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Topological invariants are crucial for characterizing topological systems. However, experimentally
measuring them presents a significant challenge, especially in non-Hermitian systems where the
biorthogonal eigenvectors are often necessary. We propose a general approach for measuring the
topological invariants of one-dimensional non-Hermitian systems, which can be derived from the
spin textures of right eigenstates. By utilizing a dilation method, we realize a non-Hermitian system
without chiral symmetry on a two-qubit nuclear magnetic resonance system and measure the winding
number associated with the eigenstates. In addition to examining the topology of the eigenstates,
our experiment also reveals the topological structure of the energy band, which differs from that in
chiral systems. Our work paves the way for further exploration of complex topological properties in
non-Hermitian systems without chiral symmetry.

I. INTRODUCTION

Topological phases of matter play a central role in con-
densed matter physics and fault-tolerant quantum com-
puting [1–5]. Recent studies on topological phases have
extended to non-Hermitian systems and attracted a great
interest in both theoretical [6–36] and experimental do-
mains [37–54]. Different from the Hermitian systems,
non-Hermitian systems exhibit unique properties such as
complex eigenvalues [55], biorthonornal eigenvectors [56],
exceptional points [10, 11, 43–45], and non-Hermitian
skin effects [15–18]. These novel phenomena provide
valuable insights into non-Hermitian systems. Due to
the global nature, topological invariants such as Chern
number and winding number can be employed to char-
acterize different topological phases [57–61]. However,
non-Hermiticity presents challenges for the realization of
non-Hermitian systems and the measurement of topolog-
ical invariants based on biorthogonal eigenvectors, when
the definitions of topological invariants in Hermitian sys-
tems generalize to non-Hermitian systems [23, 24]. The
method for measuring the topological invariants in non-
Hermitian systems is urgent and may be a prerequisite
for exploring non-Hermitian topological phenomena in
experiments.

In the non-Hermitian context, measurements of topo-
logical invariants are often associated with the right and
left eigenstates, governed by H and H†, respectively. Re-
cent theoretical works proposed that the winding num-
ber can be measured through the spin textures in non-
Hermitian systems [35, 36]. In these methods, both the
right and left eigenstates are required, which can impose
a burden on experiments, because we must separately im-
plement H and H† to obtain the evolutions of the right
and left eigenstates. On the other hand, it is well estab-
lished that symmetry is crucial in the study of topological
properties [7–9]. For non-Hermitian systems, the topo-
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logical characteristics differ significantly depending on
whether or not chiral symmetry is present [23, 24]. How-
ever, recent experimental studies have primarily focused
on measuring the topological invariants of non-Hermitian
systems with chiral symmetry [37, 38], while experimen-
tal research on non-chiral systems is still lacking.
In this paper, we report an experimental measurement

of the topological invariants in one-dimensional (1D) non-
Hermitian systems without chiral symmetry. We employ
a dilation method to realize the evolution of a general
non-Hermitian system on a two-qubit nuclear magnetic
resonance (NMR) system. Starting with a right state
of the non-Hermitian Hamiltonian, the dilated system
evolves under the Hermitian Hamiltonian. We observe
the time evolutions of right-state spin textures for a
non-Hermitian system through the projection measure-
ment onto the dilated system. We propose a method
to measure the winding number of a non-Hermitian sys-
tem using the right-eigenstate spin textures. The right-
eigenstate spin textures and related complex eigenvalues
can be extracted by fitting the observed time evolutions
of right-state spin textures. Using this approach, the ex-
periment only requires the evolution under H, without
the simulation of H†. Furthermore, we demonstrate that
when the chiral symmetry of a non-Hermitian Hamilto-
nian is broken, the topological invariants of its eigenstates
and eigenvalues exhibit different phase transition bound-
aries [23]. This contrasts with systems possessing chiral
symmetry, where the boundaries of both coincide [24].

