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Abstract

This work presents a novel approach to optimizing
energy dispatch in autonomous maritime systems by
integrating metaheuristic search with model predic-
tive control. Our proposed ACO–MPC framework
combines Ant Colony Optimization (ACO) with
Model Predictive Control (MPC) to dynamically
generate energy-efficient paths in a simulated sea
surface environment, where renewable generation is
influenced by wind speed and polar effects. A linear
model, derived from real-world data, is embedded
within the MPC formulation to accurately predict
energy consumption, thereby enabling real-time op-
timization of renewable utilization, battery cycling,
and backup power usage. Simulation results demon-
strate that the ACO–MPC approach significantly
outperforms conventional rule-based strategies and
standard MPC methods, achieving both collision-
free navigation and the lowest cumulative energy
during the navigation to target points.

Keywords— Energy-efficient system, autonomous ship,
path-planning, model predictive control, real-world data, ant
colony

I. INTRODUCTION

Recent advancements in autonomous navigation algorithms
have garnered significant attention across various domains [1]–
[4]. Among these, path planning for autonomous ships has
emerged as a critical challenge, particularly in complex marine
environments with obstacle constraints [5]–[8], as illustrated

† Equal contribution

Fig. 1. The example of an autonomous ship.

in Fig. 1. Autonomous ship navigation faces numerous real-
world challenges. For instance, offshore aquaculture facilities
typically rely on floating platforms that demand a reliable
and economical power supply to support operations such as
aeration, lighting, monitoring, dead fish removal, and feeding
systems [9], [10]. In addition, the presence of islets or other
obstacles in the sea increases the risk of collisions, which
can lead to substantial economic losses [11], [12]. Therefore,
efficient path planning is not only essential for safe navigation
but also for reducing energy consumption—a key factor in
extending operational range and minimizing environmental
impact [13], [14]. Marine navigation is inherently complex
due to dynamic sea conditions, including fluctuating wind
speeds, varying currents, and unpredictable obstacles [15].
Traditional path planning approaches often rely on deter-
ministic algorithms that can struggle with the high energy
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Fig. 2. High-level overview of the proposed ACO–MPC framework for autonomous ship navigation. Beginning with real-world data collection, the system
preprocesses this information and fits a linear model relating renewable resources to energy consumption. These insights feed into the ACO–MPC module,
where path planning decisions are continuously optimized to balance energy efficiency, collision avoidance, and operational constraints. The final output is
an energy-efficient and collision-free navigation strategy tailored for complex maritime environments.

costs associated with maritime operations. Given that energy
consumption in autonomous ships is influenced by multiple en-
vironmental factors, such as polar strength and wind patterns,
developing energy-efficient path planning strategies is crucial
for sustainable maritime operations. To this end, integrating
renewable energy sources—such as solar and wind power, in
conjunction with battery storage and diesel backup—offers a
promising solution [16], [17].

Model Predictive Control (MPC) has been widely adopted
for path planning in autonomous systems because of its
ability to handle multi-variable control problems with con-
straints and predict future states [18], [19]. Recently, MPC
has been applied to energy optimization scenarios [20], [21].
Complementing MPC, metaheuristic algorithms provide ro-
bust methods for efficiently exploring the solution space. In
particular, Ant Colony Optimization (ACO) has demonstrated
strong performance in path finding by simulating the foraging
behavior of ant colonies, where pheromone-based feedback
guides the collective search [22]–[24]. When integrated with
MPC, ACO enhances the decision-making process by effi-
ciently navigating the trade-offs between energy efficiency and
collision avoidance.

This paper introduces an ACO-MPC framework for

energy-efficient path planning in autonomous ships operating
in sea environments characterized by varying polar strength
and wind conditions. Our approach employs pheromone-
based learning within a receding-horizon optimization frame-
work to continuously refine ship trajectories, as depicted in
Fig. 1. First, real-world data are collected to characterize
wind resources, solar irradiance, and potential backup energy
systems. This information is processed and then used to
fit a linear model that estimates energy consumption based
on environmental parameters. Next, the ACO–MPC module
leverages this model to identify collision-free paths that min-
imize overall energy cost, using pheromone-based search and
receding-horizon optimization. By iterating through these steps
in real time, the proposed framework ensures safe, robust,
and efficient autonomous ship navigation across dynamic sea
conditions. The key contributions of this work are summarized
as follows:

1) We propose an energy consumption model that quantifies
ship movement costs based on environmental factors,
including polar strength and wind speed, using real-world
datasets. This model forms the basis for our energy-
efficient path planning.

