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Optical vortex beams are a type of topological light characterized by their inherent orbital angular momentum,
leading to the propagation of a spiral-shaped wavefront. In this study, we focus on two-dimensional electrons
with Rashba and Dresselhaus spin-orbit interactions and examine how they respond to pulsed vortex beams in
the terahertz frequency band. Spin-orbital interactions play a vital role in transferring the orbital angular momen-
tum of light to electron systems and generating spatiotemporal spin textures. We show that the spatiotemporal
spin polarization of electrons reflects orbital angular momentum carried by optical vortex pulses. These findings
demonstrate how optical vortices facilitate ultrafast spin manipulation in spin-orbit-coupled electrons. Our re-
sults can be straightforwardly extended to the case of higher-frequency vortex beams for other two-dimensional
metals with a larger Fermi energy.

I. INTRODUCTION

Vortices are prevalent phenomena that exist throughout na-
ture, affecting both quantum and classical fluids. In 1992,
Allen et al. introduced the concept of optical vortices [1],
paving the way for a new connection between optics and quan-
tum mechanics. These optical vortices maintain their topolog-
ical charges, carrying an orbital angular momentum (OAM)
of mℏ per photon (m ∈ Z). The unique features of op-
tical vortices, such as their helical structure and doughnut-
shaped intensity profile with phase singularities, have resulted
in widespread applications. These applications include opti-
cal trapping and manipulation [2–7], optical tweezers [8, 9],
nanofabrication [10–12], and optical communications [13–
15]. In addition, advancements in laser technology enable
the generation of optical vortices in the terahertz (THz) fre-
quency range, which has garnered interest in condensed mat-
ter physics [16]. This is exemplified by their use in irradiating
topological insulators [17], conducting electron systems [18–
20], superconductors [21–26], magnetic materials [27–31],
and ferroelectric materials [32, 33].

Low-dimensional electron systems serve as an ideal plat-
form for exploring emergent quantum phenomena [34–36]. In
fact, such low-dimensional systems can feel directly the elec-
tromagnetic field of applied vortex beams without screening
the field. A key element is the intrinsic spin-momentum lock-
ing of electrons through spin-orbit interactions (SOIs) [37,
38]. SOIs provide a foundation for electric and optical con-
trol of spins, such as current-induced spin polarization [39–
42], spin-charge conversion [43–45], and the photogalvanic
effect [46–49], paving the way for spintronics applications.
SOIs are also crucial for achieving topological superconduc-
tivity and are the heart of noncentrosymmetric superconduc-
tors [50–58].

Two-dimensional electron gases (2DEGs) in the interface
of semiconductor-semiconductor heterostructures inherently
exhibit SOIs due to the lack of inversion symmetry. There are
two types of SOIs: Rashba [38] and Dresselhaus SOIs [37].
Rashba-type SOIs are realized in low-dimensional electrons

confined at the quantum well, where inversion symmetry is
explicitly broken. The broken inversion symmetry generates
an electric field that interacts with the spin of itinerant elec-
trons, leading to the splitting of their dispersion. Dresselhaus-
type SOIs stem from the breaking of inversion symmetry in
the underlying crystal. The SOIs also cause the spin splitting
of the electron dispersions with their form depending on the
growth direction relative to the crystallographic axis. These
SOIs, which are ubiquitous in low dimensions, facilitate in-
teractions between electron spin and light, enabling optical
manipulation of spin and serving as essential components for
spintronic technology.

The combination of topologically structured light [59–62]
and spin-orbit-coupled electrons allows for developing ultra-
fast and tailor-made manipulation of spins [63–68]. Recently,
it has been reported that vector vortex beams, which are struc-
tured light with spatially variant polarization, can manipulate
the electron spin texture in the GaAs/AlGaAs quantum well
by imprinting their spatial helicity structure [66]. Optical vor-
tices are another type of topologically structured light charac-
terized by OAM, yet their specific role in ultrafast spin ma-
nipulation remains unclear. Specifically, Laguerre-Gaussian
beams having photon energy near the band gap of GaAs have
been used to investigate photoinduced spin polarization in
semiconductors [63]. However, light with OAM up to ±5ℏ
cannot detect the OAM dependence of spin polarization. This
is because the OAM of light does not significantly change the
optical selection rules for interband transitions when an az-
imuthal photon momentum is much smaller than the momen-
tum scale of electrons. Recently, it has been demonstrated that
the OAM of light can induce a nonlocal interaction between
light and matter, resulting in the distinct OAM dependence of
nonlocal photocurrent [65].

In this paper, we examine the spin response of spin-orbit-
coupled electron systems to optical vortices [Fig. 1(a)]. In
particular, we focus on the influence of excitations within
the conduction bands. This situation differs from previous
experiments [63, 65] that stimulate optical interband transi-
tions occurring beyond the band gap. We perform numer-
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ical calculations on the spin response using linear response
theory, considering both the case involving only the Rashba
SOI and the case of the equal strengths of the Rashba and
Dresselhaus SOIs. Here we demonstrate that vortex beams
can imprint characteristic spin textures reflecting the OAM
of light [40, 69–72], when either Rashba or Dresselhaus SOI
is dominant. We also show that the resultant spin response
yields a clear dependence on the OAM of light. The nec-
essary strength of the AC electric field, E0, for detection is
estimated to be E0 = O(1−10 kV/cm), based on the re-
alistic SOI values in GaAs/AlGaAs heterostructures. In our
calculations, we consider vortex beams in the THz frequency
range [73, 74], whose energy is much smaller than the band
gap in semiconductor-semiconductor heterostructures. How-
ever, our results are applicable to optical vortices within the
infrared and visible frequency ranges when the materials have
a large Fermi surface and strong SOIs, such as heavy metals.