II. THEORY

The Hamiltonian of a 1D two-band non-Hermitian sys-
tem can generally be expressed as

H(k) = h(k) · σ. (1)

where h(k) = (hx(k), hy(k), hz(k)) is a complex vec-
tor field that depends on the quasimomentum k, and
σ = (σx, σy, σz) denotes the Pauli matrices. Not-
ing that if hz = 0, the Hamiltonian (1) exhibits chi-
ral symmetry, i.e., σzH(k)σz = −H(k). However,
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when hz ̸= 0, the Hamiltonian (1) breaks the chi-
ral symmetry. Due to the non-Hermiticity of the sys-
tem, H(k) ̸= H†(k), the distinct right and left eigen-
states are defined by H(k)|φRµ (k)⟩ = Eµ(k)|φRµ (k)⟩
and H†(k)|φLµ(k)⟩ = E∗

µ(k)|φLµ(k)⟩, respectively. Here

Eµ(k) = µ
√
h2x(k) + h2y(k) + h2z(k) are the complex

eigenvalues, with µ = ± indexing the two bands. In
constract to Hermitian systems, neither |φRµ (k)⟩ nor

|φLµ(k)⟩ form an orthogonal basis. Instead, they com-
bine to create a pair of biorthogonal vectors that satisfy:
⟨φLµ(k)|φRµ′(k)⟩ = δµµ′ and

∑
µ |φRµ (k)⟩⟨φLµ(k)| = 1 by

the normalization [56]. The explicit forms of the right
and left biorthogonal eigenstates of the Hamiltonian (1)
are given by

|φRµ (k)⟩ =
1√

2Eµ(Eµ − hz)
(hx − ihy, Eµ − hz)

T ,

⟨φLµ(k)| =
1√

2Eµ(Eµ − hz)
(hx + ihy, Eµ − hz).

(2)

If the system starts at an initial right state |ψR(k, 0)⟩ =∑
µ cµ|φRµ (k)⟩ or its related left state ⟨ψL(k, 0)| =∑
µ c

∗
µ⟨φLµ(k)|, their time evolutions governed by H(k)

and H†(k) are described by

|ψR(k, t)⟩ =
∑
µ

cµ(k)e
−iEµ(k)t|φRµ (k)⟩,

⟨ψL(k, t)| =
∑
µ

c∗µ(k)e
iE∗

µ(k)t⟨φLµ(k)|.
(3)

To characterize the properties of non-Hermitian sys-
tems, it is essential to consider the topological invariants,
such as the winding number. One can readily generalize
the definition of winding number that is related to the
Berry phase in Hermitian systems to non-Hermitian sys-
tems, which can be written as [24, 30]

wµ =
1

π

∮
dk⟨φLµ(k)|i∂k|φRµ (k)⟩, (4)

where µ = ± indicates the band labels. For Hermitian
systems, we have |φLµ(k)⟩ = |φRµ (k)⟩, whereas in non-

Hermitian systems, |φLµ(k)⟩ ≠ |φRµ (k)⟩, making it chal-
lenging to detect the wµ in experiments.
By substituting the explicit forms of |φRµ (k)⟩ and

⟨φLµ(k)| into Eq. (4), we represent wµ as follows

wµ =
1

2π

∮
S

dk
hx∂khy − hy∂khx
Eµ(Eµ − hz)

. (5)

For the case of chiral symmetry (i.e., hz = 0), it can be
found that the wµ for each band takes the same value, i.e.,
w+ = w−. But for the general case without chiral sym-
metry, the wµ is not a quantized number and w+ ̸= w−,
showing that the wµ is no longer topological invariant.
Nevertheless, their sum,

wt = w+ + w− =
1

π

∮
S

∂kϕyxdk, (6)

has been demonstrated to be a topological invariant [24],
where ϕyx = arctan(hy/hx) is a complex angle. Since
Im(ϕyx) is a real continuous periodic function of k, we
have

∮
c
∂kIm(ϕyx)dk = 0, which means that only Re(ϕyx)

contributes to the integral of Eq.(6).
To measure the winding number wt, recent theoretical

work [35] demonstrated that the real part of ϕyx can be
decomposed as

Re[ϕyx(k)] =
1

2

[
ϕRRyx (k) + ϕLLyx (k)