2) We introduce an ACO-MPC approach that integrates
pheromone-based learning with receding-horizon control,



enabling the dynamic optimization of ship trajectories
while balancing energy efficiency and navigational con-
straints.

3) We evaluate the proposed framework under diverse envi-
ronmental scenarios and compare its performance with
conventional MPC and other metaheuristic approaches
such as GA-MPC, PSO-MPC, and rule-based methods.
Our results demonstrate that the ACO-MPC approach
achieves significantly lower energy consumption and
avoids collisions, outperforming benchmark algorithms.

The remainder of this paper is organized as follows:
Section II presents related work in path planning algorithms
for autonomous navigation. Section III describes the problem
formulation and the energy consumption model. Section IV
details the proposed ACO-MPC algorithm. Section V presents
experimental results and comparative analysis. Finally, Section
VI concludes the paper and discusses future research direc-
tions.

The remainder of this paper is structured as follows. Sec-
tion 2 presents the ACO-MPC path planning. Section 3 details
the linear model fitting. Section 4 discusses the simulation
setup and results. Finally, Section 5 provides conclusions and
future research directions.

II. ACO-BASED MPC PATH PLANNING

To ensure that an autonomous ship reaches a specified
target with minimal energy loss, we propose an ACO-based
Model Predictive Control (MPC) path planning algorithm. In
this approach, candidate paths are generated over a prediction
horizon H using matrix formulations to represent the path
states. The algorithm integrates an energy loss map E and an
obstacle matrix O to perform a global search for the optimal
route from an initial position

x0 =

[
x0

y0

]
, (1)

to a target position

xf =

[
xf

yf

]
. (2)

A. System Description and Extended Variable Definitions

Let the operational domain be discretized into a grid with
coordinate matrices X ∈ Rny×nx and Y ∈ Rny×nx such that
the grid point (i, j) corresponds to the position

pi,j =

[
xi,j

yi,j

]
. (3)

The energy loss over the grid is represented by the matrix

E ∈ Rny×nx , (4)

where each element Ei,j (in kWh/km) denotes the energy
cost associated with cell (i, j). Obstacles are described by the
binary matrix

O ∈ {0, 1}ny×nx , (5)

with Oi,j = 1 indicating an obstacle and Oi,j = 0 indicating
free space.

We denote the global planned path by the matrix

P =


pT
0

pT
1

...

pT
K

 , with pk =

[
xk

yk

]
, (6)

where K is the total number of steps taken.

B. Candidate Path Generation: Matrix-Based Ant Colony For-
mulation

Within the prediction horizon H , the possible discrete
moves are defined by the matrix

M =



1 0

1 1

0 1

−1 1

−1 0

−1 −1
0 −1
1 −1


∈ RNm×2, (7)

where Nm = 8 denotes the number of available movement
directions.

1) Ant Population Representation: The candidate path
generation is performed by a colony of Na ants. We repre-
sent the entire ant population’s candidate paths by a three-
dimensional matrix

P ∈ RNa×(H+1)×2, (8)

where the ath candidate path is given by

P(a, :, :) = P(a) =


p
(a)
0

p
(a)
1

...

p
(a)
H

 , with p
(a)
0 = x0. (9)

2) Move Selection Using Matrix Probabilities: At each
prediction step h (with h = 0, 1, . . . ,H − 1), each ant selects
a move from the set of possible moves. The selection is based
on a probability that fuses both pheromone information and a
heuristic measure. The pheromone levels are stored in a matrix

Φ ∈ RH×Nm , (10)

with an initial uniform value:

ϕh,m = ϕ0, ∀h = 1, . . . ,H, m = 1, . . . , Nm. (11)



For each ant a and each step h, the heuristic value for move
m is defined as:

