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Spatiotemporal Assessment of Aircraft Noise Exposure Using Mobile Phone-

Derived Population Estimates and High-Resolution Noise Measurements  

 

ABSTRACT 

Aircraft noise exposure has traditionally been assessed using static residential population data and long-

term average noise metrics, often overlooking the dynamic nature of human mobility and temporal 

variations in operational conditions. This study proposes a data-driven framework that integrates high-

resolution noise measurements from airport monitoring terminals with mobile phone-derived de facto 

population estimates to evaluate noise exposure with fine spatio-temporal resolution. We develop hourly 

noise exposure profiles and quantify the number of individuals affected across regions and time 

windows, using both absolute counts and inequality metrics such as Gini coefficients. This enables a 

nuanced examination of not only who is exposed, but when and where the burden is concentrated. At 

our case study airport, operational runway patterns resulted in recurring spatial shifts in noise exposure. 

By incorporating de facto population data, we demonstrate that identical noise operations can yield 

unequal impacts depending on the time and location of population presence, highlighting the importance 

of accounting for population dynamics in exposure assessment. Our approach offers a scalable basis for 

designing population-sensitive noise abatement strategies, contributing to more equitable and 

transparent aviation noise management. 
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1 INTRODUCTION 

The aviation industry is one of the fastest-growing sectors globally, generating substantial economic 

benefits while also posing a range of environmental challenges (Tveter, 2017; Jin et al., 2020; Tirtha et 

al., 2023). This growth trajectory is expected to continue in tandem with the expansion of the global 

economy (Franz et al., 2022; Tirtha et al., 2022). However, the rapid increase in air traffic has intensified 

concerns regarding noise pollution, especially in densely urbanized areas where airports are in close 

proximity to residential communities (Grampella et al., 2016; Postorino and Mantecchini, 2016; 

Gagliardi et al., 2018). Evidence links the chronic disturbance caused by aircraft noise to adverse 

impacts on residents’ well-being, ranging from mild annoyance and sleep disruption to the exacerbation 

of community opposition toward nearby aviation facilities (Babisch et al., 2009; Perron et al., 2012; 

Lefevre et al., 2020). 

In an effort to mitigate these concerns, the International Civil Aviation Organization (ICAO) 

introduced the Balanced Approach, a framework that underscores strategies including noise reduction 

at the source, land-use planning, noise abatement operational procedures, and operating restrictions 

(ICAO, 2008). Although many airports have adopted measures such as curfews, preferential runway 

usage, and noise limits under this framework (Girvin, 2009; Porter, 2017, 2023), the practical 

effectiveness of these efforts depends on the accuracy of noise exposure assessments, which not only 

inform regulatory and operational decisions but also shape community engagement strategies. 

A key element in any aircraft noise management plan is the estimation of how many people 

experience potentially harmful noise exposure (Ganic et al., 2023). Traditionally, this has been done by 

overlaying annual noise contours on static census data to estimate exposure – implicitly assuming that 

individuals spend most of their time at home (Ganic et al., 2023). In reality, daily mobility patterns often 

deviate from this assumption, especially in large urban regions where residents may travel frequently 

for work, leisure, or airport-related activities. Consequently, relying on census data may under- or 

overestimate the populations actually exposed to harmful noise levels. 

Further complicating this issue is the gap that can arise between modeled and measured noise. Even 
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with sophisticated software tools that account for aircraft type, engine characteristics, flight paths, and 

meteorological conditions, models may fail to capture local variations in atmospheric effects or flight 

patterns (Simons et al., 2022). 

To address these limitations, the present study introduces a data-driven approach for assessing 

aircraft noise exposure in a dynamic urban context. Our approach incorporates high-resolution 

population estimates derived from mobile phone data to represent the spatiotemporal variability in how 

people circulate through the city. In parallel, we incorporate finely resolved noise data – collected at 

short intervals from multiple noise monitoring terminals – to capture local acoustic variations more 

accurately. We then employ an ensemble machine learning model and SHAP (Shapley Additive 

Explanations) to interpret the model outputs and align them with established domain knowledge. We 

integrate these components to generate an hourly, census tract level exposure indicator. Beyond the total 

number of people affected, we also quantify inequality in exposure distributions using the Gini 

coefficient. 

The remainder of this paper is structured as follows: Section 2 presents the literature review; Section 

3 outlines the data and methods utilized in our study. In Section 4, we present and discuss the results 

obtained. Finally, Section 5 offers concluding remarks on our study's findings and implications. 

  

2 LITERATURE REVIEW 

Accurately assessing aircraft noise exposure requires robust modeling of noise emissions and an 

understanding of the dynamic human context in which those emissions are experienced. Previous 

research has primarily focused on refining noise estimation models, ranging from physical acoustic 

simulations to data-driven machine learning approaches, but often fails to capture the temporal and 

spatial variability of human exposure. In light of these gaps, this section outlines three key domains 

relevant to our study: (1) noise estimation methods and limitations, (2) integration of human mobility 

in aircraft noise assessments, and (3) regulatory and public health approaches to noise exposure. 
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2.1. Noise estimation models and limitations 

Over the past two decades, aircraft noise models have evolved significantly. Physical models, 

grounded in acoustic propagation theories, estimate noise levels based on detailed aircraft 

characteristics, air traffic operational procedures, and environmental factors (Filippone, 2014; Guo et 

al., 2019). While such models offer high theoretical accuracy, they are often constrained by proprietary 

input parameter, scarcity of operational data and limited adaptability to real-time airport environments. 

