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Abstract

In many applications of statistical estimation via sampling, one may wish to sample from a high-
dimensional target distribution that is adaptively evolving to the samples already seen. We study an
example of such dynamics, given by a Langevin diffusion for posterior sampling in a Bayesian linear
regression model with i.i.d. regression design, whose prior continuously adapts to the Langevin trajectory
via a maximum marginal-likelihood scheme. Results of dynamical mean-field theory (DMFT) developed
in our companion paper establish a precise high-dimensional asymptotic limit for the joint evolution of
the prior parameter and law of the Langevin sample. In this work, we carry out an analysis of the
equations that describe this DMFT limit, under conditions of approximate time-translation-invariance
which include, in particular, settings where the posterior law satisfies a log-Sobolev inequality. In such
settings, we show that this adaptive Langevin trajectory converges on a dimension-independent time
horizon to an equilibrium state that is characterized by a system of scalar fixed-point equations, and the
associated prior parameter converges to a critical point of a replica-symmetric limit for the model free
energy. As a by-product of our analyses, we obtain a new dynamical proof that this replica-symmetric
limit for the free energy is exact, in models having a possibly misspecified prior and where a log-Sobolev
inequality holds for the posterior law.
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1 Introduction

Parameter estimation via Monte Carlo sampling is a common paradigm in statistical learning, arising for
example in stochastic implementations of Expectation-Maximization estimation in latent variable models
[1,2], and contrastive-divergence [3] and diffusion-based learning [4–7] of generative models for data. In these
applications, one wishes to learn a parameter using Monte Carlo samples from an associated distribution
on a high-dimensional space. Monte Carlo methods whose target distribution continuously adapts to the
learned parameter are natural for such tasks, and we refer to [8–12] for several recent proposals of this form.

The goal of our current work is to study the learning dynamics in a particular (classical) instance of this
paradigm, namely the estimation of the distribution of regression coefficients in a high-dimensional regression
model [13,14]. We will focus on the linear model

y = Xθ∗ + ε

with a latent and high-dimensional coefficient vector θ∗ ∈ Rd, whose coordinates have an unknown “prior”
distribution g∗. Estimation of this prior distribution is a classical example of empirical Bayes inference [15,16],
and arises ubiquitously in genetic association analyses where g∗ represents the distribution of genetic effect
sizes in linear mixed models for complex traits [17–24]. Two recent works [10, 25] have established the
statistical consistency of nonparametric maximum marginal-likelihood estimators of g∗ in settings of high-
dimensional regression designs X ∈ Rn×d, as n, d → ∞. However, direct computation of this maximum
marginal-likelihood estimate is intractable for general regression designs, motivating approaches based on
approximate posterior inference schemes.

We will investigate in this work a parametric analogue of a learning procedure proposed in [10], modeling
the prior distribution via a parametric model g( · , α) and applying an adaptive diffusion to estimate the
parameter α ∈ RK . This procedure will take the form of a Langevin diffusion

dθt = ∇θ logPg(·,α̂t)(θ
t | X,y)dt+

√
2 dbt (1)
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for sampling from the posterior distribution Pg(·,α̂t)(θ | X,y) of the regression coefficients, under a prior law
g( · , α̂t) whose parameter evolves according to a coupled continuous-time dynamics

dα̂t = G
(
α̂t,

1

d

d∑
j=1

δθtj

)
dt. (2)

Here G(·) is a map that implements gradient-based maximum marginal-likelihood learning of α via the
empirical distribution of coordinates of θt, and we defer a discussion of this motivation to Section 2. The
procedure may be understood as an approximation to an idealized dynamics

dαt = G(αt,P(θt))dt (3)

where P(θt) denotes the average law of the coordinates θt1, . . . , θ
t
d. For these idealized dynamics, the analyses

of [10] may be adapted to show that the prior parameter αt converges to a fixed point of the marginal
log-likelihood, under certain conditions for the noise and regression design. Related results have also been
shown recently in more general latent variable models in [8,9,12,26], which, in addition, provide convergence

guarantees for particle approximations of the McKean-Vlasov type dαt = G(αt, 1
dM

∑d
j=1

∑M
m=1 δθm,t

j
)dt,

having M parallel sampling chains {θ1,t}t≥0, . . . , {θM,t}t≥0 for the latent variable θ ∈ Rd, in the limit
M → ∞.

The aforementioned results are not fully satisfactory in our context of a high-dimensional regression
model, and leave open the following two interesting questions about the original dynamics (1–2):

1. Single chain propagation-of-chaos. In the limit of increasing dimensions d → ∞, are the idealized
dynamics (3) well-approximated by (2) using just a single Langevin chain {θt}t≥0 in Rd?

2. Characterization of fixed points. Can the fixed points α̂ of (2) be explicitly characterized? Does
(2) exhibit dimension-free convergence to these fixed points, and in what settings is the fixed point
representing the maximum marginal-likelihood estimator of α unique?

The purpose of our work is to provide answers to these questions in the context of an i.i.d. regression design.
Question 1 is addressed in our companion paper [27], which build upon the recent results of [28, 29] to
formalize a dynamical mean-field theory (DMFT) approximation of (2) by (3) over dimension-independent
time horizons t ∈ [0, T ], for a general class of such adaptive Langevin dynamics procedures. Our current
paper addresses Question 2 by carrying out an analysis of the resulting DMFT system, under an assumption
of a uniform log-Sobolev inequality for the posterior law.