η
(a)
h,m =

1∥∥∥P(a, h, :) +M(m, :)− xT
f

∥∥∥
2
+ ϵ

, (12)

where ϵ > 0 prevents division by zero. The probability that
an ant a selects move m at step h is then given by

p
(a)
h,m =

ϕh,m · η(a)h,m∑Nm

j=1 ϕh,j · η(a)h,j

. (13)

In matrix form, one can view the probabilities for all moves
at step h for ant a as the vector

p
(a)
h =


p
(a)
h,1

p
(a)
h,2

...

p
(a)
h,Nm

 . (14)

3) Validity and Update of Candidate Paths: To ensure
feasibility, a validity function V : R2 → {0, 1} is defined
as:

V(p) =

{
1, if p is within the grid bounds and O(py, px) = 0,

0, otherwise.
(15)

At each step h, if an ant a selects move m∗ (according to the
probability vector p(a)

h ), its next position is updated as

P(a, h+ 1, :) = P(a, h, :) +M(m∗, :)T . (16)

If the resulting position does not satisfy V(·) = 1, the
candidate path is marked as invalid (and its cost is set to
infinity).

4) Extended Candidate Cost Evaluation: For each candi-
date path P(a), the cumulative cost is defined as:

J
(
P(a)

)
=

H∑
i=1

[
ωi · E

(
p
(a)
i,1 , p

(a)
i,2

)
+ λ · I

(
V
(
p
(a)
i

)
= 0

)]
,

(17)
where:

• ωi are stage-dependent weight factors (often set uni-
formly, i.e., ωi = 1),

• λ≫ 0 is a penalty weight for infeasible moves,
• I(·) is the indicator function.

In matrix notation, the cost vector for candidate a can be
written as

c(a) =


c
(a)
1

c
(a)
2

...

c
(a)
H

 , with

c
(a)
i = ωi · E

(
p
(a)
i,1 , p

(a)
i,2

)
+ λ · I

(
V
(
p
(a)
i

)
= 0

)
.

(18)

Then the total cost is given by

J
(
P(a)

)
= 1T c(a), (19)

where 1 is an H × 1 vector of ones.

5) Pheromone Update in Matrix Form: After all Na can-
didate paths are generated, the pheromone matrix is updated
to reinforce successful moves. For each prediction step h and
move m, the pheromone update rule is:

ϕh,m ← (1− ρ)ϕh,m +

Na∑
a=1

δ
(a)
h,m, (20)

where the evaporation rate is ρ ∈ (0, 1) and the reinforcement
term is defined as

δ
(a)
h,m =


1

J
(
P(a)

) , if candidate a used move m at step h,

0, otherwise.
(21)

In a fully matrix-based approach, one may define an incidence
matrix

I(a) ∈ {0, 1}H×Nm , (22)

for each candidate path, where the (h,m)th element is 1 if ant
a took move m at step h and 0 otherwise. Then the pheromone
update can be compactly written as:

Φ← (1− ρ)Φ+

Na∑
a=1

I(a)

J
(
P(a)

) . (23)

The complete ACO–MPC framework is therefore governed
by the following matrix equations:

1. Initialization: Set the candidate path population:

P(a, 1, :) = x0, ∀ a = 1, . . . , Na, (24)

and initialize Φ as:

ϕh,m = ϕ0, ∀h = 1, . . . ,H, m = 1, . . . , Nm. (25)

2. Move Selection: For each ant a and each step h:

p
(a)
h,m =

ϕh,m · η(a)h,m∑Nm

j=1 ϕh,j · η(a)h,j

, (26)



with

η
(a)
h,m =

1∥∥∥P(a, h, :) +M(m, :)− xT
f

∥∥∥
2
+ ϵ

. (27)

3. Path Update: Update candidate paths by:

P(a, h+ 1, :) = P(a, h, :) +M(m∗, :)T , (28)

where m∗ is chosen according to {p(a)h,m}
Nm
m=1 and subject

to V = 1.
4. Cost Evaluation: Compute the cost vector for each

candidate:

c(a) =


ω1 E

(
p
(a)
1,1, p

(a)
1,2

)
+ λ I

(
V(p(a)

1 ) = 0
)

...