Conversely, best-practice models offer a simplified approach by treating aircraft as single-point 

sources, allowing for quick assessments using basic operational data (Ang and Cui, 2022). These models 

are influential in regulatory contexts, such as land-use planning, but often underestimate daily noise 

variation, particularly in areas with variable air traffic or weather (Simons et al., 2022). They also do 

not fully account for local noise variations, leading to spatial inaccuracies, particularly under real-time 

or non-standard flight conditions. 

Recent advancements in data-driven machine learning models offer new potential to refine noise 

estimations. Linear regression and neural network models trained on flight and noise monitoring data 

have shown promising results in predicting local noise levels under diverse conditions (Gagliardi et al., 

2018; Zellmann et al., 2018). Notably, neural networks have improved the modeling of nonlinear 

interactions, such as the combined effects of aircraft type, trajectory, and weather (Revoredo et al., 2016; 

Tenney et al., 2020; Vela and Oleyaei-Motlagh, 2020). Despite their empirical success, many machine 

learning models remain black boxes, lacking interpretability and offering limited guidance for 

actionable airport policy or community engagement. 

 

2.2. Integration of human mobility in aircraft noise assessments 

Traditional exposure assessments typically overlay static census data with annual noise contours, 

assuming people remain in one place throughout the day (Nguyen et al., 2023). This method assumes 

that residents spend the majority of their time at home, but this assumption is increasingly inaccurate in 

modern urban environments where daily mobility patterns are highly dynamic (Ganic et al., 2023). As 
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a result, traditional assessments often misestimate exposure, particularly in areas with significant 

commuter traffic or frequent changes in population density. 

Recent efforts have begun to address this limitation. Ganic et al. (2023) introduced a dynamic noise 

mapping framework using activity-based travel survey data from the London Travel Demand Survey 

(LTDS) to capture intra-day population mobility and assess its impact on noise exposure. While their 

work represents a meaningful advancement beyond static census-based methods, they emphasized that 

future research should incorporate higher-resolution human mobility datasets, such as those derived 

from mobile phone signals, to further improve exposure realism.  

Despite the growing recognition of mobility’s role in exposure, most exposure estimation models 

remain static, failing to integrate high-resolution real-time population data. Our study addresses this 

gap by leveraging mobile phone-derived population estimates to capture the temporal fluctuations of 

human presence across different geographic areas and integrating this data with advanced noise 

estimation models. 

 

2.3. Regulatory and public health approaches to noise exposure 

A growing body of international guidance underscores the importance of quantifying noise exposure 

not only in terms of acoustic metrics, but also through the lens of public health and population equity. 

This evolution is reflected in the regulatory frameworks and guidelines issued by ICAO, and European 

Union (EU), and World Health Organization (WHO). 

The ICAO Balanced Approach to Aircraft Noise Management (ICAO, 2008) provides the 

foundational strategy for global airport noise policy. It is structured around four pillars: reduction of 

noise at the source, land-use planning and management, noise abatement operational procedures, and 

operating restrictions. Central to ICAO’s exposure assessment methodology is the use of annual average 

noise contours overlaid with static residential population data. While ICAO recognizes that population 

distribution around airports varies throughout the day, it does not incorporate dynamic population data 

into standard noise exposure calculations. 
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The European Union’s Environmental Noise Directive (Directive 2002/49/EC) formalized 

requirements for member states to assess and manage environmental noise. The directive mandates the 

use of noise indicators such as 𝐿𝑑𝑒𝑛 and 𝐿𝑛𝑖𝑔ℎ𝑡 to estimate long-term exposure (European Union, 

2002). However, it initially left the health-risk quantification of noise exposure relatively implicit. In 

2020, the European Commission adopted Directive (EU) 2020/367, an annex to the 2002 directive, 

which introduced does-response functions to quantify the risk of harmful effects from noise exposure 

(European Commission, 2020). Specifically, the annex outlines statistical models to estimate the 

percentage of individuals highly annoyed or suffering from sleep disturbances as a function of noise 

metrics such as 𝐿𝑑𝑒𝑛 and 𝐿𝑛𝑖𝑔ℎ𝑡. These functions enable policymakers to move beyond acoustic levels 

and directly estimate the population-level health risks of noise exposure. 

Parallel to these developments, the WHO set evidence-based health thresholds for various noise 

sources, including aircraft (WHO, 2018). The WHO recommends that 𝐿𝑑𝑒𝑛 levels from aircraft should 

not exceed 45 dBA to avoid high annoyance and 𝐿𝑛𝑖𝑔ℎ𝑡 should remain below 40 dBA to protect against 

sleep disturbance. These thresholds were derived from epidemiological studies linking long-term noise 

exposure to cardiovascular disease, cognitive impairment, and reduced well-being.  

In addition, operational trials at London Heathrow Airport have demonstrated that community 

perceptions of aircraft noise are shaped not only by sound levels but also by the timing, duration, and 

predictability of quiet periods, often referred to as “respite” (Porter, 2017, 2023). Notably, research 

indicates that a 4–9 dB reduction is typically required for noticeable detection, while a greater than 9 

dB reduction is widely perceived by residents as a valuable break from noise (Porter, 2023). Even 

modest reductions smaller than 4 dB have been associated with improved community attitudes under 

real-world conditions. These studies also highlight that residents place the highest subjective value on 

early morning (07:00–11:00) and evening (19:00–23:00) quiet periods, emphasizing the importance of 

temporal regularity and predictability. These insights align with broader evidence suggesting that non-

acoustic factors, including transparency, procedural fairness, and community trust, can be as influential 

as sound metrics in determining public acceptance of noise mitigation policies. Together, these findings 
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underscore the policy relevance of characterizing aircraft noise exposure using hourly, population-

weighted indicators—a gap that this study seeks to address. 

