
Zoozve: A Strip-Mining-Free RISC-V Vector Extension
with Arbitrary Register Grouping Compilation

Support (WIP)
Siyi Xu∗

Limin Jiang∗
Shanghai University
Shanghai, China

xusiyi@shu.edu.cn
jianglimin@shu.edu.cn

Yintao Liu
Shanghai University
Shanghai, China

berialest@shu.edu.cn

Yihao Shen
Shanghai University
Shanghai, China

shenyihao@shu.edu.cn

Yi Shi
Shanghai University
Shanghai, China

yishi1996@shu.edu.cn

Shan Cao
Shanghai University
Shanghai, China
cshan@shu.edu.cn

Zhiyuan Jiang
Shanghai University
Shanghai, China

jiangzhiyuan@shu.edu.cn

Abstract
Vector processing is crucial for boosting processor perfor-
mance and efficiency, particularly with data-parallel tasks.
The RISC-V "V" Vector Extension (RVV) enhances algorithm
efficiency by supporting vector registers of dynamic sizes
and their grouping. Nevertheless, for very long vectors, the
static number of RVV vector registers and its power-of-two
grouping can lead to performance restrictions. To counteract
this limitation, this work introduces Zoozve, a RISC-V vec-
tor instruction extension that eliminates the need for strip-
mining. Zoozve allows for flexible vector register length and
count configurations to boost data computation parallelism.
With a data-adaptive register allocation approach, Zoozve
permits any register groupings and accurately aligns vec-
tor lengths, cutting down register overhead and alleviating
performance declines from strip-mining. Additionally, the
paper details Zoozve’s compiler and hardware implementa-
tions using LLVM and SystemVerilog. Initial results indicate
Zoozve yields a minimum 10.10× reduction in dynamic in-
struction count for fast Fourier transform (FFT), with a mere
5.2% increase in overall silicon area.

Keywords: RISC-V, vector processing, LLVM, hardware im-
plementation

1 Introduction
Extensive computational needs have spurred advancements
in vector instruction set architectures (ISAs). To better serve
an array of computational requirements, modern vector ex-
tension technologies have gradually moved towards variable-
length registers, which allow vector lengths to be dynami-
cally adjusted to suit varying workloads. New vector ISAs,
such as the Scalable Vector Extension (SVE) [18] and the
RISC-V “V” Vector Extension (RVV), have been introduced.

∗Both authors contributed equally to this research.

These designs allow vectors to be resized dynamically ac-
cording to the demands of particular computational tasks,
thus providing additional flexibility. The objectives in de-
signing SVE and RVV include optimizing performance and
enhancing resource optimization by adapting to workload
variations [15]. In contrast to traditional fixed-length vector
registers, these modern vector extensions not only eliminate
compatibility conflicts between hardware and software but
also markedly enhance computational efficiency. Numerous
companies and universities have developed diverse vector
extensions supporting various RVV release versions, cater-
ing to different areas such as high-performance computing
(HPC) [2, 10, 13, 14, 16], neural networks [1], [9], the internet
of things (IoT), and edge computing [3], [5]. These innova-
tions illustrate the ongoing efforts to boost performance and
efficiency across multiple sectors.
The RVV extension faces intrinsic obstacles in domain-

specific computations, such as wireless communications and
artificial intelligence, which often involve ultra-long vectors.
When vector lengthmultipliers (LMULs) are larger, they limit
the number of registers available for allocation, which in-
creases register pressure and results in more register spilling.
Conversely, smaller LMULs require frequent strip-mining,
negatively affecting performance [7]. Moreover, developers
must possess an in-depth comprehension of RVV’s varied
functionalities and operations and need to optimize regis-
ter usage and memory access to devise efficient vectorized
code, adding to the complexity of programming. Therefore,
enhancing performance requires meticulous kernel optimiza-
tion specific to applications, balancing LMUL settings and
register availability, and understanding architectural details.
This paper introduces Zoozve, a novel RISC-V vector ex-

tension that eliminates the need for strip-mining, aimed at

ar
X

iv
:2

50
4.