ωH E
(
p
(a)
H,1, p

(a)
H,2

)
+ λ I

(
V(p(a)

H ) = 0
)
 ,

(29)
and total cost:

J
(
P(a)

)
= 1T c(a). (30)

5. Pheromone Update: Update the pheromone matrix as:

ϕh,m ← (1− ρ)ϕh,m +

Na∑
a=1

I
(a)
h,m

J
(
P(a)

) . (31)

This detailed matrix formulation encapsulates the entire ant
colony optimization mechanism within the MPC framework,
and forms the foundation for the algorithm presented in Al-
gorithm 1. The matrices P , Φ, and I(a) collectively represent
the evolution of the ant population and guide the search for
the optimal path with minimum energy loss. The pseudocode
in Algorithm 1 (provided previously) integrates these matrix-
based formulations to perform iterative path planning. All op-
erations—from candidate path generation and cost evaluation
to the matrix-based pheromone update—are carried out using
the equations described above.

III. LINEAR MODEL FITTING FOR ENERGY CONSUMPTION
AND MATRIX-BASED MPC FORMULATION

To further improve the overall control strategy, we integrate
a linear model to fit the energy consumption and then embed
this model within a matrix-based MPC formulation. In this ap-
proach, the energy consumption per unit distance (in kWh/km)
is approximated as a linear function of key environmental
factors. For instance, let the estimated energy consumption
be modeled by

G = γ1 Rpol + γ2 Vwind + γ3 V
(3)
wind + γ4, (32)

where Rpol is the polar strength map, Vwind is the wind speed
map, and V

(3)
wind denotes the element-wise cube of the wind

speed. The coefficients γ1, γ2, γ3, and γ4 are determined
via least-squares regression. In matrix notation, the predicted
energy consumption map is expressed as

Gpred = γ1 Rpol + γ2 Vwind + γ3 V
(3)
wind + γ4 1, (33)

Algorithm 1 ACO–MPC Path Planning Algorithm
1: Input: Initial state x0, target state xf , energy loss map

E, obstacle matrix O, prediction horizon H , maximum
iterations Imax.

2: Initialize global path: P← x0; set current state x← x0.
3: for i = 1 to Imax do
4: if ∥x− xf∥2 < ϵ then
5: P← [P;xf ];
6: break;
7: end if
8: Initialize pheromone matrix Φ ∈ RH×Nm with ϕ0.
9: for g = 1 to GACO do

10: for each ant a = 1, . . . , Na do
11: Set candidate path: P(a, 1, :)← x;
12: for h = 1 to H do
13: Compute move probabilities p

(a)
h,m using:

p
(a)
h,m =

ϕh,m ·
(

1
∥P(a,h,:)+M(m,:)−xT

f ∥2+ϵ

)
∑Nm

j=1 ϕh,j ·
(

1
∥P(a,h,:)+M(j,:)−xT

f ∥2+ϵ

) ,
where only valid moves (i.e., those satisfying V = 1) are
considered.

14: Randomly select move m∗ according to
{p(a)h,m}

Nm
m=1;

15: Update candidate path:

P(a, h+ 1, :)← P(a, h, :) +M(m∗, :)T .

16: end for
17: Compute cost J (P(a, :, :)) =

∑H
j=1 ωj ·

E
(
P(a, j, 1), P(a, j, 2)

)
;

18: end for
19: Update pheromone matrix Φ as:

ϕh,m ← (1− ρ)ϕh,m +

Na∑
a=1

δ
(a)
h,m,

with

δ
(a)
h,m =


1

J (P(a, :, :))
, if ant a used move m at step h,

0, otherwise.

20: end for
21: Select candidate path with minimum cost, i.e., P∗ =

argmina J (P(a, :, :));
22: Update current state: x← P∗(2, :);
23: Append current state: P← [P;x];
24: end for
25: Output: Global path matrix P.

where 1 is a matrix of ones matching the dimensions of Gpred.
This fitted energy model is then integrated into a matrix-based
MPC formulation. Let the control vector at time step t be
represented as

u(t) =

[
Pch(t)
Pdis(t)

]
, (34)



Fig. 3. The hourly velocity of the ship over 12 months based on HOMER-generated synthetic resource datasets.

and the state vector (e.g., battery state-of-charge, SOC) be

x(t) = SOC(t). (35)

The battery dynamics over a prediction horizon N are written
in matrix form as

X = Ax0 +Bch Uch +Bdis Udis, (36)

where X ∈ RN×1 is the predicted SOC trajectory, x0 is the
initial SOC, and A ∈ RN×N is the state transition matrix
(often chosen as an identity matrix). The matrices Bch and Bdis
incorporate charging and discharging efficiencies, respectively,
while Uch and Udis are the control input sequences over the
horizon.

