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Abstract

When model predictions inform downstream decision making, a natural question is under what con-
ditions can the decision-makers simply respond to the predictions as if they were the true outcomes.
Calibration—a classical statistical notion that requires the predictions to be unbiased conditional on
the prediction values—suffices to guarantee that simple best-response to predictions is optimal. How-
ever, for high-dimensional prediction outcome spaces, obtaining an accurate calibrated predictor requires
exponential computational and statistical complexity. The recent relaxation known as decision cali-

bration [Zhao et al., 2021] circumvents this curse of dimensionality, as it only requires predictions to be
unbiased conditional on the induced best-response actions—in effect ensuring the optimality of the simple
best-response rule while requiring only polynomial sample complexity in the dimension of outcomes.

However, known results on calibration and decision calibration crucially rely on linear loss functions
for establishing best-response optimality. A natural approach to handle nonlinear losses is to map
outcomes y into a feature space φ(y) of dimension m, then approximate losses with linear functions
of φ(y). Unfortunately, even simple classes of nonlinear functions can demand exponentially large or
infinite (e.g., RKHS-induced) feature dimensions m. A key open problem is whether it is possible to
achieve decision calibration with sample complexity independent of m. We begin with a negative result:
even verifying decision calibration under standard deterministic best response inherently requires sample
complexity polynomial in m.

Motivated by this lower bound, we investigate a smooth version of decision calibration in which
decision-makers follow a smooth best-response—also known as the quantal response. This smooth re-
laxation enables dimension-free decision calibration algorithms. We introduce algorithms that, given
poly(|A|, 1/ǫ) samples and any initial predictor p, can efficiently (1) determine if a predictor is decision-
calibrated, and (2) post-process the initial predictor to satisfy decision calibration without worsening
accuracy. Our algorithms apply broadly to function classes that can be well-approximated by bounded-
norm functions in (possibly infinite-dimensional) separable RKHS; examples of such classes include piece-
wise linear loss functions and d-dimensional Cobb–Douglas loss functions.

1 Introduction

Machine learning models increasingly underpin decisions in high-stakes scenarios, such as medical diagnosis
and financial forecasting. In these settings, predictions generated by models are used by downstream decision-
makers who seek to optimize their utilities. Formally, we consider a decision-theoretic setting where there
is an underlying distribution D over the spaces of covariates X and outcomes Y, and the goal is to learn
a predictor p : X → Y that informs downstream decision makers. A decision-making problem involves an
action set A, a loss function ℓ : A × Y → R, and a goal of selecting an action to minimize the incurred loss
ℓ(a, y). Often, these scenarios encompass not just a single, known loss function but rather a broad class of
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potential loss functions L. For instance, different stakeholders in healthcare might prioritize different aspects
of the outcome, or various financial decision-makers might have diverse risk appetites and preferences.

When should a decision-maker treat a prediction p(x) as if it were the true outcome y? Calibration
provides a principled answer to this question. Specifically, a predictor is calibrated if, for every prediction
value v, it provides an unbiased estimate of the outcome conditioned on the event of p(x) = v; that is,
E[Y | p(X) = v] = v. While calibration can be trivially achieved with a constant predictor p(x) = E[Y ],
such predictors are uninformative. In practice, calibration is often enforced via post-processing: given
a base predictor p0, predictions are adjusted to produce a new predictor p that is both calibrated and
more accurate (e.g., as measured by square loss). Decision-makers with linear loss functions can treat
calibrated predictions as reliable substitutes for outcomes. Concretely, if the loss function ℓ(a, y) is linear
in the outcome—that is ℓ(a, y) = rℓ(a) · y—then the optimal mapping from p(x) to an action a is to
simply select the best response based on p(x): argmina ℓ(p(x), a) [Foster and Vohra, 1999, Noarov et al.,
2023]. However, achieving calibration becomes both computationally and statistically challenging for high-
dimensional outcome spaces Y. In particular, verifying the calibration condition requires checking the
unbiasedness condition over exponentially many events of {p(x) = v}, which demands an exponential number
of samples [Gopalan et al., 2024a].

To circumvent this curse of dimensionality, Zhao et al. [2021] introduced the concept of decision cali-
bration. Compared to full calibration, decision calibration also asks for the unbiasedness of the prediction
but only conditions on a collection of events relevant to action selections. As a result, decision-makers can
still treat a decision-calibrated prediction as the outcome and simply respond optimally to predictions with-
out needing to perform any complex adjustments or second-guessing. Notably, this relaxed notion reduces
complexity, allowing polynomial-time verification and post-processing even in high-dimensional settings.

However, Zhao et al. [2021] and nearly all prior work on calibration for decision-making (e.g., Foster and Vohra
[1999], Noarov et al. [2023]) have focused primarily on linear loss functions, as linearity is crucial for estab-
lishing that best-response actions to predictions are indeed optimal. Yet, many real-world decision-making
scenarios naturally involve non-linear loss functions. Such non-linearities frequently arise for risk-averse
decision-makers [Pratt, 1964]. For example, investors may adopt loss functions that more heavily penal-
ize extreme financial losses, and healthcare decisions often incorporate risk-sensitive objectives that assign
greater weight to severe medical outcomes. A common strategy to accommodate such nonlinearities is fea-
ture expansion: mapping outcomes y to a higher-dimensional feature space φ(y), where loss functions can
be approximated by linear functions of φ(y). However, for many practical classes of loss functions—such as
certain subclasses of Lipschitz functions—these feature expansions require exponentially large dimensions.
As a result, the computational and statistical benefits of decision calibration are effectively nullified.

In this paper, we explore the notion of dimension-free decision calibration for non-linear losses. Specifi-
cally, we investigate whether it is possible to achieve decision calibration for extensive classes of non-linear
loss functions without incurring sample and computational complexities that scale exponentially with the
dimension of the outcome space Y. Our goal is to develop algorithms whose complexity is independent of
the dimensionality of the feature expansion φ(y).

1.1 Our Results and Techniques

To set up our problem, let L denote a class of loss functions ℓ(a, y) that may depend non-linearly on y but
can be expressed as (or well approximated by) a linear function of an m-dimensional feature expansion φ(y):

ℓ(a, y) = 〈rℓ(a), φ(y)〉

The dimension m of φ(y) can be infinite, as it can be the feature map induced by some reproducing kernel
Hilbert space (RKHS). To state the condition of decision calibration Zhao et al. [2021], it is useful to interpret
a predictor p : X → Y as a loss estimator fp such that fp(x, a, ℓ) predicts the incurred loss ℓ(a, y) for taking
action a given covariates x. Let K denote a class of decision rules k that maps covariates to distributions
over actions. Then a predictor p is (L,K)-decision calibrated if for all ℓ ∈ L and k ∈ K:

E(x,y)∼DEa∼k(x)[ℓ(a, y)] = E(x,y)∼DEa∼k(x)[fp(x, a, ℓ)].

In other words, decision calibration ensures that the predictions p(x) yield loss estimates that are statistically
indistinguishable from the true losses from the decision-maker’s perspective.
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Our first result focuses on the deterministic optimal decision rule, which, given a prediction p(x) and loss
function ℓ, selects the action argmina∈A ℓ(a, p(x)). We establish a lower bound showing that determining
whether a predictor is decision-calibrated under this rule requires a sample complexity of Ω(

√
m).

Theorem 1.1 (Informal Statement of Theorem 4.1). Under the deterministic optimal decision rule, any
algorithm determining whether a predictor p is approximately decision-calibrated requires Ω(

√
m) samples.

Our proof follows an indistinguishability argument akin to that of Gopalan et al. [2024a]: given a predictor
p, we construct two nearly identical distributions, D1 and D2, such that only D1 satisfies decision calibration.
We show that distinguishing which of the two distributions generated the data requires at least Ω(

√
m)

samples. However, our setting departs significantly from Gopalan et al. [2024a], who study lower bounds for
full calibration, which is stronger than decision calibration. As a result, our construction of D1 and D2 differs
substantially and leverages the geometry of best response regions. When the action set A consists of two
actions, these regions correspond to half-spaces of the form 1[〈r, p(x)〉 > 0]. The core idea behind constructing
D2 is to introduce a subtle bias in the outcomes–specifically, a deviation (y−p(x))–that is statistically difficult
to distinguish from zero-mean label noise. Simultaneously, using a “shattering argument” from VC theory,
we show the existence of a loss function ℓ such that the associated half-space captures a biased region.
Consequently, the predictor p fails to satisfy decision calibration under D2.

Note that our lower bound does not imply the impossibility of learning a decision-calibrated predictor with
fewer samples. Indeed, proving such an algorithmic lower bound is impossible, as even the trivial constant
predictor p(x) = E[Y ] is both calibrated and decision-calibrated. Existing algorithms for computing non-
trivial decision-calibrated predictors typically proceed by post-processing an initial predictor p0. Crucially,
these algorithms rely on an auditing step, which identifies loss functions exhibiting large decision-calibration
errors whenever the predictor is not decision-calibrated. As a result, our lower bound provides strong evidence
that non-trivial dimension-free decision calibration for deterministic optimal decision rules.

Given our lower bound, we instead focus on decision calibration under the smooth optimal decision rule:

k̃fp,ℓ(x, a) =
e−βfp(x,a,ℓ)

∑

a′ e−βfp(x,a′,ℓ)
.

This smooth optimal decision rule, commonly referred to as the quantal response model, has been exten-
sively studied in economics and decision theory [McFadden et al., 1976, McKelvey and Palfrey, 1995]. As a
behavioral model, it naturally captures bounded rationality and accounts for probabilistic decision-making
behavior. Technically, this assumption ensures that the decision maker’s response function is Lipschitz,
which is crucial for obtaining dimension-free results.

By adopting the smooth decision rule, we obtain our first positive result, which provides a dimension-free
auditing algorithm for decision calibration.

Theorem 1.2 (Informal Statement of Theorem 5.2). Under the smooth optimal decision rule, it suffices to
have a number of samples independent of the dimension m to solve the following auditing problem: whenever
a loss estimator f has decision calibration error at least ǫ, the algorithm can, with high probability, identify
a loss function ℓ and a smooth optimal decision rule k = k̃fp,ℓ′ witnessing a ǫ/2 decision calibration error:

∣

∣E(x,y)∼DEa∼k(x)[ℓ(a, y)]− E(x,y)∼DEa∼k(x)[fp(x, a, ℓ)]
∣

∣ ≥ ǫ/2.
The key technical ingredient behind our dimension-free auditing algorithm is a uniform convergence

result, showing that the decision calibration error can be uniformly approximated over all pairs (ℓ, k̃fp,ℓ′)
with a dimension-free sample complexity. This boils down to bounding the covering number over the class
of loss functions L or equivalently their m-dimensional parameters rℓ(a) for any a ∈ A. Although we
assume rℓ(a) are bounded, the covering number of an m-dimensional ball under the standard Euclidean
metric typically grows exponentially with m. To overcome this difficulty, we introduce a suitable pseudo-
metric that first projects differences rℓ1(a) − rℓ2(a) along a random direction (given by prediction of a
random example p(X)), and then measures distances in this projected one-dimensional space, defined as:
d(rℓ1(a), rℓ2(a)) =

√

E [〈rℓ1(a)− rℓ2(a), p(X)〉2]. We show that the covering number under this pseudo-
metric is bounded independently of the dimension m, and it is sufficient for our uniform convergence result.

The auditing procedure effectively identifies patches to improve a predictor. By combining this auditing
step with a patching procedure, we obtain an algorithm that can post-process any initial predictor into a
decision-calibrated predictor, with a sample complexity independent of the dimension.

3



Theorem 1.3 (Informal Statement of Theorem 6.1). Under the smooth optimal decision rule, there exists
an algorithm that, given poly(|A|, 1/ǫ) samples and any initial predictor p, returns a new predictor p′ that
is ǫ-decision-calibrated while achieving a square loss of no worse than that of p.

