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ABSTRACT This paper introduces a novel AI vision-enabled pediatric prosthetic hand designed to assist
children aged 10–12 with upper limb disabilities. The prosthesis features an anthropomorphic appearance,
multi-articulating functionality, and a lightweight design that mimics a natural hand, making it both
accessible and affordable for low-income families. Using 3D printing technology and integrating advanced
machine vision, sensing, and embedded computing, the prosthetic hand offers a low-cost, customizable
solution that addresses the limitations of current myoelectric prostheses. A micro camera is interfaced with
a low-power FPGA for real-time object detection and assists with precise grasping. The onboard DL-based
object detection and grasp classification models achieved accuracies of 96% and 100% respectively. In the
force prediction, the mean absolute error was found to be 0.018. The features of the proposed prosthetic
hand can thus be summarized as: a) a wrist-mounted micro camera for artificial sensing, enabling a wide
range of hand-based tasks; b) real-time object detection and distance estimation for precise grasping; and c)
ultra-low-power operation that delivers high performance within constrained power and resource limits.

INDEX TERMS artificial intelligence, prosthetic hand, rehabilitation, vision

I. INTRODUCTION

CONGENITAL limb loss and upper extremity abnormal-
ities were estimated to occur in approximately 15 indi-

viduals per 100,000 live births in the United States alone [1],
[2]. Beyond congenital disabilities, tumors, severe infections,
or traumatic injuries also cause pediatric limb deficiency
and place a significant physical and emotional burden on a
child and their family. Replacement of an upper limb with a
functional prosthetic hand had the potential to restore some
limb functionality and improve the independence of these
children. Furthermore, the earlier children were fitted for a
powered prosthesis, the lower the rate of prosthetic hand
rejection in the later years of their life [3]. The challenges
in fitting actuation and control systems in a small size while
maintaining a comfortable weight for long-term use were
among the main reasons for the limited options of hand
prostheses for children. This paper addresses these limitations
and presents a next-generation pediatric prosthetic hand with

advanced control.

The amalgamation of computer vision with different tech-
nologies has been explored in recent years [4], [5], and vision-
based control was successfully implemented inmany research
projects [6], [7]. The motivation for this research came from
our preliminary in-lab prosthesis designs (shown in Figure 1)
for grown-ups [8] that used vision-based control to detect and
grasp the object and a flexible pressure sensor to get tactile
feedback. Before this approach, we also experimented with
controlling hand gestures through brain waves [9]; however,
acute user attention is required for this, and daily use is not
feasible. The revised design [8] instead used a 2MP cam-
era, a time-of-flight (TOF) distance sensor, and embedded
processors to perform most of the grasping tasks. A per-
finger pressure sensor provided feedback to ensure a safe
grip, while an IMU detected gestures and released the object
(video demonstration of this hand is in [10]). Unlike EEG or
EMG-based designs, vision-controlled hands requireminimal
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personalized training. Each person needs to be trained to
adapt EEG / EMG-controlled devices and personalized data
is required to provide. Passive automation through a vision-
based prosthesis may keep user input to a minimum, making
it easier to use.

The success of this research motivated us to improve the
design by lowering the cost and power budget while adding
edge computing technologies. The target population also
changes in this project to elementary school-age children as
their physical, social, and mental skills develop at this age
[11]. The study shows that replacing an upper limb with a
functional prosthetic hand can potentially return some of the
functionality of the limb and improve the independence of
these children. However, the majority of prostheses available
to children were myoelectric-based [12], [13], priced around
14,000 USD. Although myoelectric-based approaches have
shown their limitations [14], other technologies had not been
thoroughly investigated for commercialization. Hence, we
aimed to present an alternative (vision-controlled) but smart
prosthetic hand that is customizable for children. At the same
time, we sought to keep costs and the power budget low to
maintain accessibility.