This paper is organized as follows. In Sec. II, we present
a model Hamiltonian of a 2DEG system with both Rashba
and Dresselhaus SOIs and formulate the dynamical spin re-
sponse to vortex beams using the linear response theory. We
also introduce the Laguerre-Gaussian vortex beams. Numer-
ical results on the spin response of 2DEGs to pulsed vortex
beams are present in Sec. III. We show that characteristic spin
textures can be generated by vortex beams, depending on the
sorts of SOIs. Section IV is devoted to the conclusion and dis-
cussion. In this last section, we also mention an experimental
method to observe the photo-induced spin textures. Through-
out this paper, we set ℏ = kB = 1.

II. MODEL AND OPTICAL VORTICES

A. Model Hamiltonian and symmetries

In this paper, we examine the magnetic response of spin-
orbit-coupled electron systems to irradiated vortex beams
[Fig. 1(a)]. Let us specifically consider the interface of the
semiconductor-semiconductor GaAs/AlGaAs heterostructure.
At the interface, the inversion symmetry is broken, allowing
the Rashba SOI to be odd in the wave vector k. We also con-
sider another type of SOI that stems from the bulk inversion
asymmetry of the underlying crystal, which is known as Dres-
selhaus SOI.

Letψ†
k = (ψ†

↑,k, ψ
†
↓,k) be the spinor that consists of the cre-

ation operators of electrons with spin σ =↑, ↓ and momentum
k = (kx, ky), where kx and ky are taken along the [100] and
[010] directions, respectively. The Hamiltonian for 2DEGs
with both Rashba and Dresselhaus SOIs is then given by

H =
∑
k

ψ†
kH(k)ψk =

∑
k

ψ†
k [h0(k) + h(k) · σ]ψk,

(1)

The Pauli matrices in the spin space are defined as σ =
(σx, σy, σz). The scalar and vector components in Eq. (1) are
given by

h0(k) =
k2

2meff
− µ, (2)

FIG. 1. (a) Schematic image of our setup. A pulsed vortex beam is ir-
radiated to a 2DEG formed in the quantum well of the GaAs/AlGaAs
heterostructure. (b,c) Fermi surfaces (thick curves) and spin polariza-
tion (arrows) of spin-orbit-coupled electrons on the Fermi surfaces:
(b) βD/αR = 0 and (c) βD/αR = 1.

h(k) = αR (kyx̂− kxŷ) + βD (kxx̂− kyŷ) , (3)

where the unit vectors x̂ and ŷ are defined as x̂ = (1, 0, 0)
and ŷ = (0, 1, 0). Equation (2) is the Hamiltonian density for
free electrons with the effective mass, meff , and the chemical
potential, µ. The vector components, h(k), represent the ef-
fective in-plane magnetic field induced by the SOIs, where the
strengths of the Rashba and Dresselhaus SOIs are denoted by
αR and βD, respectively. The Hamiltonian can model elec-
trons residing in III–V semiconductor quantum wells [75].
Electrons are confined to the two-dimensional quantum well
formed at the interface of a semiconductor-semiconductor het-
erostructure. Here we take into account only excitations oc-
curring within the conduction band, disregarding excitations
from the valence band beyond the band gap. The latter ex-
citations are insignificant when the photon energy of optical
vortices is considerably lower than the band gap.

The energy dispersions of the conduction electrons are ob-
tained by diagonalizing the Hamiltonian whose eigenenergy
is

Es(k) = h0(k) + s|h(k)|, (4)

where s = ± is the band index. In Figs. 1(b) and 1(c), we
show the Fermi surfaces and h(k) obtained from the model
Hamiltonian for βD/αR = 0 and βD/αR = 1, respectively.
We also define the Fermi energy and the Fermi wave number
of electrons without SOIs as εF and kF ≡

√
2meffεF/ℏ2,

respectively. The arrows in Figs. 1(b) and 1(c) denote the spin
polarization direction of electrons on the Fermi surfaces and
they indicate the spin-momentum locking.

It is important to summarize the symmetries that the Hamil-
tonian in Eqs. (2) and (3) holds. In the case of purely Rashba
SOIs (βD = 0), the Hamiltonian holds the C4v symmetry
about the z-axis as

U4H(kx, ky)U
†
4 = H(ky,−kx), (5)
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whereU4 ≡ e−i(π/4)σz denotes the fourfold rotation about the
z axis. At αR = βD, the Hamiltonian can be transformed into
the diagonal form by jointly rotating the spatial coordinate and
the spin space as [76]

H̃(k+, k−) ≡UH(R−1
2 k)U†

=
k2+ + k2−
2meff

− µ− 2αRk+σz, (6)

where R2 is the rotation matrix about the z-axis by π/4 and
we set k± = (ky ± kx)/

√
2. The SU(2) matrix, U , denotes

the global spin rotation about the (x̂ + ŷ)/
√
2 direction by

π/2

U =
1√
2

[
σ0 −

i√
2
(σx + σy)

]
, (7)

where σ0 is the unit matrix in the spin space. The Hamiltonian
at αR = βD remains invariant under the exact SU(2) symme-
try [76]. Thus, we below refer to this type of SOI as the SU(2)
symmetric SOI.

