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ABSTRACT

In deep learning-based classification tasks, the softmax function’s temperature parameter 1 critically
influences the output distribution and overall performance. This study presents a novel theoretical
insight that the optimal temperature 7 is uniquely determined by the dimensionality of the feature
representations, thereby enabling training-free determination of 7. Despite this theoretical ground-
ing, empirical evidence reveals that 7™ fluctuates under practical conditions owing to variations
in models, datasets, and other confounding factors. To address these influences, we propose and
optimize a set of temperature determination coefficients that specify how T should be adjusted based
on the theoretical relationship to feature dimensionality. Additionally, we insert a batch normalization
layer immediately before the output layer, effectively stabilizing the feature space. Building on these
coefficients and a suite of large-scale experiments, we develop an empirical formula to estimate 7™
without additional training while also introducing a corrective scheme to refine 7™ based on the
number of classes and task complexity. Our findings confirm that the derived temperature not only
aligns with the proposed theoretical perspective but also generalizes effectively across diverse tasks,
consistently enhancing classification performance and offering a practical, training-free solution for
determining 7.

Keywords Temperature Determination Coefficients, Optimal Temperature Parameter, Softmax Function, Training-free
hyperparameter selection

1 Introduction

Deep learning exhibits impressive performance in various areas, such as image recognition [[1], object detection [2],
image generation [3]], and natural language processing [4]. In general, a deep learning model can be constructed by
stacking layers, such as a convolutional layer, a fully connected layer, and a normalization layer. This model is then
trained by minimizing the expected risk using a defined loss function. The cross-entropy loss displayed in Eq. is
typically used for standard classification:

n C
L(f(z;0),y) = *%Zzyij log fj(z:; 0), ey
i=1 j=1
where n and c represent the number of samples and categories, respectively; 8 denotes the parameters of the deep
neural network; f;(a;;0) denotes the j-th output of the model corresponding to input «;; and y;; € {0, 1} indicates
whether the ¢-th sample belongs to category j. Because the cross-entropy loss takes a true one-hot distribution y and an
estimated distribution, the output of the model g is normalized by the softmax function, as expressed in Eq. (2):

*Citation: T. Hasegawa, S. Sakai, ''Analytical Softmax Temperature Setting from Feature Dimensions for Model- and
Domain-Robust Classification', xxx under review. pp. x-x, DOI:000000/11111.
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where T is a hyperparameter of the softmax function, known as the temperature. In Fig. [I] we illustrate the effect of
different values of T" when the model’s output y is fixed. Intuitively, the temperature 7" controls the uncertainty of the
estimated distribution. As 7T increases, the estimated distribution approaches a uniform distribution; conversely, as T’
decreases, the estimated distribution becomes deterministic. In many settings, the temperature 7' is set to a default
value of 1.0. Examples of applications involving T include knowledge distillation [5], which transfers knowledge from
a larger model to a smaller model, and temperature scaling [6], which adjusts the model’s confidence. While some
applications control the temperature to meet specific requirements, the effect of temperature on the model’s learning
process remains poorly understood. However, the temperature parameter 7" used during the training process is a crucial
factor that significantly impacts the model’s final generalization performance. T adjusts the sharpness of the probability
distribution output by the softmax function, which effectively scales the gradients calculated through the cross-entropy
loss. This gradient scaling directly influences the learning dynamics, convergence stability, and ultimately, how well
the model performs on unseen data (i.e., generalization performance). Furthermore, an appropriate value of 7" can act
as a form of regularization, potentially preventing the model from overfitting to the training data and helping it learn
more generalizable representations. Therefore, selecting a suitable 7" for the task and model is essential not only for
adjusting the model’s output distribution but also for optimizing the training process itself to build models with
better generalization capabilities. Particularly in many practical scenarios where high generalization performance on
unseen data is critically important, such as large-scale image classification [1]], natural language understanding [4], or
time-series forecasting in changing environments [7], optimizing the temperature parameter during training is crucial
for enhancing model reliability and utility.
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Figure 1: Sample outputs of the softmax function at various temperatures for a fixed model output 3.

Some studies [8, 9] investigated the effect of changes in temperature parameters on model training. Agarwala et al. [§]]
tackled image classification tasks by introducing the inverse temperature 3 as a hyperparameter and, through extensive
experimentation on various tasks, demonstrated that tuning 3 can significantly improve model performance. While
they established the importance of 3 for optimizing generalization, no universal formula or method was put forward to
pinpoint the best 3 across disparate model architectures and datasets. Concurrently, Hasegawa [9] explored a possible
correlation between the optimal temperature 7" and the dimensionality M of the feature map in a 1D CNN-based human
activity recognition scenario and showed a trend in which T" grows with M, suggesting that these two factors may
be functionally linked. However, variations in tasks and model architectures introduced inconsistencies, rendering it
difficult to derive a single, general rule for determining 7'. Taken together, these findings underscore both the necessity
and the complexity of fine-tuning the temperature parameter. Despite these advances, the community still lacks a
systematic, generalizable method to determine either 1" or /3 robustly in the face of architectural and task-related
differences.

In this study, we propose a novel method for estimating the optimal temperature parameter 7™ in a training-free manner
that is robust to variations in both model architectures and tasks. By eliminating the need for extensive tuning, our
approach not only reduces the computational burden but also achieves superior performance compared to the commonly
used default 7" = 1. Because minimizing hyperparameters is critical for the practical deployment of deep learning
models, this study represents a significant step toward more efficient and scalable deep learning solutions. Since the
optimal value of the temperature 7", a hyperparameter directly involved in the training process, typically depends heavily
on the dataset and model architecture [8,110], tuning it conventionally requires computationally expensive trial-and-error
with multiple full model training runs. Our method is the first to provide a training-free, closed-form estimator for the
optimal temperature 7™, leveraging feature dimensionality and task characteristics. By eliminating costly searches, it
offers significant practical value—substantially saving computational resources and development time—while also
introducing a principled theoretical framework for temperature determination in deep learning.
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The main contributions of this study are as follows:

* A theoretical framework linking 7™ and feature dimensionality. We establish a theoretical relationship
between the optimal temperature parameter 7 and the feature dimensionality M. In addition, we propose to
represent T using a set of temperature determination coefficients ., 3,7y, d as

T*=avM + 5 + ~log(esg) + 0 log(cn),

where «, 3,7, 0 are experimentally optimized constants, and csg, cn denote the cumulative spectral gradient
(CSG) [[11] and the number of classes (CN), respectively. Furthermore, we show that inserting a batch
normalization (BN) layer [12] immediately before the output layer effectively stabilizes this relationship,
making T estimation less sensitive to changes in model architecture and dataset characteristics.

* Empirical analysis of BN insertion and its performance impact. Through extensive experiments, we
demonstrate that while placing a BN layer right before the output layer may cause performance degradation
under the conventional setting 7" = 1, it can improve performance when the temperature 7 is set appropriately.
This finding emphasizes BN’s dual role of normalizing the feature space and facilitating more precise
temperature selection, which in turn leads to improved generalization.