The use of 3D printing in the fabrication of soft robotic sys-
tems [15] allows the manufacturing of customized products at
low volumes in a cost-effective way, particularly in the fabri-
cation of hand prostheses. The soft structure of the prosthe-
sis may provide a safer mechanism than conventional rigid-
material systems. An anthropomorphic soft robotic prosthetic
hand (X-Limb [16]) and its revision for children [17] were
designed in a monolithic fashion, eliminating the need for
assembly and the associated inadvertent misalignments. Our
proposed design was in-house 3D-printed using a combina-
tion of hard PLA (polylactic acid) and soft material (sili-
cone). The system (design, interface, and software efficiency)
was fine-tuned (e.g., design refinement, component selection,
computation management, and cost reduction) through suc-
cessive iterations.

In summary, with the overall goal of assisting younger chil-
drenwith upper-limb disabilities, we leveraged soft prosthesis
design and integrated machine vision, advanced sensing, and
embedded computing into a prosthetic hand. This prosthesis
had an anthropomorphic appearance, soft structure, multi-
articulating functionality for grasping a wide range of objects,
and low weight, with a size similar to the natural hand of the
target population: children aged 10-12 years. The technical
contributions are as follows:

1) presentation of a low-power FPGA-based digital design
interfacing with a 2MP camera,

2) development of a customized DL force and grasp clas-
sification in conjunction with an object detectionmodel
to be hosted on the FPGA and multiple sensor interface
for firm grasping.

3) presentation of the ultra-low-power control mechanism
to ensure high performance within a limited resource,
size, and power budget of the pediatric prosthesis.

FIGURE 1. Example of 3D printed vision-enabled prosthetic hand
demonstrating grasping cylindrical object [8].

II. THE BIG PICTURE
As the project target was a subset of children (10-12 years
old) with trans-radial amputations, the size of the developed
prosthetic hand and forearm was designed to be similar to the
biological hand of this group, and the weight was kept lower
than that of the physiological limb. The average hand and
forearm weight for 10-12-year-old children were 120 g and
320 g, respectively [18]. The average forearm-hand length for
these children was 30 cm, hand length was 13 cm, and hand
breadth was 6 cm [19].
Typical prosthetic hands fall into two categories: fully ac-

tuated and under-actuated. A fully actuated prosthesis closely
replicates the actions andmobility of a natural hand, including
up to 27 Degrees of Freedom (DOF). However, to reduce
complexity, cost, power consumption, and weight, we de-
veloped the prosthetic hand with an underactuated design.
To meet the basic dexterity needs of this group, the design
only incorporated essential grasp types: the power grasp
(cylindrical and spherical) and pinch/tripod grasp as these
were identified to cover more than 70% of daily activities
[20]. Hence, a minimum of three degrees of actuation were
included: one for the thumb, one for the index and middle
fingers, and one for the ring and little fingers.
The design target was to deliver the force of the finger up to

5 N, and the closing and opening target time is approximately
1.5 seconds.

III. METHODOLOGY
The proposed pediatric hand integrates multiple sensors and
control components with an FPGA. The FPGA acts as the
central processing unit, interfacing with several peripherals
via different communication protocols (shown in Figure 2).
It connects to 11 IMUs and 5 Force Sensors through the
I2C interface to gather data related to motion and force. A
2MP RGB camera communicates with the FPGA via the
USB interface, enabling image capture. Additionally, a TOF
(Time-of-Flight) sensor is integrated using I2C for distance
measurement. The FPGA processes all incoming data and
controls the motors depending on the pressure feedback, thus
controlling the movement of the fingers.

2 VOLUME 11, 2023
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FIGURE 2. Block Diagram of Sensors and electronic connections with FPGA

Initially, the system remains in an idle state, waiting for a
characteristic user gesture to be activated. Upon activation,
the camera captures frames to detect nearby objects. Once an
object is detected, the system selects the appropriate grasp
pattern and force using the force and grasp classification
model. If the object is within reach, the hand moves to grasp
it. During grasping, the system monitors the force (a preset
threshold in the grasp and object detection model) to ensure
that the object is securely held and does not break. After
grasping, the system waits for a characteristic tilt gesture to
signal the release of the object, completing the task. The pro-
cess repeats as needed, starting from gesture classification.

