
Comptes Rendus. Physique
Draft

Research article / Article de recherche

A diagrammatic approach to correlation
functions in superfluids

Une approche diagrammatique des fonctions de
corrélation dans les superfluides

Alessia Biondi ,a, Maria Luisa Chiofalo ,b, Massimo Mannarelli ,∗,c and
Silvia Trabucco ,d

a Institut Pprime, CNRS–Université de Poitiers–ISAE-ENSMA. TSA 51124, 86073
Poitiers Cedex 9, France

b Dipartimento di Fisica, Università di Pisa, Polo Fibonacci, Largo B. Pontecorvo 3,
56127 Pisa, Italy

c INFN Laboratori Nazionali del Gran Sasso, Via G. Acitelli 22, 67100 Assergi (AQ), Italy
d Gran Sasso Science Institute, Viale Francesco Crispi 7, 67100 L’Aquila, Italy

E-mails: alessia.biondi@cnrs.fr (A. Biondi), marilu.chiofalo@unipi.it (M. L. Chiofalo),
massimo.mannarelli@lngs.infn.it (M. Mannarelli), silvia.trabucco@gssi.it
(S. Trabucco)

Abstract. Renaud Parentani has given a vast contribution to the development of gravitational analogue
models as tools to explore various important aspects of general relativity and of quantum field theory in
curved space-time. In these systems, two-point correlation functions are of the utmost importance for the
characterization of processes taking place close to the acoustic horizon. In the present paper, dedicated to
him, we present a study of path integral methods that allow to determine two-point correlation functions by
a perturbative expansion, in a way that - beyond its generality- is especially suited to analyze these processes.
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Résumé. Renaud Parentani a largement contribué au développement des modèles analogues gravitation-
nels, utilisés comme outils pour explorer divers et importants aspects de la relativité générale et de la théo-
rie quantique des champs en espace-temps courbe. Dans ces systèmes, les fonctions de corrélation à deux
points revêtent une importance capitale pour la caractérisation des processus se produisant à proximité de
l’horizon acoustique. Dans le présent article, dédié à sa mémoire, nous présentons une étude des méthodes
de l’intégrale de chemin permettant de déterminer les fonctions de corrélation à deux points par un déve-
loppement perturbatif, d’une manière qui - au-delà de sa généralité - est particulièrement approprié pour
étudier ces processus. Nos résultats s’appliquent tant aux superfluides non relativistes, réalisables dans des
expériences en laboratoire, qu’aux superfluides relativistes, pertinents pour les objets stellaires compacts.
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1. Introduction

Superfluidity is a macroscopic quantum effect observed in cold fluids determined by the spon-
taneous breaking of a global symmetry [1, 2]. Below the critical temperature, the fluid’s global
coherence is manifested in the off-diagonal long-range order, and correlation between distant
points is enhanced with respect to the normal phase, that is the case in which the temperature
is above the critical value [3–5]. For this reason, correlation functions are the primary tool to
test model predictions and compare with experimental results. They encode microscopic infor-
mation on global thermodynamic quantities, on the low-energy spectrum of the fluid, and on
possible quantum effects arising in the system across phase transitions. Particularly valuable ex-
amples of superfluid systems are ultracold atoms, which are investigated in extremely well con-
trolled tabletop experiments. In this case it is possible to explore different regimes at both equilib-
rium and out-of-equilibrium, after tuning temperature, interactions strength and range, amount
of disorder, dimensionality, and the action of synthetic gauge fields [6, 7].

Quite generally, one can trace the variation of external parameters and the possible realization
of different phases of matter in the correlation functions. They were the primary means to search
for effects due to the emergence of a curved space-time realized with inhomogeneous superflu-
ids. In particular, considering that the low-energy excitations of the system are sound waves, a
transonic flow is effectively equivalent to an emergent metric that traps phonons: they cannot
counter-propagate towards infinity [8]. The region where the fluid velocity equals the speed of
sound is named acoustic horizon and it is believed to emit a thermal radiation of phonons [8–21].
Such Hawking-like emission of an acoustic horizon produces an effective viscosity [19,21] on the
fluid flow and imprints a nontrivial signal on the density-density correlation function. The lat-
ter effect was numerically predicted in [22], and then confirmed in laboratory [23, 24]. Renaud
Parentani has been one of the most influential researchers in this field, providing key insights
into the theoretical understanding of different effects of the Hawking-like phonon emission on
the density-density correlation function [25–28].

In this work, we present a path integral method to obtain the partition function of the low-
energy excitations of a superfluid realized with a weakly-interacting boson gas. This approach
is motivated by applications where effective field theories are relevant and especially useful
to describe the system. Since we employ a covariant formalism, our results could be used
to characterize the properties of inhomogeneous superfluids both in terrestrial experiments
and in compact stars [29], and to describe the associated phenomena, see for instance [30].
After identifying the scale separation between the background fields and the corresponding
excitations, we construct the gaussian low-energy effective field theory [31, 32]. Then, we study
the two-point correlation functions, as they more easily encode information on the long-range
order. We provide the relevant equations to determine the correlation functions and a counting
scheme for their recursive evaluation in powers of momenta. Finally, we extend the approach
to include inhomogeneities of the superfluid background employing techniques developed in
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quantum field theory [33, 34]. The presented results pave the way for a perturbative analytic
evaluation of the effect of a sonic horizon on the two-point correlation functions.