Nonmagnetic impurity effects are taken into account as
spin-independent point-like scattering centers, uimp(r) =∑

i u0δ(r − Ri), where Ri is the position of an impurity
atom and u0 is the impurity potential. The impurity centers
are randomly distributed in the two-dimensional plane. The
first moment vanishes, ⟨uimp(r)⟩imp = 0 and the second mo-
ment is finite, ⟨|uimp(k,k

′)|2⟩imp = nimpu
2
0, where nimp is

the impurity concentration. Let G(k, iεn) be the impurity av-
eraged Green’s function of the 2DEGs in Matsubara repre-
sentation. In the clean limit, the 2 × 2 spin matrix form of
the Green’s function reduces to G(k, iεn) ≡ [iεn−H(k)]−1,
where εn ≡ (2n+1)πT is the fermionic Matsubara frequency
at temperature T (n ∈ Z). On the other hand, in the case of
a finite impurity density, the Green’s function is expressed in
the Born approximation as

G(k, iεn) =
∑
s=±

1 + sĥ(k) · σ
2

Gs(k, iεn), (8)

Gs(k, iεn) =
1

iεn − Es(k) + iΓ
. (9)

The relaxation rate Γ = −ImΣ is related to the imaginary part
of the impurity self-energy (Σ), which is obtained in the Born
approximation as

Σ(iεn) = nimpu
2
0

∫
d2k

(2π)2
G(k, iεn). (10)

The imaginary part of the self-energy, Γ, is related to the re-
laxation time, τ , as Γ = ℏ

2τ sgn(εn). In this work, we consider
a metallic state, that is, Γ ≪ εF.

B. Spin response of 2DEGs

Here we formulate the spin response of 2DEGs to vortex
beams. Let E be the electric field associated with the vortex

beams. In the linear response regime on E, the spin response
of the 2DEGs is obtained as

Sµ(x, t) =

∫
dt′
∫
dx′Υµν(x− x′, t− t′)Eν(x

′, t′).

(11)

The repeated Greek indices imply the sum over x, y, z. The
Fourier component of the function, Υ, is obtained as Υµν ≡
χµν/iω from the spin-current correlation functions, χµν . The
spin-current correlation functions are written in the Matsubara
representation as

χµν(q) ≡ −
∫
dτ
〈
Ŝµ(q, τ)ĵν(−q, τ)

〉
eiωmτ

=
∑
k

tr2[G(k)ŜµG(k + q)ĵν(k)]. (12)

where τ is the imaginary time and the symbol tr2 means trace
in the 2× 2 spin space. We also introduced the abbreviations,
k ≡ (k, iεn), q ≡ (q, iωm), and

∑
k ≡

∫
d2k
(2π)2T

∑
n. The

Matsubara frequency for bosons at temperature T is defined as
ωm = (2m+1)πT , wherem ∈ Z. The spin and current oper-
ators are given by Ŝµ = ℏ

2σµ and ĵν(k) = −e(∂H(k)/∂kν),
respectively.

Let us define the retarded and advanced Green’s functions
as GR(k, ε) ≡ G(k, iεn → ε + i0+) and GA(k, ε) ≡
G(k, iεn → ε − i0+), where 0+ is an infinitesimal positive
constant. Performing the Matsubara sum in Eq. (12), the cor-
relation functions reduce to

χµν(q) =−
∫

d2k

(2π)2

∫
dε

2π
f(ε)tr2Γµν(k, q), (13)

where f(ε) = 1/(eε/T + 1) is the Fermi distribution function
and tr2 denotes the trace over the spin space. We have intro-
duced the shorthanded notation, k ≡ (k, ε) and q ≡ (q, ω).
The matrices, Γµν(k, q), are defined as

Γµν(k, q) =
{
GR(k)−GA(k)

}
Λ̂µG

R(k + q)jν(k)

+GA(k − q)Λ̂µ

{
GR(k)−GA(k)

}
jν(k).