15
67

8v
1

 [
cs

.P
L

]
 2

2
A

pr
 2

02
5

https://orcid.org/0009-0008-0764-0621
https://orcid.org/0009-0008-7034-5780
https://orcid.org/0009-0002-3538-4676
https://orcid.org/0009-0006-2813-3448
https://orcid.org/0000-0002-3240-7900
https://orcid.org/0000-0003-3713-8671
https://orcid.org/0000-0002-8522-5721

Siyi Xu, Limin Jiang, Yintao Liu, Yihao Shen, Yi Shi, Shan Cao, and Zhiyuan Jiang

VLEN

…

V0

V1

V3

V2

V4

V5

V7

V6

V9

V11

V10

V8

V31

V0

V1

V2
RG Head

RG Tail

Register
Group

(RG)

V3

V4

V6

V5

V7

V8

V9

V10

V11

…

Vn

➊

➋

➌

➊: Basic
➋: Scatter
➌: Gather/
Reduction

RVV Zoozve

LMUL = 4

LMUL = 8

LMUL = 3

LMUL = 3

LMUL = 5

(a) (b)

Figure 1. (a) Valid LMUL values for RVV include 4 and 8
across different vector lengths. (b) Zoozve supports arbitrary
register grouping values such as 3 and 5 for asymmetric
instructions.

overcoming performance challenges when handling ultra-
long vectors. This extension enhances both resource utiliza-
tion and processing efficiency by incorporating innovative
instruction formats that accommodate essential vector opera-
tions and offer increased access to physical registers, thereby
minimizing memory usage. This work includes several con-
tributions, outlined as follows:
Strip-Mining-Free Vector Extension: To address the fixed
register count and power-of-two register group issues found
in RVV, a flexible RISC-V vector instruction extension with-
out strip-mining is proposed.
Arbitrary Register Grouping Strategy: A register alloca-
tion strategy that adapts dynamically to the circumstances
is introduced, intelligently modulating the distribution of
registers in accordance with real-time vector lengths and the
current register availability.
Compilation Support: Intrinsic splitting and assembly co-
alescing passes have been developed, together with a com-
prehensive compilation mechanism for Zoozve using LLVM,
allowing effortless conversion from high-level code to effi-
cient machine instructions.
2 Background and Motivation
Vector Strip-Mining: A fundamental aspect of vector ISAs
is strip-mining, which enables vector processors to handle
data volumes exceeding the capacity of available registers.
This method partitions sizable vectors into smaller strips,
each handled separately within a loop, which can be im-
plemented in either hardware or software [6]. For example,
Advanced Vector eXtensions (AVX) [8] implements strip-
mining through software without having specific hardware
control registers. In contrast, SVE uses the whilelt predica-
tive instruction for loop terminationmanagement. TSUBASA

[11] and RVV enhance strip-mining by integrating hardware
registers that dictate appropriate vector lengths for each
strip. Crafting an ISA that minimizes conditional overhead
while optimizing data-level parallelism demands careful con-
sideration.
Vector Register Grouping: Data structures for RVV and
Zoozve are depicted in Fig. 1. The power-of-two register
grouping (RG) approach in RVV has limitations in two prin-
cipal areas: (i) For relatively short vector lengths (VL), even
though an LMUL can fit all vector elements into a single RG, a
VL falling between (2𝑛𝑙𝑚𝑢𝑙−1+1) ·𝑉𝐿𝐸𝑁

𝑉𝐸𝑊
and (2𝑛𝑙𝑚𝑢𝑙 −1) ·𝑉𝐿𝐸𝑁

𝑉𝐸𝑊

may cause under-utilization of vector registers. Here, 𝑛𝑙𝑚𝑢𝑙 ,
𝑉𝐿𝐸𝑁 , and 𝑉𝐸𝑊 correspond to the logarithm of LMUL, the
bit width of an individual vector register, and the vector el-
ement bit width, respectively (illustrated in the RVV case
where LMUL equals 8 in Fig. 1); (ii) In cases of longer VLs,
RVV often faces challenges managing tail data during strip-
mining, where small-sized tail data can occupy RGs in a
higher LMUL setup, leading to diminished performance.