A. MECHANICAL DESIGN
This prosthetic hand is specifically designed for children
aged 10 to 12, carefully considering factors such as weight,
usability, and functionality. Figure 3 shows the measurements
of the designed hand. The data on the size of the hand were
obtained from [21]. To ensure light weight and convenience,
we chose the underactuated design with 3 DOF, which bal-
ances sufficient dexterity with the simplicity required for
reliable, everyday operation. Each finger is designed with
two joints, as similar implementations found in robotic and
prosthetic research [14], [22]–[24], where two joint structures
provided effective adaptability and grasping versatility with
minimal complexity. Fingers and structural components are
made using PLA and 3D printing technology, which ensures
affordability, lightweight properties, and ease of replacement.

A soft silicone layer was added to the fingertips to improve
grip and facilitate interaction with various objects. The sil-
icone was prepared using a two-part liquid silicone rubber
(LSR) system, poured into custom molds, and cured at room
temperature, resulting in a durable, skin-like surface. The
chosen silicone mixture, Smooth-On (80% silicone base and
20% curing agent), was determined through experimental
testing to achieve the desired balance between softness and
durability. When combined with the underlying PLA struc-
ture, this silicone layer enhances the contact area, thereby

improving grasp performance during everyday tasks such as
holding utensils or toys. Additionally, the silicone provides
waterproof protection, safeguarding internal electronic com-
ponents from moisture exposure during typical daily activi-
ties.

FIGURE 3. Measurements are shown in the mechanical design of the
hand.

B. ELECTRONIC DESIGN
1) FPGA
In this design, a 2MP USB camera was interfaced with a Xil-
inx UltraScale+™MPSoC processor, which combined a high-
performance ARM processor and FPGA fabric, including
256K system logic cells, 1.2K DSP slices, and built-in image
sensor processing (ISP) in the same chip. The development
was initiated on a Kria KV260 board; then, a customized
PCB was developed. A CNN-based gesture classification,
Force and grasp classification, and object detection model
was hosted on this processor.

VOLUME 11, 2023 3
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2) System Firmware
For power-saving purposes, all modules were in sleep mode
when the device was not applied to an amputee, sensed by
the hand IMU. When applied, the camera and other sensors
remained in default sleep mode, except the IMU. After de-
tecting characteristic gestures from the IMU, the hand was
activated with an interrupt to the FPGA processor to ini-
tialize the camera (within 0.3 seconds). When activated and
moved close to an object, the camera captured the image and
identified the type of object based on the hosted DL model.
The controller got the object coordinates from the model
and the distance from the sensor. When the system detected
multiple objects closer to the hand, the system determined
the hierarchy depending on the object bounding box size. If
the system selects the wrong object, the user can correct it
with a specific gesture. The fingertip pressure sensor and IMU
ensured a precise grasp. When the user wanted to release the
object, the characteristic gesture was detected by the IMU and
sent to the FPGA.

3) Fingertip sensors
Each finger contains one force sensor (FMAMSDXX015WC2C3)
and two IMUs (MPU-6500). A TOF (VL6180) distance sen-
sor was placed on the index finger at the tip. We empirically
found that for smaller objects, placing a distance sensor on the
index finger works better than putting it on the wrist position.

FIGURE 4. Sensor placement on the finger.

4) Finger Control System
In this design, fingers are driven by the tendon wires con-
nected to the servo motor (INJS2065 Servo, weight 20g, stall
torque 7kg/cm). The index and thumb fingers are connected
to two servo motors, respectively. The rest of the fingers are
connected to a one-servo motor. The number of motors is
reduced to three to reduce power consumption andweight and
build a small form factor. The input signal to run the motors
comes from the FPGA.