Our algorithms also achieve dimension-free computational complexity: all of the post-processing steps
in our calibration algorithm for the loss estimator can be implemented entirely through kernel evaluations,
without directly operating in the m-dimensional feature expansion space. Moreover, our approach is oracle-
efficient : given access to an oracle for solving the auditing subroutine, our method runs in polynomial time.
This auditing step itself can be efficiently reduced to solving an empirical risk minimization problem.

Algorithmically, the patching subroutine leverages the insight that decision calibration is a special instance
of weighted calibration, a concept introduced by Gopalan et al. [2022b]. We are the first to formally study
the relationship between weighted calibration and decision calibration under the smoothed decision rule. Our
result is broadly applicable, as it holds for any function class that can be well-approximated by functions
in an RKHS with a bounded norm. As concrete examples, we demonstrate that our algorithm applies to
infinite multiclass classification and d-dimensional Cobb-Douglas loss functions.

It is also worth noting that in Zhao et al. [2021], they proposed a decision calibration algorithm of a
different patching subroutine under the smooth optimal algorithm with access to the full data distribution.
Translating their algorithm to a finite-sample setting is nontrivial, as it involves estimating the (pseudo)
inverse of a matrix. Estimating the inverse of a semi-positive matrix has a sample complexity that depends on
the smallest eigenvalue of the matrix, which can be unbounded. To address this, we introduce a regularization
term in matrix estimation, manage to patch in the kernel space, yielding a decision calibration algorithm
with finite-sample guarantees. We argue that our proposed algorithm is much more efficient than this finite-
sample adaptation of algorithm by [Zhao et al., 2021] because the dependence of sample complexity on ǫ is
1/ǫ4 which is superior to 1/ǫ6 of their algorithm.

2 Related Work

Calibration and Decision Making The work most closely related to ours is Zhao et al. [2021], which
introduced the concept of decision calibration in the batch setting, where data points are drawn from an
underlying distribution. Zhao et al. [2021] primarily examined decision calibration in the context of multi-
class classification, where the outcome space Y is finite and the loss functions are linear. Our paper also
considers the batch setting, but we significantly extend their framework to a broader and more general
scenario, allowing the outcome space Y to be any compact convex set and accommodating non-linear loss
functions. There is a longstanding line of work on calibration and decision-making in the adversarial setting,
where data are presented adversarially in a sequential manner. The seminal work of Foster and Vohra
[1999] showed that a decision maker who best responds to calibrated forecasts obtains diminishing internal
regret. Similarly to decision calibration, there is a line of work in the adversarial setting that tries to
achieve some weaker variants of calibration while keeping agents incentivized to treat the predictions as
correct (Kleinberg et al. [2023], Fishelson et al. [2025], Luo et al. [2025]). Kleinberg et al. [2023] proposed
a notion called U-calibration, which is sufficient for agents to achieve sublinear external regret, bypassing
the lower bound of achieving calibration (Qiao and Valiant [2021]). A subsequent work by Luo et al. [2024]
gave the optimal bound of multiclass U-calibration. Noarov et al. [2023] studied how to make sequential
predictions for decision-making in the high-dimensional setting, but also relied on the loss functions to be
linear. Following the same algorithmic approach as Noarov et al. [2023], Roth and Shi [2024] showed how
to produce predictions for agents to best respond and achieve low swap regret. But their regret bound has
dependence on the size of the action |A|. Hu and Wu [2024] showed that in the binary setting, the dependence
on |A| can be removed while keeping the Õ(

√
T ) regret. There is also work on calibration and decision making

in games, such as Camara et al. [2020], Haghtalab et al. [2023], Collina et al. [2024]. However, most of these
works focus either on linear loss functions or on one-dimensional outcome spaces, whereas our work addresses
the more general and challenging setting of nonlinear loss functions over d-dimensional outcomes.

Omniprediction In addition to decision calibration, there is another line of work studying prediction and
downstream decision making called omniprediction, which was introduced by Gopalan et al. [2021]. A subse-
quent Gopalan et al. [2022a] built the connection between omniprediction and outcome indistinguishability
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(OI), which was introduced by Dwork et al. [2021] in the binary setting and was extended to the continuous
one-dimensional setting by Dwork et al. [2022]. In detail, they showed that omniprediction can be achieved
by hypothesis OI and decision OI. Decision OI is a weaker notion than decision calibration. While decision
OI requires that predictions be indistinguishable from the true outcomes with respect to the loss ℓ incurred
under the optimal decision rule defined by ℓ itself, decision calibration demands this indistinguishability hold
for the loss ℓ incurred under the optimal decision rules defined by any loss function ℓ′.

Garg et al. [2024] first studied omniprediction in the adversarial setting. Recently, several papers on
omniprediction have leveraged decision OI to achieve omniprediction efficiently in both batch and adversar-
ial settings. Okoroafor et al. [2025] studied near-optimal omniprediction in the adversarial binary setting.
Gopalan et al. [2024b] studied how to efficiently achieve omniprediction for nonlinear losses in the one-
dimensional batch setting. They proposed the notion called sufficient statistics, which can be viewed as
finite-dimensional feature mapping and inspired our study on more general feature mapping. Dwork et al.
[2024] studied omniprediction in evolving graphs. A very recent work Lu et al. [2025] extended Gopalan et al.
[2024b] to the high-dimensional adversarial setting by using a different generalization of the decision OI, first
given by Noarov et al. [2023] and used by Roth and Shi [2024]. It is worth noting that their work is not
directly comparable to ours, even though they also consider d-dimensional nonlinear losses, for the following
reasons. First, similar to Gopalan et al. [2024b], their framework to handle nonlinear loss functions assumes
a finite-dimensional feature mapping, whereas we also address the more general case of infinite-dimensional
feature mappings. Second, their focus lies in the adversarial setting, where they employ an online-to-batch
conversion to construct a randomized predictor from scratch that satisfies batch omniprediction. In contrast,
our goal is to take an arbitrary predictor as input and output a deterministic predictor that satisfies decision
calibration—a related but fundamentally different notion from omniprediction.

3 Preliminaries

Notations We consider the prediction problem for decision making with a feature space X and a compact
convex outcome space Y ⊆ R

d. LetD denote the distribution overX×Y. Given any datasetD = {(xi, yi)}ni=1

that is drawn i.i.d from D and any function ψ : X × Y → R, define the empirical expectation as

ÊD[ψ(x, y)] =
1

n

n
∑

i=1

ψ(xi, yi).

For any integer n, we use [n] to denote the class {1, · · · , n}.

3.1 Loss Functions and Uniform Approximations

We model downstream decision makers as having a finite action space A and a loss function ℓ : A×Y → [0, 1],
which maps an action-outcome pair to a bounded loss. Let L denote a family of such loss functions. To handle
nonlinear losses, we adopt a standard approach of approximating them via a feature mapping φ : Y → H,
where H is a (possibly infinite-dimensional) feature space. The idea is to approximate each ℓ ∈ L by a linear
function of φ(y). Once this approximation is established, we show in the following sections that decision
calibration becomes achievable for such loss classes.

When the feature space is finite-dimensional, we write H = R
m with dim(H) = m < ∞. We also

consider the case where H is a separable reproducing kernel Hilbert space (RKHS), which has a countable
orthonormal basis, and dim(H) can be ∞.

We formally define this approximation framework as follows:

Definition 3.1. Let φ : Y → H be a feature map and L a family of loss functions. We say that φ provides
a (dim(H), λ, ǫ)-uniform approximation to L if for every ℓ ∈ L, there exists a function rℓ : A → H such that

|〈rℓ(a), φ(y)〉H − ℓ(a, y)| ≤ ǫ

and
‖rℓ(a)‖H ≤ λ

for all a ∈ A and y ∈ Y.
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Uniform approximation via finite-dimensional feature mappings has been studied in prior work, such
as Gopalan et al. [2024b] and Lu et al. [2025], in the contexts of omniprediction and online decision swap
regret. Our formulation generalizes this idea to infinite-dimensional feature spaces.

Intuitively, Definition 3.1 requires the function ℓ(a, ·) : Y → R to be uniformly approximated by functions
ga : Y → R that are linear in some feature space for any a. We present two families of functions from the
economics literature as examples that are linear in an infinite-dimensional feature space.

Example 3.1 (Continuous Piecewise Linear Functions). Consider the case Y = [0, 1]. Define a family of
functions to be G = {gk1,k2,c : ∀c ∈ [0, 1], |k1| ≤ R, |k2| ≤ R} where

gk1,k2,c(y) =

{

k1y 0 ≤ y < c

k2y + (k1 − k2)c c ≤ y ≤ 1.

This defines a class of piecewise linear functions with an unknown turning point c. Piecewise linear functions
of this form have been extensively studied in the economics literature. The function gk1,k2,c can be interpreted
as a utility function (or the negative of a loss function), where y denotes the consumption level of a particular
good. It captures a common economic scenario in which marginal utility decreases once consumption exceeds
a threshold c.

Next we show that functions in G are linear in a infinite-dimensional feature space. Let H be the RKHS
with kernel

K(y1, y2) = min{y1, y2}.
Let φ(y) := K(y, ·) be the feature mapping associated with K. We have

gk1,k2,c = 〈k2φ(1) + (k1 − k2)φ(c), φ(y)〉H.

In addition, we have ‖k2φ(1) + (k1 − k2)φ(c)‖H ≤ R.

Example 3.2 (Cobb-Douglas Functions). Consider the case Y. Define a family of functions to be G = {gα :
∀α ∈ [0, 1]d s.t.

∑

i∈[d] ai = 1} where
gα(y) = e

∑
i∈[d] αiyi .

This defines the class of Cobb-Douglas functions in exponential form. Cobb-Douglas functions are widely
used in economics. One can interpret gα as a utility function (or the negative of a loss function), where yi
represents the consumption level of the i-th good and ai is the normalized preference (see Varian and Varian
[1992]) for the i-th good for any i ∈ [d].

Next, we show that functions in G are linear in an infinite-dimensional feature space. Let H be the RKHS
with kernel

K(y1, y2) = exp(〈y1, y2〉).
Let φ(y) := K(y, ·) be the feature mapping associated with K. We have

gα = 〈φ(a), φ(y)〉H.

In addition, we have ‖φ(a)‖H ≤
√
e.

3.2 Predictors and Loss Estimators

We now define the notion of a predictor given a feature mapping φ : Y → H. A predictor is a function
p : X → H, interpreted as estimating the conditional expectation E[φ(y) | x]. Since the feature space H
can be high-dimensional or even infinite-dimensional, the predictor p(x) can be complex and may lack an
intuitive interpretation for downstream decision makers.

To address this, we do not expose the predictor directly. Instead, we use it to construct a loss estimator
fp, which takes as input a context x, an action a, and a loss function ℓ, and outputs an estimate of the
expected loss ℓ(a, y) given x. We formalize this notion below:

Definition 3.2 (Loss Estimator). A loss estimator is a function f : X × A × L → R. For any context
x ∈ X , action a ∈ A, and loss function ℓ ∈ L, the output f(x, a, ℓ) estimates the expected loss E[ℓ(a, y) | x].

6



Although the definition of f does not require an explicit association with a predictor, in our approach
the learned loss estimator is implicitly derived from an underlying predictor p. Specifically, when such a
predictor is maintained, the loss estimator takes the form

fp(x, a, ℓ) = 〈rℓ(a), p(x)〉,

where rℓ(a) is the coefficient vector associated with the loss function ℓ, as defined previously.

3.3 Decision Rules and Decision Calibration

In an ideal setting, if a decision maker with loss function ℓ has access to the full distribution D, they can
compute and play the optimal action:

a∗ = argmin
a∈A

ED[ℓ(a, y)].

However, in practice, decision makers do not have access to the full distribution. Instead, they rely on the
loss estimator f to make decisions. Given a context x, the decision maker queries the estimated loss f(x, a, ℓ)
for each action a ∈ A and selects an action accordingly.