In summary, the abovementioned international frameworks mark a shift toward more health-

oriented and socially responsive noise policy. Yet most existing implementations continue to rely on 

static population datasets and annualized noise contours, which obscure the dynamic realities of 

exposure in urban settings. Our study contributes to this shift by developing a high-resolution, 

temporally dynamic noise exposure model that integrates mobile-phone-derived population estimates 

and fine-grained airport noise measurements. In doing so, we generate a new class of exposure metrics 

that reflect not only the magnitude of noise but also its distribution and impact by location and hour of 

day. 

 

3 METHODOLOGY 

This study proposes a novel, data-driven indicator to assess aircraft noise exposure in a highly 

dynamic urban environment, integrating both population mobility data and high-resolution noise 

measurements. In this section, we describe the datasets used, the noise estimation approach, and the 

machine learning model employed to validate the results. 

 

3.1. Data sources and preprocessing 

3.1.1. Hourly de facto population estimates 

The primary data used in this study is de facto population data, which represents the number of 

individuals physically present within each census tract during one-hour intervals. This dataset is derived 

from Korea Telecom’s (KT) geolocation records, which are based on anonymized mobile phone signals 

collected through KT-operated base stations across Seoul. An individual’s location is inferred by the 

most recent base station that his or her device has connected to (Ministry of Science and ICT, 2023). 

KT’s network provides comprehensive coverage throughout Seoul, encompassing 19,153 census tracts, 

the city’s smallest administrative unit, each with a median area of 11,689 m². The de facto population 
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dataset is publicly available through the Seoul Big Data Campus platform (Seoul Metropolitan 

Government, 2025). 

KT’s proprietary model integrates mobile phone signals with supplementary demographic and 

transportation datasets to estimate the population present in each census tract. The model accounts for 

factors such as residential population, employed population, and public transit ridership, and adjusts 

population estimates based on KT’s mobile market share, LTE/5G subscription rate, and the proportion 

of active devices. Importantly, KT’s signal data are automatically recorded as devices move between 

base stations—regardless of whether users are actively using their phones—allowing for continuous 

and precise tracking of population distribution and movement (Seoul Metropolitan Government, 2025).  

To address underrepresentation among demographic groups with lower mobile phone usage, such 

as the very young and the elderly, the model incorporates correction factors based on resident 

registration data (Seoul Metropolitan Government, 2025). 

 
Figure 1. Geographical layout of NMT sites and census tract boundaries near Runways 32L and 32R 

of Gimpo International Airport 
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3.1.2. Airport noise, flight, and weather data 

Noise data for this study were collected in January 2023 from five noise monitoring terminals 

(NMTs) located near Gimpo International Airport (GMP) in South Korea (see Figure 1), which is a site 

known for its high levels of aircraft noise. In 2019, prior to the COVID-19 pandemic, GMP handled 

over 25 million passengers and more than 140,000 flights, underscoring its significance as a high-traffic 

airport. The noise data were provided by the Korea Airports Corporation (KAC), which operates the 

NMTs and manages the measurement infrastructure. 

Each NMT recorded sound pressure levels at three-second intervals, allowing for the detection of 

high-frequency noise variations that are often masked in long-term average metrics. The devices used—

Brüel & Kjær Noise Monitoring Terminal models 3639-G and 3639-C—are certified to IEC 61672 

Class 1 specifications and offer a dynamic range of 110 dBA. Terminal locations were strategically 

selected to capture diverse runway operations, including takeoff and landing directions, while 

minimizing interference from background noise and surrounding topography. 

For analysis, the three-second noise records were aggregated into hourly equivalent continuous 

sound levels (𝐿𝐴𝑒𝑞1ℎ), a standard metric used in environmental acoustics. Only observations exceeding 

60 dBA were retained, as this threshold is known to interfere with normal speech and has been 

associated with adverse health outcomes (Eagan, 2007). 

 
Figure 2. Hourly LAeq distribution across census tracts 
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Runway operations at GMP follow a fixed three-hour rotation schedule to provide periodic noise 

relief to surrounding communities. For example, from 09:00 to 11:59, Runway 32R is used for landings 

and 32L for departures; from 12:00 to 14:59, the configuration is reversed. This pattern may also be 

adjusted in response to weather conditions or operational demands. As illustrated in Figure 2, NMT 1 

and 2, located directly under the Runway 32R approach path, consistently register pronounced LAeq 

peaks during 32R landing periods (e.g., 09:00-11:59, 15:00-17:59, and 21:00-22:59). In contrast, NMT 

5, situated under the Runway 32L approach shows elevated LAeq values during 32L landing periods, 

while remaining lower during 32R operations. Additionally, NMTs 1 and 2 exhibit consistently higher 

LAeq levels compared to NMTs 3 and 4, which are positioned farther from the runways. This reflects 

the expected acoustic gradient associated with aircraft altitude, where closer proximity to the runway 

results in higher ground-level noise exposure due to lower altitude and engine operating conditions. 