* An empirical formula for training-free estimation of 7*. By leveraging large-scale experiments, we

optimize the temperature determination coefficients c, 3 to propose a closed-form solution for T* that requires
no additional training overhead:

T* = clip(0.7239 VM — 4.706, ¢, 512),

which consistently outperforms the conventional default 7' = 1. This formula serves as a reliable starting point
for determining 7™, eliminating the need for time-consuming hyperparameter searches.

» Task-aware refinement using temperature determination coefficients. We further refine T* by incorporating
two task-dependent terms: the number of classes (cn) and the cumulative spectral gradient (csg). Specifically,
we again optimize the temperature determination coefficients «, 3, y, & using large-scale experimental results
to obtain:

T yon = clip (0.3191 VM + 20.74 + 3.746 log(csg) — 7.380 log(cn), ¢, 512).

By accounting for both task complexity and the number of classes, this refined scheme offers robust and
generalizable performance gains across a wide range of deep learning applications.

2 Related Works

2.1 Temperature parameter

Several studies have utilized the temperature of the softmax function, with knowledge distillation (KD) [} 13} 14 [15]
and temperature scaling [6} [16] serving as representative examples. Knowledge distillation is a method for transferring
knowledge from a teacher model to a student model. This method aims to improve performance and reduce the number
of model parameters. In conventional KD, it is well known that setting the softmax temperature to approximately 7' = 4
during distillation improves performance. Liu et al. [13] proposed Meta KD, which optimizes 1" via meta-gradients
computed on a validation set. Curriculum Temperature KD (CTKD) [14] introduces an adversarial learning scheme
that directly learns the temperature parameter itself. Sun et al. [[15] achieve a dynamic temperature by applying logit
standardization independently to both the teacher and the student models. Furthermore, temperature scaling [6] reduces
the model’s prediction bias by correcting temperature parameters. Balanya et al. [16] utilized adaptive temperature in
the temperature scaling. In contrastive learning, the temperature parameter is also adjusted to modulate the influence of
negative samples [[17].

In addition to these approaches, Agarwala et al. [8] presented a temperature check method examining the effect of the
inverse temperature 8 = 1/T on model generalization, highlighting the importance of temperature adjustment. The
authors tuned the inverse temperature during standard model training within the range 3 € [1072,10']. Xuan et al.
[LO] also highlighted the importance of tuning the temperature parameter in classification tasks. Furthermore, relaxed
softmax [18] also proposes a tuning strategy for inverse temperature. In fields other than classification, temperature
parameters have attracted attention in deep metric learning. Xu [[19]] proposed a heated-up strategy that involves training
the model with increasing temperature.

However, none of the above studies discusses the relationship between the dimensionality of the feature maps M and
the optimal temperature 7. While these studies note the importance of tuning the temperature parameter, they do not
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sufficiently address the question of whether the optimal temperature parameter can be estimated without training the
model.

Building upon these general insights into temperature tuning, a study in sensor-based human activity recognition has
explored the relationship between feature dimensionality and temperature [9]. Denoting the number of dimensions
of the output of the feature extractor (e.g., ConvNets) as M, the experimental results indicate a potential relationship
between the optimal temperature 7* and M. However, there were several limitations:

1. The experiments were conducted only on one-dimensional sensor-based human activity recognition datasets.

2. The coefficients determining the optimal temperature parameter vary across different datasets and the encoder’s
model architectures.

3. The effectiveness has not been evaluated using a deeper model.

For these limitations, the related study [9] discusses a method for mitigating limitation (2) by inserting layer normal-
ization (LN) [20] before applying the softmax function. This method is inspired by the observation that an output
distribution with optimal temperature 7 follows a specific distribution. By normalizing the outputs and dynamically
adjusting the temperature parameter through the trainable parameters in LN, this method can be regarded as an advanced
extension of the relaxed softmax approach [18]]. However, it does not account for the potential relationship between M
and 7. In this paper, we further explore the relationship between M and 7.

2.2 Scaled dot-product attention

The scaled dot-product attention, introduced by Vaswani et al. [21], focuses on the temperature parameter and the
number of input dimensions of the softmax function. This operation can be computed as follows:

T

. QK
Attention(Q, K, V) = softmax

(Q7 ) ) ( \/ﬂ

where @ and KT denote the feature map z and parameters w, respectively. Here, the problem of increasing dispersion

occurs as the number of dimensions increases, as discuss in the next section. The authors addressed this problem by

dividing by /d}, the square root of the number of dimensions of () and K. This is equivalent to the softmax function

with T = +/d},. The authors introduced this temperature adjusting to maintain an appropriate gradient scale. However,
they did not provide a detailed discussion of this temperature adjustment.

W, 3

2.3 Label smoothing

Label smoothing [22]] is a regularization method that has a role similar to that of temperature scaling. As displayed in
Eq. (1), a typical cross-entropy loss function employs ground-truth labels y € {0, 1}¢, which are encoded in a one-hot
manner. In contrast, label smoothing represents ground-truth labels y©¥ € R€ in a soft manner, as expressed in Eq. @):

yES = yi(1—€) + ¢/c. 4)

Label smoothing minimizes interclass variance, maximizes intraclass variance, and improves the model’s generalization
ability [23]]. In addition to a method for statically constructing soft labels from a uniform distribution, a dynamic label
construction method has also been proposed [24]].

Temperature adjusting and label smoothing are similar in that they focus on the distribution of negative samples.
However, whereas temperature adjusting controls the estimated distribution y, label smoothing transforms the ground-
truth distribution y. In Fig. [2| we visualize a simulation of the response of the cross-entropy loss as the logits ¥;
are varied. In the case without label smoothing, we observe that the loss monotonically decreases, with temperature
regulating extreme changes in the loss. In the case of label smoothing, we observe that label smoothing penalizes
large logits y; in response to e. As illustrated in the figure, the effects of both regularizations are observed in the case
involving label smoothing (¢ = 0.1).

Based on the above observations, we conclude that label smoothing and temperature adjusting serve distinct roles in
model training. Specifically, we focus on the relationship between the dimensionality of the feature map M and the
optimal temperature 7.

2.4 Position of this study

In this section, we clarify the position of our study. Although knowledge distillation [5] and temperature scaling [6]
have demonstrated the effectiveness of tuning the temperature parameter, both methods primarily focus on distillation
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Figure 2: Effect of temperature variation and label smoothing on cross-entropy loss.

and calibration rather than classification. Scaled dot-product attention [21]], on the other hand, replaces the temperature
with the square root of the feature dimensionality dy, in the softmax function. However, it is treated as part of the model
architecture and does not involve deriving an explicit optimal temperature for classification. Furthermore, although
relaxed softmax [18]] and inserting LN [9] dynamically adjusts the temperature parameter during training, a theoretical
framework linking the feature dimensionality M to the optimal temperature 7™ has not been established. As such,
existing research has not theoretically established the optimal temperature 7™ for improving generalization performance
in classification tasks.