C. OBJECT DETECTION MODEL
YOLOv7-tiny is designed as an efficient, real-time ob-
ject detector tailored for resource-constrained environments
derived from (You Only Look Once) YOLOv7 [25]. It
incorporates innovations from the full-scale YOLOv7 ar-
chitecture—such as Extended Efficient Layer Aggregation
Networks (E-ELAN) and compound scaling strategies—to
enhance gradient flow and optimize parameter usage, all
while significantly reducing computational complexity. Com-
pared to previous tiny models like YOLOv4-tiny, YOLOv7-
tiny achieves higher detection accuracy and faster inference
speeds, making it well-suited for deployment on edge devices
where low latency and efficiency are critical. In this project,
we planned to implement the model in KV260. To run the
model into KV260 Deep Learning Processor Unit (DPU),
we need to quantize the model. Different approaches exist,
such as Quant aware training (QAT) and post-quantization.
We chose QAT because it gives us slightly more accuracy.

1) Data collection and training object detection model
For model training, initially, images were captured from the
2MP camera placed on the wrist position for six object classes
(ball, cup, bottle, pen, spoon, cube). Images are collected
from different lighting conditions and different backgrounds.
Data is collected from various distances from the object.
Some sample images are shown in the Figure 6. Data were
divided into 80% training subsets, 10% testing, and 10%
validation subsets. Trained YOLOv7-tiny with 500 epochs
using images size 640 pixels. Hyperparameter optimization
resulted in parameters such as an initial learning rate (lr0) of
0.0105, a final learning rate factor (lrf) of 0.01, a momentum
of 0.908, and a weight decay of 0.00041.
For data augmentation, we applied flipping and mixed

augmentations that applied horizontal flips (50% probabil-
ity), doubling the orientations seen for each object. This
helps the model handle objects viewed from either the left
or right, improving viewpoint invariance. More significantly,
YOLOv7-tiny leverages mosaic augmentation (enabled at
100% frequency), which combines four images in one during
training. Mosaic presents the model with cluttered scenes of
multiple scaled objects and varied backgrounds, a technique
credited with improving the detection of small and occluded
objects. For color augmentation, we have used (hsv_h=0.015,
hsv_s=0.7, hsv_v=0.4) to randomly shift the hue (±1.5%),
saturation (up to 70%), and brightness (up to 40%) of training
images. This jittering creates diverse color and illumination
conditions, which prevents the model from overfitting to a
specific lighting scenario. As a result, the detector becomes
more invariant to lighting changes and color variations. We
have also used random geometric transformations like trans-
lation (±20% shift) and scale (up to 90% resize). These en-
hancements teach the model to detect targets despite changes
in position or distance, making it less sensitive to the exact
location or scale of the object.

4 VOLUME 11, 2023
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FIGURE 5. (Top) Object detection model [25] and (bottom) Force and Grasp Classification model.

FIGURE 6. Sample of data collected for training object detection model.

D. FORCE AND GRASP CLASSIFICATION

The proposed model (Figure III-C) is designed for finger
force prediction and grasp pattern classification based on ob-
jects detected by the object detection model. Initially, the ex-
tracted object ID is passed to the model by reshaping (1x1x1),
then a Conv2D(1×1) filter size 16 with activation function
RelU, followed by global average pooling. The resulting fea-
tures feed into two parallel dense layers, each with 16 neurons
and ReLU activation. One dense branch predicts the grasp-
ing pattern through softmax activation and categorical cross-
entropy loss, while the other branch estimates the maximum
grasping force using linear activation with regression loss. As
the Grasping pattern is categorical and the force is a floating
point number, we calculated categorical cross-entropy loss

for Grasp classification and Mean Absolute Error (MAE) for
Force.

1) Force and Grasp Classification Training
The model was trained using a data set comprising 3,000
pressure data points collected from a force sensor placed on
the finger for three grasping patterns: power grip, pinch, and
pronated. Data were gathered from six distinct objects of
real-world situations, encompassing things of various sizes,
shapes, and textures. The pressure sensors measured the force
exerted by each finger during every grip, offering information
on how the prosthetic hand emulates the natural movements
of the human hand when manipulating various objects. The
data were split into training (80%), testing (10%), and vali-
dation (10%). Training with a learning rate of 0.002 for 200
epochs, we achieved better performance.

