantheon datasets, respectively.
For joint analysis, we use χ2

total as:

χ2
total = χ2

CC + χ2
SN . (54)

The best-fit values are obtained by minimizing the chi-square functions given in
equations (48) and (54). The best-fit values of the parameters H0, j0 and q0 are tab-
ulated in Table 2. Thereafter, best-fit curves for the Hubble datasets and Pantheon
datasets with error bars are drwan in Figs. 1 and 2. The Hubble constant was esti-
mated by the Planck Collaboration in 2018 [82] to be H0 = 67.4± 0.5 km s−1Mpc−1,
whereas in 2021 Riess et al. [99] predicted the value H0 = 73.2 ± 1.3 km s−1Mpc−1.
Other observational groups recently estimated and obtained Hubble parameter differ-
ent from the value. Cao and Ratra [100] predicted the Hubble constant H0 = 69.8±1.3
km s−1Mpc−1, whereas H0 = 69.7±1.2 km s−1Mpc−1 was the estimate made in [101].
In the likelihood analysis of extensive observational datasets, Alberto Domnnguez et

al. [102] obtained the Hubble parameter which is H0 = 66.6±1.6 km s−1Mpc−1, while
[103, 104] determined H0 = 65.8± 3.4 km s−1Mpc−1. Freedman et al. [105] estimated
the present value of Hubble constant H0 = 69.6±0.8 km s−1Mpc−1, Birrer et al. [106]
measured H0 = 67.4+4.1

−3.2 km s−1Mpc−1, Boruah et al. [107] measured H0 = 69+2.9
−2.8 km

s−1Mpc−1 and most recently, Freedman [108] gave an estimated value H0 = 69.8±0.6
km s−1Mpc−1 and Qin Wu et al. [109] estimated H0 = 68.81+4.99

−4.33 km s−1Mpc−1.

Table 2: Best fit values of H0, j and q0
Datasets H0 j0 q0 χ2

min

CC 68.13 0.93 -0.45 13.602

CC + Pantheon 69.418 1.208 -0.604 1040.583

6 Analysis of cosmological parameters

6.1 Analysis of deceleration parameter

We analyze deceleration parameter q(z) using equation (45). The deceleration param-
eter is plotted as a function of the redshift parameter (z) in Fig. 3. It is evident and
it is passing through the deceleration phase flip sign at a recent past. We note that a
deceleration to acceleration change over at a redshift zt = 0.62 and zt = 0.61 for the
best-fit values obtained from CC and joint analysis of CC+Pantheon datasets.
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Fig. 1: Variation of H(z) with respect to redshift parameter (z). The black curve for
best-fit values H0 = 68.13, j0 = 0.93 and q0 = −0.45. The red curve for best-fit values
H0 = 69.418, j0 = 1.208 and q0 = −0.604. The dots corresponds to the Hubble data
with the error bar.
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Fig. 2: Variation of apparent magnitude m(z) with respect to z. The black dashed
curve for best-fit values H0 = 68.13, j0 = 0.93 and q0 = −0.45. The red curve for
best-fit values H0 = 69.418, j0 = 1.208 and q0 = −0.604. The dots corresponds to the
1048 Pantheon dataset with the error bar
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Fig. 3: Evolution of the deceleration parameter q(z) with the redshift parameter (z).
The blue and red curves for the best-fit values of H0, j0, and q0 from the study of the
CC and combined CC + Pantheon data, respectively.

6.2 Snap parameter

Here we investigate one of the state finder diagnostic parameter related to late time
evolution of the universe namely, snap parameter s(z) [77] which is given by

s(z) = (3q(z) + 2)j(z) + (1 + z)
dj(z)

dz
. (55)

For j(z) = j0, the snap parameter becomes

s(z) = (3q(z) + 2)j0. (56)

We plot the snap parameter s(z) in Fig. 4. It is evident that the snap parameter lies
in the range (0, 1) at the present epoch.

6.3 Energy density and EoS parameters

In section 3, energy density and EoS parameter for DE and the effective fluids are
determined for the three models: power-law, log-square root, and exponential func-
tional of f(Q) gravity. The parameters for the three models were chosen in such a way
so as to ensure that the energy density remains positive. The evolution of EoS param-
eters helps us to understand how the universe transits through various stages over
time, offering insights into the behaviour of DE and its impact on cosmic expansion.
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Fig. 4: Evolution of the Snap parameter “s(z)” with the redshift parameter (z). The
blue and red curves for the best-fit values of H0, j0 and q0 from the study of the CC
and combined CC + Pantheon data, respectively.