We formalize the decision maker’s behavior via a decision rule, which is a function k : X × A → [0, 1],
representing the probability of selecting action a given context x. A common strategy is to select the action
that minimizes the estimated expected loss:

Definition 3.3 (Optimal Decision Rule). For a given loss function ℓ and loss estimator f , the optimal
decision rule is defined as:

kf,ℓ(x, a) =

{

1 if a = argmina′∈A f(x, a′, ℓ),

0 otherwise.

We also consider a smoothed version of the optimal decision rule, commonly referred to as the quantal
response model in economics and decision theory. The quantal response model has been extensively studied
in the literature (see e.g., [McFadden et al., 1976, McKelvey and Palfrey, 1995]).

Definition 3.4 (Smooth Optimal Decision Rule). For a loss function ℓ, loss estimator f , and temperature
parameter β > 0, the smoothed optimal decision rule is defined as:

k̃f,ℓ(x, a) =
e−βf(x,a,ℓ)

∑

a′ e−βf(x,a′,ℓ)
.

For convenience, we sometimes use k(x) to denote the probability distribution over actions induced by
a decision rule k. We now restate the definition of decision calibration, originally introduced by Zhao et al.
[2021], with our notion of the loss estimator:

Definition 3.5 (Decision Calibration). Let L be a class of loss functions and K be a class of decision rules.
A loss estimator f is said to be (L,K)-decision calibrated if for every ℓ ∈ L and every decision rule k ∈ K,

E(x,y)∼DEa∼k(x)[ℓ(a, y)] = E(x,y)∼DEa∼k(x)[f(x, a, ℓ)]. (1)

We define the decision calibration error as:

decCEL,K(f) := sup
ℓ∈L, k∈K

∣

∣E(x,y)∼DEa∼k(x)[ℓ(a, y)]− E(x,y)∼DEa∼k(x)[f(x, a, ℓ)]
∣

∣ .

We say that a loss estimator is (L,K, ǫ)-decision calibrated if:

decCEL,K(f) ≤ ǫ.
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To interpret equation 1, the left-hand side represents the true expected loss incurred when the agent
follows the decision rule k, while the right-hand side represents the estimated expected loss based solely on
the loss estimator f . The agent can compute this estimate without access to the true outcome y. Intuitively,
decision calibration requires that the estimates provided by f are accurate across all relevant loss functions
and decision rules.

We use KL := {kℓ|ℓ ∈ L} to denote the class of decision rules induced by any loss function ℓ ∈ L under
the best response decision rule. Similarly, we use K̃LH := {k̃ℓ|ℓ ∈ L} to denote the class of decision rules
induced by any loss function ℓ ∈ L under the smooth best response decision rule.

We now discuss how the uniform approximation can help to achieve decision calibration. Let Lφ denote
the class of loss functions for which the feature mapping φ : Y → H gives (dim(H), λ, ǫ

2 )-uniform approxi-

mations and let L̂φ = {ℓ̂ : ℓ̂(a, y) = rℓ(a) · φ(y)} denote the associated class of linear functions. Then given
any predictor p : X → H, we can define the loss estimator fp as

fp(x, a, l) = 〈rℓ(a), p(x)〉H

for any context x ∈ X , action a ∈ A and loss function ℓ ∈ Lφ.
The following lemma shows that if the loss estimator fp is ǫ/2-decision calibrated for class L̂φ, it is

ǫ-decision calibrated for class Lφ.

Lemma 3.1. Let Lφ denote the class of loss functions for which the feature mapping φ : Y → H gives

(dim(H), λ, ǫ
2 )-uniform approximations and let L̂φ = {ℓ̂ : ℓ̂(a, y) = rℓ(a) ·φ(y)} denote the associated class of

linear functions. For any predictor p : X → H, any class of decision rule K and ǫ > 0, if the loss estimator
fp is (L̂φ,K, ǫ/2)-decision calibrated, then fp is (Lφ,K, ǫ)-decision calibrated.

Proof. We have for any ℓ ∈ Lφ and any k ∈ K,

∣

∣

∣E(x,y)∼DEa∼k(x)[ℓ(a, y)]− E(x,y)∼DEa∼k̃ℓ′ (x)
[fp(x, a, ℓ)]

∣

∣

∣

=
∣

∣

∣E(x,y)∼DEa∼k(x)[ℓ(a, y)− ℓ̂(a, y)] + E(x,y)∼DEa∼k̃ℓ′ (x)
[ℓ̂(a, y)− fp(x, a, ℓ)]

∣

∣

∣

≤
∣

∣

∣E(x,y)∼DEa∼k(x)[ℓ(a, y)− ℓ̂(a, y)]
∣

∣

∣+
∣

∣

∣E(x,y)∼DEa∼k(x)[ℓ̂(a, y)− fp(x, a, ℓ)]
∣

∣

∣

≤ ǫ

2
+
ǫ

2
= ǫ,

where the last inequality holds because s gives (dim(H), λ, ǫ/2)-uniform approximations to Lφ and fp is

(L̂φ,K, ǫ/2)-decision calibrated.

3.4 No Regret Guarantees through Decision Calibration

Now we show why decision calibration is useful, as it gives no regret guarantees for downstream decision
makers. We consider the no-type-regret guarantee that is also discussed in Zhao et al. [2021]. Informally, no
type-regret guarantee ensures that a decision maker with loss function ℓ ∈ L, who plays the best response
policy under their own loss, will incur an expected loss no greater than what they would incur by playing
the best response policy for any other loss function ℓ′ ∈ L.1 We derive the no-type-regret guarantee results
for decision makers under both the optimal decision rule and the smooth optimal decision rule.

Proposition 3.1 (No Type Regret under Optimal Decision Rule). If the loss estimator fp is (L,KL, ǫ)-
decision calibrated, then any decision maker under optimal decision rule has no regret reporting their true
loss function, that is

∀ℓ, ℓ′ ∈ L,E(x,y)∼DEa∼kℓ(x)[ℓ(a, y)] ≤ E(x,y)∼DEa∼kℓ′ (x)
[ℓ(a, y)] + 2ǫ.

1From the perspective of mechanism design, no-type-regret implies that decision makers have no incentives to misreport

their loss function to the loss estimator.
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Proof. By definition, when the loss estimator fp is (L,KL, ǫ)-decision calibrated, we have

E(x,y)∼DEa∼kℓ(x)[ℓ(a, y)]

≤E(x,y)∼DEa∼kℓ(x)[f(x, a, ℓ)] + ǫ

≤E(x,y)∼DEa∼kℓ′ (x)
[f(x, a, ℓ)] + ǫ

≤E(x,y)∼DEa∼kℓ′ (x)
[ℓ(a, y)] + 2ǫ,

where the first and third inequalities follow from the definition of decision calibration, and the second
inequality follows from the optimality of kℓ.

Zhao et al. [2021] proved a similar guarantee for multiclass setting and linear loss function class. We
generalize the result to the general loss estimator setting.

Now we move on to a similar guarantee for decision makers with the smooth optimal decision rule. For

this result the error will have another log(|A|)+1
β

which is related to the hyperparameter β. This is because

the smooth best response rule k̃ℓ might not strictly lead to a better expected loss than k̃′ℓ, therefore we will

need to first relate the loss that the decision maker incurs by playing k̃ℓ to the loss they incurs by playing kℓ,
which adds another approximation error term. To prove the result, we will need to use a lemma proposed by
Roth and Shi [2024], where they studied swap regret (a different notion of regret) in the adversarial online
setting. Roth and Shi [2024] states the lemma in the setting of a utility function u, and we restate it in the
form of the loss function ℓ.

Lemma 3.2 (Roth and Shi [2024]). For any loss estimator f , context x and loss function ℓ, we have that

Ea∼k̃ℓ(x)
[f(x, a, ℓ)] ≤ Ea∼kℓ(x)[f(x, a, ℓ)] +

log(|A|) + 1

β
.

Proposition 3.2 (No Type Regret under Smooth Optimal Decision Rule). If the loss estimator fp is

(L, K̃L, ǫ)-decision calibrated, then any decision maker under smooth optimal decision rule has no regret
reporting their true loss function, that is

∀ℓ, ℓ′ ∈ L,E(x,y)∼DEa∼k̃ℓ(x)
[ℓ(a, y)] ≤ E(x,y)∼DEa∼k̃ℓ′ (x)

[ℓ(a, y)] + 2ǫ+
log(|A|) + 1

β
.

Proof.

E(x,y)∼DEa∼k̃ℓ(x)
[ℓ(a, y)]

≤E(x,y)∼DEa∼k̃ℓ(x)
[f(x, a, ℓ)] + ǫ

≤E(x,y)∼DEa∼kℓ(x)[f(x, a, ℓ)] + ǫ+
log(|A|) + 1

β

≤E(x,y)∼DEa∼kℓ′(x)
[f(x, a, ℓ)] + ǫ+

log(|A|) + 1

β

≤E(x,y)∼DEa∼k̃ℓ′(x)
[f(x, a, ℓ)] + ǫ+

log(|A|) + 1

β

≤E(x,y)∼DEa∼k̃ℓ′(x)
[ℓ(a, y)] + 2ǫ+

log(|A|) + 1

β
,

where the first and last inequalities follows from the definition of decision calibration, the second inequality
follows from Lemma 3.2, the third inequality follows from the optimality of kℓ, and the fourth inequality
follows from the expected loss of playing the optimal decision rule will lead to loss no greater than that when
playing the smooth optimal decision rule.

4 Lower Bound under Deterministic Optimal Decision Rule

In this section, we study the question of whether it is possible to have a dimension-free algorithm for decision
calibration under the optimal decision rule. We establish a statistical lower bound. Specifically, our lower
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bound is on the sample complexity of determining whether a predictor is approximately decision-calibrated.
Note that we choose not to prove a lower bound for computing a decision-calibrated predictor directly because
trivial solutions—such as a constant predictor always outputting the mean outcome E[Y ]—can satisfy both
decision and full calibration.

To prove our lower bound, we consider a simple setting where the number of actions |A| = 2, the feature
mapping is φ(y) = y, the class of loss functions is linear LLIN = {ℓ | ∀a, ∃rℓ(a), ‖rℓ(a)‖2 ≤ 1, ℓ(a, y) =
〈rℓ(a), y〉} with their corresponding optimal decision rules KLLIN . Our result shows that distinguishing
whether a predictor p (and its induced loss estimator f) is (LLIN,KLLIN , 0)-decision calibrated versus not
(LLIN,KLLIN , ǫ)-decision calibrated requires sample complexity that depends on the dimension of Y. Since the
proof involves constructing multiple distributions, we will slightly abuse notation and add another argument
for D in the definition of decision calibration error, that is

decCEL,K(f,D) := sup
ℓ∈L, k∈K

∣

∣E(x,y)∼DEa∼k(x)[ℓ(a, y)]− E(x,y)∼DEa∼k(x)[f(x, a, ℓ)]
∣

∣ .

For simplicity, we consider the special case where X = Y and the predictor p is the identity function, i.e.,
p(x) = x, and so input data take the form (p(x1), y1), (p(x2), y2), . . . , (p(xn), yn).

Theorem 4.1. Let ǫ ∈ (0, 1/3), Y = {y ∈ R
d|‖y‖2 ≤ 1}, and fp be the loss estimator induced by some

predictor p : X → Y. Let A be an algorithm that takes samples (p(x1), y1), (p(x2), y2), . . . , (p(xn), yn) drawn
i.i.d. from a distribution D. Suppose that A is guaranteed to output ”accept” with probability at least 2/3
whenever decCELLIN,KLIN(f,D) = 0 and guaranteed to output ”reject” with probability at least 2/3 whenever

decCELLIN,KLIN(fp,D) ≥ ǫ. Then n ≥ Ω(
√
d).

