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Abstract

As a fundamental challenge in visual computing, video
super-resolution (VSR) focuses on reconstructing high-
definition video sequences from their degraded low-
resolution counterparts. While deep convolutional neural
networks have demonstrated state-of-the-art performance
in spatial-temporal super-resolution tasks, their computa-
tionally intensive nature poses significant deployment chal-
lenges for resource-constrained edge devices, particularly
in real-time mobile video processing scenarios where power
efficiency and latency constraints coexist. In this work, we
propose a Reparameterizable Architecture for High Fidelity
Video Super Resolution method, named RepNet-VSR, for
real-time 4x video super-resolution. On the REDS valida-
tion set, the proposed model achieves 27.79 dB PSNR when
processing 180p→720p frames in 103 ms per 10 frames
on a MediaTek Dimensity NPU. The competition results
demonstrate an excellent balance between restoration qual-
ity and deployment efficiency. The proposed method scores
higher than the previous champion algorithm of MAI video
super-resolution challenge.

1. Introduction

Over recent years, convolutional neural networks
(CNNs) have demonstrated unprecedented performance
across diverse computer vision domains. Despite their em-
pirical success, practical deployment of these models re-
mains constrained by their substantial parameter counts and
floating-point operations (FLOPs), typically requiring exe-
cution on cloud-based GPU servers. This limitation con-
flicts with growing industrial demands for on-device AI
capabilities in mobile ecosystems, thereby driving cross-
disciplinary research into efficient CNN deployment strate-
gies for edge devices. When deploying AI-based solutions
on mobile devices, it is important to pay attention to the
characteristics of mobile NPUs and DSPs in order to design
efficient models. [1, 2] provide an extensive overview of

smartphone AI acceleration hardware and its performance.
Based on the results reported in these papers, the latest mo-
bile NPUs are close to the results of mid-range desktop
GPUs published not long ago. Thanks to the development
of edge chip computing power and edge AI accelerators,
edge AI algorithms have flourished.

Video super-resolution (VSR) has emerged as a pivotal
technology for enhancing visual content across industries,
enabling the reconstruction of high-resolution (HR) video
sequences from low-resolution (LR) inputs. Its applica-
tions span diverse domains: streaming platforms leverage
VSR to upscale legacy content while minimizing bandwidth
consumption; surveillance systems utilize it to clarify crit-
ical details in low-light footage for forensic analysis; and
mobile devices employ real-time VSR to refine zoomed-in
videos or stabilize recordings without specialized hardware.
In medical imaging, VSR enhances endoscopic video clar-
ity for precise diagnostics, while autonomous vehicles rely
on it to interpret distant objects in adverse weather condi-
tions. Despite these transformative use cases, deploying
VSR on resource-constrained edge devices, such as smart-
phones, drones, or IoT cameras, introduces significant tech-
nical hurdles.

In order to promote the development of video super-
resolution on mobile terminals, MAI2025 has a real-time
video super-resolution challenge track on an actual mo-
bile accelerator. The challenge seeks to establish optimal
equilibrium between reconstruction fidelity (quantified by
PSNR) and operational efficiency (measured through end-
to-end latency), requiring solutions to be able to balance
accuracy-efficiency.

In this work, we propose a Reparameterizable Ar-
chitecture for High Fidelity Video Super Resolution
method, named RepNet-VSR, for real-time 4x video
super-resolution. Demonstrating state-of-the-art efficiency-
accuracy co-optimization, our reparameterized architecture
achieves 27.79 dB PSNR on the REDS validation dataset
for 4× video super-resolution (180p→720p) in 103 ms/f on
a MediaTek Dimensity NPU. In summary, our main contri-
butions are as follows:
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• We use NAS search to search for the best parameter
configuration between PSNR and FLOPs.

• We employ 1×1 convolutional layers for dimension-
ality reduction, enhancing computational efficiency
while preserving feature representation capabilities.

• Multi-level feature fusion via channel concatenation
enhances representational capacity by combining low-
level textures and high-level semantics.

• We enhance the representation capabilities of network
through structural reparameterization, using more
complex networks during training and merging them
into a common convolution during inference to opti-
mize representation capabilities and computational ef-
ficiency.