To address this gap, we propose a new approach that does not require additional training and incorporates the effect
of M into a closed-form estimation of the optimal temperature. As summarized in Table[I] this study formalizes
and exploits the previously underexplored relationship between feature dimensionality and the temperature parameter,
setting it apart from conventional methods. Our goal is to achieve consistent performance improvements across various
model architectures and application tasks by offering a theoretically grounded and practically efficient temperature
estimation procedure. In particular, while temperature check [8] determines 7™ through costly hyperparameter searches
involving extensive model retraining, our proposed method is novel in that it uniquely identifies 7™ in a training-free
manner. Although Hasegawa et al. [9] also noted a relationship between M and T, they did not derive a closed-form
solution. By contrast, our approach defines an explicit closed-form solution and further incorporates corrections for task
difficulty and class count, representing a novel contribution.

Table 1: Characteristics of our method compared with related works.

Method \ Task Tuning Consider M/  Closed-form
KD [5] Distillation Required No No
Meta KD [13] Distillation Dynamic No No
CTKD [14] Distillation Dynamic No No
Logit standardization [15]] Distillation Dynamic No No
Temperature Scaling [6]] Calibration Required No No
Temperature Check [8} [10] Classification Required No No
Relaxed Softmax [|18]] Classification Dynamic No No
Scaled Dot-Product Attn [21] | Architecture = Unnecessary Yes Yes
Label Smoothing [22] Classification Required No No
Insert LN [9] Classification Dynamic No No
Ours Classification Unnecessary Yes Yes

3 Training-free temperature determination

As demonstrated in related works, tuning the temperature parameter of the softmax function is critical for improving
performance in classification tasks [8} 9]]; however, its optimal value has traditionally been chosen empirically—either
fixed at 1 or selected via exploratory methods such as grid search. In this study, we introduce a training-free temperature
determination approach that identifies the optimal temperature without any hyperparameter search. Our method is
exceptionally easy to integrate, requires no modifications to existing training pipelines, and is broadly applicable to any
deep learning model employing softmax cross-entropy loss. Moreover, it rests on a transparent theoretical framework,
making its behavior both predictable and interpretable.

Implementing our approach entails only the following simple steps:
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1. Inserting BN just before the output layer as illustrated in Fig. [3]

2. Determining the temperature by following equation:

"= avM + B -+~ log(csg) + 6 log(cn), 5)

Model correction Bias term

where «, 3,7, ¢ are extended-version of temperature determination coefficients, and csg, cn denote the CSG [11] and
the number of classes, respectively. The first term compensates for changes in the feature-map dimensionality M, based
on the hypothesis that M/ exerts a dominant influence on the determination of 7* (see Section [3.1)). Furthermore, under
the hypothesis that this dimensionality correction alone cannot fully remove the effects of differing model architectures
(e.g., ResNet, ViT, etc), we insert a batch-normalization layer immediately before the output layer (see Section[3.2).
The second term serves as a bias to adjust the overall baseline. The third and fourth terms correct for differences in task
characteristics (see Section [3.3).

RBX3><HXW ]RBXM ]RBXC

- L

Figure 3: Outline of the flow of the general deep neural network models inserted a normalization layer.

3.1 Model correction by a/ M

T has been shown to depend on the feature-map dimensionality M in related work [9]]. In this section, we theoretically
motivate the need to introduce the model-correction term (the first term) in Eq. (3).

In general, a linear classifier computes the logits from the output z € R of the feature extractor E as follows:

- T

Yy = sz + bj, (6)
where W = [wj1,wjs, ..., w;r] is an M-dimensional weight vector corresponding to category j.

At a given training step, the expectation and variance of j; are given by:

M M
E[g;] =E {Z Wik 2k + b]} = Z wjk Elzg] + bj, @)
k]\:41 k:1]\/1
V[/gj] :V[Z WikRk +bj:| :V[Z wjkzk]. (8)
k=1 k=1

Here, w is treated as a constant, and z is a random variable that is generally neither independent nor normalized. In
contrast, at the initial stage of training, w and z can often be approximated as independent and identically distributed.
Under this assumption, the expectation and variance can be simplified to:

E[:l)j] = ME[’LUJZ] + bj, (9)
Vig;] = M V{w,z]. (10)

Because this variance grows proportionally to M, increasing model depth can lead to exploding or vanishing gradients.
To address this issue, LeCun’s initialization [23] sets the initial parameters according to V[w] = 1/M, an approach that
was subsequently extended in the Xavier [26] and He [27] initialization methods.

Focusing on the effect at the output layer, §j; is passed into the softmax function in Eq. . In other words, if §;
depends on 1/, it implicitly modifies the temperature parameter 7" as a function of M. Consequently, this suggests that
T should be chosen appropriately based on J/. In this study, we introduce temperature determination coefficients
(a and p) to determine the optimal temperature 7™ as a function of M as follows:

T =avVM + B. (11)
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The variance of ¢j; /T* within the softmax function is expressed by the following equation.

Vig;/T"] = (\f+ﬁ [Zw]m} (12)

k=1

When o = 1.0 and 8 = 0.0, the variance becomes 1/M, thereby suppressing the influence of M on the softmax
function. On the other hand, while V[g; /T*] is not affected by M, it cannot be guaranteed to represent the optimal
distribution for training when using the softmax cross-entropy loss. Therefore, the optimal 7™ for training is determined
by adjusting the temperature determination coefficients.

3.2 Inseting BN just before the output layer
3.2.1 Implementation

As illustrated in Fig. 3] The model architecture is simple, inserting the normalization layer just before the output layer.
Considering image recognition as an example, the standard model takes an input image x € RB>*3*HxW "extracts
the feature maps z € R?*M using the feature extractor E, and ultimately obtains the output y € RZ*® using the
classifier f. In this case, we apply a global average pooling (GAP) layer to the output of the feature extractor. We can
use any model architecture as a feature extractor, such as ConvNets and vision transformers (ViTs). For simplicity, we
use a single fully connected layer for the classifier f.

3.2.2 Hypothesis

In the related study [9]], comprehensive validation experiments demonstrated that when the model architecture or task
differs, T* behaves as a function of M, though its trend undergoes slight variations (i.e., the temperature determination
coefficients fluctuate). We hypothesize that this may be due to variations in zj, in Eq. (I2)) depending on the model or
task.

In this study, we consider normalizing 2z to enhance the robustness of temperature determination coefficients against
variations in model architecture and task.

First, by transforming Eq. (), the following equation can be derived.