This lower bound result also exhibit a barrier result for a dimension-free algorithm for achieving decision
calibration under the deterministic optimal decision rule. All existing decision calibration algorithms with
provable guarantees proceed by iteratively post-processing an initial predictor p0. A key component of these
algorithms is the auditing step, which, in each iteration, identifies loss functions that witness large decision
calibration error whenever the predictor is not calibrated, and returns nothing when the predictor is already
calibrated [Zhao et al., 2021, Gopalan et al., 2022b, 2024a]. Note that any auditing algorithm will necessarily
require Ω(

√
d) sample complexity based on Theorem 4.1.

As our first step in the proof for Theorem 4.1, we derive an equivalent definition of decision calibration
error for binary actions.

Lemma 4.1. For linear loss function class and |A| = 2, when loss estimator fp is induced by some predictor
p, we have

decCELLIN,KLLIN
(fp,D) = sup

r∈Rd

‖E(y − p(x)) · 1(〈r, p(x)〉 > 0)‖2 + ‖E(y − p(x)) · 1(〈r, p(x)〉 ≤ 0)‖2.

Proof. From the definition of decCEL,K(f,D), we have

decCELLIN,KLLIN
(fp,D)

= sup
ℓ∈LLIN, k∈KLLIN

∣

∣E(x,y)∼DEa∼k(x)[ℓ(a, y)]− E(x,y)∼DEa∼k(x)[f(x, a, ℓ)]
∣

∣

= sup
ℓ∈LLIN, k∈KLLIN

∣

∣E(x,y)∼DEa∼k(x)[〈rℓ(a), y〉]− E(x,y)∼DEa∼k(x)[〈rℓ(a), p(x)〉]
∣

∣

= sup
ℓ∈LLIN, k∈KLLIN

∣

∣E(x,y)∼DEa∼k(x)[〈rℓ(a), y − p(x)〉]
∣

∣

= sup
ℓ,ℓ′∈LLIN

∣

∣E(x,y)∼D[1(〈rℓ′(a1)− rℓ′(a2), p(x)〉 > 0)〈rℓ(a2), y − p(x)〉 + 1(〈rℓ′(a1)− rℓ′(a2), p(x)〉 ≤ 0)[〈rℓ(a1), y − p(x)〉]
∣

∣

= sup
r∈Rd,ℓ′∈LLIN

∣

∣E(x,y)∼D[1(〈r, p(x)〉 > 0)〈rℓ(a2), y − p(x)〉 + 1(〈r, p(x)〉 ≤ 0)[〈rℓ(a1), y − p(x)〉]
∣

∣

= sup
r∈Rd

‖E(y − p(x)) · 1(〈r, p(x)〉 > 0)‖2 + ‖E(y − p(x)) · 1(〈r, p(x)〉 ≤ 0)‖2

The first 3 equations is from definition and simple algebra, the fourth equation holds from the definition of
optiml decision rule, and the last line holds by Cauchy–Schwarz inequality.
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Now we give the proof idea for Theorem 4.1. At a high level, our lower bound follows a template
similar to that used in the lower bound for high-dimensional full calibration presented in Gopalan et al.
[2024a], which investigates the sample complexity required to verify full calibration. To prove Theorem 4.1,
we start with a set V = {v1, v2, · · · , vd} ⊂ Y where vi = 1

2ei is half of the unit vector with the i-th
coordinate being 1/2 and all other coordinates take value 0. V can be shattered by the function class
H = {h : h(v) = sign〈r, v〉, r ∈ R

d}. Formally, a set S ⊆ X is said to be shattered by H if for every function
f : S → {−1, 1} there exists a hypothesis h ∈ H such that ∀x ∈ S, h(x) = f(x).

Lemma 4.2 (Shattering). V can be shattered by the function class H = {h|h(v) = sign(〈r, v〉), ‖r‖2 ≤ 1},
that is |{f(vi)i|f ∈ F}| = 2d.

Proof. Let r = (r(1), ..., r(d)) ∈ {− 1√
d
, 1√

d
}d. We have sign(〈r, 12ei〉) = sign(r(i)). Therefore, h(v) can

arbitarily takes value in {−1, 1} at each point vi ∈ V , which means V can be shattered by H.

Next we use V to construct candidate distributions with large decision calibration error.

Lemma 4.3. For any σ = (σ(1), ..., σ(d)) ∈ {− 1√
d
, 1√

d
}d, Let hσ be the function that for any i, hσ(vi) =

vi + ǫ · sign(σi)e1. Consider a distribution Dσ and predictor p, such that p(xi) is distributed uniformly over
V and y = hσ(p(x)), then it holds that decCELLIN,KLLIN

(fp,Dσ) ≥ ǫ.

Proof. Consider r = σ, we use l =
∑d

i=1 1(σi) > 0 to denote the number of positive coordinates in σ. We
have

decCELLIN,KLLIN
(fp,D) = sup

r∈Rd

‖E(y − p(x)) · 1(〈r, p(x)〉 > 0)‖2 + ‖E(y − p(x)) · 1(〈r, p(x)〉 ≤ 0)‖2

≥ ‖E[(y − p(x))]1(〈σ, v〉 > 0)‖2 + ‖E[(y − p(x))]1(〈σ, v〉 ≤ 0)‖2

=

∥

∥

∥

∥

∥

1

d

d
∑

i=1

1(σi > 0)ǫ sign(σi)e1

∥

∥

∥

∥

∥

2

+

∥

∥

∥

∥

∥

1

d

d
∑

i=1

1(σi < 0)ǫ sign(σi)e1

∥

∥

∥

∥

∥

2

=
lǫ

d
+

(d− l)ǫ
d

= ǫ

(2)

We now construct two nearly indistinguishable distributions over n data points of prediction-outcome
pairs (p(x), y), denoted by D1,D2 ∈ ∆((Y × Y)n), such that the predictor p is perfectly decision calibrated
under D1 but has a decision calibration error of ǫ under D2. The goal is to show that telling which of D1

and D2 generates the observations requires a number of samples Ω(
√
d).

Let A be an algorithm that receives n samples (p(x1), y1), ((p(x2), y2), . . . , (p(xn), yn) ∈ Y2 and outputs
either “accept” or “reject.” Define the joint distribution D1 ∈ ∆((Y × Y)n) as follows: each p(xi) is drawn
independently and uniformly from a finite set V , and each corresponding yi is independently drawn as
yi = p(xi)± ǫe1, where the sign is chosen uniformly at random. Let p1 denote the probability that algorithm
A accepts p on samples follow D1.

Next, define the joint distribution D2 ∈ ∆((Y × Y)n) as follows: first, uniformly sample a perturbation
vector σ ∈ {− 1√

d
, 1√

d
}d, and then sample each p(xi) independently and uniformly from V . For each i, set

yi = hσ(p(xi)), where hσ is a fixed perturbation function defined by σ.
Intuitively, these two distributions are nearly identical. As long as all predictions p(x1), . . . , p(xn) are

distinct, the behavior of D1 and D2 is almost indistinguishable. The key difference arises when two data
points share the same prediction value v = p(xi) = p(xj): in D1, the outcomes yi and yj may differ due to
independent noise, while in D2, they are always the same because the mapping hσ is fixed once σ is sampled.

We now formalize this intuition in the following statement.

Lemma 4.4. Let p1 be the probability that A accepts when the data ((p(x1), y1), ..., (p(xn), yn)) ∼ D1, and Let
p2 be the probability that A accepts when the data ((p(x1), y1), ..., (p(xn), yn)) ∼ D2. Here, the randomness
comes from both the inherent randomness in A and the data. Then, it holds that |p1 − p2| ≤ O(n2/d).
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Proof. Without loss of generality we assume that n < |V | = d. For proving the lemma, we introduce another
joint distribution over the n data points, where we first draw p(x1),...p(xn) uniformly without replacement
from V , and then for any i, we independently draw yi = p(xi)± ǫei with both probabilities 1/2. We use p3
to denote the probability of A accept if the data points follow this joint distribution D3.

Also, when we draw all p(xi) independently uniformly with replacement, we use E to denote the event
that p(x1),...,p(xn) turn out to be distinct. We have

Pr[E] = (1− 1/|V |)...(1 − (n− 1)/|V |) ≥ 1−O(n2/d) (3)

For both joint distributions, conditioned on the event E, the probability that A will accept is exactly p3.
Then, we have

Pr[E] · p3 ≤ p1 ≤ Pr[E] · p3 + (1− Pr[E])

We also have
Pr[E] · p3 ≤ p2 ≤ Pr[E] · p3 + (1− Pr[E])

Therefore, we have
|p1 − p2| ≤ 1− Pr[E] ≤ O(n2/d) (4)

Now we are able to prove Theorem 4.1.

Proof of Theorem 4.1. Consider the case of D1, it can be viewed the data points are drawn independently
from a distribution D, where p(xi) is drawn uniformly from V , and y = p(x)± ǫe1 with probability both 1

2 .
Therefore D1 is a joint distrbution such that the data points are drawn from a distribution such that p is
calibrated (and therefore decision calibrated). Therefore, we have p1 ≥ 2/3.

Consider the case of D2, it can be viewed as a mixture of distributions indexed by σ, where for each
distribution, the data points are drawn independently from a distribution Dσ, where p(x) is drawn uniformly
from V , and y = hσ(p(x)). The distribution is a mixture where σ is drawn uniformly. Therefore,

p2 =
1

2d

∑

σ∈{−1,+1}d

Pr[A accepts Dσ] (5)

As a result, from Lemma 4.3, we have

p2 ≤
1

2d

∑

σ∈{−1,+1}d

1/3 = 1/3.

By Lemma 4.4, we know n ≥ Ω(
√
d).

5 Auditing of Decision Calibration for Functions in RKHS

In this section, we focus on the auditing problem of decision calibration for functions in RKHS, since RKHS
is the most general feature space considered in our paper. In detail, let H denote an RKHS associated with
the kernel function K : Y × Y → R. From now on, for simplicity we restrict attention to loss functions in
H with bounded norms, that is, we define LH = {ℓ : ∀a, ℓ(a, ·) ∈ H, ‖ℓ(a, ·)‖H ≤ R1}. From Lemma 3.1, the
result will naturally generalize to the loss function classes that cannot be exactly represented by bounded
norm functions in H but well approximated by them (while having an extra approximation error in the error
bound). For consistency of notation, we use rℓ(a) to denote ℓ(a, ·). Let φ : Y → H be the feature mapping
induced by kernel K, i.e. φ(y) = K(y, ·) and assume that ‖φ(y)‖H ≤ R2.

To ensure the loss estimator is computationally realizable, we constrain all predictors p : X → H to lie
in the span of finitely many feature mappings,

p(x) =

Np
∑

i=1

αi(x)φ(yi) (6)
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where Np is the number of samples for estimation and αi : X → R is a coefficient function for any i ∈ [Np].
For any predictor in the aforementioned form, we can define the loss estimator fp as

fp(x, a, ℓ) = 〈rℓ(a), p(x)〉H =

Np
∑

i=1

αi(x)ℓ(a, yi).

We focus on the smoothed decision rule k̃fp,ℓ defined in Definition 3.4. Let K̃LH denote the class of such
smoothed decision rules.

We first show that decision calibration (Definition 3.5) for fp has an equivalent but more intuitive for-
mulation.

Lemma 5.1. For a loss estimator fp derived from the predictor p, it is (LH, K̃LH , ǫ)-decision calibrated if
and only if

sup
ℓ,ℓ′∈LH

∣

∣

∣

∣

∣

∣

E(x,y)∼D





|A|
∑

a=1

〈rℓ(a), φ(y) − p(x)〉k̃fp,ℓ′(x, a)





∣

∣

∣

∣

∣

∣

≤ ǫ.