The cost function to be minimized over the horizon in-
cludes both the energy cost derived from the fitted model and
additional operational costs. In matrix form, the cumulative
cost is given by

J =

N−1∑
t=0

[
cbat Pdis(t)+cbackup Pbackup(t)+trace

(
Gpred

(
P(t)

))]
,

(37)
where the term trace

(
Gpred(P(t))

)
sums the predicted energy

consumption along the planned path, with P(t) representing
the path state at time t.

The MPC optimization problem is formulated as

min
{Uch,Udis}

N−1∑
t=0

[
cbat Pdis(t) + cbackup Pbackup(t)

+ trace
(
Gpred

(
P(t)

))]
subject to X = Ax0 +Bch Uch +Bdis Udis,

xmin ≤ X ≤ xmax,

0 ≤ Uch ≤ Umax
ch , 0 ≤ Udis ≤ Umax

dis ,

P(t) is computed via ACO-based path planning.
(38)

The combined ACO–MPC framework operates as follows.
First, ACO is used to generate candidate paths P over a short
prediction horizon H that minimize the cumulative energy
cost, as evaluated using Gpred. The candidate path with the
lowest energy cost is then selected, and the corresponding
control inputs Uch and Udis are determined by solving the
MPC optimization problem. Finally, the battery dynamics are
updated according to the matrix equation, and the process
is repeated in a receding-horizon manner. All operations, in-
cluding candidate path generation, cost evaluation, and control
optimization, are expressed in matrix form to enable efficient
computation and real-time implementation.



Fig. 4. Daily renewable generation profile in June, illustrating solar, wind, and total renewable power.

IV. SIMULATION RESULTS

To verify the efficiency of the proposed EG-MPC, simula-
tions are designed. This section presents our simulation results
and an analysis of the proposed framework in Matlab 2024b.
In the first subsection, the linear fitting process based on
HOMER-generated synthetic resource datasets is illustrated. In
the second subsection, the total energy consumption using EG-
MPC compared to other popular benchmarks are illustrated.
The parameters used are summarized in Table. 1.

TABLE I
SIMULATION PARAMETERS AND BATTERY SPECIFICATIONS

Parameter Value Description
Tsim 24 Simulation horizon (hours)
∆t 1 Time step (hours)
Cbat 1000 Battery capacity (kWh)

SoC0 500 Initial state-of-charge (kWh)
Pmax

ch 1000 Maximum charging rate (kW)
Pmax

dis 100 Maximum discharging rate (kW)
ηbat 0.9 Charging/discharging efficiency
v(t) 8 Fixed wind speed profile (m/s)

A. Linear Fitting Process

Fig. 3 presents three complementary views of wind speed
data collected over an entire year. In the top 3D surface
plot, the vertical axis indicates wind speed in meters per
second, while the horizontal axes correspond to the hour of
the day and the progression of months. The color gradient

Fig. 5. Comparison of original data versus linear model predictions for total
renewable generation.

underscores variations in wind speed intensity, highlighting
specific times of day or months where wind speed is notably
higher. In the bottom-left heatmap, the x-axis represents the
hour of day, and the y-axis lists the months. Warmer shades
indicate higher wind speeds, whereas cooler hues signify
calmer conditions. This view succinctly reveals diurnal and
seasonal wind patterns, such as relatively lower speeds in
certain months or peak winds during certain hours. bottom-
right contour map reuses the same hour-of-day and month
layout but displays lines of constant wind speed. Each contour



Fig. 6. Simulated maritime environment for testing the ACO–MPC path planner.

level represents a specific wind speed, allowing the reader
to identify more precise transitions between different speed
ranges. This format is especially useful for quickly spotting
when wind speeds cross critical thresholds in various periods
of the year.