(14)

In Eq. (14), we have replaced the bare spin vertex function
Ŝµ to the renormalized spin vertex function Λ̂µ, which in-
corporates the sum of the usual ladder diagrams of impu-
rity scattering (see Fig. 7). In the current situation, the fre-
quency of the irradiated beam is in the THz band, Ω ∼ εF =
O(10 meV), while the scattering rate of two-dimensional
electrons in AlGaAs/GaAs heterostructures is estimated as
Γ ≈ 0.1(kFαR) ≪ εF (see Sec. III A). This situation satisfies
the weak impurity condition, Ωτ ≫ 1, where τ ≡ ℏ/2Γ is the
relaxation time. For Ωτ ≫ 1, the impurity vertex function in
Eq.(A1) reduces to the bare vertex function, Λ̂µ ≈ Ŝµ for all
βD/αR. Therefore, we disregard the effect of the vertex cor-
rections on the spin response in the subsequent calculations.
The details are described in Appendix A.
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C. Vortex beams

Vortex beams, which are also referred to as Laguerre-
Gaussian beams, are a type of topological light characterized
by OAM and spin angular momentum (SAM) [1, 77]. Let
us first consider a monochromatic vortex beam propagating
along the z-direction. The vortex beam with OAM (m ∈ Z)
and SAM (λ = 0,±1) generates the electric field, which in a
monochromatic light of frequency Ω is described as

E(x, t) =
1

2

[
up,m(x)e−iΩtêλ + u∗p,m(x)eiΩtê∗λ

]
. (15)

Since the wavelength of THz vortex beams is significantly
longer than the thickness of the two-dimensional quantum
well at the interface, we can disregard the z-dependence ofE.
The polarization vector is defined as êλ = λ(x̂ + iλŷ)/

√
2

with the SAM of light, λ, where λ = ±1 (λ = 0) denote cir-
cularly polarized (linearly polarized) light. The spatial profile
of up,m at the focal plane (z = 0) is then given by

up,m(x) =

(√
2ρ

w0

)|m|

e
− ρ2

w2
0 L|m|

p

(
2ρ2

w2
0

)
eimθ, (16)

where Lm
p is the associated Laguerre polynomial with p,m ∈

Z and w0 is the radius of the Gaussian beam. We have in-
troduced the cylindrical coordinate with ρ =

√
x2 + y2 and

θ = tan−1(y/x). The wavefront of the vortex beams, or the
isophase plane, takes a spiral shape around the propagation (z)
axis. The single-valuedness of the electromagnetic fields re-
quires |up,m(x)| to be zero at the center of the beam, resulting
in a doughnut-shaped intensity profile in the transverse plane.
In momentum space, |up,m(q)|, the intensity of vortex beams
also shows a doughnut shape and peaks around |q| ∼ 1/w0.
The radius |q| increases with |m|, indicating that for vortex
beams withm ̸= 0, nonzero |q| contributes to the spin-current
response function.

In subsequent sections, we also consider a pulsed vortex
beam. The electric field generated by the pulsed vortex beam
with (m, s) is given by

E(x, t) =Re

{
E0up,m(x)

max |up,m(x)|

× exp

[
−
(
t− t0
σE

)2

− iΩt

]
ês

}
, (17)

where Ω and σE ≡ 2πnp/Ω are the frequency and the full
width at half-maximum of the beam intensity, respectively. In
this work, we focus on vortex beams with p = 0, i.e., single-
doughnut types of the vortex beam.

III. NUMERICAL RESULTS

A. Calculated systems and parameters

In this paper, we consider 2DEGs residing in
semiconductor-semiconductor heterostructures. In such

heterostructures, the strengths of the SOIs, kFαR and
kFβD, are of the order of 1 meV and less than the Fermi
energy εF. In the following numerical calculations, we set
kFα = 0.1 meV [78–80], which corresponds to the param-
eters of the GaAs/AlGaAs heterostructures, εF = 20 meV
and meff = 0.067me [81], where me is the free electron
mass. The set of these parameters satisfies kFαR ≪ εF. In
Sec. III B, we focus on the spin response of 2DEGs with
purely Rashba-type SOI (βD/αR = 0). The spin response in
the case of SU(2) symmetric SOI with αR = βD is discussed
in Sec. III C. We also fix T/εF = 0.1 and Γ = 0.1(αRkF)
in the following calculations, where the latter satisfies the
weak impurity concentration condition, Ωτ = ℏΩ/2Γ ≫ 1.
We would like to emphasize that the qualitative results are
insensitive to the choice of these values.

A pulsed vortex beam is irradiated to the 2DEGs from t =
0. In the numerical calculations, we take the number of cycles
of the pulse field, the beam waist, and the maximum intensity
of the electric field as np = 3, w0 = 2000k−1

F , eE0/ℏΩkF =
0.5, respectively. Using Ω = 0.1εF, εF = 20 meV, and kF =
0.1 nm−1, these paraemeters are approximately estimated as
w0 ∼ 0.02 mm and E0 ∼ 0.1kV/cm. We also set t0 = 2σE
and the size of the xy plane to x, y ∈ [−2w0, 2w0]. In the
following, we present the numerical results of the spin density
on the scale of S0 ≡ ℏ/2. The scaled quantity, S(x, t)/S0,
represents the spin density per 1 µm2 induced by an electric
field intensity, max |E(x, t)| = 0.1 kV/cm.

Here we consider optical vortices with a frequency Ω ∼
εF = O(10 meV), corresponding to the THz frequency band.
However, by considering heavy metals rather than semicon-
ductor heterostructures, our results can also be applied to op-
tical vortices within the infrared and visible frequency ranges.