In addition to acoustic measurements, we incorporated flight schedule data from KAC and 

meteorological data from the Aviation Meteorological Office (AMO). The flight schedule dataset 

includes detailed information on aircraft type, engine type, airline, runway usage, and timestamped 

departure and arrival events. This granularity enabled us to assess the role of aircraft-engine pairings 

and operational configurations in shaping noise patterns. Meteorological data were recorded hourly and 

include variables such as temperature, wind speed, wind direction (relative to runway heading), and 

cloud cover. These factors are known to influence sound propagation and are thus critical for accurate 

noise modeling. In total, we used we used 22 variables to characterize the airport’s operational 

environment, encompassing meteorological conditions, aircraft-engine combinations, and temporal 

scheduling features, which are detailed in Supplementary Table S1. 

 

3.1.3. Integration of datasets 

The population and noise, flight, and weather datasets were integrated at the hourly level. For each 

census tract, we matched the de facto population to the closest NMT’s 𝐿𝐴𝑒𝑞1ℎ  measurement, and 

linked this information to operational and meteorological conditions during the same hour. In the 

integration process, the 𝐿𝐴𝑒𝑞1ℎ  value measured at a given NMT was used as a proxy for noise 
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exposure across the entire census tract in which the terminal is located. This assumption is supported 

by the relatively small spatial extent of census tracts in the study area. While this simplification may 

not capture fine-grained acoustic variations in complex built environments, it offers a practical and 

reasonably accurate framework for tract-level exposure modeling under the constraints of existing 

sensor coverage. Overall, this integrated approach enabled a high-resolution reconstruction of real-

world noise exposure patterns, capturing both the spatial distribution of populations at risk and the 

dynamic variability of the acoustic environment. 

 

3.2. Airport noise estimation 

To model the complex interactions between aircraft operations, meteorological conditions, and 

noise levels, we applied in ensemble machine learning approach using the XGBoost (eXtreme Gradient 

Boosting) algorithm. XGBoost was chosen for its ability to handle large, high-dimensional datasets and 

capture nonlinear relationships between variables effectively. The model was trained using 90% of the 

data, with the remaining 10% reserved for testing and validation. To prevent overfitting, we set the 

learning rate to 0.05 and optimized the number of boosting rounds between 10 and 1,000, following 

best practices (Chen and Guestrin, 2016). 

In XGBoost, a sequential ensemble approach is performed to form sequential decision trees. Such 

tree-based algorithm allows us to take into account the dependency between independent variables. The 

first learner is fitted to the full input dataset, and the second learner is fitted to the residuals. The process 

repeats several times before it reaches the stopping point. Predictions from each learner are summed to 

from the final prediction. The mathematical equation of such process is as follows. 𝑓𝑖
𝑝
=

∑ 𝑓𝑘(𝑥𝑖)
𝑙
𝑘=1 = 𝑓𝑖

(𝑝−1)
+ 𝑓𝑖(𝑥𝑖) , where 𝑓𝑝(𝑥𝑖)  is the learner at phase 𝑝 , 𝑓𝑖

𝑝
  and 𝑓𝑖

(𝑝−1)
  are the 

prediction at phase 𝑝 and 𝑝 − 1, and 𝑥𝑖 is the input variables. In order to prevent overfitting issues, 

XGBoost’s objective function consists of a convex loss function and a regularization term, 𝑂𝑏𝑗(𝑝) =

∑ 𝑙(𝑦𝑖̅, 𝑦𝑖)
𝑛
𝑘=1 + ∑ 𝜎

𝑝
𝑘=1 (𝑓𝑖), where 𝑙 is the loss function, 𝑛 is the number of observations, and 𝜎 is 

the regularization term. 
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The model was trained on various input features, including flight schedule data (aircraft type, engine 

type, runway usage), meteorological variables (temperature, wind speed, cloud cover, wind direction), 

and spatial features (geographic location of the noise monitoring stations). The trained model generates 

noise estimates for different operational and meteorological scenarios, providing a more nuanced 

understanding of the factors driving noise exposure. 

 

3.3. Technical validation 

3.3.1. De facto population data validation 

To evaluate the reliability of the de facto population estimates derived from mobile phone data, we 

compared their temporal dynamics with known land use characteristics in representative areas of Seoul. 

For instance, in the central business district of Gangnam-gu, we expect to observe higher population 

counts during daytime hours due to the influx of workers and visitors, followed by a decline at night. 

Conversely, in primarily residential districts such as Yangcheon-gu, population levels should be lower 

during work hours and higher in the evening and early morning. These expected temporal patterns 

provide a benchmark for assessing the face validity of the de facto population dataset. 

 

3.3.2. Airport noise data validation 

To assess the validity of the airport noise estimates generated by our machine learning model, we 

focused on the interpretability of the estimates in relation to known physical and operational principles. 

Specifically, we examined whether the model’s most influential variables were consistent with domain 

knowledge of noise generation – such as the effects of meteorological conditions and aircraft-engine 

configurations. 

Given the inherent complexity of ensemble learning algorithms like XGBoost, we employed the 

SHAP framework developed by Lundberg and Lee (2017) to improve transparency. Unlike traditional 

feature importance metrics, SHAP not only identifies influential variables but also reveals the direction 

and magnitude of their effects on model estimations. This dual insight allows us to interpret individual 
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estimations and validate the overall logic of the model. 