Fig. 4 presents three separate 3D surfaces that describe
how solar irradiance and wind speed jointly influence re-
newable energy generation. In the left panel, solar power
generation rises in response to increasing irradiance, while
wind speed exerts negligible direct impact on solar output.
The middle panel focuses on wind power, which depends
more strongly on wind speed than on irradiance. Notably,
power increases rapidly once wind speed surpasses the cut-in
threshold, stabilizing at rated output beyond a certain point.
The right panel integrates both solar and wind contributions
to form the total renewable power surface. Here, the overall
generation benefits from high values of either irradiance or
wind speed, but maximum output occurs when both factors are
simultaneously elevated. This highlights the complementary
nature of solar and wind sources, where strong solar irradiance
and sufficient wind speed together yield higher net renewable
production. The resulting 3D visualization underscores the
importance of capturing both solar and wind parameters within
energy models, particularly when seeking to optimize hybrid
renewable systems.

The linear model

Ptotal = −166.3272 + 15× Irr + 51.7979× v − 0.047× v3

provides an accurate approximation of the relationship be-

tween solar irradiance, wind speed, and total renewable power
output. As illustrated in Fig. 5, the model’s predictions closely
track real-world measurements across a range of typical op-
erating conditions, indicating that key environmental vari-
ables—namely, irradiance and wind speed—are well captured
by the chosen functional form, including the cubic wind-speed
term.

Figure 5 illustrates how the linear model approximates
the original mesh data for total renewable generation. The
continuous surface shows the simulated generation obtained
by combining solar and wind across a range of conditions. By
contrast, the diamond scatter markers represent the model’s
predicted output. The general alignment of these markers with
the surface indicates that the model captures the primary trends
in renewable generation, although minor deviations are visible
in some regions. Overall, the figure demonstrates that the fitted
linear model, including a cubic wind-speed term, provides a
reasonable approximation to the underlying energy generation
relationship.

B. Effectiveness in Energy Cost of ACO-MPC

This subsection has compared the performance of EG-
MPC with several popular benchmarks, including a series of
popular benchmarks.

• Direct Path (Straight Line):
This method plots a direct line from the start to the
end coordinates. It achieves minimal path distance and
simplicity, but it disregards wind or polar effects entirely.
Consequently, while it can be computationally efficient,



Fig. 7. Comparison of path planning algorithms over an energy cost map, with two central square obstacles. Any path intersecting an obstacle is deemed
invalid (cost = ∞). According to the legend, the total energy cost for each method is as follows: the direct path, wind-first, combined path, WOCA-ACO
MPC, WOA-MPC collide with obstacles, resulting in infinite cost; standard MPC consumes 52.084 kWh; GA-MPC reaches 52.938 kWh; PSO–MPC uses
54.981 kWh; and our proposed approach achieves the lowest feasible cost at 51.775 kWh. This outcome highlights the effectiveness of our method in balancing
route length, obstacle avoidance, and energy expenditure, surpassing alternative strategies in a complex maritime environment.

it may incur high energy costs if strong adverse condi-
tions (e.g., headwinds or polar influence) exist along the
straight line.

• Wind-First Path:
Similar to a “Renewable-First” strategy, this approach
prioritizes avoiding headwinds by initially moving in a
direction that minimizes wind resistance (e.g., moving
horizontally) before progressing vertically toward the tar-
get. By reducing the impact of adverse wind conditions,
this method can lower energy consumption in wind-
dominated regions; however, the resulting longer path
may lead to suboptimal routing if other environmental
factors become significant.

• 50/50 Combined Path:
Analogous to a “50/50 Split” strategy in energy manage-
ment, this method attempts to balance wind and polar
effects by incorporating a sinusoidal deviation from the
straight-line path. Although this strategy mitigates over-

reliance on a single factor, its fixed ratio may not dynam-
ically adjust to real-time fluctuations in environmental
conditions, potentially resulting in increased energy costs
when one effect predominates.

• Standard MPC Path Planning:
Inspired by traditional MPC applications, this approach
repeatedly computes a short-horizon optimal route by
minimizing a cost function (typically related to energy
consumption). Its ability to adapt to changing conditions
is a key strength, though its performance may suffer from
local optima if the prediction horizon is too short or if
computational resources are limited.