1.1 Summary of results

Our main results provide an analysis of the DMFT equations that approximate the empirical Bayes Langevin
dynamics (1–2) in the high-dimensional limit as n, d → ∞ proportionally. En route to this analysis, we obtain
also new results for the DMFT approximation of the standard non-adaptive Langevin diffusion (1) with a
fixed prior g(·) ≡ g( · , α). We summarize these results as follows:

1. In the setting of a non-adaptive Langevin diffusion, we formalize a condition of approximate time-
translation-invariance (TTI) for the DMFT system. We perform an analysis of the dynamical fixed-
point equations for the DMFT correlation and response functions under this condition, and show
that they recover the static fixed-point equations for the free energy and posterior mean-squared-error
predicted by a replica-symmetric ansatz [30,31].

2. We show that a log-Sobolev inequality (LSI) for the posterior law provides a sufficient condition to
guarantee the above approximate-TTI property for the DMFT system, and we discuss several settings
of log-concavity, high noise, or large sample size where such an LSI holds. As a consequence, we obtain
a new dynamical proof of the validity of the replica-symmetric predictions for the free energy and MSE
in the Bayesian linear model with a possibly misspecified prior law, under such an LSI condition.

3



3. When the LSI holds uniformly over the posterior laws corresponding to the deterministic DMFT
trajectory of {αt}t≥0, we show that the empirical Bayes estimate α̂t converges on a dimension-free
time horizon to a critical point α∞ of the replica-symmetric limit for the free energy. This is explicitly
characterized by a system of scalar fixed-point equations, and we discuss examples of models where
this critical point may or may not be unique.

We present and discuss these results and examples in further detail in Section 2.

1.2 Further related literature

Approximating the dynamical behavior of many degrees-of-freedom by an effective single-particle problem
interacting self-consistently with its environment is an old idea in the statistical physics literature. Relevant
to our work is the development of this idea in the context of disordered systems, and in particular the study
of high-dimensional Langevin dynamics of soft-spin variants of the Sherrington-Kirkpatrick model [32, 33]
and the spherical p-spin model [34–37]. Mathematical proofs of these approximations were first shown for
such models in the works of [38–40] using large deviations techniques, and more recently in generalized
linear models close to our setting by [28, 29] using different methods around Approximate Message Passing
algorithms and iterative Gaussian conditioning. In recent years, DMFT analyses have been applied to study
Langevin dynamics and gradient-based optimization in many statistical models and applications, including
Gaussian mixture classification [41], matrix and tensor PCA [42–44], phase retrieval and generalized linear
models [45,46], and learning in perceptron and neural network models [47–52]. These analyses have uncovered
surprising phenomena about the efficacy of gradient-based methods and relationships to landscape complexity
for high-dimensional non-convex problems [42].

Understanding the long-time behavior of DMFT systems, in particular in low-temperature regimes char-
acterized by aging or metastability, has been a primary goal in both the physics and mathematics literature
since the original inception of these methods (see [53,54] and references within for a review). Mathematically
rigorous analyses of long-time dynamics have been obtained previously for spherical 2-spin models in [55]
and related statistical models in [44, 56] by leveraging the rotational invariance of these models. However,
such analyses of DMFT are (to our knowledge) quite rare in more general settings. Our work takes a step
towards filling this gap, by providing a rigorous analysis of the DMFT approximation to Langevin dynamics
in a more general model without a rotationally invariant prior, in settings where approximate-TTI holds.

As a by-product of our analyses, we obtain a new proof of a replica formula [57] for the free energy
and posterior MSE in the Bayesian linear model. This proof is different from several existing proofs of this
result [58–62] and from the Gaussian interpolation methods of Guerra-Talagrand [63,64], and is based instead
on deducing a static fixed-point equation from the dynamical fixed-point equations of DMFT. Our current
result is specific to a high-temperature regime where a LSI holds for the posterior law, but it applies to models
where the prior law is misspecified [30,31,65]. In this misspecified context, the closest mathematical result of
which we are aware is [66] which proved the replica-symmetric predictions in a setting where the posterior is
log-concave. A complete large deviations analysis of the free energy in a related rank-one matrix estimation
model with misspecified prior and noise was carried out in [67], showing that in general the asymptotic free
energy is characterized by a Parisi-type variational problem whose solution may not be replica-symmetric.
Our results imply for the linear model that this solution must be replica-symmetric under our assumed
condition of a LSI for the posterior law.