3 ISA Extensions and Methodology
3.1 Zoozve Extension Instructions
To eliminate strip-mining and address the aforementioned
vector register grouping drawbacks, Zoozve is specifically
designed for high-performance vector processing with the
following key principles: (a) The quantity and dimensions of
vector registers can be arranged with flexibility, not limited
to set values. (b) Having an adequate quantity of vector
registers enables more data to be kept in close proximity to
the execution units.
Zoozve vector instructions are broadly categorized into

three types: vector load/store instructions, vector arithmetic
and logical instructions, and vector control instructions us-
ing RISC-V custom opcode regions (custom-0/1/2). Fig.2(a)
presents the typical vector arithmetic and logical instruction
format. To support the efficient access of a large number
of vector register groups, the v_head field (e.g., vd_head,
vs2_head, and vs1_head) is used. This register field allows
for the access of up to 213 vector registers. It can be further ex-
panded by using vsetcsr instruction to write extra bits into
control and status registers (CSRs). The field v_head stores
the starting addresses of the vector registers involved in the
operation. The scalar register rs_avl holds the target vector
length. With the starting addresses provided by v_head and
the vector length specified by rs_avl, it becomes possible
to efficiently access large register groups. The rs2 field is
utilized to hold the scalar operand, enabling efficient vector-
scalar computations. Fig. 2(b) compares Zoozve and RVV
in a reduction add kernel, highlighting Zoozve’s reduced
instruction count due to the removal of strip-mining.

Asymmetric instructions are specifically designed for vec-
tor data processing, exemplified by scatter and gather in-
structions. Zoozve allows different VLs between source and

Zoozve: A Strip-Mining-Free RISC-V Vector Extension with Arbitrary Register Grouping Compilation Support (WIP)

vd_head[12:7] vs2_head[12:0] vs1_head[12:0]rs2

63 58 57 45 44 32

31

func6[5:0]

26 25 23

vew[2:0]

22

vm

21 15

vd_head[6:0] func3[2:0]

14 12 11 7

rs_avl[4:0]

6 0

custom-1/custom-2

V7 (Vacant)
V8 (Vacant)
V9 (Vacant)

Program

__riscv.Z_builtin(VTYPE dataflow, int VL);

builtin
function

Builtin

RG_num=3

Registers
...

Register Allocation

V7 (Vacant)
V8 (Vacant)
V9 (Vacant)

V6 (Occupied)

Vn (Vacant)

v256i16

v256i16

VLEN = 4096bits (v256i16)
 VTYPE = v768i16
 VL = 750

Zoozve Intrinsic Splitting

delimiter 3;

delimiter 0;

__riscv_vector.Z_intrinsic.v256i16.i32(v256i16 %20, i32 750);

VTYPE_SPLIT_NUM = ⌈𝐕𝐓𝐘𝐏𝐄/𝐕𝐋𝐄𝐍⌉ = ⌈𝟕𝟔𝟖/𝟐𝟓𝟔⌉ = 𝟑

Register Group

v238i16

Register Group

__riscv.Z_intrinsic.v768i16.i32(v768i16 %2, i32 750);

Intrinsic
Library

Zoozve Assembly Coalescing

1

2

3

45

Z_asm v7, 750

Z_asm v8, 750

Z_asm v9, 750
Z_asm v7, 750

tail

① Same mnemonic

② Consecutive vector registers

③ Same VL

Live Interval Modification

1

R
egiste

r
A

llo
catio

n

Vstart

...<VL x i(EW)> %vreg

<VLsplit x i(EW)> %v_start

<VLsplit x i(EW)> %v_end

Vstart

...
Vend

LLVM IR LLVM IRsplit

In
trin

sic
 Sp

littin
g

ASMsplit ASM

C
lan

g
Fro

n
ten

d

vVLiEW var

C

2 3

A
sse

m
b

ly
C

o
alescin

g

.z_vsum:

li a1, 1024

vbrdcst v0, 0

vls.half v0, (t4), a1

vredsum v3, v0, v3

vextract a0, v3, 0

.rvv_vsum:

vsetvli a2, zero, e32, m8, ta, mu

vmv.v.i v8, 0

.strip-mining:

vsetvli a2, a0, e32, m8, ta, mu

vle16.v v16, (a1)

vfadd.vv v8, v8, v16

sub a0, a0, a2

slli a2, a2, 2

add a1, a1, a2

blt zero, a0, strip-mining

.final-reduction:

vsetvli a0, zero, e32, m1, ta, mu

vmv.v.i v16, 0

vsetvli a0, zero, e32, m8, tu, mu

vfredusum.vs v16, v8, v16

vfmv.f.s fa0, v16

Initialization

Load Vector Data

Vector Reduction

Scalar Extraction

LMUL Config.