The present paper is organized as follows. In Sec. 2 we review the covariant Lagrangian
that describes the low-energy properties of a boson gas with a global U (1) broken symmetry.
We discuss the non-relativistic matching with the Gross-Pitaevskii model as well as the scale
separation between background and excitations. In Sec. 3 we construct the partition function
for the effective field theory containing quadratic terms in the fields. In Sec. 4, we evaluate the
two-point correlation functions in different cases and we briefly discuss the effect of a space-
time modulated sound speed.
Natural units, ħ= c = 1, and metric signature (+,−,−,−) are used throughout this paper.

2. Low-energy effective field theory

We consider a boson gas that is so cold that any temperature effect is negligible. For this reason,
thermal fluctuations are suppressed and only quantum fluctuations are relevant. We describe
this system using the mean-field approximation and we assume that the global U (1) symmetry
associated to the conservation of the number of particle is spontaneously broken due to the
shape of the interaction potential. According to the Goldstone theorem, the low-energy spectrum
consists of a Nambu-Goldstone boson (NGB), the phonon, with a linear dispersion law [35]. The
extension of our approach to a larger symmetry group is straightforward.

In addition to global symmetries, space-time symmetries must be accurately taken into
account [36–38]. The matter background, described by a non-vanishing chemical potential, µ,
explicitly breaks Lorentz boost invariance. Moreover, in the presence of fluid flow, space rotations
are explicitly broken as well. For a uniform flow, we can orient the axes in such a way that the flow
four-velocity, uν, is along the x−direction, so u = (u,0,0). For simplicity, we discuss the case of
vanishing transverse gradients of the fluid flow, ∂y u = ∂z u = 0, hence the system has a residual
O(2) symmetry corresponding to rotations around the x−axis. The relativistic Lagrangian density
(hereafter the Lagrangian) of the considered system is given by

L = (DνΦ)∗DνΦ−m2|Φ|2 −λ|Φ|4 , (1)

describing a complex scalar field, Φ, with mass m and local two-body self interaction with
strength λ≪ 1. Here

Dν = ∂ν+ iµuν , (2)

is the appropriate covariant derivative, see for instance [36], determining the explicit breaking
of the Lorentz symmetries discussed above. Expanding the covariant derivatives in Eq. (1), we
obtain

L = ∂νΦ∗∂νΦ+µuν JνU (1) − (m2 −µ2)|Φ|2 −λ|Φ|4 , (3)

where

JνU (1) = i (Φ∂νΦ∗−Φ∗∂νΦ) , (4)

is the conserved current density. In Eq. (3) we see that the chemical potential gives two distinct
contributions to the Lagrangian: the second term on the r.h.s. produces an explicit Lorentz
symmetry breaking, while the third term on the r.h.s. is an effective mass shift. When |µ| = m
the effective mass of the scalar field vanishes, signaling a symmetry breaking typical of second
order phase transitions.

Given the Lagrangian, the generating functional of the correlation functions is

Z [J , J∗] =
∫

DΦDΦ∗ exp

[
i
∫

d 4x
(
L + J∗Φ+Φ∗ J

)]
, (5)
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where J and J∗ are external currents. The correlation functions can then be determined by
functional derivation, for instance

〈Φ∗(x1)Φ(x2)〉 =− 1

Z [0]

δ2Z [J , J∗]

δJ (x1)δJ∗(x2)

∣∣∣∣
J=J∗=0

, (6)

gives one of the response function to external currents. In order to make contact with observables
accessible in laboratory, it is useful to introduce a different representation of the scalar field, in
terms of quantities directly linked to the fluid’s density and velocity.

2.1. Madelung representation

In order to express the correlation functions in terms of density and velocity fields, we introduce
the Madelung representation

Φ= ρp
2

e iθ/ f , (7)

where both ρ and θ are real scalar fields. Since θ is a phase, it is naturally associated to the NGB
arising from the spontaneous breaking of the U (1) global symmetry. The constant f is a scaling
factor that in relativistic theories is introduced to have a scalar field with dimension of energy.
For instance, in chiral perturbation theory it corresponds to the pion decay constant, see for
instance [32], while in second quantization for a boson system f = ħ. In the following we take
f = 1 in natural units, thus θ is dimensionless. However, in Sec. 3 we will use the freedom to
rescale the phase field by an appropriate factor to simplify the notation.