E. GESTURE CLASSIFICATION
The camera in the prosthetic hand is placed on the wrist.
While grasping the object, the camera view is generally
blocked, so we need another signal or input to enable the
release of the object. To address this, we have added an IMU
in the palm to detect the characteristic gesture. Upon detecting
the gesture, the object is released. To train this specific model,
we collected data using our developed prosthetic hand.
Previously, researchers have implemented CNNs in classi-

fying gestures from IMU data [26] [27]. Depending on previ-
ous research to run the model efficiently in DPU, we choose
CNN to classify gestures. The proposed gesture classification
model Figure 7 is specifically designed for efficient deploy-
ment on a KV260 DPU, suitable for resource-constrained
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FIGURE 7. Gesture classification CNN-based model.

environments. It comprises three convolution layers (with
32, 64, and 128 filters, respectively), a MaxPooling2D, Flat-
ten, and followed by a Dense layer with 128 neurons. A
Dropout layer after Maxpooling2D , Flatten and Dense layer
was added. The use of relatively small convolutional kernels
(5×2) and (3x2) pooling (2×1) reduces computational load
and memory requirements. However, the simplified archi-
tecture, while optimized for low-power execution, may lead
to limited capability in extracting intricate spatial-temporal
features, potentially impacting performance onmore complex
gesture datasets. Despite this limitation, the model presents a
well-balanced compromise between computational efficiency
and accuracy, especially suited for real-time gesture recogni-
tion tasks on edge devices like the KV260.

For comparison, the Long Short-Term Memory (LSTM)
and Gated Recurrent Unit (GRU) models were also trained
with the same dataset and epochs; both LSTM and GRU
models have a two-layer LSTM or GRU network with 64 and
32 units, followed by dropout regularization, a dense ReLU
layer and a softmax output layer, designed for multiclass
gesture classification.

1) Gesture data collection and training
The raw IMU data were collected using our developed hand
using I2C. A button is used to start the data sampling process,
thereby reducing the influence of unintentional hand move-
ments. The button is activated at the time of the initiation of
the gesture, and data collection stops after an exact number
of samples is collected. We have collected total data for three
hand movements (Tilt right and Tilt left, No action). We have
collected 120 samples for each gesture at 30 Hz. The total
collected dataset consists of 660 IMU samples at a sampling
rate of 30 Hz, categorized into three gesture classes: twist
right, twist left, and no action. The data was distributed into
training (80%), testing (10%), and validation (10%) sets, and
trained for 300 epochs with a learning rate of 0.001 and a
batch size of 32.

F. CUSTOM PCB DESIGN
Printed circuit boards (PCBs) were designed and printed,
illustrated in Figure 8. Due to limited space at the finger-

tips, designing these PCBs posed considerable challenges
related to component density, routing complexity, and overall
board size constraints. With dimensions around 10–20 mm,
enabling precise placement within small prosthetic finger seg-
ments. However, the complexity of miniaturization and dense
routing increased signal interference, and thermal issues were
considered while designing.

FIGURE 8. Designed PCBs for placing sensors on the finger. (a) PCB
design for index finger fingertip. (b) PCB design for distal phalanx of other
fingers (c) PCB design for all five finger middle phalanx

G. HOSTING THE MODELS ON FPGA

A custom hardware overlay was created to deploy DLmodels
on the Xilinx UltraScale+ FPGA (on the dev board KV260)
with custom peripherals via PYNQ. We designed hardware
architecture in Vivado 2023, defining interfaces for peripher-
als (e.g., cameras, sensors, motors) and integrating the Deep
Learning (DL) Processing Unit (DPU) IP core. After design-
ing the overlays, we generated bitstream and then transferred
it to KV260. This overlay is loaded onto the KV260 FPGA
using PYNQ APIs, allowing Python code to interface with
both the DL accelerator and your custom peripherals. We
followed the standard Vitis AI procedures for model training,
quantization to INT8 precision, and deployment and hosted
the quantized model on the FPGA using the DPU runtime
provided within the PYNQ environment.
The project environment for training and deploying an ob-

ject detection model on an FPGA is trained on a workstation
with an Intel Core i9 processor, 64GB of RAM, and an RTX
3090 Ti GPU. The software setup uses Ubuntu 20.04 LTS
with Vitis AI Docker image version 3.5, while FPGA overlay
development is managed with Vivado 2023. The hardware

6 VOLUME 11, 2023



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

designworkflow includes PCB designwith EasyEDAPro and
3D modeling using Fusion 360.