] el ]l el

M
:Zzwjkwgl]Ezkzl ZZkaw]lE[zk}E[zl] (13)
k=1 1=1

k=11=1

Furthermore, if we divide the first term into diagonalized and non-diagonalized terms,

M M
V[Z wjkzk] = Z wJQkIE[zk Z wipw;iElz, 2] Z ijkw]lE zi|E[z]. (14)
k=1 k=1

k=1 k=1 1=1
k£l

Let us assume that z has been normalized by BN to have a mean of 0 and a variance of 1, which implies that E[z] = 0
and E[2?] = 1. Therefore, Eq. (T4) can be transformed as follows:

M
V[Z wjkzk} Zw]k + Z wjkwjl]E 2k21). (15)
k=1

kAl

Comparing Egs. (T4) and (T3), it can be observed that the influence of z disappears from the first term of Eq. (14), and
the third term becomes zero by introducing the normalization. As a result, it can be stated that the impact of z on the
variance has been significantly reduced.

Eq. (T9) indicates that the variance is affected by the covariance of z without being influenced by z itself. However, the
effect of the non-diagonal elements is generally not significant because correlations between feature maps are low when
M is sufficiently large. Based on the above, we hypothesize that we can mitigate the effects of §j; and z by applying
normalization to z.



Running Title for Header

3.3 Task correction by ~log (csg) + 6 log (cn)

In Eq. @), it was demonstrated that the insertion of BN can reduce the influence of z on the variance. However,
while this influence is expected to be relatively minor, the second term of Eq. still retains some dependency
on z. Therefore, we hypothesize that the influence appearing in the second term is affected by factors such as task
difficulty and the number of output classes. To address this, we aim to reduce the impact by extending the temperature
determination coefficients, as shown in Eq. @)

Note that the second term in Eq. (T3)) merely indicates that some inter—feature covariance may persist after BN, but it
does not guarantee a one—to—one correspondence between that covariance and task difficulty. Indeed, when the latent
representations are sufficiently separated, E[zx 2] ~ 0 can still hold even for hard tasks. To capture both cases in a
unified way, we incorporate two complementary correction viewpoints:

(a) Representation-space correction: Empirically, tasks with highly similar classes exhibit larger inter—feature
correlations. We therefore adopt the CSG as a proxy for this effect (see Appendix [B.T|for a detailed derivation).
(b) Softmax-gradient correction: As the number of classes C' increases, the expected true-class probability

approaches 1/C, diluting the cross-entropy gradient 0L /0z;. This gradient dilution can be compensated by
reducing the temperature 7' (see Appendix for a detailed derivation).

Combining these two viewpoints yields the final temperature correction rule

7 log(csg) + & log(en),

where v > 0 corrects for the increase in inter—feature correlation (i.e. task difficulty) and § < 0 offsets the softmax
dilution caused by larger class counts.

4 Effect of BN insertion

In the subsequent sections, we first examine the impact of BN insertion in Section[d} then optimize the temperature de-
termination coefficients in Section 5] and finally verify the effectiveness of the newly derived temperature determination
method in Section

In these experiments, we investigate the effect of inserting BN in image classification tasks. The research questions are
as follows:

1. How does the insertion of BN just before the output layer affect estimation accuracy?

2. Does the insertion of BN just before the output layer stabilize the temperature determination coefficients?

4.1 Experimental settings

We utilized the CIFAR10/100 [28]], STL10 [29]], and Tiny ImageNet (Tiny IN) [30] datasets and employed VGG9 [31],
ResNet10 [32], and PyramidNet10 [33]] as model architectures. Due to resource constraints and the need for numerous
trials, we selected relatively small datasets and shallow model architectures.

Our experiments utilized various models to equip the classifier f with one fully connected layer. For all models, we
initialized the weights of the feature extractor with the initialization proposed by He ef al. [27] and the weights of the
classifier with a uniform distribution U (—1/v/M, 1/+/M). We did not use bias terms in the convolutional layer. For
model training, we used stochastic gradient descent (SGD) with a momentum of 0.9 and a weight decay of 0.0005. We
set the initial learning rate to 0.1 and employed cosine annealing [34] as the learning rate scheduler. The number of
epochs and batch size were set to 200 and 128, respectively. We applied standardization as preprocessing and employed
cropping, horizontal flip, and rotation at random.

We increased or reduced M by uniformly adjusting the number of filters in the model. For example, standard ResNet
includes [64, 128, 256, 512] filters for each block. We reduced M by dividing all filters by a factor of n. We report the
median accuracy for multiple trials using different random seeds.

4.2 Effects of temperature in image recognition

In Fig. 4] we present the evaluation results of VGG9 (M = 512) on CIFAR-10. The performance improves as T’
increases up to T' = 128, after which it declines rapidly (7' > 256 is outside the drawing range). As displayed in Fig.
lower values of T lead to sharper g. Setting 7" too low can cause the model to rapidly converge to local minima.
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Conversely, higher values of T lead to flatter g, allowing the model to explore a wider parameter space. Therefore,
setting 7" to an excessively high value may prevent the model from converging.
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Figure 4: Change in accuracy relative to 7" in the CIFAR10 environment using VGG9 with M = 512. The results for
T = 256 and T' = 512 are below the drawing range.

In Fig. [5] we present results across various model architectures and datasets with varying temperature parameters 7". To
standardize the CN, we extracted a subset of CIFAR100 containing superclasses at even positions (10 classes, 25,000
samples, denoted as CIFAR100@10). In each subfigure, the x-axis represents T', the y-axis represents M for each
model architecture, and the intensity represents the median test accuracy. A solid line denotes the best results, while
a dashed line denotes the second-best results. From Fig. |5} we observe the trend that 7™ increases as M increases.
However, as reported in the related study [9], this trend varies across datasets and model architectures.
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Figure 5: Test accuracies [%] for each temperature parameter in various scenarios (without insertion of the normalization
layer). Only CIFAR-100@10 has 10 classes extracted from its superclasses (using only even class numbers) to
standardize the number of output units to 10.

4.3 Effect of BN insertion

In Fig. [6] we present the results of inserting BN just before the output layer. This figure can be interpreted in the
same way as Fig. 5] The trend of the optimal temperature parameter appears more robust than that displayed in Fig.
Notably, at the point where the performance declines in the region of high values of T', BN insertion causes the trend to
be similar across different model architectures.

Next, we analyze the effect of BN insertion on estimation accuracy. In Fig. [7} we illustrate the differences in estimation
accuracy with and without BN insertion (as A acc.). Positive values indicate that BN insertion improves performance,
while negative values indicate that it reduces performance. As shown by the solid line, inserting BN at 7" = 1 shows that
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Figure 6: Test accuracies [%] for each temperature parameter in various scenarios (with BN insertion). Only CIFAR-
100@10 has 10 classes extracted from its superclasses (using only even class numbers) to standardize the number of

output units to 10.