Upon substituting Eq. (7) in Eq. (3) we obtain the Lagrangian

L = 1

2
∂νρ∂

νρ+ 1

2
ρ2∂νθ∂

νθ+ρ2µuν∂νθ− m2 −µ2

2
ρ2 − λ

4
ρ4 , (8)

and assuming that the system is close to equilibrium we can expand the fields as follows:

ρ = ρ0 + ρ̃ θ = θ0 + θ̃ , (9)

where ρ0 and θ0 are the mean field solutions satisfying the Euler-Lagrange equations

(
δL

δρ
−∂µ δL

δ∂µρ

)∣∣∣∣
ρ0,θ0

= 0, ∂µ
δL

δ∂µθ

∣∣∣∣
ρ0,θ0

= 0. (10)

The equation on the right indicates that the current

Jν0 = δL

δ∂νθ

∣∣∣∣
ρ0,θ0

= ρ2
0(∂νθ0 +µuν) , (11)

is conserved: it is the Noether current evaluated in the ground state. Thus, ∂µθ0 contributes to
the background fluid velocity. Assuming that the background is homogeneous, the first equation
indicates that the potential minimum is

ρ2
0 =

{
µ2−m2

λ for |µ| ≥ m

0 for |µ| < m
, (12)

thus |µ| = m corresponds to the second-order quantum phase transition point. The number
density is determined by standard thermodynamic relations, and it turns out to be

n =µρ2
0 , (13)

therefore ρ0 governs the background density.
In order to describe the density and velocity correlation functions, we have to rewrite the

partition function in terms of the radial field fluctuation and of the phonon field. In detail, the
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density fluctuation will be proportional to ρ0ρ̃, while the velocity fluctuation will be proportional
to ∂µθ̃. From Eq. (3), we obtain the quadratic Lagrangian in the fluctuations

L2 =1

2
∂µρ̃∂

µρ̃− 1

2
m̃2ρ̃2 +Vνρ̃∂

νθ̃+ 1

2
ρ2

0∂µθ̃∂
µθ̃ , (14)

where for simplicity we have performed a gauge transformation in such a way that terms propor-
tional to ∂µθ0 vanish, see [21] for a more detailed discussion. In the above equation,

m̃ =
√

2(µ2 −m2) =
p

2λρ0 , (15)

is the effective mass of the radial field fluctuation, and

V ν = 2ρ0µuν , (16)

determines the coupling between radial modes and phonons. The adiabatic sound speed is given
by

cs =
√√√√ λρ2

0

2m2 +3λρ2
0

=
√

m̃2

4m2 +3m̃2 , (17)

where the last expression is recast in terms of the effective mass of ρ̃.
The above Lagrangian is written in a covariant form. In order to make contact with experi-

ments, we provide the matching with the non-relativistic case in the following section.

2.2. The non-relativistic limit and the scale separation

The non-relativistic limit is obtained assuming that the mass of the bosons is much larger than
any other energy scale. This means that it gives the leading time dependence, therefore we write

Φ= ΦNRp
2m

e−i mt , (18)

where ΦNR is the non-relativistic wave function. The proportionality coefficient 1/
p

2m is such
that |ΦNR|2 = n, where n is the number density. With the definition in Eq. (18), the Lagrangian in
Eq. (3) for a static fluid reads

LNR = iΦ∗
NR∂tΦNR +Φ∗

NR
∇2

2m
ΦNR − λ

4m2 |ΦNR|4 , (19)

where we have taken into account that in the non-relativistic limit |µ| ≃ m, and we kept only the
leading order in the time derivatives. Comparing with the Lagrangian of the Gross-Pitaevskii (GP)
model in vanishing external potential,

LGP = iΦ∗
NR∂tΦNR +Φ∗

NR
∇2

2m
ΦNR − g

2
|ΦNR|4 , (20)

we have that

g = λ

2m2 . (21)

and the non-relativistic expression of the speed of sound squared is

c2
s = ng

m
≃ m̃2

4m2 , (22)

where we used Eqs. (13) and (15). Alternatively, one can obtain the non-relativistic expression of
the speed of sound directly from Eq. (17) for m̃ ≪ m.

From the above expression it is clear that any modulation of the sound speed corresponds
to a modulation of the radial field mass. This may arise as a consequence of a variation of
the background density, proportional to ρ2

0 or by a variation of the interaction strength λ.
In this simple model these two quantities are related by Eq. (12), however we shall assume
that their space dependence is different: the background density can be kept homogeneous
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Figure 1. Schematic representation of the scale separation between ultrasoft, soft and hard
scales. Spatial momentum (bottom axis) and phonon energy (top axis) characterizing the
different scales are reported in terms of the bare boson mass, m, the effective mass of the
radial field fluctuation, m̃, and the adiabatic speed of sound, cs , see the main text for more
details. The ultrasoft theory is equivalent to the hydrodynamic limit, with phonons the
only effective degrees of freedom, while the ρ̃ field is static. At the soft scale the radial field
fluctuations become dynamical. The hard scale is equivalent to the microscopic scale. We
also report the corresponding approximation of the bare radial-field propagator, D0, see
Eq. (30). In the ultrasoft limit it can be approximated by 1/m̃2, in the soft limit we can treat
it in a power expansion while for energies above m̃ the relativistic propagator should be
used.

by an appropriate external confinement such as an optical boxed potential [39], while the
speed of sound can have a non-negligible space dependence induced by an appropriately tuned
Fano-Feshbach resonance [40–42]. Although strictly valid for ultracold gases in an external
potential, for simplicity we will assume that also in the relativistic case the only inhomogeneous
background quantity is the speed of sound, or equivalently, the ρ̃ mass, while ρ0 is homogeneous.
In principle, this also means that one should take into account the space modulation of the
healing length

ξ2 ∼ 1

mg n
∼ 1

m̃2 , (23)

which determines the shortest wave-function variation scale for the single particle solution of the
GP equation.