B. Rashba SOI: βD/αR = 0

Let us first consider the spin response of 2DEGs with
Rashba-type SOIs, αR ̸= 0 and βD = 0. Figure 2 shows the
linear response of the spin densities, (Sx, Sy), to monochro-
matic vortex beams with the OAM,m = 0, 1, 2, and the SAM,
λ = ±1. We note that in the present model of 2DEGs, the
longitudinal component of the spin does not respond to vor-
tex beams, Sz = 0. It is seen from Figs. 2(a) and 2(c) that
electron spins are highly excited in areas with strong electric
field strength. For the m = 0 vortex beam, corresponding to a
Gaussian beam, the excited spins are uniformly aligned within
the region,

√
x2 + y2 ≲ w0 = 2000k−1

F , where the intensity
of the electric field maximizes. In contrast, m ̸= 0 vortex
beams excite the spins along the circumference at the radius
∼ w0 = 2000λF where the intensity of the doughnut-shaped
vortex beam peaks. When traveling around the circumference,
the spins exhibit a characteristic texture in which their ori-
entation gradually rotates. For the m = 1 (m = 2) vortex
beam, the local spin rotates once (twice) clockwise along the
doughnut-shaped region.

These results are understandable with the symmetry of the
spin-current correlation functions in Eq. (12). As shown in
Eq. (5), the Hamiltonian for 2DEGs holds the C4v symmetry
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FIG. 2. Linear response of the spin density, S(x, t)/S0, induced by monochromatic vortex beams with (λ,m) = (1, 0) (a1), (1, 1) (a2),
(1, 2) (a3), (−1, 0) (c1), (−1, 1) (c2), and (−1, 2) (c3), where λ and m are the SAM and OAM of light, respectively. The scaled quantity,
S(x, t)/S0, with S0 ≡ ℏ/2 represents the spin density per 1 µm2. We also plot the intensity of the electric field induced by the vortex beams
with (λ,m) = (1, 0) (b1), (1, 1) (b2), (1, 2) (b3), (−1, 0) (d1), (−1, 1) (d2), and (−1, 2) (d3). Here we set αDkF = 0.1 meV and βD = 0.
The arrows in (a*) and (c*) correspond to the local spins (Sx, Sy)/S0, and the color represents the amplitude of the local spin, |S(x, y)|/S0.
The thick arrows in (b*) and (d*) show the direction of the electric field, E(x)/|E(x)|.

about the z-axis perpendicular to the plane. This symmetry leads to χxx = χyy = 0 and χxy = −χyz in q → 0, implying
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that the local spin response points to the direction,

S(x, t) ∝ ẑ ×E(x, t). (18)

For a monochromatic vortex beam, the profile of the local
electric field generated by the vortex beam reads

E(x, t) ∝ λ cos(mθ − ωt)x̂− sin(mθ − ωt)ŷ, (19)

where θ is the azimuthal angle in the xy plane. In Figs. 2(b)
and 2(d), we plot the local electric field of Eq. (15) induced
by the vortex beams with (λ,m) at t = 0. It is seen from
Figs. 2(a) and 2(b) that the induced spins always orient per-
pendicular to the local electric field, as shown in Eq. (18),
S(x, t) ⊥ E(x, t). It is also seen from Eq. (3) that the 2DEGs
experience the local electric field E through the Rashba-type
SOI term ash(k−eA)·σ = h(k)·σ+CR (E(q)× σ), where
CR ≡ eαR/iΩ. Electron spins interact with an applied elec-
tric field that is perpendicular to their spin orientation in the
momentum space. As mentioned in Sec. II B, impurity vertex
corrections do not affect their orientation for Ωτ ≫ 1. There-
fore, in the case of purely Rashba-type SOIs (βD/αR = 0),
the local spin response of 2DEGs is transverse to the local
electric field generated by vortex beams.

The imprinted spin textures reflect the OAM carried by the
applied electric field. The topological charge of the vortex
beam with the OAM (m) and the SAM (λ) is defined by the
winding number [17],

w[E] =
1

2π

∮
C

ϵµν n̂µ(x, t)∂xj n̂ν(x, t)dxj = −λm, (20)

where n̂(x, t) = E(x, t)/|E(x, t)| is the unit vector point-
ing to the local electric field and C is a closed path enclosing
the singularity of the vortex beam at x = 0. As shown in
Figs. 2(a2) and 2(a3), the local spins rotate in a clockwise
direction once and twice, respectively, when moving coun-
terclockwise around a circle of radius w0. In a similar man-
ner, the spins in Figs. 2(c2) and 2(c3) rotate counterclockwise
once and twice, respectively. The winding number of the im-
printed spin textures is given by substituting n̂ = Ŝ/|Ŝ| in
Eq. (20), which coincides with that of the vortex beams, i.e.,
w[S] = w[E] = −λm. This demonstrates that the OAM
of light can be encoded into the spin textures of electrons
through the SOI. This conclusion is also applicable to the case
of purely Dresselhaus-type SOIs.

Figure 3 shows the time evolution of spin polarization fol-
lowing the irradiation of a pulsed vortex beam in Eq. (17). The
movies demonstrating the real-time evolution of local spins in
2DEGs irradiated by pulsed vortex beams are also available
in Supplemental Materilal [82], where the SOI strengths are
set to αRkF = 0.1 meV and βD = 0. It can be seen that the
spatial profile of the spin texture yields a vortex shape at all
times. Similar to monochromatic vortex beams, the imprinted
spin orientation reflects the OAM of light, m. Therefore, the
OAM of vortex beams can be transferred to 2DEGs through
the Rashba-type SOC, enabling the ultrafast manipulation of
the spin texture. In contrast, conventional Gaussian beams
with m = 0 cause a uniform alignment of the spin orientation
at all times.