RVV Stripmining

Zoozve

RVV
(a)

(c)
(b)

Figure 2. (a) Zoozve vector arithmetic and logical instructions format. (b) Comparison of reduction add assembly in Zoozve
and RVV. (c) Compilation workflow for Zoozve in LLVM.
destination vectors by using register-level gather or register
scatter instructions, shown on the right of Fig. 1. For length-
ening vectors, a scatter instruction can be used: vd[vs2[i]]
← vs1[i]. Conversely, to shorten a vector, a gather instruc-
tion can be applied: vd[i] ← vs1[vs2[i]]. Unlike the
vrgather instruction in RVV, which maintains the same VL
for both source and target registers, Zoozve allows the tar-
get vector’s length to match the length of the input indices,
rather than the input vector’s length, which minimizes regis-
ter waste. These asymmetric instructions maximize register
efficiency when there is a substantial VL difference between
source and destination registers.

Leveraging the extensive encoding space described above,
an arbitrary, data-adaptive register grouping allocation strat-
egy is proposed to eliminate strip-mining at both the soft-
ware and compiler level. Specifically, Zoozve allows for a
variable number of vector registers (V0 to Vn), which can
be flexibly configured based on specific application require-
ments. The RGs in Zoozve can be dynamically adjusted based
on the types of instruction values. The determination of RG
depends on two factors: the starting register number, 𝑅𝐺ℎ𝑒𝑎𝑑 ,
allocated by register allocation (RA) algorithms of the com-
piler, and the vector data type, defined as 𝑅𝐺𝑡𝑦𝑝𝑒 = 𝐿 ·𝑉𝐸𝑊 ,
where 𝐿 is the programming vector length. Data types are
declared within the high-level programming language. At
compile time, RGs are allocated by calculating the range
from 𝑅𝐺ℎ𝑒𝑎𝑑 to 𝑅𝐺𝑡𝑎𝑖𝑙 = 𝑅𝐺ℎ𝑒𝑎𝑑 + 𝑅𝐺𝑡𝑦𝑝𝑒/𝑉𝐿𝐸𝑁 .

3.2 Compilation Workflow
To provide compilation support for Zoozve, we design the
compilation workflow shown in Fig. 2(c). Several LLVM

passes are implemented to remove the strip-mining assem-
blies. Below is a detailed step-by-step explanation of the
compilation process.
Step 1: The implementation of the built-in functions for

Zoozve in Clang provides programmers with an intuitive
interface to utilize Zoozve operations efficiently. These built-
in functions allow developers to explicitly specify the vector
value type, which is leveraged in subsequent optimizations.

Step 2: Clang then transforms these built-in functions
into intrinsics via intrinsic library mapping. Through static
single assignment (SSA), variables in the high-level language
are converted into virtual registers.
Step 3: To resolve the aforementioned compilation is-

sue, the Zoozve intrinsic splitting pass is introduced. In this
pass, the original intrinsic intermediate representation (IR)
is transformed into a split form with a specific value type,
ensuring that the range of virtual registers is clearly defined
and effectively managed. The total number of split instances
is determined by the split count. delimiter intrinsics are
inserted before and after each split to guide the RA phase.
These delimiters indicate which registers must be allocated
consecutively to form a register group.
Step 4: Once the transformed IR is generated, it is uti-

lized in the RA stage, where registers are assigned based on
the lifespan of virtual registers as determined by live inter-
val modification. The process operates between the lifetime
analysis and RA, ensuring that virtual registers grouped by
delimiter intrinsics are assigned consecutively. First, eligible
registers are scanned, tracing back to locate the delimiter in-
trinsic and determine the 𝐿𝑀𝑈𝐿. For each subsequent 𝐿𝑀𝑈𝐿

split intrinsic, it enforces the lifespan of the registers to that

Siyi Xu, Limin Jiang, Yintao Liu, Yihao Shen, Yi Shi, Shan Cao, and Zhiyuan Jiang