]
+ n

π

2
, (7)

where n is an integer, and

ϕββyx = arctan

(
⟨ψβ(k, t)|σy|ψβ(k, t)⟩
⟨ψβ(k, t)|σx|ψβ(k, t)⟩

)
. (8)

with β = R,L, and the long-time average of

spin texture is defined as ⟨ψβ(k, t)|σα|ψβ(k, t)⟩ =

limT→∞
1
T

∫ T
0

⟨ψβ(k,t)|σα|ψβ(k,t)⟩
⟨ψβ(k,t)|ψβ(k,t)⟩ dt (α = x, y, z). Since

the spin textures are observable, equation (7) implies that
the winding number wt of a non-Hermitian system can
be experimentally detected from ϕRRyx and ϕLLyx , which are
related to the dynamics of the right and left states gov-
erned by H(k) and H†(k), respectively. Consequently, it
is insufficient to extract the wt from the time evolution of
either H(k) or H†(k) alone. Furthermore, the realization
of H†(k) presents a practical obstacle in the experiment.
Similarly, Re(ϕyx) can be rewritten in another way (see

the proof in Appendix A):

Re[ϕyx(k)] =
1

2

[
ϕ++
yx (k) + ϕ−−

yx (k)
]
+ n

π

2
, (9)

where

ϕµµyx (k) = arctan

(
⟨φRµ (k)|σy|φRµ (k)⟩
⟨φRµ (k)|σx|φRµ (k)⟩

)
, (10)

with µ = ±. Figure 1 shows the different results of
Eqs. (7)-(10), where we take an example with hx =
J0+J1 cos(k)+J2 cos(2k), hy = J1 sin(k)+J2 sin(2k)−iδ
and hz = 0.5. The parameters are set to J0 = 3, J1,2 = 1,
δ = 0.3 for Figs. 1(a), 1(c), and 1(e) with wt = 0, and
J0,1,2 = 1, δ = 0.3 for Figs. 1(b), 1(d), and 1(f) with
wt = 2. Though ϕ++

yx and ϕ−−
yx in Fig. 1(d) are different

from ϕRRyx and ϕLLyx in Fig. 1(b), the averages of them
are same with the theoretical value of Re[ϕyx], as shown
in Fig. 1(f). Based on the above results, Re[ϕyx(k)]
can be obtained solely from the right-right spin textures
⟨φR±(k)|σα|φR±(k)⟩ (α = x, y), whose dynamics are deter-
mined by only H(k). This simplifies the process of mea-
suring the winding number wt of a general non-Hermitian
Hamiltonian (1) in experiments, as there is no longer a
need to implement the H†(k). Both ⟨φR±(k)|σα|φR±(k)⟩
for α = x or y can be obtained simultaneously by fitting
the time evolution of spin textures ⟨ψR(k, t)|σα|ψR(k, t)⟩,
if c± ̸= 0 (see the results in Sec. IV).
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FIG. 1: (a,b) ϕRR
yx and ϕLL

yx as a function of k, calculated from
the long time average of right-right and left-left spin textures.
(c,d) ϕ++

yx and ϕ−−
yx as a function of k, computed from the spin

textures of the two right eigenstates. (e,f) Re(ϕyx), defined
by ϕyx ≡ actan(hy/hx), is equal to (ϕRR

yx +ϕLL
yx )/2 and (ϕ++

yx +
ϕ−−
yx )/2. Here parameters are set to J0 = 3, J1,2 = 1, δ = 0.3

with wt = 0 (left panel) and J0 = 1, J1,2 = 1, δ = 0.3 with
wt = 2 (right panel).