FIG. 3. Snapshots of the local spin density in 2DEGs with αRkF =
0.1 meV and βD = 0 after the optical vortex pulse is irradiated. The
OAM of light is set to be m = 1 (a) and m = 2 (b), where the SAM
of light is fixed to λ = 1.

So far, we have demonstrated that circularly polarized vor-
tex beams can imprint the OAM of light onto the spin texture
in 2DEGs with the Rashba SOI. The polarization of light plays
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FIG. 4. Local spin density in 2DEGs with the SU(2) symmetric SOI,
αRkF = βDkF = 0.1 meV after the vortex beams with (m,λ) =
(1, 1) and (2, 1) are irradiated.

an essential role in manipulating the spin texture. As shown in
Eq. (18), the orientation of the local spins reflects the spatial
profiles of the electric field generated by vortex beams. For
linearly polarized light (λ = 0), the electric field is aligned to
the ±ŷ directions, leading to the formation of spin domains
alternatively oriented in the +x̂ and −x̂ directions.

C. SU(2) symmetric SOI: βD = αR

Let us now examine the spin response in the case of
αR = βD, which significantly differs from that in the case
of purely Rashba-type or Dresselhaus-type SOIs. Figure 4
shows the linear response of the local spin to vortex beams
with (m,λ) = (1, 1) and (2, 1). Similarly to the case of
purely Rashba-type SOIs, the vortex beam causes spin polar-
ization in the region where the intensity of the vortex beams
peaks. However, as one sees from Fig. 4, the photo-induced
spin moment predominantly points to one direction, i.e., [11̄0]
direction, reflecting the symmetry at αR = βD. In Fig. 5, we
also plot the snapshots of the spin response to the pulsed vor-
tex beam. At all times, the responded spins align to the [11̄0]
direction, and their intensity reflects a vortex shape influenced
by the pulsed light. The movies demonstrating the real-time
spin dynamics of 2DEGs with αRkF = βDkF = 0.1 meV are
available in Supplemental Materilal [82].

To understand the spin response atαR = βD, let us consider
the spin-current correlation function in Eq. (12) at q → 0. By
performing the spin rotation with the SU(2) matrix in Eqs. (6),
the spin-current correlation function is recast into

χµ±(q) ≡
χµx(q)± χµy(q)√

2

=
∑
k

tr2

[
G̃(k) ˆ̃SµG̃(k + q)ˆ̃j±(k)

]
, (21)

where vν ≡ ∂h0(k)/∂kν , ˆ̃Sµ ≡ UŜµU
†, and G̃(k) ≡

UG(k)U† = [iεn − H̃(k)]−1. As shown in Eq. (6), the

FIG. 5. Snapshots of the local spin density in 2DEGs with αRkF =
βD = 0.1 meV after the irradiation of pulsed vortex beams with
(m,λ) = (1, 1) (a) and (2, 1)(b).

transformed Hamiltonian reduces to the one-dimensional SOI
form, k+σ̃z , and the associated current operator is given by
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FIG. 6. Maximal spin polarization, max |S(x, t)/S0|, as a function
of the OAM of light, m ∈ [−6, 6]. The red (blue) circles represent
the results for βD/αR = 0 (βD/αR = 1). Here we set αRkF =
0.1 meV and T/εF = 0.1.

ˆ̃j±(k) = − eℏk+

meff
+ (1 ± 1)eασ̃z . It is straightforward to

show that on the transformed basis, the spin-current corre-
lation function, χµ+, remains finite, while the other com-
ponents χµ− vanish. As a result, the spin response on the
transformed spin basis reads S̃x = S̃y = 0 and S̃z(q) =

Υ̃z+(q)[Ex(q) + Ey(q)]/
√
2, where Υ̃z+(q) ≡ χ̃z+(q)/iω.

LetR be the SO(3) matrix associated withU in Eq. (7). Using
this matrix, the spin operators in the transformed spin basis
are related to those in the original spin basis as S̃µ = SνRνµ.
Therefore, the spin response at αR = βD always satisfies

S(x, t) ≈ S(x, t)(1,−1, 0). (22)

The amplitude is proportional to the sum of the electric field
in the plane as

S(x, t) =

∫
dt′
∫
dx′Υ̃z+(x− x′, t− t′)E+(x

′, t′),

(23)

where E+ ≡ (Ex + Ey)/
√
2. The numerical results shown

in Figs. 4 and 5 align with Eq. (22), where all the spins are
oriented to the [11̄0] direction at all times.