In the context of adaptive empirical Bayes Langevin dynamics, our results complement the previous
analyses of [10] for more general regression designs, and of [8, 12] in general latent variable models. We
deduce a dimension-free convergence rate, in contrast to the results of [10] that established convergence
(for a nonparametric variant of this algorithm) on a time horizon growing linearly with n, d, and without
employing a time-dependent and decaying learning rate as in [12]. Under the additional mean-field structure
of our current model, we are able to establish convergence of a single-chain implementation of the empirical
Bayes Langevin dynamics using (2), rather than for an idealized dynamics as studied in [10, 12] or for an
implementation using M parallel chains as studied in [8]. We are also able to give an explicit characterization
and analysis of the fixed points to which the dynamics of {α̂t}t≥0 may converge.
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Pragya Sur for their hospitality and many helpful discussions. We are very grateful to Andrea Montanari
who suggested to us the approach to prove Theorem 2.5. We’d like to thank also Pierfrancesco Urbani,
Francesca Mignacco and Emanuele Troiani for useful discussions. Z. Fan was supported in part by NSF
DMS–2142476 and a Sloan Research Fellowship. J. Ko was supported in part by the Natural Sciences
and Engineering Research Council of Canada (NSERC), the Canada Research Chairs programme, and the
Ontario Research Fund [RGPIN-2020-04597, DGECR-2020-00199]. B. Loureiro was supported by the French
government, managed by the National Research Agency (ANR), under the France 2030 program with the
reference “ANR-23-IACL-0008” and the Choose France - CNRS AI Rising Talents program. Y. M. Lu was
supported in part by the Harvard FAS Dean’s Competitive Fund for Promising Scholarship and by a Harvard
College Professorship.

Notational conventions

In the context of the posterior law Pg(θ | X,y) for a given prior g(·), we will write

⟨f(θ)⟩ = E[f(θ) | X,y]

for the posterior expectation conditioning on the “quenched” variables X,y. In the context of Langevin
dynamics, we will write similarly

⟨f(θt)⟩ = E[f(θt) | X,y]

also for an expectation conditioning on X,y. In some arguments it is convenient to consider the expectation
also conditioned on the initial condition θ0, and we will denote this by

⟨f(θt)⟩x = E[f(θt) | X,y, θ0 = x].

We reserve E and P for the full expectation and probability also over X,y,θ∗, ε.
Constants C,C ′, c, c′ > 0 throughout are independent of the dimensions n, d. For any random variable ξ

in a complete and separable normed vector space (M, ∥ · ∥), we will use P(ξ) to denote its law. P2(M) is
the space of probability distributions P on (M, ∥ · ∥) such that Eξ∼P∥ξ∥2 < ∞, and W1(·) and W2(·) denote
the Wasserstein-1 and Wasserstein-2 metrics on P2(M).

For f : Rd → R, ∇f ∈ Rd is its gradient, ∇2f ∈ Rd×d its Hessian, and ∇3f ∈ Rd×d×d the symmetric
tensor of its 3rd-order partial derivatives. For f : R × RK → R, ∂θf(θ, α) and ∇αf(θ, α) denote its partial
derivatives with respect to θ ∈ R and α ∈ RK . ∥ · ∥2 is the Euclidean norm for vectors and vectorized
Euclidean norm for matrices and tensors. TrM and ∥M∥op are the matrix trace and Euclidean operator
norm. C([0, T ],Rd) is the space of continuous functions f : [0, T ] → Rd equipped with the norm of uniform
convergence ∥f∥∞ = supt∈[0,T ] ∥f(t)∥2. Ck(Rd,Rm) is the space of functions f : Rd → Rm that are k-

times continuously-differentiable. For two probability densities p, q on Rd, DKL(p∥q) =
∫
q(log q − log p)

is the Kullback-Leibler divergence. For a scalar random variable X, VarX = EX2 − (EX)2 and EntX =
EX logX − EX logEX. For a random vector X ∈ Rk, CovX = EXX⊤ − (EX)(EX)⊤ ∈ Rk×k.

2 Model and main results

2.1 Bayesian linear model and adaptive Langevin dynamics

We study a linear model
y = Xθ∗ + ε ∈ Rn (4)

with random effects θ∗ ∈ Rd. Modeling θ∗1 , . . . , θ
∗
d
iid∼ g for a prior density g(·) on the real line and modeling

ε ∼ N (0, σ2I) as Gaussian noise, Bayesian inference for θ∗ is based upon the posterior density

Pg(θ | X,y) =
1

Pg(y | X)

1

(2πσ2)n/2
exp

(
− 1

2σ2
∥y −Xθ∥22

) d∏
j=1

g(θj). (5)
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Here Pg(y | X) is the marginal likelihood of y (i.e. model evidence or partition function), given by

Pg(y | X) =

∫
1

(2πσ2)n/2
exp

(
− 1

2σ2
∥y −Xθ∥22

) d∏
j=1

g(θj)dθj . (6)

We will study (overdamped) Langevin dynamics for sampling from the posterior density (5) in two
settings, the first in which the prior law g(·) is fixed but may be misspecified, and the second in which this
prior law may adapt to the Langevin trajectory to implement empirical Bayes learning from the observed
data (X,y). In the former setting, we consider the Langevin dynamics

dθt = ∇θ

(
− 1

2σ2
∥y −Xθt∥22 +

d∑
j=1

log g(θtj)

)
dt+

√
2 dbt (7)

where {bt}t≥0 is a standard Brownian motion on Rd. In the latter setting, we will model the prior via a
parametric model {

g( · , α) : α ∈ RK
}

(8)

and consider the empirical Bayes Langevin dynamics

dθt = ∇θ

(
− 1

2σ2
∥y −Xθt∥22 +

d∑
j=1

log g(θtj , α̂
t)

)
dt+

√
2 dbt (9)

dα̂t = ∇α

(
1

d

d∑
j=1

log g(θtj , α̂
t)−R(α̂t)

)
dt. (10)

The equation (10) describes a continuous-time evolution of the prior parameter α ∈ RK that is coupled to
the Langevin diffusion (9) of the posterior sample, and R : RK → R is a possible smooth regularizer. (In
this work, we will be interested mostly in the behavior of these dynamics when R(α) ≡ 0, and we introduce
R(α) for theoretical purposes to confine the dynamics of α̂t in certain examples.)