• WOA-ACO Hybrid MPC:
This hybrid method integrates Whale Optimization Al-
gorithm (WOA) and Ant Colony Optimization (ACO)
within an MPC framework. The WOA component
explores the search space through spiral encircling
strategies, while ACO refines local path segments via



Fig. 8. Another Comparison of path planning algorithms over an energy cost map, with two central square obstacles. Any path intersecting an obstacle is
deemed invalid (cost = ∞). According to the legend, the total energy cost for each method is as follows: the direct path, wind-first, combined path, WOCA-
ACO MPC, WOA-MPC collide with obstacles, resulting in infinite cost; standard MPC consumes 50.167 kWh; GA-MPC reaches 49.554 kWh; PSO–MPC
uses 50.23 kWh; and our proposed approach achieves the lowest feasible cost at 49.221 kWh. This outcome highlights the effectiveness of our method in
balancing route length, obstacle avoidance, and energy expenditure, surpassing alternative strategies in a complex maritime environment.

pheromone-based selection. Although this combination
can produce robust solutions for nonconvex path planning
problems, it increases the algorithm’s complexity and
demands careful parameter tuning.

• GA-Based MPC:
Utilizing Genetic Algorithms (GA), this method encodes
candidate paths as chromosomes that evolve through se-
lection, crossover, and mutation. By maintaining a diverse
population of solutions, GA-based MPC can explore a
wide search space and potentially discover near-optimal
paths. However, the evolutionary process may lead to
excessive battery cycling and longer convergence times,
particularly when the problem size increases.

• PSO-Based MPC:
In this approach, Particle Swarm Optimization (PSO)
treats each candidate path as a particle with associ-
ated velocity and position, which are updated based
on personal and global best positions. PSO’s balance
between exploration and exploitation enables effective

convergence toward optimal paths, though it may suffer
from premature convergence if the swarm diversity is
insufficient.

• WOA-Based MPC:
This variant employs the Whale Optimization Algorithm
alone to iteratively refine the path through mechanisms
such as encircling prey and bubble-net attacking. Its
strength lies in effectively navigating complex cost land-
scapes, but it requires careful calibration of parameters
like the spiral coefficient, and its performance may be
sensitive to the initial conditions.

Figure 6 presents four panels that together form the en-
vironment in which our ACO–MPC algorithm is evaluated.
(i) The top-left Polar Strength Map shows regions with
stronger polar influence. (ii) The top-right Wind Speed Map
(m/s) reflects varying wind intensities across the sea surface.
(iii) The bottom-left Energy Cost Map (kWh/km) combines
polar strength and wind speed to estimate the per-kilometer



energy expenditure. (iv) Finally, the bottom-right Obstacles
Map marks restricted zones that the path planner must avoid.
By integrating these spatial distributions, the environment
allows us to assess the feasibility, efficiency, and adaptability
of our ACO–MPC approach under different wind conditions,
polar influences, and navigational constraints.

1) Comparison Analysis: Figure 7 shows how each algo-
rithm navigates the color-coded energy cost map, where higher
hues denote regions with increased kWh/km. The ship departs
from the top-left corner and must reach the bottom-right corner
without intersecting the two central obstacles. While simpler
methods such as direct path, fail entirely with infinite cost
due to collision. Notably, our proposed approach attains the
lowest total energy consumption of 51.775 kwh demonstrat-
ing superior performance in path optimization under adverse
environmental conditions.

Figure 8 shows how each algorithm navigates from the
top-left corner to the target point in the middle. Our proposed
method achieves the lowest feasible cost of 49.221 kWh.
These outcomes underscore the importance of balancing route
length, obstacle avoidance, and localized cost variations, with
our approach exhibiting superior performance under complex
maritime constraints.