D. Orbital angular momentum dependence of spin response

Lastly, we examine the OAM dependencies of the optical
spin response in spin-orbit coupled electron gases. In Fig. 6,
we plot the maximal spin polarization, max |S(x, t)|/S0,
as a function of the OAM of light, m ∈ [−6, 6]. Here,
max |S(x, t)| means the maximum value of |S(x, t)| over the
entire range of (x, t). In the case of the Rashba-type SOI
(βD/αR = 0), the conventional Gaussiam beam, correspond-
ing to optical vortices with m = 0, causes nonvanishing spin
polarization and the maximal spin polarization gradually in-
creases with |m|. In contrast, the spins do not respond to the

Gaussian beams when αR = βD. This is consistent with the
previous work [83], where the spins of the 2DEG at the SU(2)
symmetric point do not respond to the applied DC field, result-
ing in zero spin polarization.

It is also worth mentioning that for Gaussian beams, the
maximal spin polarization at αR = βD is several orders of
magnitude smaller compared to that in the case of βD/αR =
0. This is attributed to the SU(2) symmetry emerging at
αR = βD, where the effective magnetic field beff(k) =
αR(kx + ky)(1,−1, 0), defined in Eq. (3), causes unidirec-
tional spin alignment. The intensity profile of conventional
Gaussian beams peaks around q = 0 in the momentum space,
implying that the spin response is governed by the spatially
uniform component of the spin-current response function, i.e.,
Sµ(x, ω) ≈ Υµν(q = 0, ω)Eν(q, ω). On the other hand,
an optical vortex with nonzero m is a structured light, and
its intensity profile is a doughnut-like shape in the transverse
plane. The spin response of 2DEGs peaks in the doughnut-
shaped region, and the radius of the doughnut increases with
|m|. For the vortex beam with a larger |m|, the contributions
of the larger |q| to the spin-current correlation functions be-
come significant, leading to the strong OAM dependence of
the spin polarization. As shown in Fig. 6, the maximal spin
polarization at αR = βD increases with increasing |m| and
reaches 0.002 µm−2 for E0 = 0.1 kV/cm. These results
demonstrate that vortex beams enable ultrafast optical manip-
ulation of spins even at the SU(2) symmetric point αR = βD
for the realistic values of the AC electric field, E0.

IV. CONCLUSION

In this paper, we have examined the spin response of
spin-orbit-coupled two-dimensional electron systems to opti-
cal vortices. We have performed numerical calculations on
the spin response using linear response theory, considering
both the case involving only the Rashba spin-orbit interaction
and the case including both the Rashba and Dresselhaus spin-
orbit interactions. We have demonstrated that optical vor-
tices induce spin excitation through their spin-orbit coupling.
In purely Rashba-type spin-orbit interaction, the excited spin
textures are characterized by the topological charge of vortex
beams, indicating that the orbital angular momentum of light
can be transferred to the electron system. When Rashba and
Dresselhaus spin-orbit interactions are of equal strength, the
SU(2) symmetry prevents the imprinting of the spin textures
characterized by the topological charge and results in unidi-
rectional spin alignment at all times.

We have also demonstrated that the magnitude of spin po-
larizations by vortex beams increases with the orbital angular
momentum of light. In GaAs/AlGaAs heterostructures, THz
vortex beams with an electric field of E0 = 0.1 kV/cm gen-
erates the spin polarization of about 0.015× (ℏ/2) per 1 µm2

in purely Rashba-type spin-orbit interactions. In the equal
strength of Rashba and Dresselhaus spin-orbit interactions,
the conventional Gaussian beam, corresponding to the vortex
beam with m = 0, cannot induce the spin polarization. How-
ever, the spin polarization sharply depends on the orbital an-
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FIG. 7. Diagrammatic representation of ladder-type impurity scat-
tering for vertex corrections (Λµ) in spin-current response functions.
The thick curves denote the Green’s function G(k), and the dashed
lines connected to the symbol “×” represent impurity scattering.

gular momentum of light, enabling spin polarizations by THz
vortex beams with an electric field of E0 ∼ 1-10 kV/cm.

These results indicate that the pump beam with nonzero or-
bital angular momentum imprints the characteristic spin tex-
tures in 2DEGs. Our findings therefore demonstrate a high
potential of optical vortex pulses for ultrafast spin manipula-
tion in spin-orbit-coupled electrons.

Finally, we comment on a possible pump-probe experimen-
tal method of detecting the photo-induced spin textures. The
in-plane spin textures can be detected using the longitudinal
or transverse magneto-optical Kerr effect [84, 85]. A linearly
polarized probe beam is incident at an angle to the normal di-
rection of the 2DEGs, and the reflected light captures informa-
tion about the in-plane magnetization through the longitudinal
or transverse Kerr rotation.
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Appendix A: Impurity vertex correction

In this Appendix, we discuss the effect of the impurity ver-
tex corrections on the spin response of 2DEGs. The equation
for the renormalized vertex functions that contains the product
of retarded and advanced Green’s functions takes the form

Λ̂µ = Ŝµ + nimpu
2
0

∫
d2k

(2π)2
GR(k)Λ̂µG

A(k + q). (A1)

These vertex functions incorporate the sum of the usual ladder
diagrams as shown in Fig. 7.