T* and BN insertion, the accuracy improves

the accuracy decreases with increasing M. However, by combining T’

in many cases. The performance improvement is particularly notable for a relatively high-M and difficult dataset

(STL-10).
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Figure 7: Accuracy difference [%

Based on the experimental results, inserting BN just before the output layer can provide a more robust estimation of the

temperature determination coefficients across different datasets and model architectures. We infer the reason many
conventional methods do not insert BN just before the output layer is that,

decreases due to BN insertion. Howeve

with the default setting of T = 1, accuracy

1, it is possible to achieve a more accurate prediction once the temperature

parameter 7' is set appropriately. These results highlight the importance of optimizing the temperature parameter 7.
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5 Optimization of Temperature Determination Coefficients

In this section, we estimate the temperature determination coefficients through optimization. We experimentally
demonstrate that (i) we can stabilize the estimation of the temperature determination coefficients by BN insertion and
(i1) we can improve the estimation accuracy by optimizing the temperature parameter 7. Based on these two results, we
further introduce (iii) a correction of temperature using CSG and CN.

5.1 Estimation of performance for each 7" and optimization of T’

Since the optimal temperature 7* under given conditions is unknown, we estimate the temperature determination
coefficients v and /3 as follows:

(i) We estimate the test performance at unknown 7" by linear interpolation (Fig. [g).
(i) We determine the optimal temperature using T* = avV/M + 8.

(iii) By maximizing ) . interpolationc(f*), we estimate the temperature determination coefficients o and /3.

VGG9 ResNetl10 PyramidNet10
_ 100 . - . 100 e . 100 — -
S /[ T N B - - R R,
€ O i H I I i i i i 9 4 % 1 i .
e 50T o M=64  —— M=256 g 50 g 50 S QEE!-
Y3 M=128 —— M=512 S 51 M=128 —— M=512 NS
< 0 < 9 < ;
_loop03—2 8 32 128 512 00 005 —2 8 32 128 512
o ¥ S ®
S Z =z vt
25 Lo TR X oy ool o LT i
£E 0T o mea  —— M=256 g 30 £ —— M=64  —— M=256 X
Oy M=128 —»— M=512 | 3 5 M=128 —— M=512 :
< 0 | | | < 0 < 0 |
100 512 10005 2 8 32 128 512 100 —0:5 2 8 3 , 512
S S | posgpespeedyesd = | L |
ERE HEENE" annan 5 .| esemCORGRBIIRIR.
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T T T

Figure 8: Estimation of test accuracy [%] for each temperature parameter (with BN insertion). The boxplots represent
the observed values, and triangles indicate the median values. The solid line plots, marked with x, represent the
estimated values obtained through linear interpolation of the observed mean values.

In step (i), as illustrated in Fig. [8] we estimate the test performance at unknown 7" by linear interpolation based on the
results in Fig. [6] We present the results of Fig. [|using a boxplot and draw a solid line indicating the test performance
at unknown 7' that is linearly interpolated. As the test performance does not significantly change with slight changes
in T', we consider linear interpolation to be sufficient. This allows us to estimate the test performance in the range
0 < T < 512. In step (ii), as mentioned in Section we determine the optimal temperature 7™ by T = av/M + B.
In step (iii), we estimate the temperature determination coefficients by maximizing the sum of the estimated test
accuracy under various conditions C. We denote the estimated test accuracy for a given condition C' and temperature
parameter T as interpolation,(T"). For example, we can estimate the optimal test accuracy of VGG9 on CIFAR-10 by
setting the condition C' as M = [64, 128, 256, 512]. We employ differential evolution for optimization [33].

Table 2] displays the temperature determination coefficients estimated in each environment in Fig. [ along with the test
accuracy using these coefficients. We observe that, on average, & = 4 and § = —25 with and without BN. However,
the standard deviation of the estimated coefficient « is 2.17 without BN, which decreases to 1.86 with BN. Therefore,
the stability of the coefficients improves with BN insertion. From the perspective of test performance, the test accuracy
(ttace) of the optimal temperature 7* with BN is superior to that without BN. These results validate the effectiveness of
our proposed method.

5.2 Effect of the task
Revisiting Fig. [6] we can observe that while BN insertion can suppress the effect of differences in model architecture,

the effect of differences in dataset slightly remains. We hypothesized that task difficulty causes this phenomenon. As
the number of similar classes increases (i.e., the task difficulty increases), the greater the impact on learning since the
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Table 2: Temperature determination coefficient estimated through optimization and the corresponding average accuracy
[%].

w/o BN w/ BN
« ﬂ I’L(ICC o /8 /“LU/CC A(ZCC

CIFAR10

VGG9 209 -1270 88.73 | 3.42 -19.32 88.76 | 0.03

ResNet10 7.62 -6092 90.74 | 0.84 -429 91.11 | 0.37

PyramidNet10 | 1.98 -13.84 83.69 | 7.09 -52.70 83.69 | 0.01
CIFAR100

VGG9 7.63 -58.14 8271 | 6.69 -4552 82.71 | 0.00

ResNet10 379 -30.07 85.96 | 2.68 -17.42 86.41 | 0.45

PyramidNet10 | 3.41 -13.13 77.93 | 4.11 -29.07 78.03 | 0.09
STL10

VGG9 3.10 -22.80 79.78 | 295 -15.30 80.41 | 0.63

ResNet10 141 -11.17 81.14 | 3.18 -21.39 82.62 | 1.48

PyramidNet10 | 4.64 -20.47 74.08 | 298 -7.87 7446 | 0.38

Avg. 396 -27.03 82.75 | 3.77 -23.65 83.13 | 0.38

S.D. 217 1829 495 | 1.86 1530 489 | 0.44

output distribution is gradually flattened with increasing 7', as illustrated in Fig. [I] Therefore, we analyzed changes in
the temperature determination coefficients with respect to task difficulty. We constructed datasets with different task
difficulties by extracting subsets containing 10 classes from CIFAR100 (referred to as the CIFAR100 subset). From
these subsets, we utilized two relatively difficult subsets and two relatively easy subsets. Moreover, we simultaneously
utilized the original CIFAR-100 and Tiny IN datasets. To calculate task difficulty, we employed the CSG [11]. We
computed the CSG scale using the original images. While the original implementation trains an autoencoder and
employs t-SNE, we do not use either of them, but it is sufficient for this case. For CSG calculation, we employed the
publicly available implementation, which can be found at https://github.com/Dref360/spectral-metric.

In Fig. Pl we present the results on four subsets of CIFAR100, the original CIFAR100, and Tiny IN, employing
ResNet10 as the model architecture. We observe the following trends, which are consistent with the previous section:

1. BN insertion stabilizes the temperature determination coefficients.

2. While BN insertion reduces the test accuracy at 7' = 1, it improves the test accuracy at T’ = T+

3. Higher task difficulty scores (CSG) correlate with greater improvement due to temperature adjusting.

Furthermore, we observe that as the CSG increases, the optimal temperature 7" decreases. An increase in the CN may
be responsible for the decrease in 7. These findings are consistent with the hypothesis that increased 7" has a larger
impact on similar classes, particularly in challenging tasks.