In our study, SHAP values were computed for all features across the dataset. The SHAP value can 

be calculated as: 𝜙𝑖(𝑓, 𝒙) = ∑
|𝑆|!(|𝑀|−|𝑆|−1)!

|𝑀|!
[𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)]𝑆⊆𝑀\{𝑖}  , where 𝑀  is the set of all 

input variables; 𝑆 is a subset of 𝑀 with the 𝑖 feature excluded from 𝑀; [𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)] is the 

marginal feature contribution 𝑖  variable. A positive SHAP value indicates that a given variable 

contributes to a higher noise level, while a negative value suggests noise reduction. For example, wind 

deviation from runway alignment and low cloud cover showed strong positive SHAP effects on take-

off and landing noise – both findings that align with known physical phenomena such as sound 

reflection and dispersion. This interpretability check reinforces confidence in our model’s ability to 

capture real-world relationships. 

 

3.4. Integrated noise-exposure indicator 

As mentioned earlier, traditional aircraft noise exposure assessments have primarily relied on static 

census population data and long-term average noise metrics. While this approach has proven useful for 

high-level planning, it fails to capture the spatial and temporal dynamics of real-world exposure–

particularly in highly urbanized areas with significant intra-day population fluctuations. Recognizing 

this limitation, recent efforts by researchers (Ganic et al., 2021; Ganic et al., 2023) have prompted the 

use of more refined indicators that integrate both noise measurements and temporal population changes. 

In this study, we propose an integrated, high-resolution noise-exposure indicator that reflects both 

the magnitude of noise and the spatio-temporal distribution of exposed population. Our approach 

leverages two core components: (1) aircraft noise levels measured on each 3-second and converted to 

an hourly basis, and (2) hourly de facto population estimates derived from mobile phone data. The 

fusion of these datasets supports a more nuanced assessment of noise exposure that reflects variations 

in airport operations and urban mobility. 
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3.4.1. Hourly exposure at census tract-level 

To capture the number of people exposed to noise above the threshold θ in each hour, we measure 

the hourly exposure 𝐸𝑖,𝑡
(𝜃)

 at hour 𝑡 ∈ {1,… , 𝑇} be defined as: 𝐸𝑖,𝑡
(𝜃)

= 𝑛𝑖,𝑡 ∙ 𝛿(𝐿𝑖,𝑡 > 𝜃), where 𝑛𝑖,𝑡 

is the number of people present in census tract 𝑖 at time 𝑡, from de facto population estimates, 𝐿𝑖,𝑡 is 

the measured noise level in census tract 𝑖 at time 𝑡, 𝜃 is the threshold noise level (e.g., 65 dBA, 70 

dBA, …). 𝛿 is the indicator function equal to 1 if 𝐿𝑖,𝑡 > 𝜃, 0 otherwise. 

 

3.4.2. Census tract-level Gini coefficient 

In addition to estimating the total number of people exposed to aircraft noise, it is equally important 

to understand how this exposure is distributed across space – specifically, between census tracts at each 

time of day. This is especially relevant in the context of noise mitigation policies such as runway 

alternation, which aim to distribute the burden of noise exposure more equitably among surrounding 

communities. 

To quantify this spatial disparity, we introduce the census tract-level Gini coefficient, a measure of 

inequality in the distribution of noise exposure across census tracts at each hour. Let 𝜇𝑡 be the mean 

exposure across census tracts at time 𝑡 , and let 𝐷  denote the number of census tracts. The Gini 

coefficient at hour 𝑡 is given by: 𝐺𝜃
𝑡 =

1

2𝐷2𝜇𝑡
∑ ∑ |𝐸𝑖,𝑡

(𝜃) − 𝐸𝑗,𝑡
(𝜃)|𝐷

𝑗=1
𝐷
𝑖=1 . This formulation captures the 

spatial inequality in noise exposure at each hour and helps assess whether certain areas consistently 

bear a disproportionate burden. A Gini coefficient close to 0 indicates that exposure is evenly shared 

across all regions at that hour, while a coefficient approaching 1 implies that exposure is heavily 

concentrated in a few regions.  
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4 RESULTS AND DISCUSSION 

4.1. Technical validation of population estimates and aircraft noise data 

4.1.1. Validation of population estimates 

To validate the de facto population estimates, we compared them with traditional census-based 

estimates, examining their spatiotemporal distribution. Unlike conventional static census methods, our 

approach utilizes dynamic mobile phone location data to capture real-time fluctuations in population 

density. This allows us to account for temporal variations – such as higher densities in commercial 

districts during the day and increased densities in residential areas at night. For a robust evaluation, we 

selected two representative districts: Gangnam, a major commercial area with a dense built environment, 

and Yangcheon, a predominantly residential district (Figure 3). Our analysis shows that in Yangcheon, 

evening population densities align closely with census-derived estimates, which reflect the expected 

nighttime residency patterns. In contrast, Gangnam exhibits significantly higher daytime densities, 

consistent with its commercial nature (Figure 4). These findings further substantiate the reliability of 

estimates, highlighting the importance of incorporating fine-grained temporal population data in 

assessing and mitigating the community impacts of aircraft noise. 

 

Figure 3. Land use distribution of Gangnam district (left) and Yangcheon (right) 
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Figure 4. Hourly de facto and residential populations in Gangnam district (left) and Yangcheon 

district (right) 

 

To further validate the de facto population estimates, we compared KT-provided data with a coarser 

dataset from SK Telecom (SKT), which offers publicly available hourly population counts at the district 

level. Since KT’s data was originally available at the census tract level, we aggregated it to the district 

level to facilitate a direct comparison with SKT’s subscriber-based counts. We compared the datasets 

by evaluating hourly absolute population counts and percentage changes from the previous hour. The 

results, shown in Figure 5, revealed strong positive correlations, with coefficients of determination of 

0.99 for absolute counts and 0.95 for percentage changes. This high degree of agreement confirms that 

our approach accurately captures real-world population distributions. 