III. EXPERIMENT

The experiment is performed on a Bruker AVANCE
300MHz spectrometer with a 2-qubit sample 13C-labeled
chloroform dissolved in acetone-d6, whose molecular
structure and Hamiltonian parameters are illustrated in
Fig. 2(a). Its NMR Hamiltonian in a rotating frame is

HNMR = −
2∑
i

π(νi − νRF
i )σiz +

πJ

2
σ1
zσ

2
z . (11)

Here νi and ν
RF
i (i = 1, 2) represent the chemical shifts

and the reference frequencies of RF fields, and the J is the
coupling strength between 13C and 1H. Each nuclear spin
can be individually controlled by radio-frequency (RF)
pulses. The corresponding control Hamiltonian reads

Hc =

2∑
i=1

πBi(cosΦiσ
i
x + sinΦiσ

i
y), (12)

where Bi and Φi are amplitudes and phases of the RF
fields. By tuning the control parameters Bi and Φi of
RF fields, we can simulate the dynamical evolution of a
general two-qubit system.

1H

13C

T2(s)T1(s)1H13C

0.3518.8−2348513C

3.310.923912151H

UJ(τ3)

Rx

Rx Rx Ry Rx

× M

UJ(τ2)

Ry

UJ(τ1)

Rx

B1,Φ1

B3,Φ3

B2,Φ2 Rx

(a)

(b)

(c)

FIG. 2: (a) Molecular structure of 13C-labeled chloroform
consisting of a 13C and 1H nuclear spins, and its Hamilto-
nian parameters. The diagonal and off-diagonal elements rep-
resent the chemical shifts and J-coupling constants (in Hz).
The T1 and T2 are spin-lattice relaxation times and spin-spin
relaxation times (in seconds). (b) Quantum circuit for re-
alizing the dynamical evolution of a general non-Hermitian
system using the dilation method. The 13C and 1H are used
as the system qubit and ancillary qubit, respectively. Ry(α)
denotes the single-qubit rotation α along the y direction, with
α = 2arctan η0. (c) Pulse sequence for realizing the dilated
Hamiltonian Hs,a. B

i and Φi (i = 1, 2, 3) given by Appendix.
B represent the amplitudes and phases of the control Hamil-
tonian (12), UJ(τj) = exp[−iπJ

2
σ1
zσ

2
zτj ] is the free evolution

of the NMR Hamiltonian (11), where we set νRF
i = νi in our

experiment, and τj = 2γj(tm)τ/πJ .

We consider a non-Hermitian Hamiltonian (1) with a
complex vector field:

hx = J0 + J1 cos(k), hy = J1 sin(k)− iδ, hz = 0.5. (13)

It is a nonchiral system because of hz ̸= 0. The phase
diagram exhibits two different topological phases with
wt = 1 for J0 = 1, J1 = 1, δ = 0.3, and wt = 2 when
J0 = 0.3, J1 = 1, δ = 0.3. To implement the non-
Hermitian Hamiltonian in the experiment, we exploit a
dilation method [45, 62]. The dilated Hermitian Hamil-
tonian obtained from the non-Hermitian Hamiltonian (1)
can be expressed as

Hs,a(t) = Λ(t)⊗ I + Γ(t)⊗ σz, (14)

where Λ(t) =
∑3
α=0 λα(t)σα and Γ(t) =

∑3
α=0 γα(t)σα,

and σ0 denotes the identity operator I. The coefficients
of λα and γα can be found in Appendix. B. By introduc-
ing an ancillary qubit, the dilated state evolves as

|Ψ(k, t)⟩s,a = |ψR(k, t)⟩s|−⟩a+η(t)|ψR(k, t)⟩s|+⟩a, (15)
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FIG. 3: (a-b) Time evolutions of spin textures ⟨ψR(k, t)|σα|ψR(k, t)⟩ for α = x, y and k = −0.448π, corresponding to the points
labeled by orange stars in (e) and (g). (c) eigenstate spin textures ⟨σα⟩± = ⟨φR

±(k)|σα|φR
±(k) for α = x and y, obtained by

fitting the curves of (a) and (b), respectively. (d) Real and imaginary parts of the complex eigenvalue E, resulted from the
same fitting procedure. (e-f) Re(ϕ)yx as a function of k with wt = 1 and wt = 2. (g-h) Re(E) and Im(E) as a function of k
with νE = 0. Parameters are chosen as J0 = 1, J1 = 1, δ = 0.3 for (e) and (g), and J0 = 0.3, J1 = 1, δ = 0.3 for (f) and (h),
respectively.

under the Hs,a(t), where |ψR(k, t)⟩s is the right state of
the non-Hermitian system (see Eq. (3)), |±⟩a are eigen-
states of σy of the ancillary qubit and η(t) is an appro-
priate linear operator [45, 62].