6.3.1 Power-law f(Q) model

In Fig. 5, we draw evolution of the DE density, ρDE(z) (left panel) and ωDE(z) (right
panel) with redshift z using the best-fit values of H0, j0 and q0 provided in Table 2.
We consider here the model parameter n = −1. From the left panel, it is evident that
the DE density ρDE(z) increases as the universe expands, indicating a more positive
energy density over time. The right panel reveals that the DE EoS parameter ωDE

converges to −1 as the redshift decreases, highlighting a trend towards a cosmological
constant-like behaviour in future. At the present epoch (z = 0), the EoS parameter is
found to hover in the phantom region, with ωDE < −1. The evolutionary behaviour
of effective energy density, ρeff (z) and effective EoS, ωeff (z) are plotted Fig. 6. The
effective energy density is found positive, which indicates a consistent contribution
to the overall energy content of the universe. The effective EoS parameter, on the
other hand is decreasing during early times which later is found to become negative.
A decelerating phase characterized by ωeff > − 1

3 is found, which then transits to an
accelerating phase at a redshift, where ωeff = − 1

3 . At the present epoch, the effective
EoS parameter ωeff = −0.89 based on the best-fit values from cosmic chronometers
(CC) data and ωeff = −0.94 from the combined CC and Pantheon datasets. In the
future, the effective EoS parameter will attain −1 through quintessence like evolu-
tion. A transition from quintessence to phantom for best-fit values of CC and CC
+ pantheon, respectively are predicted in the models. The effective EoS parameter:
ωeff = −1, indicating a future dominated by a cosmological constant-like DE compo-
nent. Further, for different values of the model parameter n, the variation of the EoS
parameter for DE and effective fluid of the universe is plotted in Fig. 7. For n = 0.33,
ωDE decreases as universe expand, where as increases for the values of n = −0.5,−1
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Fig. 5: DE density ρDE(z) (Left panel) and EoS parameter ωDE(z) (Right panel)
with redshift parameter (z) for the power law model with n = −1. The blue and red
curves for the best fit values of H0, j0 and q0 from the study of the CC and combined
CC + Pantheon data, respectively.

and the value approaches to −1 in the future. The DE behaves like quintessence for
n > 0 and phantom for n < 0, at a late universe, whereas in the future, it will behave
as a cosmological constant. But, ωeff is found to decrease for n = 0.33,−0.5,−1 from
early to present time.
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Fig. 6: The evolution of effective energy density ρeff (z) (Left panel) and EoS param-
eter ωeff (z) (Right panel) as a function of the redshift parameter (z) for the power
law model with model parameters n = −1. The blue and red curves for the best-fit
values of CC and CC + Pantheon datasets, respectively.

6.3.2 Log-square root model

In the log-square root model, the DE density, ρDE(z), (left pane) and the EoS param-
eter, ωDE(z), (right panel) are ploted as a function of redshift parameter (z) in Fig. 8
using the best-fit values displayed in Table 2. It is evident that the DE energy density
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Fig. 7: The variation of EoS parameter ωDE(z) and ωeff (z) as a function of the
redshift parameter (z) for the power law model with model parameters n = 0.33, −0.5,
and −1.

decreases as redshift parameter decreases but it remains positive throughout the evo-
lution. The EoS parameter, ωDE(z), exhibits quintessence behaviour, characterized
by −1 < ωDE < − 1

3 , from the early universe to the present time. The CC data pre-
dicts ωDE ≥ −1 which signifies DE initially acts as a dynamical field (quintessence)
but eventually, it behaves like a cosmological constant at a late time, but the CC+
Pantheon data predicts ωDE < −1 which implies a universe with phantom dominated
matter.