Based on the above, the optimal temperature determination coefficients can be estimated by inserting BN, representing

T* as a function of M, and correcting with CSG and CN. Based on Eq. (3), we defined as follows:

T* = clip(aV'M + B + ylog(csg) + dlog(cn), €, 512), (16)

In the case without correction, v = § = 0. When only the CSG is used for correction (CSG Corr.), § = 0, while when
only the CN is used for correction (CN Corr.), v = 0. The clip() function represents a clipping operation that limits the
values between € and 512. We experimentally set the upper bound of 7" to 512 and the lower bound to 1.

As in the previous section, we performed optimization by cross-validation (CO) to estimate the temperature determina-
tion coefficients. Table [3]displays the test accuracy obtained by performing linear interpolation on each dataset. We
observe a small improvement in overall performance, particularly notable on the Tiny IN dataset. For the original
CIFAR100 dataset, while the performance decreases slightly, it can be improved by increasing the number of samples
for simulation and optimization.

Table [3| also displays the results of performing global optimization (GO) on all experimental results displayed in Fig. 0]
As expected, the average performance exceeds that obtained by optimization using cross-validation. While performing
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Figure 9: Test accuracies [%] for each temperature parameter in different task difficulty scenarios using ResNet10. The

upper row displays results without BN insertion (conventional), while the lower row displays results with BN insertion

(proposed method). Values in brackets indicate CSGs.

Table 3: Average estimation accuracy [%] achieved by our proposed methods. Each value indicates the average test

accuracy for all M.
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we can estimate the

optimal temperature parameter 7™ based on the temperature determination coefficients estimated by global optimization,

as demonstrated in Table @]

the difference in performance between CSG Corr. and CN Corr. is negligible. Therefore, one

s

can simply use CN Corr. or CSG & CN Corr. when the CSG value can be computed. Finally,

correction is beneficial

Table 4: Temperature determination coefficients obtained by global optimization.

-4.706
6.848

0.7239
6.656

04111

T*

-2.024

*

csg

-1.973

0.4051
0.3192

£
cn
3

-7.38

3.746

20.74

csgen
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6 Effectiveness validation with real problems

In the previous section, we discussed the performance of temperature parameters based on estimated test accuracy
through linear interpolation. We also employed relatively shallow model architectures. To validate the robustness of our

proposed method, we estimate the optimal temperature T* for standard deep learning models. Based on the empirical
data obtained during actual training and validation, we evaluate the effectiveness of our proposed method. The training
settings are identical to those described in the previous section, with the exception of batch size, which varies across
datasets.

We compared the following approaches:

1. T = 1: The conventional method that uses 7" = 1 without BN insertion (current default setting).

T = v/ M: The method used in self-attention [21]], which employs 7" = /M without BN insertion.
. Imsert LN: The method that inserts LN just before applying the softmax function without BN insertion [9].

. Ours (T*): The method that inserts BN just before the output layer and employs 1.

. Ours (Tc*S o) The method that corrects the temperature parameter to TC*S o calculated from the CSG with global
optimization.

6. Ours (Tjn): The method that correct the temperature parameter to Tc*n based on the CN with global optimiza-
tion.
7. Ours (T

S_g(l'!_i .
global optimization.

): The method that corrects the temperature parameter to T using the CSG and CN with

csgen

6.1 Evaluation of robustness to differences in model architecture

We validated our method on various model architectures, including ConvNets and ViTs.

6.1.1 Convolutional neural networks

We employed the following widely used ConvNets architectures: ResNet50 [32], EfficientNet (Eff. Net) b0/b5 [36l],
RegNet8GF [37], and ConvNeXt-Small [38]]. We trained all models from scratch on CIFAR10 and CIFAR100.

In Table[5] we present the performance of each model. Notably, our proposed method outperforms other methods in
many cases. Interestingly, 7 = /M derived from 1 /+/dj; from the self-attention study [21] sometimes outperforms
our method. This method differs from our proposed method in terms of BN insertion and the calculation of 7'
Since T' = /M does not significantly differ from our proposed method in some cases, it is expected to exhibit
high performance, particularly for datasets with a low CSG. However, it is sensitive to changes in dataset and model
architecture, resulting in significantly lower performance in cases such as ConvNeXt on CIFAR10 and Eff. Net b5
on CIFAR100. In terms of average performance, our method achieves the best performance on CIFAR10, while the
addition of CSG Corr. achieves the best performance on CIFAR100. It should be noted that because CSG correction
aims to improve robustness against difficult datasets such as Tiny ImageNet, it may not be as effective for easier datasets
such as CIFAR10/100.

6.1.2 Vision transformers

We also evaluated our methods on recently developed ViT-based architectures: ViT-B/16 [39] and Swin Transformer
Tiny (SwinT) [40]. We utilized Caltech101 [41] as the dataset.

In Table[6] we present the results for both models on the Caltech101 dataset. For both settings, our proposed method
achieves the best performance. Although the performance significantly decreases with CSG and CN correction, it may
be improved through individual hyperparameter tuning. For comparative experiments in a unified environment, we
present the results as obtained.

6.2 Evaluation of robustness to dataset differences
We evaluated whether our proposed method was effective for various image classification datasets that were not used for

optimization. We used the following popular vision datasets including fine-grained image recognition: German Traffic
Sign Recognition Benchmark (GTS)[42]], EuroSAT (SAT)[43]], ISIC Challenge 2019 (ISIC)[44, 45, 46], Caltech101

14
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Table 5: Performance evaluation for each Torchvision model in actual measurements [%].

| ResNet50 Eff. Netb0 Eff. Netb5 RegNet8 GF ConvNeXt-S | Avg.

CIFAR10
T=1 84.80 87.10 88.83 88.72 70.02 83.89
T=vM 88.70 87.51 91.01 91.18 68.07 85.29
Insert LN [9] 85.66 87.45 81.27 88.97 70.03 82.68
Ours (1) 88.57 87.61 90.79 90.74 77.94 87.13
Ours (T7,,) 88.62 87.41 90.61 90.47 76.68 86.76
Ours (T7%,) 88.45 87.60 90.15 90.23 71.87 85.66
Ours (17,,.,) | 88.46 87.72 89.75 90.30 71.07 85.46

CIFAR100
T=1 49.18 58.75 62.34 56.52 50.34 55.43
T =vVM 60.99 46.23 15.97 65.16 32.62 44.19
Insert LN [9] 49.64 58.48 55.50 55.41 49.58 53.72
Ours (T) 59.95 59.01 66.05 64.94 35.25 57.04
Ours (17,,) 58.70 59.20 68.20 63.60 41.70 58.28
Ours (T7%,) 57.93 58.94 67.81 63.48 41.00 57.83
Ours (17,.,) | 57.89 60.14 65.93 63.56 42.70 58.04

(CD[41]], Flowers102 (FLW)[47], Oxford-IIIT Pet (PET)[48]], Describable Textures Dataset (DTD)[49]], CUB-2011-
200 dataset (CUB)[50]. The validation was conducted under the following three scenarios: (1) training ResNet50
from scratch (init), (2) fine-tuning a ResNet50 pre-trained on ImageNet-1k (FT), and (3) fine-tuning a SwinT model
pre-trained on ImageNet-1k (FT). During the fine-tuning phase, both models were trained for 50 epochs using a
maximum learning rate of 0.01.