 
Figure 5. Comparison of hourly population counts and percentage changes between two datasets 
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4.1.2. Validation of airport noise estimates 

We employed XGBoost to estimate noise levels near Gimpo Airport by integrating airport noise 

records, flight schedules, and meteorological data. The model achieved mean absolute errors of 1.74 for 

take-off noise and 2.01 for landing noise. Subsequent SHAP analysis revealed that key variables 

influencing noise levels are consistent with established domain knowledge, supporting the model’s 

validity for explanatory analysis. 

Figures 6 and 7 present the SHAP summary plots illustrating the impact of meteorological 

characteristics such as temperature, cloud cover, wind speed, and direction, on both take-off and landing 

noise levels. Among these factors, temperature emerged as the most significant in affecting both take-

off and landing noise. Wind deviation showed a positive correlation with both take-off and landing 

noise, as indicated by higher wind deviation resulting in positive SHAP values (i.e. points towards the 

right are increasingly purple). Cloud cover also showed a positive correlation, consistent with related 

studies (Australian Government, 2020; TPA 2023, likely due to the noise reflection off clouds on cloudy 

days. Similarly, wind speed, particularly its direction, demonstrated a positive correlation with aircraft 

noise, aligning with its known effect on the acoustic footprint (Yunus et al., 2021). 

Among Airbus aircraft and engine combinations, A330 with PW4, A320 with IAE V2500-A5, and 

A220 with PW1, exhibited varying degrees of impact on airport noise levels. Specifically, noise 

intensity increased with more frequent take-offs and landings involving A320 with IAE V2500 A5 

engine. Moreover, Additionally, the number of A330 flights with PW4 engine correlated negatively with 

predicted noise levels, suggesting that a higher proportion of such aircraft in the fleet mix leads to lower 

noise levels; a higher number of such aircraft have negative SHAP values (i.e. points towards the left 

are increasingly purple). Similarly, Boeing aircraft, such as B737 with CFM 56, B767 with GE CF6-80, 

and B737 MAX with CFMI LEAP, had significant effects on both take-off and landing noise. Notably, 

take-off noise levels showed a positive correlation with higher frequencies of B737 with CFM56 and 

B767 with CFM6-80 flights. Additionally, the number of flights featuring the B737-8MAX with CFMI 

LEAP engine was found to correlate with landing noise levels. If such combination makes up a larger 
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portion of flights occurring within an hour, the overall noise level near the airport is predicted to be 

lower.  

 

Figure 6. SHAP summary plot for take-off noise levels near the airport,  

ranked by mean absolute SHAP value 
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Figure 7. SHAP summary plot for landing noise levels near the airport,  

ranked by mean absolute SHAP value 

 

We further explored the nonlinear relationships between dependent and independent variables using 

SHAP dependence plots. Figure 8 shows how meteorological factors such as cloud cover, wind speed, 

and wind deviation influence airport noise. 
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Variables Take-off noise Landing noise 

Temperature 
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Wind speed 

 

 
 

Wind deviation 

 

 
 

Figure 8. SHAP dependence plots of meteorological features 
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SHAP values above the 𝑦 = 0  line indicate higher predicted noise levels, while those below 

suggest lower predictions. For instance, the variable values at which SHAP values turn positive were 

two cloud covers for take-off and three for landing, and seven knots of wind speed for take-off and nine 

knots for landing. Higher wind speeds typically resulted in increased aircraft noise; however, noise 

levels near the airport occasionally decreased due to sound dispersion caused by wind. This 

phenomenon could explain a slight drop in the observed noise trend depicted in Figure 8.  

Meanwhile, a vertical dispersion in SHAP values is observed for some variables. This can be 

attributed to interaction effects with other variables, as SHAP value of an instance for a specific feature 

is not solely dependent on the value of that variable but is also influenced by the values of other variables 

associated with the instance. Though temperature is typically correlated with higher noise levels due to 

increased thrust generation by aircraft at higher temperatures (FAA, 2009), our data did not show 

significant trends, likely due to the cold winter season during data collection. 

Figure 9 shows how the number of flights per hour, categorized by aircraft and engine combinations, 

affects hourly noise levels. Higher frequencies of B737 with CFM 56, A330 with PW4, and B767 with 

GE CF6-80 were associated with increased take-off noise. While engine specifications play a significant 

role, differences in climb rates among aircraft with the same engines can further influence the hourly 

noise level during take-off. For instance, GE CF6-80 engine, typically used on heavy aircraft like the 

B777 and B747, may allow for faster climb rates in relatively lighter aircraft such as the B767. 

On the other hand, there is a clear correlation between an increase in flights involving A320 with 

IAE V2500-A5 engine and heightened take-off noise levels. Furthermore, nonlinear relationships are 

observed with A220 with PW1 and B737-8MAX with CFMI LEAP engine, where take-off noise is 

significantly impacted when the number of flights involving these aircraft is specifically two during 

their operating hours. Further analysis of the share of these aircraft in the total number of flights during 

specific time periods may provide additional insights into this relationship. 

For landing noise, higher frequencies of flights involving A330 with PW4 and B767 with GE CF6-

80 engine are associated with increased noise levels. Additionally, the relationship between the number 
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of flights and landing noise is nonlinear for B737 with CFM56 and A320 with IAE V2500-A5 engine. 