For distances much larger than the healing length, corresponding to energies well below
m̃, the radial mode can be assumed to be static, thus the only dynamical degrees of freedom
are phonons. This is known as the hydrodynamic limit. More precisely, for cs < 1, we can
distinguish three energy scales, m ∼ m̃/cs , m̃ and m̃cs , which we call hard, soft and ultrasoft
scales, respectively, see Fig. 1 for a schematic representation. We define the corresponding
momentum scales by dividing the energy scales by the speed of sound, (we assume that this
is as well the scale of the background fluid velocity), thus the hard, soft and ultrasoft scales
correspond respectively to momenta m̃/c2

s , m̃/cs and m̃. Therefore, the hydrodynamic limit is
equivalent to the ultrasoft scale, corresponding to spatial momenta much less than m̃. Close to
the soft scale, both phonons and radial oscillations are dynamical. Finally, the hard scale is the
microscopic scale, corresponding to single atom excitations. Having a space dependent healing
length implies that such scale separation may change within the system. Since we will treat the
space modulation as a small perturbation, we neglect such effect, and we will refer to ξ as the
average value for the healing length in the system.
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3. Partition function

In the Madelung representation, the partition function is given by

Z [J ] =
∫

DρDθexp

[
i
∫

d 4x
(
L +Jρρ+ Jθθ

)]
, (24)

where J = (Jρ , Jθ) are the external currents. By functional derivatives, we can extract the cor-
relation functions of the fluctuations, expanding the Lagrangian density close to the stationary
solution, see Eq. (9). Including terms up to the second order in the fluctuations

L =L0(ρ0,θ0)+L2(ρ̃, θ̃) , (25)

the generating functional can be written as Z = Z0 Z̃ , where Z0 is evaluated at the stationary point,
while

Z̃ [J ] =
∫

Dρ̃Dθ̃exp

[
i
∫

d 4x
(
L2 + Jρρ̃+ Jθθ̃

)]
, (26)

contains the quadratic Lagrangian given in Eq. (14), which can be cast as

L2 =−1

2
ρ̃(□+m̃2)ρ̃+ 1

2
∂µθ̃∂

µθ̃+ ρ̃∂L θ̃ , (27)

with

∂L = V µ

ρ0
∂µ , (28)

the longitudinal derivative, which is an operator of dimension 2 in natural units. We have also
rescaled

θ̃→ θ̃

ρ0
, (29)

to simplify the notation. This is equivalent to define the scaling factor in Eq. (7), f = ρ0, which is
possible because, with no significant loss of generality, we are assuming that ρ0 is nonvanishing
and homogeneous.

From the above Lagrangian, one can readily see that the bare two-point functions of the ρ̃ and
θ̃ fields can be determined from the equations

(□x +m̃2)D0(x, y) = δ4(x − y) and □xG0(x, y) = δ4(x − y) . (30)

We can now calculate the general expressions of the two-point functions by functional derivatives
of the partition function:

〈ρ̃(x)ρ̃(y)〉 =− 1

Z̃ [0]

δ2 Z̃ [J ]

δJρ(x)δJρ(y)

∣∣∣∣
J=0

, (31)

〈θ̃(x)θ̃(y)〉 =− 1

Z̃ [0]

δ2 Z̃ [J ]

δJθ(x)δJθ(y)

∣∣∣∣
J=0

, (32)

〈ρ̃(x)θ̃(y)〉 =− 1

Z̃ [0]

δ2 Z̃ [J ]

δJρ(x)δJθ(y)

∣∣∣∣
J=0

, (33)

which can be extracted from Eq. (26) because Z0 depends only on the stationary solution of the
fields. The integrand in Eq. (26) is by construction gaussian in both the the radial and phonon
field fluctuations, thus we can integrate out both of them. We begin with the ρ̃ field. Integrating
it out is equivalent to substitute in Z̃ the saddle point solution of

−(□+m̃2)ρ̃+∂L θ̃+ Jρ = 0, (34)

that we can formally invert as

ρ̃(x) = D0(x, y)[∂y
L θ̃(y)+ Jρ(y)] , (35)
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Figure 2. Feynman diagram representation of the Dyson-like equations (50) (top) and (51)
(bottom). Thick double (solid or dashed) lines correspond to full propagators, while thin
(solid or dashed) lines to bare propagators. The phonon propagators are represented by
dashed lines, while ρ̃ propagators by solid lines. The vertices are the derivative operators
defined in Eq. (28).

where for the sake of notation we assume that the repeated variables are integrated. Integrating
out the ρ̃ field the partition function reads

Z̃ [J ] = Z̃ [0]
∫

Dθ̃ exp

[
i
∫

d 4xd 4y S[θ̃, J ]

]
, (36)

with Z̃ [0] the normalization factor and

S = Sθ̃+Sint +S Jρ , (37)

the total action, which includes the contribution of the currents. The term quadratic in the θ̃ field
is