Proof. By reproducing property, for any ℓ, ℓ′ ∈ LH, we have
∣

∣

∣E(x,y)∼DEa∼k̃ℓ′ (x)
[ℓ(a, y)]− E(x,y)∼DEa∼k̃ℓ′ (x)

[fp(x, a, ℓ)]
∣

∣

∣

=

∣

∣

∣

∣

∣

∣

E(x,y)∼D





|A|
∑

a=1

ℓ(a, y)k̃ℓ′(x, a)



 − E(x,y)∼D[

|A|
∑

a=1

fp(x, a, ℓ)k̃ℓ′(x, a)]

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

E(x,y)∼D





|A|
∑

a=1

(ℓ(a, y)− fp(x, a, ℓ))k̃ℓ′(x, a)





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

E(x,y)∼D





|A|
∑

a=1

(〈rℓ(a), φ(y)〉 − 〈rℓ(a), p(x)〉)k̃ℓ′(x, a)





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

E(x,y)∼D





|A|
∑

a=1

〈rℓ(a), φ(y) − p(x)〉k̃fp,ℓ′(x, a)





∣

∣

∣

∣

∣

∣

.

Therefore, to determine whether a loss estimator is decision calibrated, we define a gap function param-
eterized by ℓ, ℓ′ as

gℓ,ℓ′(p(x), φ(y)) =

|A|
∑

i=1

〈rℓ(a), φ(y)− p(x)〉k̃fp,ℓ′(x, a)

=

|A|
∑

i=1

〈rℓ(a), φ(y)− p(x)〉
e−β〈ℓ′a,p(x)〉

∑

a′∈A e
−β〈ℓ′

a′ ,p(x)〉
.

Next, we show that the class of gap functions G := {gℓ,ℓ′ : ℓ, ℓ′ ∈ LH} satisfies the uniform convergence
property. We establish this by showing that the covering number of G remains bounded, even when H is
infinite-dimensional. Formally, we state the following theorem.

Theorem 5.1. Let D = {(x1, y1), ..., (xn, yn)} be the dataset where (xi, yi) is drawn i.i.d. from D, given
any predictor p : X → H, we have that

sup
ℓ,ℓ′∈LH

∣

∣

∣

∣

∣

∣

E(x,y)∼D





|A|
∑

a=1

〈rℓ(a), φ(y) − p(x)〉k̃fp,ℓ′(x, a)



 − ÊD





|A|
∑

a=1

〈rℓ(a), φ(y)− p(x)〉k̃fp,ℓ′(x, a)





∣

∣

∣

∣

∣

∣

≤O
(

|A| 32R3
1R

3
2 log(R1R2n) + log(1/δ)√

n

)

.

(7)
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Proof sketch. By standard Rademacher argument, it suffices to prove class G has dimension-free finite
Rademacher complexity. Since each function in the class G is parameterized by a pair of loss functions
ℓ, ℓ′ ∈ LH, Dudley’s chaining technique implies that it is enough to upper bound the covering number
N(LH × LH, LG

2 (Pn), ǫ) where Pn is the uniform distribution over dataset D and LG
2 (Pn) is defined as

LG
2 (Pn)

(

(ℓ1, ℓ1
′
), (ℓ2, ℓ2

′
)
)

:=

√

√

√

√

1

n

n
∑

i=1

(

gℓ1,ℓ1′(p(xi), φ(yi))− gℓ1,ℓ1′(p(xi), φ(yi))
)2
.

In order to bound the covering number N(LH × LH, LG
2 (Pn), ǫ), observe that for any ℓ ∈ LH and any

a ∈ A, rℓ(a) is in the Hilbert ball B(R1) with radius R1 since ‖rℓ(a)‖H ≤ R1. This allows us to connect
the covering number we want to bound to a known finite covering number N(B(R1), dP , ǫ) where P is an
arbitrary distribution on the Hilbert ball and dP is defined as

d(rℓ1 (a), rℓ2(a)) =
√

EX∼P [〈rℓ1(a)− rℓ2(a), X〉2],
where X is a random sample in the Hilbert ball drawn from distribution P . Intuitively, dP first projects
the differences θ− θ′ along a random direction given by the prediction of a random example p(X) and then
measures the distances in this projected one-dimensional space. For the formal proof, see Appendix B.

Now we are ready to address the auditing problem.

Definition 5.1 (Auditing). An ǫ-auditing algorithm (or ǫ-auditor) takes (p(x1), y1), ...(p(xn), yn) as input,
when decCE(fp,D) ≥ ǫ, with probability 1− δ, it witnesses a pair of loss functions ℓ, ℓ′, such that

∣

∣

∣

∣

∣

∣

E(x,y)∼D





|A|
∑

a=1

〈rℓ(a), φ(y) − p(x)〉k̃fp,ℓ′(x, a)





∣

∣

∣

∣

∣

∣

≥ ǫ/2,

Implied by Theorem 5.1, the following theorem says that the ERM oracle can serve as an auditing
algorithm which satisfies the statement of Theorem 1.2.

We define the loss function to be LDecCal(ℓ, ℓ
′, x, y) =

∑|A|
a=1 〈rℓ(a), φ(y)− p(x)〉k̃fp,ℓ′(x, a).

Theorem 5.2 (ERM as Auditing Algorithm). Let D = {(x1, y1), ..., (xn, yn)} be the dataset that each data
point is drawn i.i.d. from D, given any predictor p : X → H, the ERM algorithm that outputs

ℓ̂, ℓ̂′ ← argmax
ℓ,ℓ′

1

n

n
∑

i=1

LDecCal(ℓ, ℓ
′, xi, yi),

when n ≥ Õ( |A|2β4R6
1R

6
2

ǫ2
), ERM algorithm is an ǫ-auditor.

Proof. This follows directly from Theorem 5.1, because when n ≥ Õ(
|A|2β4R6

1R
6
2

ǫ2
), we have

sup
ℓ,ℓ′∈LH

∣

∣

∣

∣

∣

∣

E(x,y)∼D





|A|
∑

a=1

〈rℓ(a), φ(y)− p(x)〉k̃fp,ℓ′(x, a)



 − ÊD





|A|
∑

a=1

〈rℓ(a), φ(y) − p(x)〉k̃fp,ℓ′(x, a)





∣

∣

∣

∣

∣

∣

≤ ǫ/2.

From the definition of LDecCal, we know that

1

n

n
∑

i=1

LDecCal(ℓ, ℓ
′, xi, yi) = ÊD





|A|
∑

a=1

〈rℓ(a), φ(y)− p(x)〉k̃fp,ℓ′(x, a)





Here, we can remove the absolute value since L is defined as the ball LH = {ℓ : ∀a, ℓ(a, ·) ∈ H, ‖ℓ(a, ·)‖H ≤
R1}, which is symmetric by construction.

By triangle inequality, when decCE(fp,D) ≥ ǫ, we have
∣

∣

∣

∣

∣

∣

E(x,y)∼D





|A|
∑

a=1

〈

r
ℓ̂
(a), φ(y) − p(x)

〉

k̃
fp,ℓ̂′

(x, a)





∣

∣

∣

∣

∣

∣

≥ ǫ/2.
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In fact, solving ERM is stronger than solving the auditing problem. Auditing does not require identifying
the pair of loss functions that maximizes the empirical decision calibration error; it suffices to find a pair
for which the empirical error is large enough to certify that the true expected decision calibration error
exceeds ǫ/2 (Definition 5.1). To avoid potential misinterpretation, our algorithm Algorithm 1 assumes only
the existence of an auditing oracle, rather than requiring an ERM oracle.

6 Algorithms of Decision Calibration for Functions in RKHS

In this section, we discuss algorithms of decision calibration for functions in RKHS. In Section 6.1, we
first present our algorithm DimFreeDeCal (Algorithm 1) to achieve (LH, K̃LH , ǫ)-decision calibration. The
patching component of our algorithm is motivated by the weighted calibration framework introduced by
Gopalan et al. [2022b], based on the observation that decision calibration can be viewed as a special case
of weighted calibration. However, their algorithmic framework is not directly applicable to our setting, as
it patches the predictor in the finite-dimensional setting, whereas our formulation requires handling a more
general (potentially infinite-dimensional) prediction space. We will discuss how to address challenges in the
infinite-dimensional setting.

Zhao et al. [2021] also proposed an algorithm for achieving decision calibration under the smooth optimal
decision rule in the finite-dimensional setting, given the access to the full data distribution. However, their
algorithm does not directly extend to the finite-sample or infinite-dimensional settings. In Section 6.2, we
describe how to adapt their algorithm to achieve provable finite-sample guarantees and extend it to the
infinite-dimensional case. Notably, our proposed algorithm achieves a sample complexity of Õ(1/ǫ4), which
improves upon the Õ(1/ǫ6) sample complexity of the modified version of their algorithm.

6.1 Dimension-free Decision Calibration Algorithm

In this section, we propose our algorithm DimFreeDeCal (Algorithm 1). In Section 6.1.1, we build the
connection between decision calibration and weighted calibration. Building on this connection, we address
the novel challenges of patching in the infinite-dimensional setting and present our algorithm in Section 6.1.2.

6.1.1 Decision Calibration as Weighted Calibration

We restate the definition of weighted calibration introduced by Gopalan et al. [2022b] and extend it to the
RKHS setting.

Definition 6.1 (Weighted Calibration Gopalan et al. [2022b]). Let W : H → H be a family of weight
functions. We define the W-calibration error as

CEW(p) = sup
w∈W

|ED[〈w(p(x)), p(x) − φ(y)〉H]|.

We say that the loss estimator fp is (W , ǫ)-calibrated if CEW(p) ≤ ǫ.

The weighted calibration algorithm template is a clean iterative algorithm that works as follows. In
round t,

1. Use an auditing algorithm to check whether pt is (W , ǫ)-weighted calibrated. If it is, terminate the
algorithm.

2. If not, identify the weight function wt ∈ W that incurs the largest W-calibration error.

3. Update the predictor pt+1(x) := pt(x) + η · wt(pt(x)), where η is the step-size hyperparameter.

Next we will show the connection between decision calibration and weighted calibration. By Lemma 5.1, the
decision calibration error of a loss estimator fp can be written as

decCELH,K̃LH
(fp) := sup

ℓ∈LH,k̃∈K̃LH

∣

∣

∣E(x,y)∼DEa∼k̃(x)[ℓ(a, y)]− E(x,y)∼DEa∼k̃(x)[f(x, a, ℓ)]
∣

∣

∣
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= sup
ℓ,ℓ′∈LH

∣

∣

∣

∣

∣

∣

E(x,y)∼D





|A|
∑

a=1

〈rℓ(a), φ(y)− p(x)〉k̃fp,ℓ′(x, a)





∣

∣

∣

∣

∣

∣

= sup
ℓ,ℓ′∈LH

∣

∣

∣

∣

∣

∣

E(x,y)∼D





〈 |A|
∑

a=1

rℓ(a)k̃fp,ℓ′(x, a), φ(y) − p(x)
〉





∣

∣

∣

∣

∣

∣

.

Therefore, decision calibration is a special instance of Wdec-calibration for

Wdec := {wℓ,ℓ′ : wℓ,ℓ′(p(x)) =

|A|
∑

a=1

rℓ(a)k̃fp,ℓ′(x, a)∀ℓ, ℓ′ ∈ LH}.

6.1.2 Patching in the Infinite-dimensional Setting

The first challenge in the infinite-dimensional setting is that we need to restrict the predictor in the form of
Eq. (6) so that we can use the reproducing property to construct a loss estimator fp. Therefore, in each round
t, once we find ℓt, ℓ

′
t that violates the decision calibration, we cannot directly follow the original weighted

calibration algorithm template to update the predictor by patching wℓt,ℓ
′
t
unless rℓt(a) can be explicitly

expressed by the linear combination of φ(y).
However, note that

∣

∣

∣

∣

∣

∣

E





〈 |A|
∑

a=1

rℓt(a)k̃ℓ′t(x, a), φ(y) − pt(x)
〉





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

|A|
∑

a=1

〈

rℓt(a),E[(φ(y) − pt(x))k̃ℓ′t(x, a)]
〉

∣

∣

∣

∣

∣

∣

≤
|A|
∑

a=1

R1

∥

∥

∥
E[(φ(y) − pt(x))k̃ℓ′t(x, a)]

∥

∥

∥

H
.