Figure 2(a) shows the quantum circuit for realizing the
dynamical evolution of the non-Hermitian Hamiltonian
using the dilation method. Starting with the initial state:
|0⟩s|0⟩a, the system is prepared to the dilated state:
|Ψ(k, 0)⟩s,a = |ψR(k, 0)⟩s|−⟩a + η(0)|ψR(k, 0)⟩s|+⟩a by
two single-qubit rotations Ry(α) (α = 2arctan η0) along
the y direction and Rx(π/2) along the x direction acting
the ancillary qubit, and evolves under the dilated Her-
mitian Hamiltonian Hs,a, which can be implemented by
pulse sequence of Fig. 2(c). After a Rx(−π/2), the final
state of the dilated system is

|Ψ(k, t)⟩fs,a = |ψR(k, t)⟩s|0⟩a + η(t)|ψR(k, t)⟩s|1⟩a. (16)

Thus, we can obtain the time evolution of the right state
|ψRs (t)⟩ by projecting onto the |0⟩a⟨0| subspace. In ex-
periments, we employ the Gradient Ascent Pulse Engi-
neering (GRAPE) technique [63] to optimize the quan-
tum circuit in Fig. 2(b) with high precision. The ob-
servable operators σα ⊗ |0⟩a⟨0| with α = x, y are cho-
sen for the measurements of ⟨ψR(k, t)|σα|ψR(k, t)⟩ =∑±
µ,µ′ c∗µcµ′ei(E

∗
µ−Eµ′ )t⟨φRµ |σα|φRµ′⟩. If the initial state

|ψR(k, 0)⟩ =
∑±
µ cµ|φRµ ⟩ is prepared to satisfy that c± ̸=

0, ⟨φR±|σα|φR±⟩ for α = x or y can be extracted by fitting

the time evolution of spin texture ⟨ψR(k, t)|σα|ψR(k, t)⟩.
We also note that the real and imaginary parts of the
complex eigenvalue Re(E) and Im(E) can be obtained
from the same fitting procedure, because of E+ = −E−.

IV. RESULTS

Figures 3(a) and 3(b) show the time evolutions of
spin textures ⟨ψR(k, t)|σα|ψR(k, t)⟩ for α = x, y and
k = −0.448π. Here, the non-Hermitian Hamiltonian pa-
rameters were taken as J0 = 1, J1 = 1, δ = 0.3, corre-
sponding to the winding number wt = 1. The experimen-
tal results are in agreement with the theoretical predic-
tions, confirming that the dilated method for simulating
the dynamical evolution of the non-Hermitian Hamilto-
nian (1) is feasible in the experiment. From the fitting
results of Figs. 3(a) and 3(b), the eigenstate spin textures
⟨σα⟩± = ⟨φR±(k)|σα|φR±(k) for α = x, y were extracted,
as presented in Fig. 3(c). We now get a measured data
point of Re[ϕyx(k)] for k = −0.448π, according to Eqs.
(9) and (10). Also, we obtained the real and imaginary
parts of the eigenvalues depicted in Fig. 3(d), from the
fitting results.

Using the same method above, we measured Re[ϕyx(k)]
for k ∈ [−π, π]. The results of two distinct topological
phases with wt = 1 and wt = 2 are shown in Figs. 3(e)
and 3(f), respectively. From these results, it is evident
that we successfully measured the topological invariants
wt of a non-Hermitian Hamiltonian that breaks chiral
symmetry, without the need of the left states whose dy-
namical evolutions are governed by H†.