Sθ̃ =
1

2
∂x
µθ̃(x)

(
ηµνδ4(x − y)+ V µV ν

ρ2
0

D0(x, y)

)
∂

y
νθ̃(y) , (38)

integrating by parts and neglecting surface terms, we can rewrite it as

Sθ̃ =−1

2
θ̃(x)G−1(x, y)θ̃(y) , (39)

where the inverse propagator of the θ̃ field is

G−1(x, y) = δ4(x − y)□x −∂x
L∂

y
LD0(x, y) , (40)

with the longitudinal derivative defined in Eq. (28). The full phonon propagator, is given by the
solution of the equation

G−1(x, z)G(z, y) = δ4(x − y) , (41)

thus it takes into account the radial field bare propagator.
The action

Sint = 1

2
Jρ(x)D0(x, y)∂y

L θ̃(y)+ 1

2
∂x

L θ̃(x)D0(x, y)Jρ(y)+ Jθ(x)θ̃(x) , (42)

describes the interaction of the phonon with the external currents; since the bare propagator D0

is symmetric, it can be rewritten as

Sint =Jρ(x)D0(x, y)∂y
L θ̃(y)+ Jθ(x)θ̃(x) . (43)

Finally,

S Jρ =
1

2
Jρ(x)D0(x, y)Jρ(y) , (44)

is the standard term quadratic in the external currents Jρ .
We can now integrate out the θ̃ field using the same procedure above. The equation of motion

of the phonon field reads,

G−1(x, y)θ̃(y) = Jθ(x)−∂x
LD0(x, z)Jρ(z) , (45)

that we can formally invert to obtain

θ̃(x) =G(x, y)
[

Jθ(y)−∂z
LD0(y, z)Jρ(z)

]
, (46)
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where we have taken into account that in general the derivative operator and the propagator
D0(x, y) do not commute, because the radial mode mass can be space-time dependent. The final
form of the partition function is

Z̃ [J ] = Z̃ [0]e i W [J ] , (47)

where

W [J ] = 1

2
JθG Jθ+

1

2
JρD0 Jρ + 1

2
(∂LD0 Jρ)G(∂LD0 Jρ)− 1

2
JθG∂L(D0 Jρ)− 1

2
(∂LD0 Jρ)G Jθ , (48)

is the generating functional, which depends on the full phonon propagators, G(x, y), and on the
bare radial field propagator D0(x, y). For notation convenience we have suppressed integrals and
integration variables; it is understood that any product of functions corresponds to an integration
and that derivatives act on the functions on their right side.

By functional derivatives we readily obtain that

〈θ̃(x)θ̃(y)〉 =−iG(x, y) , (49)

is the phonon two-point function. This is however in an implicit form, because G(x, y) depends
on D0, see Eqs. (40) and (41). In order to make such a dependence manifest, we rewrite Eq, (41)
as the Dyson-like equation

G(x, y) =G0(x, y)+G0(x, z)
(
∂z

L∂
r
LD0(z,r )

)
G(r, y) , (50)

and we will refer to the second term on the r.h.s. as the phonon self-energy. The above equation
is depicted in the top line of Fig. 2, where the full phonon propagator correspond to the double
dashed line and the bare propagator is indicated with the single dashed line. The vertex factors
are indicated with dots and correspond to the operator ∂L , see Eq. (28). In the present analysis, the
vertex factor should be counted as ∼ µv p in the momentum expansion, where µv ∼ m̃ and p is
the spatial momentum. The solid thin line in Fig. 2 correspond to the bare radial field propagator,
D0, while the total two-point functions of the radial field fluctuations, D(x, y), are depicted with
a double solid line. By functional derivation of Eq. (47), we find that such propagator satisfies the
Dyson-like equation

D(x, y) = D0(x, y)+D0(x, z)(∂z
L∂

r
LG(z,r ))D(r, y) , (51)

where we will call the second term on the r.h.s. the radial field self-energy. This equation is
represented on the bottom of Fig. 2. The system of Eqs. (50) and (51) is the central result of the
present work. It allows us to consistently compute the correlation functions at any desired order
in the momentum expansion.

4. Evaluating the two-point functions

We now proceed to evaluate the two-point functions at different orders in the momentum
expansion. The momentum power counting is nontrivial because one should take into account
that the vertices mix phonons with radial fields and therefore the contribution of different
poles should be properly taken into account. Moreover, the vertex expansion corresponds to
considering higher powers of momenta, which in some cases are compensated by the momenta
in the propagators. In this section we work with arbitrary d space-time dimensions, see the
Appendix A for a brief discussion of the dimensional reduction procedure.
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4.1. Correlation functions in the ultrasoft limit

We will indicate the momentum of the radial field fluctuation and of the phonon respectively
with

kµ = (k0,−k) and pµ = (p0,−p) , (52)

and defining k = |k | and , p = |p|, we will assume that k, p ≪ m̃, with m̃ varying on scales much
larger than the size of the system, thus it can be taken as a constant. In the ultrasoft regime we
neglect all terms of order k/m̃ and p/m̃.