2. Related Work
In recent years, numerous efficient methods have been

developed for image super-resolution tasks [3–6], demon-
strating robust performance even on hardware with con-
strained computational capabilities. Following the pio-
neering work of SRCNN [7], which introduced convolu-
tional neural networks (ConvNets) to super-resolution, FS-
RCNN [8] achieved substantial acceleration in single im-
age super-resolution (SISR) networks by utilizing the orig-
inal low-resolution input and reducing convolution kernel
sizes. DRCN [9] and DRRN [10] attempted to minimize
model parameters through recurrent architectures but in-
curred heavy computational overhead. To address this lim-
itation, IDN [11] and IMDN [12] implemented stream-
lined information fusion strategies to lower both parameter
counts and computational demands, whereas RFDN [13] in-
troduced a residual feature distillation mechanism. The re-
cent surge in transformer-based models has also led to the
integration of self-attention (SA) [14] into lightweight SR
frameworks. For instance, SwinIR [15] adopted window-
based SA, while ESRT [16] devised an efficient transformer
variant termed Efficient Multi-Head Attention (EMHA) for
SISR. Despite their effectiveness in modeling long-range
dependencies, these transformer-based approaches remain
computationally intensive.

Video super-resolution (VSR) poses significant chal-
lenges due to the necessity of extracting and integrat-
ing complementary information from multiple misaligned
video frames to achieve high-quality video restoration.
A widely used strategy is the sliding-window framework
[17–19], which restores each video frame by leveraging
neighboring frames within a limited temporal window. In
contrast, recurrent frameworks aim to harness long-term de-
pendencies through iterative propagation of latent features
across sequential frames. Broadly speaking, these tech-
niques [20–22] achieve superior model compactness com-

pared to sliding-window approaches. However, fundamen-
tal challenges persist in preserving long-range temporal de-
pendencies and ensuring robust feature alignment across
frames within recurrent architectures. BasicVSR [23] em-
ploys bidirectional propagation to holistically integrate tem-
poral information across the full input sequence for en-
hanced reconstruction fidelity. Notably, it utilizes optical
flow estimation to achieve precise spatiotemporal feature
alignment through adaptive warping operations. In RRN
[24], the model processes sequential frames through hidden
state inputs, employing identity mapping in the state prop-
agation to effectively retain texture information through-
out the network architecture. Although the above methods
achieve high reconstruction quality, they are inefficient on
resource-constrained mobile devices.

Neural Architecture Search (NAS) [25–27] auto-
mates the design of deep learning architectures for im-
age super-resolution, replacing manual trial-and-error ap-
proaches. Recent works demonstrate that NAS can dis-
cover lightweight, efficient, or high-performance SR net-
works tailored to specific constraints (e.g, computational
cost, parameters, or PSNR/SSIM metrics). Recent advances
in super-resolution have exploited structural reparameteri-
zation [28–31] to employ more complex networks during
training and merge them into a single vanilla convolution at
inference time.

3. Approach
3.1. Real-Time Video Super-Resolution Challenge

Constraints

The input tensor of model must process 10 subsequent
video frames with a shape of [1×180×320×30], where:

• The first dimension (1) represents the batch size.

• The second and third dimensions (180×320) corre-
spond to the height and width of the input frames from
the REDS dataset.

• The fourth dimension (30) combines the 3 RGB color
channels and 10 frames (3 × 10 = 30 channels).

The output tensor should have a shape of
[1×720×1280×30], maintaining the same batch size
and channel count while upscaling the spatial resolution to
720×1280.

The final score for this challenge, as defined in Formula
(1), is determined by two key metrics:

• Reconstruction quality of the output results.

• Model runtime performance on the target MediaTek
NPU.



Score(PSNR, runtime) =
22·(PSNR−27)

runtime
(1)

The scoring formula demonstrates that doubling the
computational efficiency on the target platform yields a
quality improvement equivalent to a 0.5dB gain in PSNR.
This necessitates prioritizing both image quality restora-
tion and computational performance optimization in net-
work design. To address this dual challenge, we imple-
mented a systematic experimental approach. Our method-
ology begins with a comprehensive evaluation of state-of-
the-art super-resolution techniques, followed by a detailed
exposition of our novel algorithm’s architectural advantages
and performance enhancements.