Table 6: Performance evaluation of transformer models on the Caltech101 dataset in actual measurements [%].

| VITB/16  SwinT

T=1 5038  54.07
T=vVM 47.54 61.29
Insert LN [9] | 49.92  68.20
Ours (T) 54.15 70.66
Ours (17,) 5430 7277
Ours (17,) 5534 7446
Ours (T7,,e,) | 5.038 40510

In Table we present the results for each dataset. Despite each correction formula T to TC*S gen Deing derived from
CIFAR10/100 and Tiny ImageNet, our proposed method exhibits superior performance. Specifically, corrections based
on CN or CSG&CN are effective in numerous instances, illustrating the broad applicability of our method to common

vision tasks—even when those tasks were not used in the optimization of temperature determination coefficients.

Across the three scenarios, no significant differences in the observed trends were detected, indicating that the proposed
method remains effective regardless of changes in model architecture or the approach used for training (i.e., from initial
parameters or through fine-tuning). We initially hypothesized that the proposed method might be less effective if the
model had already converged near a local optimum. However, even when applying the temperature determination
coefficients optimized under scratch scenarios, the results confirmed that the proposed method remained effective for
transfer-learning scenarios. These findings indicate that our proposed method can be effectively combined with transfer
learning, preserving its benefits even in fine-tuning scenarios.

Examining the results across all datasets indicates that the proposed method generally achieves superior performance.
However, it appears to be less effective, specifically on the ISIC dataset. To explore possible reasons for this, we

253.61% when the maximum learning rate is changed to 0.01
373.52% when the maximum learning rate is changed to 0.01
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Table 7: Performance evaluation of three scenarios for each dataset in actual measurements [%].

Dataset | GTS  SAT  ISIC CT FLW PET DTD CUB
CSG | 1.39 3.08 385 559 747 2280 2586 7532 | Avg.
CN 43 10 8 101 102 37 47 200

ResNet50 init
T=1 70.16 9733 76.16 83.49 3993 5574 34.10 51.98 | 63.61

T=VvM 88.69 97.56 74.07 8637 3947 76.02 34.63 3542 | 66.53
Insert LN [0] | 71.56 96.85 75.17 87.63 48.84 7146 36.65 54.92 | 67.89
Ours (T*) 87.26 97.59 66.57 87.52 5354 76.12 4229 63.01 | 71.74
Ours (T7,)) | 87.56 97.60 72.16 88.63 5481 7749 3676 60.08 | 71.90

Ours (T*,) | 9201 97.90 70.03 90.59 5476 74.03 3553 64.29 | 72.39
Ours (17,,.,) | 92.18 97.40 69.32 90.05 5298 7563 3628 6334 | 72.15

ResNet50 FT
T=1 890.14 9844 84.72 96.43 90.18 87.44 6298 75.03 | 85.54

T=vM 87.96 98.52 82.75 3337 17.30 77.19 3479 5.14 | 54.63
Insert LN [9] | 91.84 98.58 84.93 9531 90.32 88.09 63.56 75.13 | 85.97

Ours (1) 92.43 9846 8439 9393 79.10 89.59 6420 66.55 | 83.58
Ours (17,,) 92.39 98.51 80.58 95.62 84.45 88.83 6505 76.92 | 85.29
Ours (T;n) 9229 9843 83.88 96.08 89.17 89.26 65.64 75.46 | 86.28

Ours (T7,,.,) | 9294 9847 8438 9620 9127 89.81 6521 76.49 | 86.85
SwinT FT
T=1 89.64 98.57 84.36 9585 8029 8940 65.11 76.77 | 85.00

T=vVM 92.78 98.41 8346 95.01 51.02 9139 6537 67.03 | 80.56
Insert LN [9] | 91.03 9825 84.51 96.85 77.18 91.20 68.51 74.53 | 85.26
Ours (1) 9249 9841 80.88 93.74 6647 91.71 6654 57.40 | 80.96
Ours (Ji"c*sg) 92.60 9843 83.64 9393 60.81 91.14 68.14 77.99 | 83.34

Ours (7)) 93.24 9843 80.83 96.66 7657 9215 67.61 79.19 | 85.58
Ours (17 92.13 9843 8132 9693 90.21 91.63 68.14 79.67 | 87.31

sgcn)

conducted performance evaluations on the ISIC dataset by varying the temperature and comparing conditions with and
without BN in the ResNet50 transfer scenario, as shown in Fig. Under the with-BN condition, the proposed method

achieves results close to the optimal value, T'.s¢c, = 24.88, confirming its efficacy. In contrast, under the without-BN
condition, a wider temperature range yields high performance, resulting in comparatively poorer outcomes for the
proposed method. As described in Section[d] incorporating BN generally improves performance when the optimal
temperature is selected, although this pattern was not observed with the ISIC dataset. Further investigation is needed to
clarify the conditions under which this discrepancy arises.

6.3 Performance evaluation with the incorporation of label smoothing

In Section [2.3] we discuss the difference between label smoothing and our proposed method. However, the effect of
combining label smoothing remains unclear. Therefore, we evaluated the scratch and transfer performance of ResNet50
using label smoothing.

We present the results using label smoothing in Table[8] It can be seen that our proposed method performs effectively
without label smoothing. However, when incorporating label smoothing, the performance of our proposed method de-
creases. In comparison with Table[7| the conventional method (7' = 1) exhibits improved performance by incorporating
label smoothing. From the discussion in Section we expect both label smoothing and temperature scaling to play
distinct roles in regularization. However, the experimental results indicate that this study’s estimation formula for 7"*
is incompatible with label smoothing. Nevertheless, since the proposed method outperforms label smoothing when
T = 1in terms of average performance, we conclude that it is preferable to use the proposed method rather than label
smoothing.
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Figure 10: Test accuracies [%] for each temperature parameter in ISIC using ResNet50.

Table 8: Performance evaluation using the proposed method with label smoothing in ResNet50 [%].

| GTS CT FLW PET DTD | Avg.