Let us first consider the phonon Dyson-like equation (50). In the self-energy diagram one has
to take into account that there are two contributions, one from the phonon pole and one from the
radial field pole. The phonon-pole contribution is at energy p0 ≃ cs p ≪ m̃, and by momentum
conservation k0 = p0, meaning that the ρ̃ in the phonon self-energy has a high virtuality: it is far
away from its mass shell. In this case the bare radial field propagator in the phonon self-energy
diagram can be approximated as

D0(x, y) = 1

m̃2 δ
d (x − y) , (53)

and upon substituting the above expression in Eq. (50), and expanding in momenta, we have a
series of terms all of the same order 1/p2. All of these terms must be summed and as a result we
obtain the acoustic phonon propagator, which in momentum space is given by

G A(p1, p2) = 1

gµνpµ
1 pν

1

δd (p1 −p2) , (54)

where, apart from a conformal factor, gµν is the relativistic acoustic metric. In 3+1 dimensions it
is given by

gµν = ηµν+
(
c2

s −1
)

uµuν , (55)

where uµ is the fluid four-velocity, see [38,43,44] for a discussion of the relativistic acoustic metric
and for different derivations. In our picture the acoustic metric emerges from the sum of an
infinite series of Feynman diagrams, all of them at the same order in the momentum expansion.

The second contribution is from the radial field pole. In this case both phonons in Eq. (50) are
off-shell, with an energy p0 ∼ m̃. Such contribution is suppressed by a factor p2/m̃2 and has to
be discarded in the ultrasoft limit.

Regarding the self-energy diagram of the Dyson-like equation of the ρ̃ field in Eq. (51), we have
two contributions, as well. When the propagator of the radial field is on-shell, that is k0 ∼ m̃, then
in the self-energy diagram the phonon energy is p0 = k0 ∼ m̃ by four-momentum conservation,
thus the phonon is highly virtual. For this reason the phonon propagator contributes with a
factor ∼ 1/m̃2 and it follows that the first order self-energy correction is of order p2/m̃2, that
is negligible in the ultrasoft limit. The second contribution arises from the phonon pole. In
this case p0 ∼ p and the radial field propagators contribute with 1/m̃4. In the end this gives a
correction of the order p/m̃, which should be discarded as well. Thus, in the ultrasoft limit the
radial field correlation function is not affected by the phonon propagation. These results are
consistent with the fact that in the ultrasoft limit phonons propagate in the emergent acoustic
metric of the system induced by the static ρ̃ field. Since we treat m̃ as a constant we can readily
evaluate

D0(x,0) =−
∫

d d k

(2π)d

e i kµxµ

kµkµ−m̃2 + iϵ
= i

∫
d d−1k

(2π)d−12ωk
e−i k ·x

(
e−iωk tΘH (t )+e iωk tΘH (−t )

)
, (56)

where we used the iϵ prescription, ϵ→ 0+, ΘH is the Heaviside step function and ωk =
p

k2 +m̃2

is the radial mode dispersion law. The two-point correlation function is obtained taking equal
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times, therefore t = 0 in the present case. In quasi 1+ 1 dimensions, see the Appendix A, the
two-point correlation function turns out to be

D0(x,0) = i
∫ k̄

−k̄

dk

4π

e−i kx

ωk
≃ i

2π
K0(|x|m̃) , (57)

where k̄ is a momentum cutoff. Since the integral is convergent we actually extended the
integration domain to infinity and obtained the modified Bessel function, K0. The correlation
function exponentially decays with distance, with typical length scale 1/m̃ ∼ ξ, see Eq. (23). This
happens because taking t = 0 and x ̸= 0 is equivalent to propagation outside the lightcone,
which is exponentially suppressed. According to Eq. (15) the radial field mass vanishes at µ= m,
meaning that the density-density correlation function diverges: a typical behavior close to a
second-order phase transition.

An important aspect that emerges in the discussion of the ultrasoft limit is that the leading
corrections to the correlation functions are due to the phonon poles. This result can be general-
ized to any order of the vertex expansion of the Dyson-like equations (50) and (51): the leading
momentum contributions arise from the poles of the phonon propagators. We will refer to this
property as the phonon-pole dominance.

4.2. Correlation functions in the soft limit

In order to include the effect of the phonon fluctuations in the radial field correlation function
one should consider the soft regime, where we include the expansion terms in p/m̃ ≪ 1. At this
order the ρ̃ field becomes a dynamical non-relativistic mode. For simplicity we will include only
the leading corrections.

We begin with considering the ρ̃ two-point function. As discussed above, the dominant
contribution arises from the phonon pole, meaning that both the ingoing and outgoing ρ̃ in the
leading order vertex expansion of Eq. (51) have high virtuality. This correlation function is given
by

D(x, y) = D0(x, y)+ 1

m̃4 ∂
x
L∂

y
LG A(x, y) , (58)

where the bare propagator in the static limit is in Eq. (57) and G A(x, y) is the acoustic phonon
propagator, see Eq. (54). The G A(x, y) and not the full phonon propagator appears in Eq. (58)
because corrections to G(x, y) that arise in the soft limit are by construction subleading in p/m̃.
Using Eq. (49), we find that there is a simple relation between the correlation functions

〈ρ̃(x)ρ̃(y)〉 =−i D0(x, y)+ 1

m̃4 ∂
x
L∂

y
L〈θ̃(x)θ̃(y)〉 , (59)

moreover we have that

〈θ̃(x)ρ̃(y)〉 =−i
1

m̃2 ∂
y
LG A(x, y) = ∂

y
L

m̃2 〈θ̃(x)θ̃(y)〉 , (60)

where in both cases it is understood that the phonon correlation function is evaluated in the
ultrasoft limit. In general, these two-point correlations at a given order in momenta can be
obtained starting from G(x, y) evaluated at the previous order of momenta using appropriate
derivatives.