3.2. Analysis

In previous iterations of the MAI Video Super-
Resolution Challenge, participants demonstrated innovative
approaches by developing computationally efficient algo-
rithms that achieved an optimal equilibrium between vi-
sual reconstruction fidelity and runtime performance. The
proposed EVSRNet [32] framework employs neural ar-
chitecture search (NAS) technology to automatically op-
timize and identify optimal training parameters within its
novel network architecture. Team Diggers [33]introduced
a bidirectional recurrent neural network (BRNN) architec-
ture for video super-resolution, which leverages temporal
information by incorporating feature maps from both pre-
ceding and subsequent frames to enhance the resolution re-
construction of the current target frame. The MVideoSR
team [34] developed an ultra-compact neural network ar-
chitecture featuring merely four convolutional layers and
a 6-channel configuration for efficient feature extraction.
This lightweight model was optimized through a multi-
stage training methodology, achieving unprecedented com-
putational efficiency and the lowest recorded power con-
sumption on designated hardware platforms. RCBSR [34]
adopts a re-parameterized ECB architecture that employs
multi-branch network structures during the training phase,
which are subsequently consolidated into a single 3×3 con-
volutional layer for inference. This design strategy ef-
fectively optimizes the balance between achieving higher
PSNR metrics and maintaining computational efficiency in
practical deployment. While these algorithms demonstrate
notable performance advantages, they present specific oper-
ational limitations. The bidirectional recursive architecture
achieves superior reconstruction quality, yet exhibits signif-
icant computational inefficiency during execution. Another
prevalent issue arises in implementations employing chan-
nel compression through 3×3 convolution prior to depth-to-
space operations. Particularly in 4× upscaling frameworks,
this convolutional layer - designed to reduce feature chan-
nels from 48 to 3 - creates a critical processing bottleneck

due to its position in the computational pipeline. The archi-
tectural requirement for high-dimensional feature transfor-
mation prior to spatial reorganization substantially impacts
real-time processing capabilities.

3.3. Network Architecture

Motivated by these findings, we propose RepNet-VSR
- a re-parameterizable architecture. This approach specif-
ically addresses the identified computational bottlenecks
while maintaining reconstruction fidelity through multi-
level feature fusion. As shown in Figure 1, we use chan-
nel concatenation to integrate multi-level features of deep
and shallow network layers to enhance the feature repre-
sentation capability of the model. To optimize computa-
tional efficiency, we incorporate 1×1 convolutional layers
for dimensionality reduction throughout the fusion process.
Specifically, prior to the depth-to-space operation, we sub-
stitute conventional 3×3 convolutions with 1×1 convolu-
tions to achieve efficient channel compression from 48 to
3 dimensions. This architectural modification can speed up
upsampling by a factor of 4 while improving reconstruction
quality.

3.4. Reparameterization

Reparameterization is a technique in neural network de-
sign where models employ intricate architectures during
training phase (e.g, multi-branch with parallel operations)
that are subsequently transformed into equivalent but com-
putationally efficient structures during deployment. This
transformation usually involves combining multiple param-
eterized layers (e.g, convolutional blocks and skip connec-
tions) into a single convolutional layer. As shown in Fig-
ure 2, The proposed reparameterization module adopts a se-
quential architecture comprising three key operations. Ini-
tially, a 1×1 convolutional layer expands the channel di-
mension by a factor of 4, followed by a 3×3 convolutional
layer that extracts spatial features in this elevated feature
space. Subsequently, a 1×1 convolutional layer reduces
the channel dimension back to its original size, complet-
ing the bottleneck structure. In order to maintain dimen-
sionality consistency, a residual connection is implemented
using 1×1 convolution. This architecture design effectively
deepens the network while maintaining computational ef-
ficiency, thereby enhancing the feature extraction capabili-
ties of the model. The synergistic combination of channel
expansion/reduction and residual learning mechanisms ul-
timately strengthens the representational capabilities of the
model without introducing significant computational over-
head.