V. CONCLUSION

This work addresses the pressing need for efficient path
planning in autonomous maritime operations, where high
energy consumption and uncertain environmental conditions
pose significant challenges. To tackle this, we developed
an ACO–MPC framework that synergizes Ant Colony Opti-
mization with Model Predictive Control, leveraging a linear
energy cost model derived from real-world data. By dy-
namically adjusting the route in response to wind speeds,
polar strength, and obstacle layouts, our approach signifi-
cantly reduces overall energy costs compared to rule-based
strategies such as Direct, Wind-First, 50/50 Combined and
different MPC variants. Simulation results indicate that the
proposed ACO–MPC method not only avoids collisions under
diverse sea-surface constraints but also achieves lower cumu-
lative energy consumption. These outcomes underscore the
advantages of combining metaheuristic search with receding-
horizon optimization for robust, adaptive path planning. Build-
ing on these findings, future work could explore cooperative
routing among multiple autonomous vessels, further refining
the linear model and control mechanisms to accommodate
interconnected maritime networks with dynamic interactions
and shared resources.
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ve Sanat Arastirmalari Dergisi, vol. 13, no. 1, 2024.

[13] D. Zhang, X. Chu, C. Liu, Z. He, P. Zhang, and W. Wu, “A review
on motion prediction for intelligent ship navigation,” Journal of Marine
Science and Engineering, vol. 12, no. 1, p. 107, 2024.

[14] K. Wang, Z. Li, R. Zhang, R. Ma, L. Huang, Z. Wang, and X. Jiang,
“Computational fluid dynamics-based ship energy-saving technologies:
A comprehensive review,” Renewable and Sustainable Energy Reviews,
vol. 207, p. 114896, 2025.

[15] Y. Wu, T. Wang, and S. Liu, “A review of path planning methods for
marine autonomous surface vehicles,” Journal of Marine Science and
Engineering, vol. 12, no. 5, p. 833, 2024.

[16] M. D. Al-Falahi, S. Jayasinghe, and H. Enshaei, “A review on recent
size optimization methodologies for standalone solar and wind hybrid
renewable energy system,” Energy conversion and management, vol.
143, pp. 252–274, 2017.

[17] A. Roy, F. Auger, F. Dupriez-Robin, S. Bourguet, and Q. T. Tran,
“Electrical power supply of remote maritime areas: A review of hybrid
systems based on marine renewable energies,” Energies, vol. 11, no. 7,
p. 1904, 2018.

[18] B. Kouvaritakis and M. Cannon, “Model predictive control,” Switzer-
land: Springer International Publishing, vol. 38, pp. 13–56, 2016.

[19] M. Schwenzer, M. Ay, T. Bergs, and D. Abel, “Review on model predic-
tive control: An engineering perspective,” The International Journal of
Advanced Manufacturing Technology, vol. 117, no. 5, pp. 1327–1349,
2021.

[20] E. D. M. Mesquita, R. C. Sampaio, H. V. H. Ayala, and C. H. Llanos,
“Recent meta-heuristics improved by self-adaptation applied to nonlinear
model-based predictive control,” IEEE Access, vol. 8, pp. 118 841–
118 852, 2020.

[21] T. Dokeroglu, E. Sevinc, T. Kucukyilmaz, and A. Cosar, “A survey
on new generation metaheuristic algorithms,” Computers & Industrial
Engineering, vol. 137, p. 106040, 2019.

[22] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE
computational intelligence magazine, vol. 1, no. 4, pp. 28–39, 2007.

[23] D. Wang and Y. Jing, “Obstacle avoidance for ship navigation safety
combining heuristic search algorithm and improved aco algorithm,”
Archives of Transport, vol. 72, no. 4, pp. 75–88, 2024.



[24] H. Heng, M. H. M. Ghazali, and W. Rahiman, “Exploring the application
of ant colony optimization in path planning for unmanned surface
vehicles,” Ocean Engineering, vol. 311, p. 118738, 2024.


	Introduction
	ACO-Based MPC Path Planning
	System Description and Extended Variable Definitions
	Candidate Path Generation: Matrix-Based Ant Colony Formulation
	Ant Population Representation
	Move Selection Using Matrix Probabilities
	Validity and Update of Candidate Paths
	Extended Candidate Cost Evaluation
	Pheromone Update in Matrix Form


	Linear Model Fitting for Energy Consumption and Matrix-Based MPC Formulation
	Simulation Results
	Linear Fitting Process
	Effectiveness in Energy Cost of ACO-MPC
	Comparison Analysis


	Conclusion
	References