To motivate the dynamics (9–10) as a procedure that implements maximum marginal-likelihood learning
of α ∈ RK , we may consider the free energy (i.e. negative marginal log-likelihood)

F̂ (α) = −1

d
logPg(·,α)(y | X) (11)

as a function of the prior parameter α ∈ RK . By the Gibbs variational principle (c.f. [68, Proposition 4.7]),

F̂ (α) = inf
q∈P∗(Rd)

V (q, α) (12)

where P∗(Rd) is the space of all probability densities on Rd, and

V (q, α) =
1

d

∫ ( 1

2σ2
∥y −Xθ∥2 −

d∑
j=1

log g(θj , α) + log q(θ)
)
q(θ)dθ +

n

2d
log 2πσ2 (13)

is the Gibbs free energy corresponding to the prior g(·) = g( · , α). We propose to implement maximum-
likelihood learning of α ∈ RK by minimizing the regularized Gibbs free energy V (q, α) + R(α) jointly over
(q, α), via a gradient flow in the Wasserstein-2 geometry for q ∈ P∗(Rd) and the standard Euclidean geometry
for α ∈ RK . The resulting gradient flow equations take the form

d

dt
qt = −d · gradW2

q V (qt, α
t) := ∇θ ·

[
qt(θ)∇θ

(
1

2σ2
∥y −Xθ∥22 −

d∑
j=1

log g(θj , α
t)

)]
+Tr∇2

θqt(θ), (14)

d

dt
αt = −∇α[V (qt, α

t) +R(αt)] = ∇α

(∫
1

d

d∑
j=1

log g(θj , α
t) qt(θ)dθ −R(αt)

)
. (15)

6



In (14), we identify gradW2
q V (q, α) with the Fokker-Planck equation for the density evolution of θt under the

Langevin diffusion (7) with prior law g(·) = g( · , α), via its variational interpretation put forth in [69]. Then
(9–10) may be understood as a particle implementation of (14–15) that uses a single Langevin trajectory

{θt}t≥0 to simulate the dynamics of qt in (14), and that uses the empirical distribution 1
d

∑d
j=1 δθtj to

approximate the expectation over θ ∼ qt in the dynamics of αt in (15). An algorithm similar to (9–10) was
introduced in [10], with some additional reparametrization ideas to allow for nonparametric modeling of the
prior g(·). Here, to simplify technical considerations, we restrict our study to parametric prior models of the
form (8).

2.2 DMFT equations

The empirical Bayes Langevin diffusion (9–10) is an example of a general class of adaptive Langevin diffusions
that we study in our companion work [27]. In particular, the gradient equation (10) for α̂t is a function of
the empirical distribution of coordinates θt,

dα̂t = G
(
α̂t,

1

d

d∑
j=1

δθtj

)
dt

where G : RK × P2(R) → RK is the gradient map

G(α,P) = Eθ∼P[∇α log g(θ, α)]−∇R(α).

Our analyses will rely on a system of dynamical mean-field theory (DMFT) equations, formalized in [27] and
building upon the results of [28, 29], that describes a deterministic evolution of a prior parameter αt ∈ RK

and a univariate law P(θt) ∈ P2(R) that approximate (α̂t, 1
d

∑d
j=1 δθtj ) in the large system limit n, d → ∞.

This approximation will hold under the following assumptions, which we assume throughout this work.

Assumption 2.1 (Linear model and initial conditions).

(a) (Asymptotic scaling) limn,d→∞
n
d = δ ∈ (0,∞).

(b) (Random design) X = (xij) ∈ Rn×d has independent entries satisfying E[xij ] = 0, E[x2
ij ] =

1
d , and

∥
√
dxij∥ψ2

≤ C for a constant C > 0, where ∥ · ∥ψ2
is the sub-Gaussian norm.

(c) (Bayesian linear model) θ∗, ε are independent of each other and of X, and y = Xθ∗ + ε. The entries of
θ∗, ε are distributed as

θ∗1 , . . . , θ
∗
d
iid∼ g∗, ε1, . . . , εn

iid∼ N (0, σ2) (16)

for some σ2 > 0 and probability density g∗ (both fixed and independent of n, d), where g∗ satisfies the
log-Sobolev inequality

Entθ∗∼g∗ [f(θ
∗)2] ≤ CLSI Eθ∗∼g∗ [(f ′(θ∗))2] for all f ∈ C1(R). (17)

(d) (Initial conditions) The initialization θ0 is independent of X,θ∗, ε, and

θ01, . . . , θ
0
d
iid∼ g0 (18)

for some probability density g0 (fixed and independent of n, d) with finite entropy
∫
g0 log g0 and finite

moment-generating-function in a neighborhood of 0. The initialization α̂0 satisfies limn,d→∞ α̂0 = α0

a.s. for a deterministic parameter α0 ∈ RK .