3.5. Neural Architecture Search

To achieve the best balance between reconstruction qual-
ity and runtime efficiency, we use FGNAS [35] to automat-



Figure 1. RepNet-VSR architecture overview.

Figure 2. RepConv overview.



Factor Search Space
Convolution types Normal

Convolution kernel sizes 3
Activation functions ReLU

The number of channels 0,1,..,32
The number of Repblock 0,1,..,8

Table 1. The search space of operations.

ically search between reparameterized modules and chan-
nels. The search space presented in Table 1 was system-
atically established, with a focused exploration of channel
count variations and reparameterized module quantities to
identify optimal parameter configurations within the pro-
posed architectural framework. This method achieves an
effective balance between computational efficiency and re-
construction fidelity through NAS.

3.6. Loss

FGNAS seeks to simultaneously maximize task perfor-
mance accuracy and minimize computational resource con-
sumption in the identified model. To achieve this dual ob-
jective, our formulation combines two key components: 1)
a primary task-specific loss function that optimizes pre-
diction quality, and 2) a regularization term designed to
penalize computational overheads associated with network
resources including parameter count, floating-point opera-
tions (FLOPs), and inference latency. In our work, FLOPs
are incorporated as a regularizer to penalize network com-
plexity, primarily because they offer a computationally effi-
cient metric for optimization.The objective function is for-
mally given by formula (2).

min
θ,ψ

L(ψ, θ) + λ ·R(ψ) (2)

4. Experiments
In this part, we will describe the implementation details

of our proposed method and report the results on the REDS
validation set.

4.1. Datasets

For this challenge, we employ the REDS [36] dataset,
a widely used benchmark for traditional video super-
resolution tasks due to its extensive content diversity and
dynamic scene composition. Following established proto-
cols, we partition the dataset into 240 videos for training,
30 for validation, and 30 for testing. Each video consists of
100-frame sequences, with every frame maintaining a na-
tive resolution of 1280×720 pixels at 24 frames per second.
To create low-resolution inputs, the original videos undergo
bicubic downsampling with a scaling factor of 4. The resul-
tant low-resolution sequences serve as model input, while

Model nc nb PSNR Runtime(ms) Score

1 8 4 27.39 56.5 0.0303
2 16 4 27.79 89.6 0.0334
3 32 4 28.01 149.7 0.0271
4 16 5 27.83 93.6 0.0323

Table 2. Training results of different models on the REDS valida-
tion set.

the corresponding original high-resolution frames function
as the reconstruction target.

4.2. Training Configuration

The models are trained using PyTorch Lightning with
mixed precision (FP16) enabled by specifying the preci-
sion flag in the Trainer, along with the Adam optimizer
configured with β1 = 0.9 and β2 = 0.999. We employ
a initial learning rate of 5 × 10−4. A decaying learning
rate scheduler is implemented across all stages, featuring a
500-epoch warm-up period followed by linear decay until
the learning rate reaches 1 × 10−8. We randomly extract
HR patches with dimensions 384×384 from high-resolution
images and corresponding LR patches of size 96×96 from
low-resolution images. The training process consists of two
distinct phases. During the initial phase, Neural Archi-
tecture Search (NAS) is employed to conduct architectural
search, optimizing both channel quantities and the count of
re-parameterizable modules. The objective function defined
in Equation 2 guides this optimization to maintain an opti-
mal equilibrium between image restoration quality (PSNR)
and computational efficiency. In the subsequent optimiza-
tion phase, the best configuration determined in the first
phase is retained, and the reconstruction quality of the pre-
trained model is adjusted using L2 Loss fine-tuning. All
hyperparameters remain consistent in both phases to ensure
the continuity of training, and the second phase focuses on
further performance optimization on the established archi-
tectural framework.