It remains to evaluate G(x, y) at this order, which however would only be useful to evaluate
the ρ̃ two-point correlation functions at the next order in the momentum expansion. We shall
provide the explicit results elsewhere, here we only notice that all the leading order contributions
that arise from the phonon poles have already been summed in G A . It remains to evaluate the
contribution of the ρ̃ poles. To this end, it is sufficient to evaluate the leading order term in the
vertex expansion of Eq. (50).
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4.3. Perturbative methods for an inhomogeneous background

So far we have assumed that the mass of the ρ̃ field is a smooth function of the coordinates. In this
section we consider the case of a non negligible space-time dependence. We present an approach
based on a perturbative expansion that takes into account that an inhomogeneous medium is
formally equivalent to a space-time dependent external field, see for instance [33]. The main
difference with homogeneous systems discussed above, is that now the propagators are not only
a function of x − y , but will also depend on x + y .

Starting from the Lagrangian density in Eq. (27), we can write the inverse propagator of the ρ̃
field as

D−1
0 (x, y) → D−1

0 (x, y)+ϵD−1
0I (x, y) = (

D−1
0 (x)+ϵD−1

0I (x)
)
δd (x − y) , (61)

where ϵ is a perturbative parameter, D−1
0I is equivalent to an external field and the last equality

holds because we restrict ourselves to local interactions. In momentum space, the effect of the ϵ
correction is that

D0(p1, p2) → D0(p1)δd (p1 −p2)−ϵD0(p1)D−1
0I (p1, p2)D0(p2) , (62)

and therefore
D0I (p1, p2) =−ϵD0(p1)D−1

0I (p1, p2)D0(p2) , (63)

which is not proportional to δd (p1 −p2), because in an inhomogeneous system the momentum
is not conserved. One can formally restore momentum conservation viewing the effect of the
inhomogeneous background as originating from an external field, having a momentum that
exactly compensates the momentum variation of the ρ̃ field. Finally,

D0I (x, y) =
∫

d d p1

(2π)d

d d p2

(2π)d
e i p1x e−i p2 y D0I (p1, p2) , (64)

is the correction to the propagator in coordinate space. To recap, the procedure is as follows:
starting from D−1

0I (x) determine D−1
0I (p2−p1), plug it in Eq. (62) and then obtain the correction to

the propagator in coordinate space by Eq. (64). The bare ρ̃ field propagator is now modified as
follows

D0(x, y) → D̂0(x, y) = D0(x, y)+ϵD0I (x, y) , (65)

which has to be plugged in the Dyson-like Eqs. (50) and (51) to determine the variation of the full
two-point correlation functions. For example, at the leading order in ϵ we have that

Ĝ(x, y) =G(x, y)+ϵG I (x, y) and D̂(x, y) = D(x, y)+ϵD I (x, y) , (66)

with

G I (x, y) =G0(x, z)
(
∂z

L∂
r
LD0I (z,r )

)
G(r, y) , (67)

D I (x, y) =D0I (x, y)+D0I (x, z)(∂z
L∂

r
LG(z,r ))D(r, y)+D0(x, z)(∂z

L∂
r
LG(z,r ))D0I (r, y)

+D0(x, z)(∂z
L∂

r
LG I (z,r ))D(r, y) , (68)

where the last term in the second equation arises from a modification of the phonon correlation
function and it is therefore subleading in the vertex expansion. It is important to notice that in
the momentum expansion one should consider Eq. (63), meaning that for the momentum power
counting, the perturbation amounts to two unperturbed radial field propagators. In any case, for
a given external modulation of the speed of sound it is now possible to evaluate the effect on the
two-point correlation functions at any desired order in the momentum expansion.

We are now in a position to undertake the study of any inhomogeneous superfluid system em-
ploying a double expansion: in momenta and in ϵ. This means that we can determine with ar-
bitrary accuracy the two-point correlation functions of inhomogeneous superfluids. Notice that
this can be done recursively: because of the phonon-pole dominance, the phonon propagator at
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a given order in momentum expansion determines the variation of the density-density correla-
tion function at the next order in momenta.

5. Conclusions

We have developed a path integral method to compute the correlation functions of low-energy
excitations in a weakly interacting boson superfluids with background inhomogeneities.