32 64 128 256 512 1024 2048
Vector Size [Word]

100

101

102

103

104

105

D
yn

am
ic

 In
st

ru
ct

io
n

Co
un

ts

 10.10x

 18.40x

 33.96x

 63.39x

 119.31x

 226.04x

 344.44x

 fft_RVV (LMUL=4)
 fft_Zoozve (LMUL=64)

0

500

1000

1500

2000

St
ri

p-
m

in
in

g
It

er
at

io
ns

fft

512 1024 2048 4096 8192 16384
Vector Size [Word]

100

101

102

103

D
yn

am
ic

 In
st

ru
ct

io
n

Co
un

ts

 3.06x

 5.41x

 10.18x

 19.53x

 38.76x

 76.00x

 dot_RVV (LMUL=8)
 dot_Zoozve (LMUL=1024)

0

50

100

150

200

250

300

St
ri

p-
m

in
in

g
It

er
at

io
ns

dotproduct

512 1024 2048 4096 8192 16384

Vector Size [Word]

100

101

102

D
yn

am
ic

 In
st

ru
ct

io
n

Co
un

ts

 2.08x
 2.08x

 2.24x
 3.92x

 2.27x
 7.75x

 2.39x
 14.92x

 2.41x
 29.58x

 2.43x
 58.92x

 axpy_RVV (LMUL=8)
 axpy_Zoozve (LMUL=16)
 axpy_Zoozve (LMUL=1024)

0

20

40

60
St

ri
p-

m
in

in
g

It
er

at
io

ns

axpy

Figure 3. Speedup of dynamic instruction counts and strip-
mining iterations for RVV and Zoozve across different ker-
nels: Top: fft processing of 𝑓 32 elements from 32 to 2048
points. Middle: dotproduct of 𝑓 32 elements from 512 to
16,384. Bottom: axpy operation on 𝑓 32 elements from 512 to
16,384.

of the first intrinsic. Finally, all split virtual registers are en-
queued for RA in the designated queue. The RA operates
by performing a lifetime analysis of virtual registers, allow-
ing virtual registers grouped by delimiter intrinsics to be
assigned in a manner that preserves their spatial continuity.
Step 5: Following RA, the IRsplit is translated into corre-

sponding Zoozve assembly instructions (Z_asms) through
the Zoozve assembly coalescing pass. During this pass, con-
secutive Z_asms are detected, where vector registers are con-
secutive and other parameters remain the same, and merged
into a single, consolidated instruction, corresponding to the
original built-in C function. This merging step optimizes
instruction flow and minimizes redundancy, effectively en-
suring that the final assembly sequencemirrors the efficiency
of the original function.
4 Experiment and Evaluation
4.1 Experimental Setup
We conduct experiments to compare the performance of
kernels executed using RVV and Zoozve, utilizing LLVM
15.6.0, the Spike simulator [17], and our customized Zoozve
simulator. The benchmarks include dotproduct and axpy
from OpenBLAS [12], as well as manually implemented fft

of various sizes, all of which are fundamental to scientific
computing, signal processing, and machine learning. Our
experiments analyze the impact of instruction count and
scalable LMUL in Zoozve, with configurations featuring up
to 2048 registers and LMUL values up to 1024. Furthermore,
we implement a hardware proof-of-concept to validate the
feasibility of the proposed ISA.

4.2 Kernel Comparison
Fig. 3 shows the speedup of Zoozve relative to RVV in dy-
namic instruction counts, along with the corresponding strip-
mining iterations for three different kernels: fft, dotproduct,
and axpy. fft demonstrates the significant advantages of
Zoozve (LMUL=64) over RVV (LMUL=4) in terms of dy-
namic instruction count speedup and the number of strip-
mining operations when processing FFT computations for
data sizes ranging from 32 to 2048 points. Regardless of the
data size, Zoozve consistently outperforms RVV in terms of
dynamic instruction count. Even for smaller data sizes like
32 points, Zoozve achieves a 10.1× speedup, which increases
to a 344.44× speedup when handling the larger 2048-point
data size. Unlike the traditional divide-and-conquer method
[4], Zoozve overcomes the LMUL constraints, enabling data
calculation and permutation with minimal register spilling.