Scratch
T=1 90.20 89.06 45.03 59.47 30.16 | 62.78

T=vM 91.02 87.02 39.71 7743 40.74 | 67.19
Insert LN [9] | 91.64 88.75 50.59 72.64 39.57 | 68.64

Ours (T%) 91.97 90.02 5742 76.42 36.70 | 70.51
Ours (T7%,,) | 9127 9002 5568 7528 37.82 | 70.01
Ours (T%) | 92.00 89.78 54.89 75.12 39.04 | 70.17
Ours (17,,.,) | 9176 90.59 5095 74.52 35.59 | 68.68

Transfer
T=1 90.17 96.31 90.55 90.19 65.85 | 86.61

T=vM 86.04 3479 1644 6247 33.67 | 46.68

Insert LN [9] | 92.13 96.16 90.76 89.51 64.52 | 86.62
Ours (T™) 92.03 93.01 76.73 89.34 65.27 | 83.28
Ours (T75,) 91.39 9547 83.57 90.11 65.59 | 85.22

Ours (T*,) | 9271 9581 88.08 90.05 64.95 | 86.32
Ours (T7,,.,,) | 91.69 9639 9133 90.24 65.05 | 86.94

7 Conclusion

In this study, we investigated the optimization of the temperature parameter in the commonly used softmax cross-entropy
loss for classification problems using deep learning. It has been suggested that there is an important relationship between
the number of dimensions M of the encoder’s feature map and the temperature 7', and we aimed to theoretically verify
this relationship and experimentally determine the optimal temperature 7"*. Theoretical verification led to the hypothesis
that standardizing the feature maps using BN enables robust calculation of the optimal temperature 7™ across different
models and datasets. The experimental results support this hypothesis, demonstrating that BN insertion can lead to
optimal performance, whereas using 7" = 1 often results in performance degradation.

Based on a comprehensive evaluation, we propose a method for estimating 7™ through optimization, along with a
correction approach based on task difficulty (denoted by CSG) and the number of classes (denoted by CN), thereby

yielding an optimal temperature T* that leads to performance improvement. Ultimately, we derived the formula

T on = clip(0.3192v/ M + 20.74 + 3.746 log(csg) — 7.380log(cn), €,512).

csgen

Evaluations across various model architectures and image classification datasets demonstrated that the proposed method
consistently achieves high accuracy in most cases.
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This study has several limitations. First, it focuses solely on image classification datasets. The related work [9] has
demonstrated that similar phenomena occur in one-dimensional waveform activity recognition. This suggests that the
proposed method may also be effective in other tasks employing the softmax cross-entropy loss, such as speech and

document classification. Second, there is room for improvement in the correction formula from (7 to 77, .,,). The
temperature determination coefficients were optimized based on CIFAR and Tiny ImageNet experiments. Therefore,
diversifying measurement points and environments may lead to more generalized temperature determination coefficients.
Currently, the temperature determination coefficients are optimized using data from up to 200 classes in the Tiny
ImageNet dataset. Consequently, their effectiveness cannot be assured for scenarios involving a larger number of
classes or substantially larger datasets. Furthermore, the correction for task difficulty was performed using the CSG,
which involves some ambiguity and uncertainty. Therefore, we plan to further explore dynamic adjustments to task
difficulty based on interclass similarity during training. Third, the temperature 1" was kept constant in this study. Given
the characteristics of 7', it may be preferable for 7" to be lower during the early stages of training and increase as the
training progresses. We plan to investigate the implications of a dynamically changing 7" during training in the future
work.

Appendix A Inserting BN

Normalization layers, such as BN [[12]] and LN [20]], aim to normalize feature maps. These layers mitigate the distribution
shift between layers, referred to as the internal covariate shift. These normalization layers have been introduced by
recent architectures, such as ViT [39] and the Swin transformer (Swin-T) [40]. However, it is uncommon to insert
normalization directly before the output layer, as proposed in this study. Referring to official PyTorch implementationsﬂ
many models, such as ResNet [32], RegNet [37]], and EfficientNet [36], typically connect the output layer after an
encoder. Among the models we examined, ConvNeXt [38], ViT and Swin-T connect the output layer following the
sequence: encoder — GAP — LN.

Based on our hypothesis described in the previous section we employ BN as the normalization layer, as it
normalizes features for the number of samples. Inserting a normalization layer immediately before the output layer has
not traditionally been a common practice and has only been adopted in certain specific model architectures mentioned
above. While the insertion of BN is pointed out to have a stabilizing effect on temperature determination coefficients,
there are concerns that it may degrade the original performance, necessitating verification (we discuss in Section ).

Appendix B Additional Theoretical Justification of the Temperature Coefficients

This appendix details the derivation of the two task—dependent correction terms—CSG correction and class-number
(CN) correction—that appear in Eq. ().

B.1 CSG Correction Term

With BN inserted immediately before the output layer, the logit variance is given by Eq. (I3)), reproduced here for
convenience:

M

V[ﬂ]} = Z wf—k + Z WjLWj0 E[ 2k <l } (A2)
k=1 kL

The first summation depends only on the architecture, whereas the second captures the residual inter-feature correlations.

Empirically, these correlations increase with task difficulty, and can be approximated by

ijkwjlﬂ*][zkzl] o log(CSG). (A.3)
k£l

Because a larger logit variance flattens the soft-max distribution—effectively acting as a higher temperature—the
temperature must be lowered in accordance with task difficulty to counter this effect. We therefore adopt CSG as a
proxy measure of task difficulty.

B.2 Class-Number (CN) Correction Term

Lety = (y1,...,yc) be row—wise i.i.d. logits and p; = e¥i/7 / chzl e¥/T the corresponding softmax probabilities.

Because 270:1 p; = 1 and the distribution of y is exchangeable, the unconditional expectation of any single class

*PyTorch: Models and pre-trained weights [https://pytorch.org/vision/main/models.html|
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probability is E[p;] = % This equation shows that the baseline confidence allocated to each class decays inversely
with the number of classes C. Consequently, the maximum softmax probability in a sample max; p; also decreases
monotonically with C', a tendency confirmed by the corrected simulation in Fig.

. |
| liilil
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Figure 11: Distribution of the maximum softmax probability for varying class counts.

For the cross-entropy loss L = —log p,« (y* is the ground-truth label), the gradient with respect to a logit z; is
oL 1

= 7P — Li=yy)-

95, = 7P L=y
If C' grows while the logit scale remains unchanged, p,- converges to 1/C and 0L/0z; shrinks approximately as
1/T C'. The optimisation thus suffers from vanishing gradients. One remedy is to reduce T (i.e. sharpen the softmax) so
that the effective gradient magnitude stays within a favourable range. Hence, 7™ must decrease in expectation with C'.

Because the effect described above is systematic and orthogonal to the feature-dimension effect (first term), we embed
C in the model through the logarithmic correction term § log(cn) in Eq. (3). In Fig. we show the distribution of
the maximum softmax probability max; p; as a function of the number of classes C'. For clarity, the horizontal axis
is plotted on a log, scale so that the powers of two (2, 4, 8, - - -, 1024) appear evenly spaced. This choice is purely
empirical and serves to improve readability; it is not derived from any grid-search procedure. The plot confirms that
max; p; decays monotonically toward zero as C' increases, although the decay is not strictly linear in log C. Optimising
the coefficient § across diverse datasets yields the globally valid estimate reported in Table 4]
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