In addition to the nontrivial topology of the eigen-
states, the topological structures of the energy bands
were also observed. The eigenvalues of a non-Hermitian
Hamiltonian are generally complex, and its band struc-
tures also exhibit topological properties, which can be
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described by another winding number vE [12, 13],

νE =

±∑
µ

∫ π

−π

dk

2π
∂k argEµ(k). (17)

where argEµ(k) is the argument of the complex energy

Eµ(k) = µ
√

1 + J2
0 − δ2 + h2z + 2J0 cos k − i2δ sin k.

Figures 3 (g) and 3(h) show the band structures of our
model with both νE = 0, as the projections of the energy
bands on the complex energy plane form two separate cir-
cles. It is worth noting that there are no band-touching
points, implying the absence of a phase transition, which
is different from the results with nonzero winding num-
bers wts corresponding to two distinct topological phases.
In contrast to chiral systems, the phase boundaries

characterized by wt and νE coincide [23]. However, in
the absence of the chiral symmetry, the phase bound-
aries of vE correspond to the band-touching points of the
non-chiral system, but no band touching occurs at the
phase boundaries of wt. This is quite different from the
chiral non-Hermitian Hamiltonian. Our experiments ex-
hibit the unusual phenomenon of a non-chiral system by
measuring both eigenstate topological invariant wt and
eigenvalue topological invariant vE . The error analysis
can be found in Appendix. D.

V. CONCLUSION

We presented a general scheme for measuring the wind-
ing numbers of 1D non-Hermitian systems. Unlike pre-
vious works [35, 36], our approach does not rely on left
eigenstates governed by H†, offering an experimental ad-
vantage. By employing the dilated method [38, 62], we
realized a non-Hermitian system without chiral symme-
try on a two-qubit NMR system and measured the wind-
ing numbers using our scheme, where the right-eigenstate
spin textures of two bands were simultaneously extracted
by fitting the observed time evolutions of spin textures.
Meanwhile, we also obtained the complex eigenvalues
for two distinct topological phases from the same fit-
ting procedure. Our experimental results demonstrated
a discrepancy between the phase boundaries of phase di-
agrams characterized by the two independent topological
invariants wt and νE , due to the breaking of chiral sym-
metry. In future work, extending our scheme to explore
the topology of higher-dimensional non-Hermitian mod-
els, such as measuring Chern numbers in two-dimensional
systems, would be particularly interesting but also ex-
perimentally challenging, because of the extensive spin
textures to be measured in high dimensions.
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Appendix A: Relations between azimuthal angle and
eigenstate spin textures

According to Eq.(2), the right eigenstates of Hamilto-
nian (1) can also be rewritten as:

|φR+⟩ = (e−iϕyx cos
β

2
, sin

β

2
)T ,

|φR−⟩ = (e−iϕyx sin
β

2
,− cos

β

2
)T ,

(A1)

where

cosβ =
hz√

h2x + h2y + h2z

, eiϕyx =
hx + ihy√
h2x + h2y

. (A2)

Here ϕyx = arctan(hy/hx) is the azimuthal angle dis-
cussed in the main text. We first define the quantity ϕµµyx
(µ = ±) that satisfy

tanϕµµyx ≡
⟨φRµ |σy|φRµ ⟩
⟨φRµ |σx|φRµ ⟩

. (A3)

By substituting Eqs. (A1) and (A2) into Eq. (A3), we
can obtain

tanϕ++
yx = i

e−iϕyxS∗ − eiϕ
∗
yxS

e−iϕyxS∗ + eiϕ
∗
yxS

,

tanϕ−−
yx = i

e−iϕyxS − eiϕ
∗
yxS∗

e−iϕyxS + eiϕ
∗
yxS∗

.