Assumption 2.2 (Prior model and regularizer).

(a) In the context of a fixed prior, g(θ) is strictly positive and thrice continuously-differentiable, and
(log g)′′′(θ) is uniformly Hölder continuous over θ ∈ R. For a constant C > 0 and all θ ∈ R,

|(log g)′(θ)| ≤ C(1 + |θ|), |(log g)′′(θ)| ≤ C, |(log g)′′′(θ)| ≤ C,

and for some constants r0, c0 > 0,

−(log g)′′(θ) ≥ c0 for all |θ| ≥ r0.

7



(b) In the context of an adaptive prior, g(θ, α) is strictly positive, R(α) is nonnegative, and both are thrice
continuously-differentiable. For a constant C > 0 and all (θ, α) ∈ R× RK ,

∥∇(θ,α) log g(θ, α)∥2 ≤ C(1 + |θ|+ ∥α∥2),
∥∇R(α)∥2 ≤ C(1 + ∥α∥2).

(19)

Furthermore, for each compact subset S ⊂ RK , θ 7→ ∇3
(θ,α) log g(θ, α) is Hölder-continuous uniformly

over (θ, α) ∈ R× S, and for some constants C(S), r0(S), c0(S) > 0,

∥∇2
(θ,α) log g(θ, α)∥2 ≤ C(S), ∥∇3

(θ,α) log g(θ, α)∥2 ≤ C(S) for all (θ, α) ∈ R× S,

−∂2
θ log g(θ, α) ≥ c0(S) for all |θ| ≥ r0(S) and α ∈ S,

∥∇2R(α)∥2 ≤ C(S), ∥∇3R(α)∥2 ≤ C(S) for all α ∈ S.

(20)

In particular, Assumption 2.2(b) requires that g(·) ≡ g( · , α) satisfies Assumption 2.2(a) for each fixed
prior parameter α ∈ RK . We assume the LSI condition (17) for the true prior g∗ to ensure concentration of
the free energy (c.f. Proposition 4.11), and we clarify that the conditions of Assumption 2.2(a) imply that
the modeled prior g(·) must also satisfy an LSI of the form (17), as reviewed in Lemma C.1.

Under the above Assumptions 2.1 and 2.2(b), the DMFT limit for (9–10) is described by the following
construction: Let

θ∗ ∼ g∗, θ0 ∼ g0, ε ∼ N (0, σ2) (21)

denote independent scalar variables with the distributions (16) and (18), and let δ = lim n
d be as in As-

sumption 2.1. Let {bt}t≥0, {ut}t≥0, and (w∗, {wt}t≥0) be centered univariate Gaussian processes indepen-
dent of each other and of (θ∗, θ0, ε), where {bt}t≥0 is a standard Brownian motion on R, and {ut}t≥0 and
(w∗, {wt}t≥0) have covariance kernels

E[utus] = Cη(t, s), E[wtws] = Cθ(t, s), E[wtw∗] = Cθ(t, ∗), E[(w∗)2] = Cθ(∗, ∗) (22)

defined self-consistently in (28) below. We consider a system of stochastic differential equations

dθt =
[
− δ

σ2
(θt − θ∗) + ∂θ log g(θ

t, αt) +

∫ t

0

Rη(t, s)(θ
s − θ∗)ds+ ut

]
dt+

√
2 dbt (23)

d
( ∂θt
∂us

)
=

[
−
(

δ

σ2
− ∂2

θ log g(θ
t, αt)

)
∂θt

∂us
+

∫ t

s

Rη(t, s
′)
∂θs

′

∂us
ds′
]
dt (24)

for univariate processes {θt}t≥0 and { ∂θ
t

∂us }t≥s≥0 adapted to the filtration Fθ
t := F({bs}s≤t, {us}s≤t, θ∗, θ0),

with the initial conditions

θt|t=0 = θ0,
∂θt

∂us

∣∣∣∣
t=s

= 1.

These are driven by a deterministic and continuous RK-valued process {αt}t≥0 representing the asymptotic

limit of {α̂t}t≥0. We consider likewise univariate processes {ηt}t≥0 and { ∂η
t

∂ws }t≥s≥0 defined by

ηt = − 1

σ2

∫ t

0

Rθ(t, s)
(
ηs + w∗ − ε

)
ds− wt (25)

∂ηt

∂ws
= − 1

σ2

[ ∫ t

s

Rθ(t, s
′)
∂ηs

′

∂ws
ds′ −Rθ(t, s)

]
(26)

adapted to the filtration Fη
t := F({ws}s≤t, w∗, ε). The deterministic process {αt}t≥0 above is defined self-

consistently by
d

dt
αt = G(αt,P(θt)), G(α,P) = Eθ∼P[∇α log g(θ, α)]−∇R(α) (27)
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with initial condition αt|t=0 = α0 given in Assumption 2.2, where P(θt) is the law of θt in (23). The
covariance and response functions Cθ, Cη, Rθ, Rη are also defined for all t ≥ s ≥ 0 self-consistently via the
above processes by

Cθ(t, s) = E[θtθs], Cθ(t, ∗) = E[θtθ∗], Cθ(∗, ∗) = E[(θ∗)2],

Cη(t, s) =
δ

σ4
E[(ηt + w∗ − ε)(ηs + w∗ − ε)]

Rθ(t, s) = E
[ ∂θt
∂us

]
, Rη(t, s) =

δ

σ2
E
[ ∂ηt
∂ws

]
.