H. POWER MANAGEMENT
The prosthetic hand is powered by an 11.1V 1300mAh LiPo
battery connected to a buck converter that provides both 3.3V
and 2.8V via separate voltage regulators. Two level shifters
are used to accommodate the TOF (VL6180) distance sensor,
which operates at 2.8V, while another sensor on the same bus
requires 3.3V.

IV. RESULT
A. OBJECT DETECTION RESULT
The trained YOLOv7-tiny QAT model achieved a mean av-
erage precision (mAP@0.5) of 96% for both training and
testing datasets. The system was implemented using a PYNQ
board and a USB camera to capture real-time video feeds.
Real-time processing was performed on DPU; it was able to
perform nine frames per Second (FPS).

B. FORE AND GRASP CLASSIFICATION RESULT
The model achieved a grasp selection accuracy of 100% in
classifying the three grasping patterns (power grip, pinch,
pronated) and the force estimation Mean Absolute Error
(MAE) of 0.0181.

C. GESTURE CLASSIFICATION RESULT
The Gesture classification CNN model achieved a training
accuracy of 99% and a testing accuracy of 100%. The com-
parison of different models trained with the dataset is shown
in Table 1.

TABLE 1. Model Performance Comparison for gesture classification

Model Training Accuracy Test Accuracy
LSTM 96% 97%
GRU 99% 99%
Our Model (CNN) 99% 100%

V. DISCUSSION
The innovation of this developed system lies in its unique ap-
proach to implementing custom DL models on an FPGA for
real-time image processing and adaptive grasping guidelines.
This design addresses the typical limitations of AI systems
by enabling high-performance functionality on resource-
constrained embedded FPGA platforms, eliminating the need
for expensive GPU-based processors.

This work demonstrates a systematic integration of vision
and embedded computing within a prosthetic hand designed
for children with upper limb disabilities by deploying a quan-
tized YOLOv7-tiny model on an FPGA-based Deep Learning
Processing Unit (DPU) while processing nine frames per
second. These performance metrics indicate that the approach
is viable for real-time object detection under controlled con-
ditions.

We addressed the limitations of commercially available
EMG/EEG-based systems by developing a custom camera-
based prosthesis with novel interfacing hardware, creating a
lightweight design. The "hand shell" (from the wrist to the
fingers) weighs 105 gm; without the battery and arm shell, the
complete hand weighs approximately 400 gm.. The firmware
for low-power embedded processors presents a pipeline for
prosthetic hands to run in low-resource environments. This
firmware can be easily adapted for other prosthetic appli-
cations and robotic research, expanding its potential reach.
Importantly, this system is designed to be low-cost, making it
accessible to people in developing countries, who often lack
access to advanced prosthetic technologies. Our designed
prosthetic hand delivers a finger force of up to 5 N to lift a 500
ml bottle, with a closing and opening time of approximately
1.5 seconds and 0.6 seconds, respectively. This finger force
can be increased by implementing more robust servo motors.
The closing time is a little longer than the opening time as we
are measuring force continuously while closing the hand for
grasping.
By integrating low-cost AI-vision technology into powered

prosthetic hands, the system bypasses expensive proprietary
control electronics and interfaces, directly connecting with
the motors of the hand. The ability to select features and
sensors based on individual requirements enables the creation
of energy-efficient, affordable designs for users who may
not need the full range of functionalities. This flexibility
makes the system not only cost-effective but also accessible
to populations in the developing world, where affordability
and simplicity are critical.
One key advantage of implementing all control and pro-

cessing logic in an FPGA is the potential to transition to a
dedicated ASIC design for mass production. By first validat-
ing the system’s functionality and performance in the flexible
FPGA environment, developers can confidently move to an
Application-Specific Integrated Circuit (ASIC) solution that
offers lower unit costs, reduced power consumption, and
compact form factors—ideal for high-volume manufacturing
scenarios.
The decision to use a camera-based method for control,