4.3. Runtime evaluation

As previously noted, while our training pipeline utilizes
PyTorch Lightning, the efficiency evaluation necessitates a
TensorFlow Lite (tflite) model. To achieve this, we transfer
the PyTorch model weights into an architecturally equiva-
lent TensorFlow implementation by performing dimension
transformations across network layers, ultimately generat-
ing a floating-point precision tflite model for runtime eval-
uation. To check the validity of the model, the challenge re-
quires running it using AI Benchmark on a MediaTek-based
device, using FP16 mode + MediaTek neuron delegate; if
there are other platforms, use NNAPI / Qualcomm QNN
delegate), as the final runtime evaluation will use a similar



Figure 3. Qualitative comparison on the REDS val datasets. Zoom in for better visualization.

setup. Given the current unavailability of the specified hard-
ware infrastructure, we are conducting computational effi-
ciency assessments of the selected model using FP16 preci-

sion optimization on the Qualcomm Snapdragon 870’s GPU
platform. This interim evaluation will be followed by for-
mal coordination with the MAI2025 organizing committee



to perform standardized efficiency benchmarking through
their designated testing protocols.

4.4. Ablation Studies

We employ a two-phase training strategy. During the
initial phase, Neural Architecture Search (NAS) is utilized
to conduct preliminary parameter optimization regarding
channel quantities and the number of reparameterization
modules. Subsequently, we initialize the model with pa-
rameters from the preceding phase and perform fine-tuning
using an L2-norm loss function for enhanced performance
refinement. As indicated in Table 2, we evaluated the com-
putational efficiency of processing 10 frames using FP16
precision mode on the Qualcomm Snapdragon 870 GPU
platform. In addition, Table 2 shows several sets of parame-
ter configurations with relatively high scores under the pro-
posed network architecture. Experimental results indicate
that the optimal configuration under the proposed architec-
ture occurs with 16 channels and 4 reparameterization mod-
ules.

4.5. Test on MediaTek’s NPU

In the final phase of our evaluation, we conducted a com-
prehensive efficiency assessment on the dedicated Neural
Processing Unit (NPU) of MediaTek.

• Quality-PSNR Progression:

Our model (MAI2025) achieves a 1.8% improvement
in PSNR over EVSRNet (27.79 vs. 27.42) and a 1.9%
improvement over RCBSR [34] (27.79 vs. 27.28), set-
ting a new standard for reconstruction quality and out-
performing RCBSR based on ECB reparameterization.

• Computational Efficiency: CPU Utilization:

Our solution shows comparable CPU latency to EVS-
RNet (273ms vs 271ms), though 2.44× slower than
RCBSR’s CPU implementation (273ms vs 112ms)
NPU Acceleration:

Maintains parity with EVSRNet (103ms) while
achieving 7.5% slower inference than RCBSR (103ms
vs 95.8ms) on the NPU of MediaTek.

• Score Metric Analysis:

Our model achieves a 66.7% higher composite score
than EVSRNet (0.029 vs. 0.0174) and 88.3% improve-
ment over RCBSR.

From Table 3, it can still achieve a better quality-
efficiency trade-off despite longer CPU runtime.

4.6. Visual Comparision

Our proposed RepNetVSR algorithm was evaluated
against bicubic interpolation, EVSRNet, and RCBSR in

Model year PSNR CPU Runtime NPU Runtime Score

EVSRNet MAI2021 27.42 271 103 0.0174
RCBSR MAI2022 27.28 112 95.8 0.0154

our MAI2025 27.79 273 103 0.029

Table 3. Inference time (ms) of RepNet-VSR on MediaTek NPU.

terms of subjective visual quality, with comparative results
demonstrating its significant superiority in perceptual per-
formance, as shown in Figure 3.

5. Conclusion
In this paper, we introduce RepNet-VSR, a reparame-

terizable architecture designed to optimize inference effi-
ciency while maintaining high restoration quality in video
super-resolution (VSR). Our method leverages reparame-
terization to streamline computational overhead during de-
ployment, enabling real-time performance on mobile de-
vices. When evaluated on the REDS validation set, RepNet-
VSR achieves a PSNR of 27.79 dB for 4x super-resolution
(180p→720p), processing each 10 frames in 103 ms on a
MediaTek Dimensity NPU. These results underscore its ex-
ceptional balance between reconstruction fidelity and com-
putational efficiency, addressing the critical challenge of
latency-sensitive mobile device applications. In addition,
RepNet-VSR surpasses previous competitive algorithms in
the MAI Video Super-Resolution Challenge, demonstrating
its practical advantages in deployment scenarios.
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