The inequality becomes equality when rℓ∗t (a) = R1E[(φ(y)−pt(x))k̃ℓ′t(x, a)]/‖E[(φ(y)− pt(x))k̃ℓ′t(x, a)]‖H.
On the one hand, once we identify some pair of ℓt, ℓ

′
t, replacing ℓt with ℓ∗t will make the violation worse.

On the other hand, rℓ∗t (a) can be expressed by the linear combination of φ(y) (we will use the empirical
expectation to approximate the true expectation). Therefore, in each round t, we can use ℓ∗t to update the
predictor pt.

Algorithm 1 DimFreeDeCal

Input: The RKHS kernel K, current predictor p0 : X → H and tolerance ǫ.
1: t = 0
2: while supℓ,ℓ′ E[〈

∑|A|
a=1 rℓ(a)k̃ℓ′(x, a), φ(y) − pt(x)〉] > ǫ do

3: Find ℓt, ℓt
′ such that Ê[〈∑|A|

a=1 rℓt(a)k̃ℓ′t(x, a), φ(y) − pt(x)〉] > 3ǫ/4

4: Define the adjustments dta = ηR1Ê[(φ(y) − pt(x))k̃ℓ′t(x, a)]/‖Ê[(φ(y)− pt(x))k̃ℓ′t(x, a)]‖H.

5: Set pt+1 : x 7→ pt(x) +
∑|A|

a=1 dtak̃ℓ′t(x, a).
6: Set pt+1 : x 7→ πB(R2)(pt+1(x)). //πB(R2) projects onto Hilbert ball B(R2) with radius R2

7: end while

Intuitively, the algorithm proceeds as follows. In lines 2–3, we invoke the auditing oracle: if the loss
estimator fp0 is not (LH, K̃LH , ǫ)-decision calibrated, we can identify a pair (ℓt, ℓ

′
t) such that the empirical

decision calibration error exceeds 3ǫ/4. In line 4, as previously discussed, we substitute (ℓ∗t , ℓ
′
t) for (ℓt, ℓ

′
t)

to define the patching term so that the updated predictor can remain to be explicitly expressed as a linear
combination of φ(y). Lines 5–6 then carry out the patching step. Notably, we cannot perform computations
directly with pt(x), as it may reside in an infinite-dimensional space. To address this, we introduce the
technique of implicit patching, which we defer to the final part of Section 6.1.2. The following theorem shows
that Algorithm 1 satisfies the conditions stated in Theorem 1.3.
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Theorem 6.1. Given any initial predictor p0 and tolerance ǫ, Algorithm 1 terminates in T = O(
R2

1R
2
2

ǫ2
)

iterations. Given Õ( 1
ǫ4
) samples, with probability 1− δ, Algorithm 1 outputs a predictor pT such that fpT

is

(LH, K̃LH , ǫ)-decision calibrated and E[‖pT (x)− φ(y)‖2H] ≤ E[‖p0(x) − φ(y)‖2H].

Proof. If the algorithm does not terminate at round t,we have

sup
ℓ,ℓ′

E





〈 |A|
∑

a=1

rℓ(a)k̃ℓ′(x, a), φ(y) − p(x)
〉



 > ǫ.

By uniform convergence property we can find ℓt, ℓ
′
t such that

Ê





〈 |A|
∑

a=1

rℓt(a)k̃ℓ′t(x, a), φ(y) − p(x)
〉



 > 3ǫ/4.

Let rℓ∗t (a) = R1Ê[(φ(y)− p(x))k̃ℓ′t(x, a)]/‖Ê[(φ(y) − p(x))k̃ℓ′t(x, a)]‖, by Cauchy inequality we have

|A|
∑

a=1

〈

rℓ∗t (a), Ê[(φ(y) − p(x))k̃ℓ′t(x, a)]
〉

≥ Ê





〈 |A|
∑

a=1

rℓt(a)k̃ℓ′t(x, a), φ(y) − p(x)
〉



 > 3ǫ/4.

Again by uniform convergence,

E





〈 |A|
∑

a=1

rℓ∗t (a)k̃ℓ′t(x, a), φ(y) − p(x)
〉



 > ǫ/2.

E

[

‖pt(x) − φ(y)‖2H
]

− E

[

‖pt+1(x)− φ(y)‖2H
]

≥ E

[

‖pt(x)− φ(y)‖22
]

− E







∥

∥

∥

∥

∥

∥

pt(x) − φ(y) +
|A|
∑

a=1

dtak̃ℓ′t(x, a)

∥

∥

∥

∥

∥

∥

2

H







=

|A|
∑

a=1

2ηR1

‖Ê[(φ(y) − p(x))k̃ℓ′t(x, a)]‖
E[(φ(y) − pt(x))k̃ℓ′t(x, a)]Ê[(φ(y)− pt(x))k̃ℓ′t (x, a)]− E







∥

∥

∥

∥

∥

∥

|A|
∑

a=1

dtak̃ℓ′t(x, a)

∥

∥

∥

∥

∥

∥

2

H







≥ ηǫ− E







∥

∥

∥

∥

∥

∥

|A|
∑

a=1

dtak̃ℓ′t(x, a)

∥

∥

∥

∥

∥

∥

2

H







≥ ηǫ− η2R2
1.

Set η = ǫ
2R2

1
, we have

E

[

‖pt(x) − φ(y)‖2H
]

− E

[

‖pt+1(x)− φ(y)‖2H
]

≥ ǫ2

4R2
1

.

Therefore the algorithm will terminate in at most
16R2

1R
2
2

ǫ2
because E[‖p0(x) − φ(y)‖22] ≤ (2R2)

2 = 4R2
2.
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Implicit Patching The second challenge is that we cannot explicitly compute pt(x) at each round since
the feature space H may be infinite-dimensional. The key idea is to perform the patching implicitly by
maintaining a linear representation of the form pt(x) =

∑Nt

i=1 αti(x)φ(yti). That is, we keep track of the
functions αti : X → R and the corresponding outcomes yti for all t and i ∈ [Nt]. Given this representation,
we can efficiently compute the value of the loss estimator fpt

(x, a, ℓ) for any loss function ℓ ∈ LH as follows

fpt
(x, a, ℓ) = 〈rℓ(a), pt(x)〉H =

Nt
∑

i=1

αti(x)ℓ(a, yti).

Formally, we have the following lemma.

Lemma 6.1. For Algorithm 1, if the input predictor satisfies p0(x) =
∑N0

i=1 α0i(x)φ(y0i), the for any t, we
have

pt(x) =

Nt
∑

i=1

αti(x)φ(yti).

Proof. For Algorithm 1, the update in round t is pt+1 = πB(R2)(pt(x) + η · wℓt,ℓ
′
t
(pt(x))) where wℓt,ℓ

′
t
is the

patching term. By induction, it suffices to prove that wℓt,ℓ
′
t
(pt(x)) can be explicitly represented by the linear

combination of φ(y). Let St = {(x′ti, y′ti)}nt

i=1 be the set of samples used for auditing. Then we have

wℓt,ℓ
′
t
(pt(x)) =

|A|
∑

a=1

R1k̃ℓ′t(x, a)

‖ÊSt
[(φ(y) − pt(x))k̃ℓ′t(x, a)]‖H

· ÊSt
[(φ(y)− pt(x))k̃ℓ′t(x, a)]

By induction, we have pt(x) =
∑Nt

i=1 αt,i(x)φ(yt,i). Then we can compute the smooth optimal decision

rule k̃ℓ′t as

k̃ℓ′t(x, a) =
e−βfpt(x,a,ℓ

′
t)

∑

a′∈A e
−βfpt(x,a

′,ℓ′t)

=
e−β

∑Nt
i=1 αt−1,i(x)ℓ

′
t(a,yt,i)

∑

a′∈A e
−β

∑Nt
i=1 αt,i(x)ℓ′t(a

′,yt,i)
.

Then the norm can be computed as

∥

∥

∥ÊSt
[(φ(y) − pt(x))k̃ℓ′t(x, a)]

∥

∥

∥

2

H

=

∥

∥

∥

∥

∥

1

nt

nt
∑

i=1

(φy′
ti
− pt(x′ti))k̃ℓ′t(x

′
ti, a)

∥

∥

∥

∥

∥

2

H

=
1

n2
t

∑

i,j∈[nt]

k̃ℓ′t(x
′
ti, a)k̃ℓ′t(x

′
tj , a)

〈

φy′
ti
− pt(x′ti)), φy′

tj
− pt(x′tj))

〉

H

=
1

n2
t

∑

i,j∈[nt]

k̃ℓ′t(x
′
ti, a)k̃ℓ′t(x

′
tj , a) ·

(

K(y′ti, y
′
tj)−

∑

q∈[Nt]

αtq(x
′
ti)K(ytq, y

′
tj)

−
∑

q∈[Nt]

αtq(x
′
tj)K(ytq, y

′
ti) +

∑

q,s∈[Nt]

αtq(x
′
ti)αts(x

′
tj)K(ytq, yts)

)

.

Note that the empirical expectation is a linear combination of φ(y).

ÊSt
[(φ(y) − pt(x))k̃ℓ′t(x, a)]

=
1

nt

∑

i∈[nt]

(φ(y′ti)− pt(x′ti))k̃ℓ′t(x
′
ti, a)
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=
1

nt

∑

i∈[nt]



φ(y′ti)−
∑

j∈[Nt]

αtj(x
′
ti)φ(ytj)



k̃ℓ′t(x
′
ti, a)

=
∑

i∈[nt]

k̃ℓ′t(x
′
ti, a)

nt

φ(y′ti)−
∑

j∈Nt





∑

i∈[nt]

αtj(x
′
ti)k̃ℓ′t(x

′
ti, a)

nt



φ(ytj).

Bringing these components together, we know the linear representation of ∆t by {φ(y′ti)}nt

i=1

⋃{φ(yti)}Nt

i=1

can be computed. For ease of notion, we let {yt+1,i}Nt+1

i=1 to be the union of two set of samples mentioned
above. By induction we know that the linear representation of pt(x) + wℓt,ℓ

′
t
(pt(x)) can be computed. Let

pt(x) + wℓt,ℓ
′
t
(pt(x)) =

∑

i∈[Nt+1]
α′
t+1,i(x)φ(yt+1,i).

The last thing to show is that after projection πB(R2), the linear representation can still be computed.
We have

πB(R2)(pt+1(x)) =
R2

‖pt+1(x)‖H
· pt+1(x).

The it suffices to show that the norm is computable. We have

‖pt+1(x)‖2H = 〈pt+1(x), pt+1(x)〉H

=

〈

∑

i∈[Nt+1]

α′
t+1,i(x)φ(yt+1,i),

∑

i∈[Nt+1]

α′
t+1,i(x)φ(yt+1,i)

〉

H

=
∑

i,j∈[Nt+1]

α′
t+1,i(x)α

′
t+1,j(x)K(yt+1,i, yt+1,j).