(28)

This DMFT system (22–28) describes the n, d → ∞ limit of the empirical Bayes Langevin dynamics
(9–10). In the setting of a fixed prior g(·) ≡ g( · , α0), the DMFT limit for the standard Langevin diffusion
(7) is the same, upon replacing G(α,P) in (27) by G(α,P) = 0 so that αt = α0 for all t ≥ 0.

Fixing any time horizon T > 0, let us set

η∗ = −w∗

and denote by

P(θ∗, {θt}t∈[0,T ]) ∈ P2(R× C([0, T ],R)), P(η∗, ε, {ηt}t∈[0,T ]) ∈ P2(R× R× C([0, T ],R))

the joint laws of sample paths (θ∗, {θt}t∈[0,T ]) and (η∗, ε, {ηt}t∈[0,T ]) in this DMFT system. We write

θ∗j , θ
t
j , εi, η

∗
i , η

t
i for the coordinates of θ∗,θt, ε,η∗ = Xθ∗,ηt = Xθt, and

W2→ for Wasserstein-2 convergence
in the spaces P2(R × C([0, T ],R)) and P2(R × R × C([0, T ],R)) as n, d → ∞. The main result we will use
from our companion work [27] is summarized in the following theorem.

Theorem 2.3. (a) Suppose Assumptions 2.1 and 2.2(a) hold, and identify g(·) ≡ g( · , α0). Let {θt}t≥0 be
the solution to the dynamics (7) with fixed prior g(·), and denote η∗ = Xθ∗ and ηt = Xθt. Then for
each fixed T ≥ 0, there exists a solution up to time T of the DMFT system (22–28) with (27) replaced
by G(α,P) = 0, such that almost surely as n, d → ∞,

1

d

d∑
j=1

δθ∗j ,{θtj}t∈[0,T ]

W2→ P(θ∗, {θt}t∈[0,T ]),
1

n

n∑
i=1

δη∗i ,εi,{ηti}t∈[0,T ]

W2→ P(η∗, ε, {ηt}t∈[0,T ]). (29)

(b) Suppose Assumptions 2.1 and 2.2(b) hold, and let {θt, α̂t}t≥0 be the solution to the empirical Bayes
Langevin dynamics (9–10). Then for each fixed T > 0, there exists a solution up to time T of the DMFT
system (22–28) such that almost surely as n, d → ∞, (29) holds and also

{α̂t}t∈[0,T ] → {αt}t∈[0,T ] in C([0, T ],RK).

Both parts of this theorem follow from [27, Theorem 2.5], and we explain the details of the reduction
to [27, Theorem 2.5] in Appendix A. The above solutions to the DMFT systems are unique in certain
domains of exponential growth for {αt} and for the correlation and response functions, and we refer readers
to [27, Theorem 2.4] for details of this uniqueness claim.

For our analyses of dynamics with fixed prior g(·) in the setting of Theorem 2.3(a), we will require a
second result from [27] that gives an interpretation for the DMFT response functions Rθ(t, s) and Rη(t, s) as
coordinate averages of single-particle responses in the Langevin diffusion (7). We defer a statement of this
result to Section 4.1.

2.3 Replica-symmetric characterization of equilibrium for a fixed prior

This and the next section describe the main results of our current paper. We discuss results pertaining to the
dynamics (7) with a fixed prior g(·) in this section, and results pertaining to the empirical Bayes dynamics
(9–10) in Section 2.4 to follow.
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2.3.1 Approximately-TTI DMFT systems

We first introduce a set of conditions for the correlation and response functions of the DMFT system
that characterize an approximate time-translation-invariance (TTI) property. Under these conditions, we
establish convergence of the joint law of (θ∗, θt) in the DMFT equations to a replica-symmetric fixed point
as t → ∞.

Definition 2.4. In the setting of a fixed prior g(·) [i.e. with G(α,P) = 0 in (27)], the solution of the DMFT
system (22–28) is approximately-TTI if it satisfies the following conditions:

1. There exists a scalar value cθ(∗) ∈ R and functions cttiθ , cttiη : [0,∞) → R such that, for some ε :
[0,∞) → [0,∞) satisfying lims→∞ ε(s) = 0 and for all t ≥ s ≥ 0,

|Cθ(t, s)− cttiθ (t− s)| ≤ ε(s), (30)

|Cη(t, s)− cttiη (t− s)| ≤ ε(s), (31)

|Cθ(s, ∗)− cθ(∗)| ≤ ε(s). (32)

Furthermore, there exist values cttiθ (∞), cttiη (∞) ≥ 0 and finite positive measures µθ, µη supported on
[ι,∞) for some ι > 0 (strictly) such that

cttiθ (τ) = cttiθ (∞) +

∫ ∞

ι

e−aτdµθ(a), cttiη (τ) = cttiη (∞) +

∫ ∞

ι

e−aτdµη(a). (33)