The behaviour of effective energy density, ρeff (z), in the left panel and effective
EoS, ωeff (z), in the right panel drawn in Fig. 9 indicates that the effective energy den-
sity ρeff (z) decreases as the universe expands which remains positive throughout its
evolution. The behaviour of effective EoS parameter signifies that the universe began
from a decelerating phase, characterized by ωeff > − 1

3 later transits to an accelerat-
ing phase with ωeff < − 1

3 . The EoS parameter is found to converge to ωeff = −1
in future, indicating the log-square root model accommodates a universe a cosmolog-
ical constant. At the present epoch, the effective EoS parameter is ωeff = −0.6 and
ωeff = −0.6 obtained for the best-fit values estimated using cosmic chronometers
(CC) data and the combined CC + Pantheon datasets.

6.3.3 Exponential model

In this case, the DE density ρDE(z) and EoS parameter ωDE(z) are plotted in Fig. 10
for β = 0.37 and best-fit values taken from Table 2. In the left panel of the figure, it is
evident that DE density increases as the universe expands. We note that the observed
EoS parameter ωDE to begin with was < −1 in both CC and CC+ Pantheon data
prediction which however decreases, attains a minimum value there after increases.
In future, we note that ωDE < −1 for former case and ωDE > −1 for later case
respectively. Thus although a phantom regime exist from early to future time for
CC data, a different DE noted for CC+Pantheon data that permit a transition from
phantom to quintessence in future.
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Fig. 8: The evoluation of ρDE(z) and EoS parameter ωDE(z) as a function of the
redshift parameter (z) for the Log-square-root model. The blue and red curves corre-
spond to the best-fit values of CC and combined CC + Pantheon, respectively.
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Fig. 9: The evoluation of ρeff (z) and EoS parameter ωeff (z) as a function of the
redshift parameter (z) for the Log-square-root model. The blue and red curves corre-
spond to the best-fit values of CC and combined CC + Pantheon, respectively.

The behaviour of effective energy density ρeff (z) and effective EoS parameter
ωeff (z) are plotted in Fig. 11. It is found that ρeff (z) remain positive throughout
the evolution of the universe, whereas the effective EoS parameter decreases from a
large value. The present values of the effective EoS parameter are ωeff = −0.79 and
ωeff = −0.76 for the best-fit values of CC and CC + Pantheon datasets, respectively,
which converge to −1 in the future.

7 Energy conditions

The energy conditions (ECs) are crucial for an effective investigation of the cosmolog-
ical geodesics. The well-known Raychaudhury equations can be used to obtain such
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Fig. 10: The evolution of ρDE(z) (left panel) and EoS parameter ωDE(z) (right panel)
as a function of the redshift z for the exponential model with β = 0.37. The blue and
red curves correspond to the best-fit values of CC and combined CC + Pantheon,
respectively.
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Fig. 11: The evolution of ρeff (z) (left panel) and EoS parameter ωeff (z) (right panel)
as a function of the redshift z for the exponential model with β = 0.37. The blue and
red curves correspond to the best-fit values of CC and combined CC + Pantheon,
respectively

conditions, which is given by

dθ

dτ
= −1

3
θ2 − σµνσ

µν + ωµνω
µν −Rµνu

µuν, (57)

dθ

dτ
= −1

2
θ2 − σµνσ

µν + ωµνω
µν −Rµνn

µnν , (58)

where θ is the expansion factor, σµν and ωµν are the shear and the rotation associated
with the vector field uµ and nµ is the null vector [110, 111]. For attractive gravity,
equations (57) and (58) satisfy the following conditions:

Rµνu
µuν ≥ 0, (59)
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Rµνn
µnν ≥ 0. (60)

Therefore, if we are working with a perfect fluid matter distribution, the energy
conditions for f(Q) gravity are given by

• Weak energy conditions(WEC):

ρeff ≥ 0, ρeff + peff ≥ 0 (61)

• Null energy condition (NEC):

ρeff + peff ≥ 0 (62)

• Dominant energy condition (DEC):

ρeff ≥ 0, ρeff ≥ |peff | (63)

• Strong energy condition (SEC):

ρeff + 3peff ≥ 0. (64)

Using equations (28) - (29), (35) - (36) and (42) - (43) with equation (47), we
plot the inequalities (61) - (64) for the power-law model, Log-square root model and
Exponential model, respectively. Moreover, we take the best-fit values given in Table 2
for the Hubble parameter (H0), jerk parameter (j0) and deceleration parameter (q0).