as opposed to EMG or EEG-based approaches, helps reduce
the need for extensive user-specific training and calibration.
Instead, the prosthesis leverages sensor fusion, combining
data from a 2MP USB camera, pressure sensors, and IMUs to
reliably classify grasp patterns and control motor functions.
The integration of a CNN-based gesture recognition model
was driven by compatibility constraints with the KV260
board. Although alternative architectures such as LSTM and
GRU showed marginally higher performance, the chosen
CNN architecture offered a better fit for the system’s limited
resources and provided acceptable accuracy levels.
This machine-vision research had immense societal impor-

tance, as children in early and middle childhood with limb
loss were under-served by current prosthetic hand options.
The constant growth of children requires frequent replace-
ment of their prostheses; this prosthetic hand electronics is

VOLUME 11, 2023 7
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designed in such a way it should fit with the larger hand,
which will reduce the complexity and cost.

In this design, we made all the finger sizes the same.
However, we introduced an angle difference in the joints
to make it more humanoid. Making each finger size mimic
the human hand would be a more robust solution. While
applying silicone; the ratio was determined by empirically
different combinations of Silicone base and curing agent to
get the right rigidness. From a mechanical perspective, the
underactuated design strikes a balance between achieving
sufficient dexterity and maintaining simplicity, low weight,
and cost-effectiveness. However, further standardization and
testing are needed, especially for long-term use and durability.
For communication, we selected I2C for the finger module
because SPI would need additional wiring, and the child’s
hand’s finger design has very limited space.

Convolutional Neural Networks (CNNs) offer distinct ad-
vantages over traditional fully connected (Dense) layers when
deploying gesture recognition models on the KV260 DPU.
CNNs use weight-sharing and local receptive fields, signif-
icantly reducing the number of parameters, computational
complexity, and memory footprint compared to Dense layers,
thus enhancing hardware efficiency. This optimization leads
to faster inference, lower latency, and better suitability for
real-time gesture recognition tasks on resource-constrained
embedded systems. Additionally, CNN architectures natu-
rally extract spatial and temporal features from IMU sensor
data, providing improved accuracy over Dense layers, which
typically treat each input dimension independently. Conse-
quently, CNN-based models are inherently more scalable and
performant, making them ideal candidates for deployment on
the KV260 DPU platform.

In our Gesture Recognition model, we initially started with
a small CNN. At first, we did not include a dropout layer,
which resulted in high validation and test loss. After adding
a dropout layer, the loss decreased. While testing the model,
we achieved 100% accuracy; however, we only had 20 data
points. More data collection and further testing are required
to validate the model’s accuracy for diverse environment.

Despite these promising results, there remain several areas
for improvement. One notable limitation is the absence of slip
detection capabilities, which could enhance grasp stability
in dynamic scenarios. Additionally, the current dataset for
object detection and gesture recognition may not sufficiently
capture the variability encountered in everyday environments.
Expanding the training dataset to include a wider range of
lighting conditions, backgrounds, and object classes will be
necessary to improve the model’s generalizability.

VI. CONCLUSION
The developed prosthetic hand successfully integrates ad-
vanced vision, embedded computing, and 3D printing tech-
nologies, offering a functional and cost-effective alternative
for children aged 10–12 with upper limb disabilities. Us-
ing FPGA-based hardware, real-time object detection with
YOLOv7 tiny, and customized grasp classification, the sys-

tem achieved good performance in both grasping accuracy
and gesture recognition. However, the current design does
not incorporate slip detection, which could limit its capability
in dynamically adjusting grip force. Future work includes
integrating slip detection sensors to enhance grasp stability,
expanding the object detection dataset with diverse daily-life
items under varying conditions, and further refining the CNN-
based gesture recognition model for improved accuracy and
responsiveness on edge computing platforms. By offering an
adaptable, user-friendly, and low-cost solution, the project
has the potential to significantly improve the quality of life
for individuals in third-world countries, bringing advanced
prosthetic technology within reach of those who previously
could not afford it.
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