2. There exist functions rttiθ , rttiη : [0,∞) → R such that, for some ε : [0,∞) → [0,∞) satisfying
limt→∞ ε(t) = 0, ∫ t

0

|Rθ(t, s)− rttiθ (t− s)|ds ≤ ε(t), (34)∫ t

0

|Rη(t, s)− rttiη (t− s)|ds ≤ ε(t). (35)

Furthermore, rttiθ , rttiη , cttiθ , cttiη satisfy the fluctuation-dissipation relations

rttiθ (τ) = −cttiθ
′
(τ), rttiη (τ) = −cttiη

′
(τ). (36)

We show that if the DMFT system is approximately-TTI in the above sense, then its t → ∞ limit is
characterized by a system of “static” scalar fixed-point equations. To describe this characterization, consider
a scalar Gaussian convolution model

y = θ∗ + z ∈ R. (37)

Let

Pg,ω(θ | y) = 1

Pg,ω(y)

√
ω

2π
exp

(
−ω

2
(y − θ)2

)
g(θ) (38)

be the posterior distribution of θ in this model, assuming a prior law θ ∼ g(·) and independent Gaussian
noise z ∼ N (0, ω−1), where

Pg,ω(y) =

∫ √
ω

2π
exp

(
−ω

2
(y − θ)2

)
g(θ)dθ (39)

denotes the marginal density of y under these assumptions. Let the true model be y = θ∗ + z with θ∗ ∼ g∗
and independent noise z ∼ N (0, ω−1

∗ ), and denote by

Pg∗,ω∗;g,ω(θ
∗, θ) (40)

the joint law of the true parameter θ∗ and a posterior sample θ under the generating process

θ∗ ∼ g∗, z ∼ N (0, ω−1
∗ ) (independent) ⇒ y = θ∗ + z ⇒ θ | y ∼ Pg,ω( · | y) (41)
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(where θ | y is defined with misspecified prior law g(·) and misspecified noise variance ω−1). We write
⟨f(θ)⟩g,ω for the posterior average with respect to Pg,ω( · | y) depending implicitly on y, and Eg∗,ω∗f(y) for
the expectation under the true model y = θ∗ + z. Thus, an expectation over the joint law Pg∗,ω∗;g,ω in (40)
takes the form

E(θ∗,θ)∼Pg∗,ω∗;g,ω
f(θ∗, θ) = Eg∗,ω∗⟨f(θ∗, θ)⟩g,ω.

Theorem 2.5. Suppose Assumptions 2.1 and 2.2(a) hold. Consider the Langevin diffusion (7) with a
fixed prior g(·), and suppose that the corresponding solution of the DMFT system in Theorem 2.3(a) is
approximately-TTI. Define, from the quantities of Definition 2.4,

mse = cttiθ (0)− cttiθ (∞), mse∗ = E[θ∗2]− 2cθ(∗) + cttiθ (∞),

ymse =
σ4

δ

(
cttiη (0)− cttiη (∞)

)
, ymse∗ =

σ4

δ

(
2cttiη (0)− cttiη (∞)

)
− σ2.

(42)

Then there are unique values ω, ω∗ > 0 (given mse,mse∗) for which mse,mse∗, ω, ω∗ satisfy the fixed-point
equations

ω = δ(σ2 +mse)−1, ω∗ = δ(σ2 +mse∗)
−1,

mse = Eg∗,ω∗ [⟨(θ − ⟨θ⟩g,ω)2⟩g,ω], mse∗ = Eg∗,ω∗ [(θ
∗ − ⟨θ⟩g,ω)2].

(43)

The quantities ymse, ymse∗ are related to these fixed points by

ymse = σ2
(
1− ωσ2

δ

)
, ymse∗ = σ2 +

ωσ4

δ

( ω

ω∗
− 2
)
. (44)

Furthermore, letting P(θ∗, θt) be the joint law of (θ∗, θt) in the DMFT system, as t → ∞,

P(θ∗, θt)
W2→ Pg∗,ω∗;g,ω. (45)

Remark 2.6. Let ⟨f(θ)⟩ and ⟨f(θ,θ′)⟩ denote the expectation over independent samples θ,θ′ ∼ Pg(· | X,y)
from the posterior law (5) with a fixed prior g(·). Then the asymptotic overlaps

lim
n,d→∞

d−1⟨θ⊤θ⟩, lim
n,d→∞

d−1⟨θ⊤θ′⟩, lim
n,d→∞

d−1⟨θ⊤θ∗⟩

are predicted in the DMFT system, respectively, by

cttiθ (0) = lim
t→∞

Cθ(t, t), cttiθ (∞) = lim
t,τ→∞

Cθ(t, t+ τ), cθ(∗) = lim
t→∞

Cθ(t, ∗).

Thus mse and mse∗ as defined in (42) represent the DMFT predictions for

lim
n,d→∞

d−1⟨∥θ − ⟨θ⟩∥22⟩, lim
n,d→∞

d−1∥θ∗ − ⟨θ⟩∥22.

Similarly, one may check that ymse and ymse∗ as defined in (42) represent the DMFT predictions for

lim
n,d→∞

n−1⟨∥Xθ −X⟨θ⟩∥22⟩, lim
n,d→∞

n−1∥Xθ∗ −X⟨θ⟩∥22.