We start by deriving the expression of the relaxation rate
Γ(ε). Let us define the density of states per spin as

N(ε) =
1

2

∑
s

∫
d2k

(2π)2
δ(ε− Es(k)). (A2)

The relaxation rate is obtained by calculating Eq. (10) as

Γ(ε) = πnimpu
2
0N(ε). (A3)

To solve Eq. (A1), we take the following form of the vortex
function: Λ̂µ(q) = λµ0 (q) +

∑
ν λ

µ
ν (q)σν . Substituting this

into Eq. (A1), one obtains the coupled equations for λµ0 and
λµν ? as

A+
0 (q)λ

µ
0 (q) +A0ν(q)λ

µ
ν (q) = 0, (A4)

−1

2
δµν = A−

ν0(q)λ
µ
0 (q) + [A0(q)δνη(q) +Aνη(q)]λ

µ
η (q),

(A5)

where the repeated Greek indices (ν, η, τ ) imply the sum over
x, y, z and we introduce the shorthanded notations, k ≡ (k, ε)
and q ≡ (q, ω). The coefficients are defined as

A±
0 (q) = Π00(q)±

∑
µ

Πµµ(q)− 1, (A6)

A0ν(q) = Π0ν(q) + Πν0(q) + iϵνητΠητ (q), (A7)
Aνη(q) = Πνη(q) + Πην(q) + iϵνητ [Π0τ (q)−Πτ0(q)] ,

(A8)

and Aν0(q) = A0ν(q), where i = 0, x, y, z and ϵijk is the
Levi-Civita symbol. In Eqs. (A6)-(A8), we have introduced
the functions represented by

Πij(q) = nimpu
2
0

∫
d2k

(2π)2
GR

i (k)G
A
j (k + q), (A9)

where i, j = 0, x, y, z.
Here we consider the vertex correction in the long wave-

length limit, qℓ ≪ 1, where ℓ = vFτ is the mean-free-path
of electrons and vF is the Fermi velocity. In the whole q
regime, the main contribution of Πij(q) to the spin-current
response function is located around the inverse of the beam
waist, q ∼ 1/w0. THz vortex beams satisfy the condition
qℓ ≪ 1. Let us rewrite the retarded and advanced Green’s
functions, GR(k) and GA(k), as

GR/A(k) ≡ G
R/A
0 (k) +GR/A

µ (k)σµ. (A10)

These are obtained from Eqs. (8) and (9) with analytic contin-
uation iεn → ε + i0+, where an infinitesimal constant 0+ is
absorbed into the relaxation rate Γ. The scalar component
is an even function in k as G0(k, ε) = G0(−k, ε), while
the vectorial component is odd, Gµ(k, ε) = −Gµ(−k, ε).
We also note that the three types of SOIs (βD/αR = 0,
αR/βD = 0, and βD/αR = 1) hold Πxx = Πyy. Equa-
tions (A4) and (A5) can be solved using these relations on
the Green’s functions and Πij . The solution of the expansion
coefficients for Λx in the limit of qℓ≪ 1 reads(

λxx
λxy

)
=

ℏ
2

1

(1−Π00)2 −ΠxyΠyx

(
1−Π00

Πyx

)
, (A11)

and λx0 = λxz = 0. The off-diagonal components are Πxy =
Πyx = 0 for the Rashba-type SOI and Dresslhaus-type SOI
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and Πxy = Πyx ≈ Π00 for Γ ≪ εF. The vertex function,
Λy , is obtained in a similar way. As a result, the spin vertex
functions reduce to the following form,

Λ̂µ =
∑

ν=x,y

ζµν Ŝν . (A12)

for µ = x, y and Λ̂z = 0.

The expressions for ζµν are obtained by evaluating Π00 and
Πxy at weak impurity concentrations. In purely Rashba-type
SOIs, the latter function vanishes, i.e., Πxy = 0. The function
at the Fermi energy, Π00(ω) ≡ Π00(ε = 0, q = 0, ω), is
obtained by substituting Eq. (A10) into Eq. (A9) as

Π00(ω) =
nimpu

2
0

4

∫
d2k

(2π)2

∑
s,s′

GR
s (k, 0)G

A
s (k, ω), (A13)

For ωτ ≪ 1, this function is recast into

Π00 =
πnimpu

2
0

2Γ

[
N(0) + CΓ

∫
d2k

(2π)2

∏
s

δ (ε− Es(k))

]
,

(A14)

where C = 2
√
2π. The first term reduces to 1/2 according to

Eq. (A3). The second term yields nonzero contributions from
the region where two split Fermi surfaces intersect, which is
a minor correction on the order of O(Γ/εF). Therefore, the
function becomes Π00 = 1

2 and the renormalization factors
are given by

ζµν = 2δµν . (A15)

In the main text, however, we consider the limit of weak
impurity concentration, ωτ ∼ Ωτ ≫ 1. In this regime,
the function, Π00 can be evaluated by using GR

s (k, ε) =
P 1

ε−Es
− iπδ(ε − Es) for Γ → 0, where P denotes the

Cauchy principal part. Substituting this into Eq. (A13), one
finds ReΠ00 = 0 and −ImΠ00 ∝ 1

ω . This indicates that in the
limit of ωτ ≫ 1, the spin vertex function reduces to the bare
spin operator, Λ̂µ ≈ Ŝµ. While we have considered Rashba-
type SOIs, the same conclusion is valid for SU(2) symmetric
SOIs as well.
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