Benefits are also evident when executing operations such
as dotproduct and axpy for 𝑓 32 elements spanning from
512 to 16,384. Both kernels exhibit linear computational com-
plexity of 𝑂 (𝑛), typically involving only multiplications and
additions without nested loops. In RVV, the dynamic instruc-
tion counts and strip-mining instances increase as the vector
size grows due to limited register resources. Specifically, for
dotproduct, the instruction count rises from 52 to 1292 and
the number of strip-mining increases from 8 to 256 as the vec-
tor size increases. In contrast, Zoozve’s larger registers and
adjustable LMUL parameters result in a constant dynamic in-
struction count of 17, eliminating the need for strip-mining.
For large data size, such as 16,384 𝑓 32 elements, the speedup
achieved by Zoozve can reach up to 76×. A similar trend
is observed in axpy where RVV’s instruction count grows
from 25 to 707 and strip-mining count rises from 2 to 64.
Meanwhile, Zoozve maintains a constant dynamic instruc-
tion count of 12 in axpy, achieving a speedup of up to 58.92×
when processing the same large data size.

4.3 Hardware Proof-of-Concept
Fig. 4 illustrates a possible hardware implementation for
Zoozve. Building upon [2], two key components are intro-
duced to support the Zoozve extension. In the control path,
additional logic is incorporated to accommodate the flex-
ibility of the RG and detect hazards between instructions.
Comparators (CMPs) determine whether register indices fall
within the range of 𝑅𝐺ℎ𝑒𝑎𝑑 and 𝑅𝐺𝑡𝑎𝑖𝑙 , with their outputs
OR’ed to generate a hazard signal. In the data path, a shuf-
fle engine – comprising a crossbar and multiple processing

Zoozve: A Strip-Mining-Free RISC-V Vector Extension with Arbitrary Register Grouping Compilation Support (WIP)

Zoozve Prototype

Lane #(N-1)

...

Lane #1

Lane #0 Shuffle

Engine

PE

PE

Main Sequencer

Hazard Detection

CMP

CMP

CMP

hazard

RGhead RGtail

RGhead RGtail

0

1

n

RGhead RGtail

Control Path
Data Path

Instruction Interface AXI Interface

Figure 4.A hardware architecture supporting the Zoozve ex-
tension, with the additional components required for Zoozve
shaded.

elements (PEs) – is implemented to handle inter-lane asym-
metric operations, while lanes execute symmetric operations.
Our design is synthesized using the SMIC 40nm process (400
MHz), yielding a 7.2 mm2 synthesis area and 11.9 mm2 lay-
out area for a 64-lane, 1024-register configuration, with a
negligible 5.2% area overhead.

5 Conclusion
This work presents Zoozve, a strip-mining-free RISC-V vec-
tor extension that tackles performance bottlenecks with ar-
bitrary register grouping in ultra-long vector computation.
Compiler optimizations, including intrinsic splitting and as-
sembly coalescing, further enhance performance, achieving
a 10.10× FFT instruction reduction with just a 5.2% area
increase.

Siyi Xu, Limin Jiang, Yintao Liu, Yihao Shen, Yi Shi, Shan Cao, and Zhiyuan Jiang

References
[1] Renzo Andri, Tomas Henriksson, and Luca Benini. 2020. Extending the

RISC-V ISA for efficient RNN-based 5G radio resource management.
In 57th ACM/IEEE Design Automation Conference (DAC). IEEE Press,
Piscataway, NJ, USA, 1–6. https://doi.org/10.1109/DAC18072.2020.
9218496

[2] Matheus Cavalcante, Fabian Schuiki, Florian Zaruba, Michael
Schaffner, and Luca Benini. 2019. Ara: A 1-GHz+ scalable and energy-
efficient RISC-V vector processor with multiprecision floating-point
support in 22-nm FD-SOI. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems 28, 2 (2019), 530–543. https://doi.org/10.1109/
TVLSI.2019.2950087