Starting from the partition function in the Madelung representation, we derived an effective
action up to quadratic order. This allowed us to obtain the generating functional by integrating
out both radial and phonon fluctuations. Our method provides a simple and systematic way
to compute two-point correlation functions using functional derivatives, while keeping the
physics transparent with respect to the conceptual map in Fig. 1 for the different and relevant
momentum/energy scales dictated by the boson mass and the effective mass of the radial
fluctuations. The full correlation functions for the radial and phonon fields are then expressed
as two Dyson-like equations, see Fig. 2 and Eqs. (50) and (51), which can be then expanded in
powers of moments over the effective mass of the radial field. Besides its generality, our approach
can reveal to be especially useful in building up effective field theories in curved space-time, one
of the core subjects of Renaud Parentani’s contributions to the scientific community [25–28].

We analyzed these correlators in the two relevant regimes, corresponding to the ultrasoft and
soft energy scales. In the ultrasoft limit the density-density correlation function is insensitive
to the phonon field, thus it shows exponential decay, as expected from propagation outside the
lightcone. The typical correlation length is in this case the inverse radial field mass, of the order
of the superfluid healing length. When the effective mass of the radial field approaches zero, the
correlation function diverges, signaling the presence of a second-order phase transition. We also
observed the phonon-pole dominance, meaning that at each order of the vertex expansion of the
Dyson-like equations, the leading contribution comes from the phonon propagator pole. This
implies that we can properly organize the momentum expansion in a recursive way: the phonon
two-point function evaluated at the nth order of the momentum expansion allows to evaluate
the density-density two-point function at the (n +1)th order in momenta. In turn, this can then
be used to evaluate the phonon two-point function at the (n +1)th order.

Finally, we introduced a perturbative method to calculate the correlation functions in an in-
homogeneous background. Since the method is perturbative, it allows for a recursive compu-
tation of the two-point correlation functions with arbitrary precision, making it suitable for de-
scribing realistic and spatially varying superfluid configurations. For these reasons the present
study paves the way for the systematic discussion of the density-density correlation functions in
systems having a modulated sound speed that makes the fluid flow transonic, see [45] for a pre-
liminary study. To this end, one could consider a stationary fluid flowing at the constant velocity,
u, with a speed of sound having a small space dependence, proportional to ϵ, such that in the
supersonic region it is less then |u|, while in the subsonic region is larger than |u|. The two re-
gions are separated by the sonic horizon, where the speed of sound equals the fluid velocity. The
presented method should allow to perturbatively determine the effect of the sonic horizon on the
two-point correlation functions. In particular, one could determine the imprint of the Hawking
radiation, which is expected to be emitted close to the acoustic horizon, on the density-density
correlation function.

This work is limited to the quadratic (non-interacting) case, but it lays the groundwork for
future studies that include interactions. The procedure is in principle straightforward: one
should simply properly include the interaction vertices in the momentum power counting, while
at the same time accounting for the relevant Ward identities. In this way one could as well
determine the effect of interactions on the Hawking-like radiation finding how it eventually
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modifies the spectrum of the emitted phonons. This work can in principle be generalized also
to systematic accounting of inhomogeneities, by reverting to the formal apparatus of time-
dependent density-functional theory in connection with quantum hydrodynamics [46] in the
relevant case of superfluids [47, 48].

Appendix A. Dimensional reduction

In many experiments, the system is effectively 1+ 1 dimensional: the ultracold atoms are in a
trap elongated in one direction, while the transverse extension is much smaller. For this reason
it turns useful to express the correlation functions in quasi 1+ 1 dimensions. By this we mean
a physical system with 3+ 1 dimensions elongated, say along the x−direction, with transverse
dimensions much smaller than the longitudinal one. To treat a 3+ 1 dimensional system with
transverse size, ℓ⊥ ≲ ξ, we have to properly quantize it. Let us consider a generic mode with
mass m. Taking the transverse plane orthogonal to the x−direction, the free-particle dispersion
law is given by

ωp =
√

p2
z +p2

x +p2
y +m2 , (69)

where the properly quantized transverse momenta are

py = ny
2π

ℓ⊥
and pz = nz

2π

ℓ⊥
, (70)

with ny and nz integers. The integral in momentum space now reads∫
d 3p →

(
2π

ℓ⊥

)2 ∑
ny

∑
nz

∫
dpx , (71)

and thus for vanishing ℓ⊥ it diverges unless ny = nz = 0, corresponding to a mode with frozen
transverse dynamics. Assuming that the system is in a trap that freezes the dynamics in the
transverse plane, we can express the integral in momentum space for a quasi 1+1 dimensional
system as ∫

d 3p →
(

2π

ℓ⊥

)2 ∫
d 3p δ(py )δ(pz ) . (72)

Let us now consider the correlation function of the ρ̃ field. From the above reasoning it follows
that the relation between the correlation function in 3+1 dimensions in an elongated trap and
the one in 1+1 dimensions is simply

〈ρ̃(0, x)ρ̃(0)〉∣∣ 3+1 D = 1

ℓ2
⊥

〈ρ̃(0, x)ρ̃(0)〉∣∣ 1+1 D , (73)

where x is along the longitudinal direction of the trap. When discussing quasi 1+1 dimensional
system in the main text, we are actually considering a 3 + 1 dimensional system with frozen
dynamics in the transverse plane.
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