Specifically, A320 with IAE V2500-A5 engine shows a notable increase in landing noise during certain 

time periods, while B737 with CFM56 engine tends to contribute to higher landing noise once flight 

frequency reaches a certain threshold. In contrast, flights involving B737-8MAX with CFMI LEAP and 

A320neo with PW1 engine show a negative correlation with landing noise. This can be attributed to the 

quieter nature of these newer aircraft, which are equipped with advanced engine technology. A higher 

proportion of flights featuring these aircraft types may contribute to lower predicted landing noise levels. 

Aircraft-engine 

combination 

Take-off noise Landing noise 

B737&CFM 56 
 

 

 
 

 

A320&IAE 

V2500-A5 

 

 

 
 

 

A330&PW4 
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Figure 9. Selected SHAP dependence plots for hourly aircraft and engine fleet mix 
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4.2. Noise exposure analysis 

Figure 10 presents a comparison between residential (static) and de facto (dynamic) population 

estimates and their respective noise exposure levels at two thresholds: 65 dBA and 70 dBA. The left 

plot shows total population counts over time for both residential (dotted black line) and de facto 

populations (solid black line). As expected, the residential population remains constant across all time 

slots, reflecting the static nature of census data. In contrast, the de facto population varies across time, 

peaking during morning and evening hours. This variation captures daily human mobility patterns, 

offering a more realistic representation of potential exposure during airport operations. 

  
Figure 10. De facto and residential population in noise-affected areas (left) and exposure 

population at thresholds of 65 and 70 dBA (right)  

The right plot shows the number of individuals exposed to aircraft noise for 65 and 70 dBA 

thresholds. In both cases, the number of people exposed according to de facto population data is 

consistently lower than when using residential population data. For instance, at 09:00, 1,741 individuals 

are exposed to noise above 65 dBA according to de facto population estimates, compared to 1,939 based 

on residential estimates. However, an important exception emerges for the 70 dBA threshold between 

18:00 and 20:00, when the de facto-exposed population exceeds that of the residential baseline. This 

suggests that while many residents may have returned home by evening, high-noise regions experience 

transient population inflows (e.g., workers, commuters, or visitors) not captured in resident counts. 

Overall, these findings demonstrate that traditional census-based exposure metrics may misrepresent 
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actual burden, either over- or under-estimating exposure depending on the hour and noise intensity. This 

underscores the value of integrating dynamic population data for more temporally and spatially accurate 

noise impact assessments. 

Despite the relatively modest variation in total population throughout the day (a difference of 200-

300 persons), the number of individuals exposed at higher noise thresholds shows substantial hourly 

fluctuation. For example, de facto exposure above 65 dBA ranges from 722 at 07:00 to 2,152 at 16:00. 

Similarly, exposure above 70 dBA ranges from 306 to 780. This suggests that variation in aircraft 

operations–such as frequency, aircraft type, and runway usage–plays a substantial role in shaping hourly 

exposure patterns, beyond what can be explained by population movement alone. 

In addition, a subtle divergence is observed between the temporal patterns of 65 and 70 dBA 

exposure. Exposure above 65 dBA is more sensitive to operational variability, likely due to its broader 

spatial impact and greater overlap with mobile population zones. Many aircraft events exceed 65 dBA 

but not 70 dBA, and a larger portion of noise events cluster near the 65 dBA threshold. In contrast, 

exposure above 70 dBA is more spatially concentrated, confined to areas directly under flight paths. 

 
Figure 11. Hourly noise-exposed population by census tract at thresholds of 65 dBA (left) and 70 

dBA (right) 

 

Figure 11 presents heatmaps showing the hourly distribution of de facto population exposed to 

aircraft noise greater than or equal to 65 and 70 dBA across the selected census tracts. At the 65 dBA 

threshold, certain tracts exhibit sustained medium exposure throughout the day. Census tract 5, for 



27 

example, experiences consistently moderate levels of exposure across almost all hours, reflecting its 

location under regular flight paths. Census tract 4 demonstrates a distinctive pattern, with very high 

exposure only from 09:00 to 12:00, from 15:00 to 18:00, and from 21:00 to 23:00, suggesting that 

specific operational activities (e.g., departures or landings) are affecting a narrowly defined area. Census 

tract 3 similarly shows pronounced exposure during specific periods. 

At the 70 dBA threshold, exposure is more spatially and temporally restricted. Only a subset of the 

tracts shows non-zero exposure at this higher threshold. Census tract 5 experiences intermittent high 

exposure, while other tracts such as census tract 1 and 2 show scattered occurrences of high exposure, 

usually during specific hours. Several tracts that had exposure at 65 dBA, such as census tract 3 and 4, 

show no exposure above 70 dBA, indicating that they are located near the outer boundary of the 70 dBA 

contour and are only intermittently affected by high-intensity noise events. 

These results confirm that high-level noise exposure is both spatially concentrated and temporally 

variable. The differences between 65 dBA and 70 dBA threshold patterns suggest that moderate noise 

levels affect a broader range of areas and populations, while higher noise levels are more localized and 

confined to specific zones during certain hours. This underscores the inadequacy of static exposure 

metrics and emphasizes the need for temporally resolved, spatially disaggregated exposure assessments. 

 
Figure 12. Gini coefficient of noise-exposed population by time of day at thresholds of 65 dBA (left) 

and 70 dBA (right) 
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To assess the spatial equity of aircraft noise exposure, we calculated the Gini coefficient of aircraft 

noise exposure across census tracts at each hour of the day, alongside the corresponding de facto 

population exposed to noise above 65 and 70 dBA (see Figure 12). The Gini coefficient measures the 

inequality of exposure distribution across census tracts, where higher values indicate greater 

concentration of noise burden in fewer areas.  