[3] Chen Chen, Xiaoyan Xiang, Chang Liu, Yunhai Shang, Ren Guo,
Dongqi Liu, Yimin Lu, Ziyi Hao, Jiahui Luo, Zhijian Chen, Chun-
qiang Li, Yu Pu, Jianyi Meng, Xiaolang Yan, Yuan Xie, and Xiaoning
Qi. 2020. Xuantie-910: A commercial multi-core 12-stage pipeline
out-of-order 64-bit high performance RISC-V processor with vector
extension: Industrial product. In ACM/IEEE 47th Annual International
Symposium on Computer Architecture (ISCA). IEEE Press, Piscataway,
NJ, USA, 52–64. https://doi.org/10.1109/ISCA45697.2020.00016

[4] James W Cooley and John W Tukey. 1965. An algorithm for the
machine calculation of complex Fourier series. Mathematics of com-
putation 19, 90 (1965), 297–301. https://doi.org/10.2307/2003354

[5] Michael Gautschi, Pasquale Davide Schiavone, Andreas Traber, Igor
Loi, Antonio Pullini, Davide Rossi, Eric Flamand, Frank K Gürkay-
nak, and Luca Benini. 2017. Near-threshold RISC-V core with DSP
extensions for scalable IoT endpoint devices. IEEE transactions on
very large scale integration (VLSI) systems 25, 10 (2017), 2700–2713.
https://doi.org/10.1109/TVLSI.2017.2654506

[6] John L Hennessy and David A Patterson. 2011. Computer Architecture,
Fifth Edition: A Quantitative Approach. Morgan Kaufmann Publishers
Inc., 340 Pine Street, Sixth Floor, San Francisco, CA, USA. https:
//dl.acm.org/doi/10.5555/1999263

[7] Hung-Ming Lai and Jenq-Kuen Lee. 2022. Efficient support of the scan
vector model for RISC-V vector extension. InWorkshop Proceedings
of the 51st International Conference on Parallel Processing. Association
for Computing Machinery, New York, NY, USA, 1–8. https://doi.org/
10.1145/3547276.3548518

[8] Chris Lomont. 2011. Introduction to Intel Advanced Vector Extensions.
Intel white paper 23 (2011), 1–21. https://hpc.llnl.gov/sites/default/
files/intelAVXintro.pdf

[9] Marcia Sahaya Louis, Zahra Azad, Leila Delshadtehrani, Suyog Gupta,
Pete Warden, Vijay Janapa Reddi, and Ajay Joshi. 2019. Towards
deep learning using TensorFlow Lite on RISC-V. In Third Workshop
on Computer Architecture Research with RISC-V (CARRV), Vol. 1. 6.
https://people.bu.edu/joshi/files/tflowlite-carrv-2019.pdf

[10] Francesco Minervini, Oscar Palomar, Osman Unsal, Enrico Reggiani,
Josue Quiroga, Joan Marimon, Carlos Rojas, Roger Figueras, Abra-
ham Ruiz, Alberto Gonzalez, Jonnatan Mendoza, Ivan Vargas, César
Hernandez, Joan Cabre, Lina Khoirunisya, Mustapha Bouhali, Julian
Pavon, Francesc Moll, Mauro Olivieri, Mario Kovac, Mate Kovac, Leon
Dragic, Mateo Valero, and Adrian Cristal. 2023. Vitruvius+: An area-
efficient RISC-V decoupled vector coprocessor for high performance
computing applications. ACM Transactions on Architecture and Code
Optimization 20, 2 (2023), 1–25. https://doi.org/10.1145/3575861

[11] NEC Corporation. 2018. SX-Aurora TSUBASA Architecture Guide
Revision 1.1. [Online]. Available: https://sxauroratsubasa.sakura.ne.
jp/documents/guide/pdfs/Aurora_ISA_guide.pdf.

[12] OpenMathLib. [n. d.]. OpenBLAS. GitHub. [Online]. Available: https:
//github.com/OpenMathLib/OpenBLAS.