(A4)

with S = sin β
2 cos β

∗

2 . Therefore, we have

tan(ϕ++
yx + ϕ−−

yx ) =
tanϕ++

yx + tanϕ−−
yx

1− tanϕ++
yx tanϕ−−

yx

= i
e−i2ϕyx − ei2ϕ

∗
yx

e−i2ϕyx + ei2ϕ
∗
yx

= tan[2Re(ϕyx)],

(A5)

and it is easy to derive the relationship of Eq. (10) in the
main text, i.e.,

Re(ϕyx) =
1

2
(ϕ++
yx + ϕ−−

yx ) +
nπ

2
. (A6)

Note that only the right eigenstates have been used in
the above derivation.

Appendix B: The dilated method for realizing a
non-Hermitian system

To implement a non-Hermitian Hamiltonian in the ex-
periment, we exploit the dilation method [45, 62]. The
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FIG. 4: Time-dependent control parameters λα(k, t) (a) and
γα(k, t) (b) of the dilated Hermitian Hamiltonian (B3), where
α = 0, 1, 2, 3, and k = −0.448π.

Hermitian Hamiltonian dilated by an ancillary qubit can
be expressed as

Hs,a(t) = Λ(t)⊗ I + Γ(t)⊗ σz, (B1)

with

Λ(t) = {Hs(t) + [i
d

dt
η(t) + η(t)Hs(t)]η(t)}M−1(t),

Γ(t) = i

[
Hs(t)η(t)− η(t)Hs(t)− i

d

dt
η(t)

]
M−1(t).

(B2)
Here Hs(t) is the Hamitonian of non-Hermitian system,

M(t) = T e−i
∫ t
0
H†

s (t)dtM(0)T̄ ei
∫ t
0
Hs(t)dt, and η(t) =√

M(t)− I, where T is time-ordering operator (ℏ is set
to 1 for simplicity), M(0) = (η20 +1)I, η0 needs to be set
appropriately to keep M(t) − I positive for all t, and I
is identity operator. Considering a general 1D two-band
non-Hermitian Hamiltonian (1), the dilated Hamiltonian
can be expanded in terms of Pauli operators:

Hs,a(k, t) =

3∑
α=0

λα(k, t)σ
s
α ⊗ Ia +

3∑
α=0

γα(k, t)σ
s
α ⊗ σaz ,

(B3)
where λα(k, t) and γα(k, t)(α = 0, 1, 2, 3) are real time-
dependent control parameters. For the case of k =
−0.448π, the λα(k, t) and γα(k, t) for α = 0, 1, 2, 3 are
illustrated in Fig. 4.

We now employ the Trotter approximation formula to
realize Hs,a(k, t). The total evolution time T is divided
into M time slices with a duration of τ = T/M . The
evolution for tm = mτ can be approximated to

e−iτHs,a(tm) ≈e−iτ [λ2(tm)σs
x+λ3(tm)σs

y ]e−iτ [λ4(tm)σs
z+γ1(tm)σa

z ]

e−iτγ2(tm)σs
xσ

a
z e−iτγ3(tm)σs

yσ
a
z e−iτγ4(tm)σs

zσ
a
z .

(B4)
By adjusting the amplitudes and phases of the RF fields
(see Eq. (12)), i.e.,

B1
s =

τ

π

√
λ22(tm) + λ23(tm),

Φ1
s = arccos

[
λ2(tm)/

√
λ22(tm) + λ23(tm)

]
,

(B5)

we can realize the evolution e−iτ [λ2(tm)σs
x+λ3(tm)σs

y ]. Sim-
ilarly, we set

B2
s = λ4(tm)/π, Φ2

s = π/2,

B3
a = γ1(tm)/π, Φ3

a = π/2,
(B6)

to realize the evolutions

e−iτλ4(tm)σs
z = Rsxe

−iπB2
s(cosΦ

2
sσ

s
x+sinΦ2

sσ
s
y)τRsx̄,

e−iτγ1(tm)σa
z = Raxe

−iπB3
s(cosΦ

3
sσ

a
x+sinΦ2

sσ
a
y )τRax̄,

(B7)

where Rx/x̄ denotes the π/2 or −π/2 rotation along the
x direction. Under the free evolution of the NMR Hamil-
tonian (11), where νRF