For the threshold of 65 dB(A), the Gini coefficient fluctuates between 0.28 and 0.56, with a notable 

dip at 21:00–22:00, suggesting that exposure is more spatially even during the late evening. Conversely, 

higher inequality (e.g., 0.53–0.56) is observed in the late afternoon and early evening (17:00–19:00), 

even when the number of exposed individuals is moderate. This implies that during these hours, noise 

exposure is disproportionately concentrated in a smaller subset of tracts. At the 70 dB(A) threshold, 

spatial inequality is consistently higher, with Gini coefficients clustering around 0.60–0.80 throughout 

most of the operating hours. In particular, the coefficients reach 0.80 at 08:00, 12:00, 13:00, and 20:00, 

despite relatively low numbers of exposed population. This indicates that when high-level noise occurs, 

it is even more spatially concentrated—i.e., a few tracts bear the brunt of high-intensity noise, while 

others remain unaffected. 

These results underscore the importance of not only tracking how many people are exposed, but 

also where the exposure is concentrated. For instance, similar total exposure levels (e.g., 359 at 12:00 

vs. 344 at 15:00 for θ=70) can lead to very different Gini coefficients (0.80 vs. 0.61), highlighting the 

uneven distribution of noise burden across space. Such temporal-spatial insights support policy 

evaluation of runway rotation schedules, noise abatement flight procedures, or zoning measures, 

especially when trying to ensure fair distribution of environmental burdens. Integrating both population 

magnitude and spatial inequality enables a more nuanced understanding of the lived noise experience 

and the equity dimension of aircraft noise exposure.  
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4 CONCLUSIONS 

This study enhances current approaches to airport noise exposure assessment by integrating fine-

grained noise monitoring with temporally resolved, mobile phone–based de facto population estimates. 

Unlike traditional methods that rely on static residential data, our approach captures intra-day variation 

in exposure by human mobility. The results show that static models tend to overestimate exposure 

during daytime hours when residents are absent from high-noise areas, and may also fail to detect peak 

burden periods when transient populations are present. By accounting for both spatial and temporal 

variation in population distribution, this method offers a more realistic and policy-relevant view of who 

is actually exposed—and when—enabling more equitable and responsive noise mitigation strategies. 

The validation of our de facto population estimates, through comparison with traditional census-

based data and another telecommunication provider’s dataset, reveals a strong correlation, further 

confirming the reliability of our approach. Additionally, the use of machine learning models, 

specifically XGBoost, along with SHAP analysis, allows for interpretable predictions of airport noise, 

providing insights into the factors influencing noise levels. These insights are essential for 

understanding the complex interactions between aircraft operations, meteorological conditions, and 

noise propagation. 

Our analysis of noise exposure patterns at different thresholds (65 dBA and 70 dBA) highlights 

temporal fluctuations in exposure, which is due to the dominant role of operational variability in shaping 

exposure patterns. Notably, while moderate noise levels (above 65 dBA) affect a broader set of areas, 

higher thresholds (above 70 dBA) are spatially concentrated in specific zones directly under flight paths. 

Furthermore, by calculating spatial inequity using the Gini coefficient, we reveal that noise exposure 

tends to be more concentrated in specific areas, especially at higher thresholds. This suggests that 

current noise management policies, which rely on aggregate exposure metrics, may miss critical 

disparities in exposure across different neighborhoods. 

Our study area exhibited spatially rotating exposure patterns—that is, certain regions experience 3-

hour blocks of higher exposure followed by 3-hour blocks of relative relief, with this alternating pattern 
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mostly persisting over the course of a month (see Supplementary Figure S1). This operational structure 

constitutes a form of predictable respite, a concept identified as critical for community acceptance in 

the Heathrow study (Porter, 2023). A key contribution of this study is identifying which populations 

benefit from or are burdened by scheduled noise intervals. Our study addresses this gap by incorporating 

de facto population exposure modeling, which could be used to refine the concept of respite beyond the 

physical routing of aircraft. A time block may constitute respite operationally, but if it coincides with a 

peak in population presence, the net societal impact may be underestimated or misallocated. While the 

Heathrow studies demonstrated that predictable respite improves community tolerance, our findings 

indicate that population-adjusted scheduling may be critical to achieving both perceived and actual 

fairness. Absent such consideration, well-intentioned operational rotations may inadvertently 

concentrate noise burdens on more densely populated areas, undermining the policy's intended equity. 

While this study advances noise exposure assessment through the integration of high-resolution 

mobility and acoustic data, several limitations should be acknowledged. First, the de facto population 

estimates rely on mobile phone signal data, which, despite adjustments, may underrepresent specific 

demographic groups such as children, the elderly, or individuals without mobile devices. Second, 

exposure was modeled based on data from a single month (January 2023), which may not reflect 

seasonal or operational variability in noise patterns. Future research should incorporate multi-month or 

annual datasets to capture more representative long-term trends. Third, while we used fixed monitoring 

terminal locations to approximate tract-level exposure, spatial interpolation or acoustic propagation 

modeling may be needed to fully capture local micro-scale variability. Lastly, this study focused on 

noise levels above fixed thresholds; incorporating dose–response health metrics or subjective 

annoyance responses could further enhance the policy relevance of the exposure indicators. 
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