7.1 Power-law model

In Fig. 12, we show the schematic plot of ρeff (z), ρeff (z)+peff (z), ρeff (z)−peff (z),
and ρeff (z) + 3peff(z) as a function of redshift parameter (z) for power-law model
with different n values n = 0.33,−0.5,−1.0. In the figure, we observed that the above
functions are decreasing as the universe expands, i.e., decreasing of redshift z .

7.2 Log-square root model

In Fig. 13, we show the schematic plot of (a) ρeff (z) (b) ρeff (z)+peff (z), (c) ρeff (z)−
peff (z) and (d) ρeff (z)+3peff(z) as a function of redshift parameter (z) for log-square
root model for the best-fit values of CC and combined CC + Pantheon datasets. It is
also noted that the ρeff (z), ρeff (z)+peff (z), ρeff (z)−peff (z), and ρeff (z)+3peff (z)
are the decreasing functions as the redshift z decreases.

7.3 Exponential model

The schematic plot of ρeff (z), ρeff (z) + peff (z), ρeff (z) − peff (z), and ρeff (z) +
3peff (z) as a function of redshift parameter (z) for the exponential model of f(Q)
gravity are shown in Fig. 14. The left panel for β = 0.25 and the right panel for
β = 0.37.
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Fig. 12: The schematic plot of energy conditions for the power-law model of f(Q)
gravity. The panel (a) for n = 0.33, (b) for n = −0.5 and (c) for n = −1 with the
best fitting values of combined CC + pantheon data. The colors blue, black, red, and
magenta shows the variations of ρeff (z), ρeff (z) + peff (z), ρeff (z) − peff (z), and
ρeff (z) + 3peff (z) as a function of z.

From these plots, we also observe that ρeff (z), ρeff (z) + peff (z) and ρeff (z) −
peff (z) remain positive throughout the universe’s evolution, from early to present
times for best-fit values of CC and CC+Pantheon datasets. However, ρeff (z)+3peff(z)
becomes negative at a finite value of z, indicating a significant change in the universe’s
dynamics. This behaviour indicate an important implications for the energy conditions
in cosmology:

• Since ρeff (z) and ρeff (z) + peff (z) are positive, the WEC is satisfied.
• Given that ρeff (z) + peff (z) is positive, the NEC is also satisfied.
• The positivity of ρeff and ρeff (z)− peff (z) ensures the DEC is satisfied.
• The fact that ρeff (z)+3peff(z) becomes negative at a certain redshift implies that
the SEC is violated at later times.
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Fig. 13: The schematic plot of energy conditions for the Log-square root model of
f(Q) gravity. The panels (a) ρeff (z) (b) ρeff (z) + peff (z), (c) ρeff (z)− peff (z) and
(d) ρeff (z) + 3peff (z) as a function of z. The blue and red curves correspond to the
best-fit values of CC and combined CC + Pantheon datasets.

The violation of the SEC in the late universe indicates that the universe is currently
undergoing accelerated expansion. This accelerated expansion is consistent with obser-
vations of distant supernovae and the cosmic microwave background, which indicate
the presence of DE or a cosmological constant driving this accelerated growth.

8 Conclusions

In the paper, we study the evolution of the late universe in the modified f(Q) theory
of gravity taking three different functional forms. As we do not know the correct form
of f(Q), we have employed three different forms of the modified gravity which are
generally used to obtain cosmological models in the literature. We consider three dif-
ferent functional forms to construct cosmological models namely, (Model-I) power-law
[

f(Q) = Q+ α
(

Q
Q0

)n]

, (Model-II) log-square-root
[

f(Q) = Q+nQ0

√

Q
λQ0

ln
(

λQ0

Q

)]

and (Model-III) exponential expansion
[

f(Q) = Qeβ
Q0
Q

]

for the study. As the field
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Fig. 14: The schematic plot of energy conditions for the exponential model of f(Q)
gravity. The panel (a) for β = 0.25 and (b) for β = 0.37 with the best fitting values
of the combined CC + Pantheon data. The colours blue, black, red, and magenta
represent the variation of ρeff (z), ρeff (z) + peff (z), ρeff (z)− peff (z), and ρeff (z) +
3peff (z).