6.2 Extension of Zhao et al. [2021]’s Algorithm

In this section we provide an extension to Zhao et al. [2021]’s algorithm on decision calibration under
smoothed optimal decision rule. Our extension also adopts a “patching”-style approach, with the patch-
ing component derived from an optimization perspective, following the intuition in their work. Consider
that we find the pair of ℓt, ℓ

′
t in round t that violates the decision calibration. If we let the patching have

the following form
pt+1(x) = pt(x) + Uk̃ℓ′t(x),

we can heuristically minimize

L(U) :=

|A|
∑

a=1

∥

∥

∥
E[(φ(y) − pt(x))k̃ℓ′t(x, a)]

∥

∥

∥

2

+ λ‖U‖2, (8)

where the first term is trying to decrease the violation of decision calibration and the second term is trying
to restrict the norm of U so that U can be efficiently approximated with samples. By simple calculation we
have

L(U) =

|A|
∑

a=1

∥

∥Ga − (DUT )a
∥

∥

2
+ λ‖U‖2

=
∥

∥G−DUT
∥

∥+ ‖U‖2

The optimum of the objective is U∗ = GT (D + λI)−1. Note that the optimization objective of Zhao et al.
[2021] is just the first term of Eq. (8) without the second regularization term. Consequently, the optimum
becomes U∗ = GTD−1 so that the norm of U∗ can be unbounded because the (pseudo)inverse of D may not
have a bounded norm. Therefore, their algorithm does not have finite sample guarantee. Our regularized
extension to their algorithm Algorithm 2 can fix this problem. In Algorithm 2, we choose λ = 1.
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Algorithm 2 Finite-Sample Infinite-Dimensional Adaptation of Zhao et al. [2021]

Input: The RKHS kernel K, current predictor p0 : X → H and tolerance ǫ.
1: t = 0
2: while ∃ℓt, ℓt′ such that E[〈

∑|A|
a=1 rℓt(a)k̃ℓ′t(x, a), φ(y) − p(x)〉] > ǫ do

3: Compute D̂ ∈ R
|A|×|A| where D̂aa′ = Ê[k̃ℓ′t(x, a)k̃ℓ′t(x, a

′)].

4: Define Ĝ ∈ R
K×dim(H) where Ĝa = Ê[(φ(y)− pt(x))k̃ℓ′t(x, a)].

5: Set pt+1 : x 7→ πB(R2)(pt(x) + ĜT (D̂ + I)−1k̃ℓ′t(x)) //πB(R2) projects onto Hilbert ball B(R2)
6: end while

The following theorem says that Algorithm 2 also satisfies the statement of Theorem 1.3, but has sample
complexity bounds Õ( 1

ǫ6
) worse than ours Õ( 1

ǫ4
).

Theorem 6.2. Given any initial predictor p0 and tolerance ǫ, Algorithm 2 ends in T = O(
R2

1R
2
2

ǫ2
) iterations.

Given Õ( 1
ǫ6
) samples, with probability 1−δ, Algorithm 2 outputs a predictor pT such that fpT

is (LH, K̃LH , ǫ)-

decision calibrated and E[‖pT (x)− φ(y)‖2H] ≤ E[‖p0(x) − φ(y)‖2H].

Proof. First we have

∥

∥

∥Ĝ
∥

∥

∥

F
≤ 2R2

√

|A|.

∥

∥

∥(D̂ + I)−1
∥

∥

∥ =

√

√

√

√

|A|
∑

i=1

σi((D̂ + I)−1) ≤
√

|A|.

E

[

‖pt(x)− φ(y)‖2H
]

− E

[

‖pt+1(x) − φ(y)‖2H
]

= 2E[(φ(y)− pt(x))ĜT (D̂ + I)−1k̃ℓ′t(x)]− E[kℓ′t(x)
T (D̂ + I)−T ĜĜT (D̂ + I)−1kℓ′t(x)]

= 2Tr(E[(φ(y) − pt(x))ĜT (D̂ + I)−1k̃ℓ′t(x)]) − Tr(E[kℓ′t(x)
T (D̂ + I)−T ĜĜT (D̂ + I)−1kℓ′t(x)])

= 2Tr(E[k̃ℓ′t(x)(φ(y) − pt(x))Ĝ
T (D̂ + I)−1])− Tr(E[kℓ′t(x)kℓ′t(x)

T (D̂ + I)−T ĜĜT (D̂ + I)−1])

= 2Tr(GĜT (D̂ + I)−1)− Tr(D(D̂ + I)−T ĜĜT (D̂ + I)−1)

= 2Tr(GĜT (D̂ + I)−1)− Tr((D + I)(D̂ + I)−T ĜĜT (D̂ + I)−1) + Tr((D̂ + I)−T ĜĜT (D̂ + I)−1)

≥ 2Tr(GĜT (D̂ + I)−1)− Tr((D + I)(D̂ + I)−T ĜĜT (D̂ + I)−1)

= 2Tr(ĜĜT (D̂ + I)−1)− 2Tr((Ĝ −G)ĜT (D̂ + I)−1)

− Tr((D̂ + I)(D̂ + I)−T ĜĜT (D̂ + I)−1)− Tr((D − D̂)(D̂ + I)−T ĜĜT (D̂ + I)−1)

= Tr(ĜĜT (D̂ + I)−1)− 2Tr((Ĝ−G)ĜT (D̂ + I)−1)− Tr((D − D̂)(D̂ + I)−T ĜĜT (D̂ + I)−1)

≥ Tr(ĜĜT (D̂ + I)−1)− 2
∥

∥

∥Ĝ−G
∥

∥

∥

F

∥

∥

∥ĜT
∥

∥

∥

F

∥

∥

∥(D̂ + I)−1
∥

∥

∥

F
−
∥

∥

∥(D − D̂)
∥

∥

∥

F

∥

∥

∥ĜT
∥

∥

∥

2

F

∥

∥

∥(D̂ + I)−1
∥

∥

∥

2

F

≥ Tr(ĜĜT (D̂ + I)−1)− 4R2|A|
∥

∥

∥Ĝ−G
∥

∥

∥

F
− 4R2

2|A|2
∥

∥

∥(D − D̂)
∥

∥

∥

F

≥ 1

2
Tr(ĜĜT )− 4R2|A|

∥

∥

∥Ĝ−G
∥

∥

∥

F
− 4R2

2|A|2
∥

∥

∥(D − D̂)
∥

∥

∥

F

≥ O
(

ǫ2

|A|R2
1

)

.

Therefore, the algorithm terminates in O(1/ǫ2) rounds. By Theorem A.1, each round requires Õ(1/ǫ4)
samples to estimate D̂ and Ĝ, resulting in an overall sample complexity of Õ(1/ǫ6).

Similarly to Lemma 6.1, we can apply the patching in Algorithm 2 implicitly.
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A Useful Lemmas

Lemma A.1 (Property of Traces and Frobenius norms). For any matrix A ∈ R
m×n, the Frobenius norm is

defined as

‖A‖F =

√

√

√

√

m
∑

i=1

n
∑

j=1

a2ij .

We have

1. Tr(AAT ) = Tr(ATA) = ‖A‖2F .

2. When A,B are square matrices, Tr(AB) ≤
√

Tr(AAT ) · Tr(BBT ) = ‖A‖F ‖B‖F .

3. Frobenius norm has submultiplicative property, that is, for any matrix A,B,

‖AB‖F ≤ ‖A‖F ‖B‖F .

Theorem A.1 (Hoeffding’s Inequality for Hilbert Spaces). Let H be a separable Hilbert space. Let X1, · · · , XN

be independent random elements of H with common mean µ such that ‖Xi‖ ≤ B almost surely for any i ∈ [N ].

Let µ̂N := 1
N

∑N

i=1Xi denote the sample mean. Then for any δ ∈ (0, 1) with probability at least 1− δ,

‖µ̂N − µ‖ ≤ 2B

√

2 ln(2/δ)

N
.
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We will introduce some useful results for proving the uniform convergence guarantee.

Definition A.1 (Covering Numbers). Let (V, d) be a metric space and Θ ⊂ V . We say {vi}Ni=1 ⊂ V is an

ǫ-covering of Θ if Θ ⊂ ⋃N

i=1 B(vi, ǫ) where B(v, ǫ) := {u ∈ V : d(u, v) ≤ ǫ} is the closed ball of radius ǫ
centered at v. The covering number is defined as

N(Θ, d, ǫ) := min{n : ∃ǫ-covering of Θ of size n}
Definition A.2 (Rademacher Complexity). Let S = {z1, ..., zn} ⊂ Z be a sample of points, and a function
class F of real-valued functions over Z. The Rademacher complexity of F with respect to S is defined as
follows:

RS(F) =
1

n
Eσ∼{−1,+1}m

[

sup
f∈F

n
∑

i=1

σif(zi)

]

Theorem A.2. Assume that z1, ..., zm are i.i.d. drawn from D, then with probability at least 1− δ, we have

sup
f∈F

[

1

n

n
∑

i=1

f(zi)− Ez∼D[f(z)]

]

≤ 2ES∼Dm [RS(F)] +
√

log(2/δ)

2n

We consider a Hilbert ball B2 = {x ∈ R
∞|∑t x

2
i ≤ 1} Now we introduce the result that upper bounds

the covering number of Hilbert balls under some metric induced by a probability distribution P . Note that
under the common metric ℓ2(R

∞), the covering number of the Hilbert balls is infinite. However, under the

metric dp(θ, θ
′) =

√

EX∼P |〈θ − θ′, X〉|2, the covering number is finite even in the infinite dimensional Hilbert
space.

Theorem A.3 (Covering Number of Hilbert Balls MacKay [2003]). P is a distribution on B2, consider the

metric dP (θ, θ
′) =

√

EX∼P |〈θ − θ′, X〉|2. There exists a universal constant c, such that for any P , ǫ > 0, we
have

logN(B2, dP , ǫ) ≤
c

ǫ2
.

Let Pn be the empirical distribution, which is the uniform distribution over z1, ..., zn. For a function class

F , we define the metric LF
2 (Pn)(f, f

′) =
√

1
n

∑n

i=1(f(zi)− f ′(zi))2. Note that if you plug in P = Pn for the

metric dP in Theorem A.3, then the metric dP becomes a special case of LF
2 (Pn) for f(z) = 〈θ, z〉.

Now we indroduce the Dudley’s Theorem which bounds the Rademacher complexity of a function class
by its covering number.

Theorem A.4 (Localized Dudley’s Theorem). Let S = {z1, ..., zn} ⊂ Z be a sample of points, and a function
class F of real-valued functions over Z. For any α ≥ 0, we have

RS(F) ≤ 4α+ 12

∫ ∞

α

√

logN(F , LF
2 (Pn), ǫ)

n
dǫ. (9)

B Uniform Convergence for Auditing Decision Calibration with
Smoothed Optimal Decision Rule

Now we introduce the finite sample analysis for decision calibration under smooth optimal decision rule.

Theorem B.1. Let D = (x1, y1), ..., (xn, yn) be the dataset that each data point is drawn i.i.d. from D, with
probability at least 1− δ we have that

sup
ℓ,ℓ′∈LH

∣

∣

∣

∣

∣

∣

E(x,y)∼D





|A|
∑

a=1

〈rℓ(a), φ(y)− p(x)〉k̃fp,ℓ′(x, a)



 − E(x,y)∼D





|A|
∑

a=1

〈rℓ(a), φ(y) − p(x)〉k̃fp,ℓ′(x, a)





∣

∣

∣

∣

∣

∣

≤O
(

|A| 32R3
1R

3
2 log(R1R2n) + log(1/δ)√

n

)

.

(10)

23



Note that this bound is independent of d, therefore holds for infinite dimension space.
To prove the theorem, recall that we define the function class G, where each element is a function

parameterized by the loss function ℓ and ℓ′. The function takes a data point as input and output the loss
they the agent receives when they respond based on ℓ′ and their true loss to be ℓ. In detail, we have

gl,l′(p(x), φ(y)) :=

|A|
∑

a=1

〈rℓ(a), φ(y)− p(x)〉k̃fp,ℓ′(x, a) =
|A|
∑

a=1

〈rℓ(a), φ(y) − p(x)〉
e−β〈ℓ′a,p(x)〉

∑|A|
a′=1 e

−β〈ℓ′
a′ ,p(x)〉

.

Now we can show that, the difference between gℓ1,ℓ1′(p(x), φ(y)) and gℓ2,ℓ2′(p(x), φ(y)) is small when ℓ1 ≈ ℓ1′

and ℓ2 ≈ ℓ2′.