[13] Matteo Perotti, Matheus Cavalcante, Renzo Andri, Lukas Cavigelli,
and Luca Benini. 2024. Ara2: Exploring Single-and Multi-Core Vec-
tor Processing with an Efficient RVV 1.0 Compliant Open-Source
Processor. IEEE Trans. Comput. 73, 7 (2024), 1822–1836. https:

//doi.org/10.1109/TC.2024.3388896
[14] Matteo Perotti, Matheus Cavalcante, Nils Wistoff, Renzo Andri, Lukas

Cavigelli, and Luca Benini. 2022. A ‘New Ara’ for vector computing:
An open source highly efficient RISC-V V 1.0 vector processor design.
In IEEE 33rd International Conference on Application-specific Systems,
Architectures and Processors (ASAP). IEEE Press, Piscataway, NJ, USA,
43–51. https://doi.org/10.1109/ASAP54787.2022.00017

[15] Angela Pohl, Mirko Greese, Biagio Cosenza, and Ben Juurlink. 2019.
A performance analysis of vector length agnostic code. In Interna-
tional Conference on High Performance Computing & Simulation (HPCS).
IEEE Press, Piscataway, NJ, USA, 159–164. https://doi.org/10.1109/
HPCS48598.2019.9188238

[16] Fabian Schuiki, Florian Zaruba, Torsten Hoefler, and Luca Benini. 2020.
Stream semantic registers: A lightweight RISC-V ISA extension achiev-
ing full compute utilization in single-issue cores. IEEE Trans. Comput.
70, 2 (2020), 212–227. https://doi.org/10.1109/TC.2020.2987314

[17] Spike. [n. d.]. Spike: RISC-V ISA Simulator. GitHub. [Online]. Available:
https://github.com/riscv/riscv-isa-sim.

[18] Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob Eapen, Mbou
Eyole, Giacomo Gabrielli, Matt Horsnell, Grigorios Magklis, Alejandro
Martinez, Nathanael Premillieu, Alastair Reid, Alejandro Rico, and
Paul Walker. 2017. The ARM Scalable Vector Extension. IEEE micro
37, 2 (2017), 26–39. https://doi.org/10.1109/MM.2017.35

https://doi.org/10.1109/DAC18072.2020.9218496
https://doi.org/10.1109/DAC18072.2020.9218496
https://doi.org/10.1109/TVLSI.2019.2950087
https://doi.org/10.1109/TVLSI.2019.2950087
https://doi.org/10.1109/ISCA45697.2020.00016
https://doi.org/10.2307/2003354
https://doi.org/10.1109/TVLSI.2017.2654506
https://dl.acm.org/doi/10.5555/1999263
https://dl.acm.org/doi/10.5555/1999263
https://doi.org/10.1145/3547276.3548518
https://doi.org/10.1145/3547276.3548518
https://hpc.llnl.gov/sites/default/files/intelAVXintro.pdf
https://hpc.llnl.gov/sites/default/files/intelAVXintro.pdf
https://people.bu.edu/joshi/files/tflowlite-carrv-2019.pdf
https://doi.org/10.1145/3575861
https://sxauroratsubasa.sakura.ne.jp/documents/guide/pdfs/Aurora_ISA_guide.pdf
https://sxauroratsubasa.sakura.ne.jp/documents/guide/pdfs/Aurora_ISA_guide.pdf
https://github.com/OpenMathLib/OpenBLAS
https://github.com/OpenMathLib/OpenBLAS
https://doi.org/10.1109/TC.2024.3388896
https://doi.org/10.1109/TC.2024.3388896
https://doi.org/10.1109/ASAP54787.2022.00017
https://doi.org/10.1109/HPCS48598.2019.9188238
https://doi.org/10.1109/HPCS48598.2019.9188238
https://doi.org/10.1109/TC.2020.2987314
https://github.com/riscv/riscv-isa-sim
https://doi.org/10.1109/MM.2017.35

	Abstract
	1 Introduction
	2 Background and Motivation
	3 ISA Extensions and Methodology
	3.1 Zoozve Extension Instructions
	3.2 Compilation Workflow

	4 Experiment and Evaluation
	4.1 Experimental Setup
	4.2 Kernel Comparison
	4.3 Hardware Proof-of-Concept

	5 Conclusion
	References