equation is highly nonlinear the dynamics of the late universe is investigated know-
ing a specific Hubble parameter which is determined from a constant jerk parameter.
Late evolution is then studied expressing the Hubble parameter as a function of red-
shift parameter ( z ). In section 5, we determine best-fit values of Hubble constant H0,
jerk parameter j0 and deceleration parameter q0 using the CC and combined analy-
sis of CC + Pantheon data at the present epoch which are displayed in Table 2. The
analysis of cosmological models with CC + Pantheon is more accurate to observa-
tional predictions. The best-fit Hubble parameter H(z) and apparent magnitude m(z)
verses redshift z are shown in Figs. 1 and 2, respectively. The cosmological parame-
ters namely, the deceleration and snap parameters are plotted in Figs. 3 and 4. The
deceleration parameter flips sign from positive (q > 0) to a negative value (q < 0)
indicating a transition from decelerating phase in the past to accelerating phase at
the present era. It is evident that such transition occurs later for the best-fit values
of CC + Pantheon compared to the other data considered here. The snap parameter
decreases as redshift decreases and at the present epoch it lies in the range (0, 1).
It is predicted that the snap parameter may be negative (s < 0) in the future. The
dynamical evolution of the density and EoS parameters as a function of the redshift
parameter z are plotted in Figs. 5 - 11. From the figures, it is evident that for power
law model: The evolution of DE density and EoS parameter is studied for n = −1
using best-fit values of H0, j0 and q0. The DE density ρDE(z) increases as the uni-
verse expands, while the EoS parameter ωDE(z) starts in the phantom region (< −1)
at the present epoch and converges to −1 in the future, resembling a cosmological
constant. The effective energy density ρeff (z) remains positive, and the effective EoS
parameter ωeff (z) transitions from a decelerating phase (ωeff > − 1

3 ) to an accelerat-
ing phase (ωeff < − 1

3 ), with present values of ωeff = −0.89 for CC and ωeff = −0.94
for CC+Pantheon, converging to −1 in the future. For different n values, ωDE con-
verges to −1 eventually, with DE behaving as quintessence for n > 0 or phantom
n < 0 at late times before transitioning to a cosmological constant-like state. For
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the log-square root model: DE density decreases with redshift but remains positive
throughout cosmic evolution. The EoS parameter ωDE(z) demonstrates quintessence
behaviour (−1 < ωDE < − 1

3 ) from the early universe to the present. Using CC data,
ωDE ≥ −1 indicates DE initially behaves dynamically quintessence but transitions to
act as a cosmological constant at late times. The CC + Pantheon data, however, sug-
gests ωDE < −1, implying a universe dominated by phantom energy at late times. The
effective energy density ρeff (z) decreases with the universe’s expansion while remain-
ing positive. The effective EoS parameter ωeff (z) shows the universe transitions from
a decelerating phase (ωeff > − 1

3 ) to an accelerating phase (ωeff < − 1
3 ). In the future,

ωeff converges to −1, indicating a cosmological constant-like behaviour. For Expo-
nential model: Using best-fit values with β = 0.37, DE density ρDE(z) is plotted, it is
evident that DE density increases as the universe expands. The initial EoS parameter
ωDE(z) < −1 is found to decrease to a minimum, thereafter it increases. In the case of
CC data, it predicts a persistent phantom regime (ωDE < −1), while CC+Pantheon
data indicates a transition from phantom to quintessence (ωDE > −1) in the future.
The effective energy density ρeff (z) remains positive, and the effective EoS paramter
ωeff (z) is found to decrease as the universe evolves.

The energy conditions are analyzed by plotting in Figs. 12 - 14 for the power-law
model, log-square root model, and exponential model of the modified F (Q) gravity
respectively. The universe is found to transit from a decelerating phase to an accel-
erating phase in all the three models described here are ascertained but the time of
flip of sign of SEC is found to depend on the model parameters implies that during
accelerating phase the SEC is violated. This transition, which is a key feature for all
the functional forms of F (Q) gravity emphasize the critical role of DE for describing
the cosmic acceleration. Even though the contributing fluids in each model differs, the
role of DE plays a significant contribution for understanding the dynamics of the late
universe predicting that it is a key component in overcoming the deceleration to an
accelerating universe. Finally, we note the following for DE fluid behaviour: (i) the
power-law model admits both the phantom and quintessence fluid when (a) n < 0
and (b) n > 0 respectively, (ii) quientessence only in log-square root model and (iii)
phantom fluid only for exponential model.
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