Lemma B.1. Consider the vector softmax function softmax(z)i =
e−βzi

∑|A|
j=1 e

−βzj
for each coordinate i ∈ [|A|]

and z ∈ R
|A|, then we have

‖softmax(z)− softmax(z′)‖1 ≤
√
2β‖z − z′‖2.

Proof. Then by mean value theorem, we know that

softmax(z)− softmax(z′) =

∫ 1

t=0

∇softmax(z′ + (z − z′)t)(z − z′)dt.

By taking the ℓ1 norm, we have

‖softmax(z)− softmax(z′)‖1 ≤
∫ 1

t=0

‖∇softmax(z′ + (z − z′)t)(z − z′)‖1dt.

Let zt = z′ + (z − z′)t and pt = softmax(zt). We have A := ∇softmax(zt) = −β(diag(pt)− ptpTt ). Then we
have

‖A(z − z′)‖1 =

|A|
∑

i=1

∣

∣

∣

∣

∣

∣

|A|
∑

j=1

aij(zj − z′j)

∣

∣

∣

∣

∣

∣

≤
|A|
∑

i=1

√

√

√

√

|A|
∑

j=1

a2ij‖z − z′‖2

=

|A|
∑

i=1

β

√

(pi − p2i )2 + p2i
∑

j 6=i

p2j‖z − z′‖2

≤
|A|
∑

i=1

βpi
√

(1− pi)2 + 1‖z − z′‖2

≤
|A|
∑

i=1

√
2βpi‖z − z′‖2

=
√
2β‖z − z′‖2.

Lemma B.2. Let g(z, w) :=
∑|A|

i=1
e−βzi

∑|A|
j=1 e

−βzj
wi for any z, w ∈ R

|A|. If ‖w‖∞ ≤ 4R1R2, we have

|g(z, w)− g(z′, w′)| ≤ 4
√
2R1R2‖z − z′‖2 + ‖w − w′‖2.
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Proof.

|g(z, w)− g(z′, w′)| =

∣

∣

∣

∣

∣

∣

|A|
∑

i=1

e−βzi

∑|A|
j=1 e

−βzj
wi −

|A|
∑

i=1

e−βz′
i

∑|A|
j=1 e

−βz′
j

w′
i

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣





|A|
∑

i=1

e−βzi

∑|A|
j=1 e

−βzj
wi −

|A|
∑

i=1

e−βzi

∑|A|
j=1 e

−βzj
w′

i



+





|A|
∑

i=1

e−βzi

∑|A|
j=1 e

−βzj
w′

i −
|A|
∑

i=1

e−βz′
i

∑|A|
j=1 e

−βz′
j

w′
i





∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

|A|
∑

i=1

e−βzi

∑|A|
j=1 e

−βzj
wi −

|A|
∑

i=1

e−βzi

∑|A|
j=1 e

−βzj
w′

i

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

|A|
∑

i=1

e−βzi

∑|A|
j=1 e

−βzj
w′

i −
|A|
∑

i=1

e−βz′
i

∑|A|
j=1 e

−βz′
j

w′
i

∣

∣

∣

∣

∣

∣

.

(11)
We first bound the first term. We have

∣

∣

∣

∣

∣

∣

|A|
∑

i=1

e−βzi

∑|A|
j=1 e

−βzj
wi −

|A|
∑

i=1

e−βzi

∑|A|
j=1 e

−βzj
w′

i

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

|A|
∑

i=1

e−βzi

∑|A|
j=1 e

−βzj
(wi − w′

i)

∣

∣

∣

∣

∣

∣

≤ ‖w − w′‖∞ ≤ ‖w − w′‖2.

(12)

Next, we are going to bound the second term. We have

∣

∣

∣

∣

∣

∣

|A|
∑

i=1

e−βzi

∑|A|
j=1 e

−βzj
w′

i −
|A|
∑

i=1

e−βz′
i

∑|A|
j=1 e

−βz′
j

w′
i

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣





|A|
∑

i=1

e−βzi

∑|A|
j=1 e

−βzj
− e−βz′

i

∑|A|
j=1 e

−βz′
j



w′
i

∣

∣

∣

∣

∣

∣

≤ 4R1R2

|A|
∑

j=1

∣

∣

∣

∣

∣

e−βzi

∑|A|
j=1 e

−βzj
− e−βz′

i

∑|A|
j=1 e

−βz′
j

∣

∣

∣

∣

∣

.

(13)

From Lemma B.1, we have

∣

∣

∣

∣

∣

∣

|A|
∑

i=1

e−βzi

∑|A|
j=1 e

−βzj
w′

i −
|A|
∑

i=1

e−βz′
i

∑|A|
j=1 e

−βz′
j

w′
i

∣

∣

∣

∣

∣

∣

≤ 4
√
2βR1R2‖z − z′‖2. (14)

Therefore, we know

|g(z, w)− g(z′, w′)| ≤ 4
√
2βR1R2‖z − z′‖2 + ‖w − w′‖2.

Lemma B.3. There exists a constant C, such that for any x, y, we have

∣

∣gℓ1,ℓ1′(p(x), φ(y)) − gℓ2,ℓ2′(p(x), φ(y))
∣

∣

2 ≤ C





|A|
∑

a=1

〈rℓ1′(a)− rℓ2′(a), p(x)〉2 +
|A|
∑

a=1

〈rℓ1(a)− rℓ2(a), φ(y) − p(x)〉2


.

Proof. Because the norm of p(x) and φ(y) is bounded by R2, and the norm of loss vector rℓ(a) is bounded
by R1, by Lemma B.2, we know

∣

∣gℓ1,ℓ1′(x, y)− gℓ2,ℓ2′(p(x), φ(y))
∣

∣ ≤ 4
√
2βR1R2

√

√

√

√

|A|
∑

a=1

〈rℓ1′(a)− rℓ2′(a), p(x)〉2+

√

√

√

√

|A|
∑

a=1

〈rℓ1(a)− rℓ2(a), φ(y) − p(x)〉2.

(15)
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Therefore, we have

∣

∣gℓ1,ℓ1′(p(x), φ(y)) − gℓ2,ℓ2′(p(x), φ(y))
∣

∣

2

≤






4
√
2βR1R2

√

√

√

√

|A|
∑

a=1

〈rℓ1′(a)− rℓ2′(a), p(x)〉2 +

√

√

√

√

|A|
∑

a=1

〈rℓ1(a)− rℓ2(a), φ(y)− p(x)〉2







2

≤ 64β2R2
1R

2
2

|A|
∑

a=1

〈rℓ1′(a)− rℓ2′(a), p(x)〉2 + 2

|A|
∑

a=1

〈rℓ1(a)− rℓ2(a), φ(y)− p(x)〉2.

(16)

We can set C = max{64β2R2
1R

2
2, 2} and thus the lemma is proved.

Lemma B.4. Consider G = {gℓ,ℓ′|∀a ∈ A, ℓ(a, ·) ∈ H, ‖ℓ(a, ·)‖H ≤ R1}, then we have

logN(G, LG
2 (Pn), ǫ) ≤ O

( |A|3β4R6
1R

6
2

ǫ2

)

.

Proof. By Lemma B.3, we know

n
∑

i=1

∣

∣gℓ1,ℓ1′(p(xi), φ(yi))− gℓ2,ℓ2′(p(xi), φ(yi))
∣

∣

2 ≤ C
n
∑

i=1





|A|
∑

a=1

〈rℓ1′(a)− rℓ2′(a), p(xi)〉2 +
|A|
∑

a=1

〈rℓ1(a)− rℓ2(a), φ(yi)− p(xi)〉2


.

The high level idea is to construct covers for 2|A| Hilbert balls, then we can bound the right-hand side.
Then, the Cartisan product of these covers would be a ǫ cover for the function class G.

By Theorem A.3, Let La be the smallest ǫ
2|A|C -cover of Θrℓ(a) := {rℓ(a)|rℓ(a) ∈ H, ‖rℓ(a)‖H ≤ R1}, we

have log |La| ≤ O(
|A|2C2R2

1R
2
2

ǫ2
). Therefore, L :=

∏

a∈A La ×
∏

a∈A La would become a ǫ-cover of LH × LH
under the metric LG

2 (Pn). We have

log |L| = 2
∑

a∈A
log |La| = O

( |A|3C2R2
1R

2
2

ǫ2

)

.

As we know C = max{64β2R2
1R

2
2, 2}, we know

log |L| = O

( |A|3β4R6
1R

6
2

ǫ2

)

.

Now we prove Theorem B.1.

Proof. Recalling gl,l′(p(x), φ(y)) =
∑|A|

a=1 〈rℓ(a), φ(y)− p(x)〉k̃fp,ℓ′(x, a), we know

|gl,l′(p(x), φ(y))| =

∣

∣

∣

∣

∣

∣

|A|
∑

a=1

〈rℓ(a), φ(y) − p(x)〉k̃fp,ℓ′(x, a)

∣

∣

∣

∣

∣

∣

≤
|A|
∑

a=1

k̃fp,ℓ′(x, a)|〈rℓ(a), φ(y)− p(x)〉|

≤
|A|
∑

a=1

k̃fp,ℓ′(x, a)2R1R2

= 2R1R2.

(17)
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Therefore, when ǫ ≥ 2R1R2, we have logN(G, LG
2 (Pn), ǫ) = log(1) = 0 From Theorem A.4, we know that

RS(G) ≤ 4α+ 12

∫ ∞

α

√

logN(G, LG
2 (Pn), ǫ)

n
dǫ = 4α+ 12

∫ 2R1R2

α

√

logN(G, LG
2 (Pn), ǫ)

n
dǫ.

Plugging in logN(G, LG
2 (Pn), ǫ) = O(

|A|3β4R6
1R

6
2

ǫ2
), we have

RS(G) ≤ 4α+O

(

|A| 32β2R3
1R

3
2√

n

)

∫ 2R1R2

α

1

ǫ
dǫ

= 4α+O

(

|A| 32 ]β2R3
1R

3
2√

n

)

(log 2R1R2 − logα).

(18)

Without loss of generality we set α =
|A|

3
2 β2R3

1R
3
2√

n
. If

|A|
3
2 β2R3

1R
3
2√

n
> 2R1R2, we have RS(G) ≤ 4α ≤

O(
|A|

3
2 β2R3

1R
3
2√

n
). If

|A|
3
2 β2R3

1R
3
2√

n
≤ 2R1R2,

RS(G) ≤ O
(

|A| 32β2R3
1R

3
2√

n

)

+O

(

|A| 32 β2R3
1R

3
2√

n

)

(log 2R1R2−log
(

O

(

|A| 32 β2R3
1R

3
2√

n

))

= O

(

|A| 32β2R3
1R

3
2 log(R1R2n)√
n

)

.

Then by Theorem A.2, we know with at least probability 1− δ/2

sup
g∈G

[

1

n

n
∑

i=1

g(p(xi), φ(yi))− E(x,y)∼D[g(p(x), φ(y))]

]

≤ 2ES∼Dn [RS(G)] +
√

log(2/δ)

2n

≤ O
(

|A| 32 β2R3
1R

3
2 log(R1R2n) + log(1/δ)√

n

)

.

Similarly we can bound the Rademacher Complexity of function class −G := {−gℓ,ℓ′ | ℓ, ℓ′ ∈ LH}, and have
with probability 1− δ/2

sup
g∈G

[

E(x,y)∼D[g(p(x), φ(y))] −
1

n

n
∑

i=1

g(p(xi), φ(yi))

]

≤ O
(

|A| 32 β2R3
1R

3
2 log(R1R2n) + log(1/δ)√

n

)

.

Putting them together, we have

∣

∣

∣

∣

∣

sup
g∈G

[

1

n

n
∑

i=1

g(p(xi), φ(yi))− E(x,y)∼D[g(p(x), φ(y))]

]∣

∣

∣

∣

∣

≤ O
(

|A| 32 β2R3
1R

3
2 log(R1R2n) + log(1/δ)√

n

)

with probability 1− δ.
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