i = νi (i = 1, 2), we have

e−iτγ2(tm)σs
xσ

a
z = Rsye

−iπJ
2 σs

zσ
a
z τ1Rsȳ,

e−iτγ3(tm)σs
yσ

a
z = Rsxe

−iπJ
2 σs

zσ
a
z τ2Rsx̄,

e−iτγ4(tm)σs
zσ

a
z = e−i

πJ
2 σs

zσ
a
z τ3 ,

(B8)

with the evolution times τi = 2γi+1(tm)τ/πJ (i = 1, 2, 3).
So far, we have achieved the realization of Hs,a, as shown
in the pulse sequence of Fig. 2(c).

Appendix C: Experiment spectra and data

At room temperature, the thermal equilibrium state of
the NMR sample is

ρeq ≈ 1− ϵ

4
I + ϵ(

1

4
I + γCσ

1
z + γHσ

2
z), (C1)

where ϵ ≈ 10−5 is the polarization, γC and γH are the gy-
romagnetic ratio of 13C and 1H nuclei. We first initialize
the system to the pseudo-pure state (PPS),

ρPPS
00 ≈ 1− ϵ

4
I + ϵ|00⟩⟨00|. (C2)

In the experiment, the ρPPS
00 was prepared from the ther-

mal state ρeq using the line-selective method [64, 65].
The experimental 13C spectra of ρeq and ρPPS

00 are shown
in Fig. 5(a).

To observe the time evolutions of spin textures
⟨ψR(k, t)|σα|ψR(k, t)⟩ (α = x, y), we performed the mea-
surements of σsα ⊗ |0⟩a⟨0| on the dilated states (16). In
the case of k = −0.448π, the corresponding spectra of
⟨ψR(k, t)|σα|ψR(k, t)⟩ for different t and α = x, y are
ploted in Figs. 5(b) and 5(c), respectively. By fitting
⟨ψR(k, t)|σα|ψR(k, t)⟩, we simultaneously obtained the
⟨φR±|σα|φR±⟩ for α = x or y, and also the ϕµµyx (k) =

arctan[⟨φRµ |σy|φRµ ⟩/⟨φRµ |σx|φRµ ⟩] (µ = ±). Figures 6(a)
and 6(b) show the results of ϕµµyx (k) for two different
topological phases with wt = 1 and wt = 2, respectively.
Thus, we got Re[ϕyx(k)], as shown in Figs 3(e) and 3(f).
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FIG. 5: (a) Experimental 13C spectra of thermal equilibrium
state ρeq (blue) and pseudo-pure state ρPPS

00 (red). (b-c) Ex-
perimental spectra for observing the time evolutions of spin
textures ⟨ψR(k, t)|σα|ψR(k, t)⟩, where α = x, y, respectively.
Here k = −0.448π, and parameters are chosen as J0 = 1,
J1 = 1 and δ = 0.3.

Appendix D: Error analysis

We calculated the root-mean-square σExp/Sim =√
ΣNi (⟨σα⟩Exp/Sim

i − ⟨σα⟩Th
i )2/N between the measured

or simulated spin textures and the theoretical values,
where α = x, y. The final state given by the simulation is

ρsimf = UEvoGzUPPSρeqU
†
PPSGzU

†
Evo, where Gz is a gra-

dient magnetic field that can eliminate the off-diagonal
elements of the density matrix. The spin textures come
from the simulation are ⟨σα⟩ = tr[ρsimf (σα⊗I+σα⊗σz)]/2
(α = x, y). When considering the influence of a spe-
cific step, we simulate the 1% noise of pulses, while the
rest is implemented through theoretical unitary opera-
tions. The results are listed in Table. D, where σTot

Sim
represents the root mean square error of all pulses, and
σRead = σExp − σTot

Sim evaluates the readout error which
came from spectral integrals. From Table. D, we find
that the main errors mainly come from the preparation
of the initial state, dynamical evolution, and readout.
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