These fixed-point equations (43) that characterize mse and mse∗ coincide with those derived via the replica
method (with misspecified prior) under a replica-symmetric ansatz, c.f. [30, 31,65].

We clarify that Theorem 2.5 does not claim that the joint solution (mse,mse∗, ω, ω∗) of the fixed-point
equations (43) is unique. In settings with multiple such fixed points, the theorem pertains to the specific
choice of this fixed point that arises from the t → ∞ limit of the DMFT dynamics.
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2.3.2 Asymptotic MSE and free energy under a posterior LSI

To motivate Definition 2.4, it is illustrative to consider the example of a fixed Gaussian prior g(·), where the
Langevin diffusion for θt is a linear Ornstein-Uhlenbeck process. Then Cθ, Cη, Rθ, Rη of the DMFT system
may be computed explicitly, as we show in Appendix B, and it is directly checked from their explicit forms
that the DMFT system is indeed approximately-TTI.

Generalizing this Gaussian prior example, we consider a setting where the posterior distribution (5)
satisfies a log-Sobolev inequality.

Assumption 2.7. There exists a constant CLSI > 0 and a X-dependent event E(X) holding almost surely
for all large n, d, for which

(a) (LSI for posterior) On E(X), for all y ∈ Rn, the posterior distribution Pg(θ | X,y) satisfies

Ent[f(θ)2 | X,y] ≤ CLSI E[∥∇f(θ)∥22 | X,y] for all f ∈ C1(Rd). (46)

(b) (LSI for larger noise) On E(X), for every noise variance σ̃2 ∈ [σ2,∞), (46) holds also for the posterior
law Pg(θ | X,y) defined with σ̃2 in place of σ2 (with a uniform constant CLSI > 0 for all σ̃2 ≥ σ2).

For clarity of interpretation, we list in the following proposition three concrete settings in which these
LSI conditions hold by currently known techniques. A proof of Proposition 2.8 is given in Appendix C.

Proposition 2.8. Suppose X satisfies Assumption 2.1(a–b), and g(·) satisfies Assumption 2.2(a). Let
C, r0, c0 > 0 be the constants of Assumption 2.2(a), and define

C0 =
2.01

c0
exp

(8r20(c0 + C)2

πc0

)
.

Suppose, in addition, that at least one of the following conditions hold:

(a) (global log-concavity) −(log g)′′(θ) ≥ c0 for all θ ∈ R, or

(b) (high noise) σ2 > C0(4
√
δ 1{δ > 1}+ (

√
δ + 1)21{δ ≤ 1}), or

(c) (large sample size) δ > 1 and (
√
δ − 1)2 > 4C0C

√
δ.

Then Assumption 2.7 holds for a constant CLSI > 0 depending only on δ, C, r0, c0.

Under the posterior LSI condition of Assumption 2.7(a), we verify that the solution of the DMFT system
must be approximately-TTI in the sense of Definition 2.4.

Theorem 2.9. Consider the dynamics (7) with a fixed prior g(·), and suppose Assumptions 2.1, 2.2(a), and
2.7(a) hold. Then the DMFT system given by Theorem 2.3(a) is approximately-TTI, where the statements
of Definition 2.4 hold with ε(t) = Ce−ct and some constants C, c > 0.

As a consequence, we obtain the following corollary showing that the asymptotic free energy and mean-
squared-errors associated to the posterior distribution Pg(θ | X,y) in the linear model (with a possibly
misspecified prior) are given by their replica-symmetric predictions, and furthermore the joint empirical
distribution of coordinates of θ∗ and a posterior sample θ ∼ Pg(· | X,y) converges to the preceding law
Pg∗,ω∗;g,ω in the scalar Gaussian convolution model. (Our analysis for the free energy uses an I-MMSE
relation, for which we require the posterior LSI condition of Assumption 2.7(b) for an extended range of
noise variances.)

Corollary 2.10. Suppose Assumptions 2.1, 2.2(a), and 2.7(a) hold for dynamics (7) with a fixed prior
g(·). Let Pg(y | X) be the marginal likelihood of y in (6), let ⟨f(θ)⟩ denote the posterior expectation under
Pg(θ | X,y), and define

MSE = d−1⟨∥θ − ⟨θ⟩∥22⟩, MSE∗ = d−1∥θ∗ − ⟨θ⟩∥22
YMSE = n−1⟨∥Xθ − ⟨Xθ⟩∥22⟩, YMSE∗ = n−1∥Xθ∗ − ⟨Xθ⟩∥22.

(47)

Let mse,mse∗, ω, ω∗, ymse, ymse∗ be as defined by (42–43) for the corresponding (approximately-TTI) DMFT
system, let Pg,ω(y) be the marginal density of y in (39), and let Eg∗,ω∗ denote the expectation over y = θ∗+z
in (37) with θ∗ ∼ g∗ and z ∼ N (0, ω−1

∗ ) .
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(a) Almost surely,
lim

n,d→∞
MSE = mse, lim

n,d→∞
MSE∗ = mse∗,

lim
n,d→∞

YMSE = ymse, lim
n,d→∞

YMSE∗ = ymse∗,

lim
n,d→∞

〈
W2

(
1

d

d∑
j=1

δ(θ∗j ,θj),Pg∗,ω∗;g,ω

)2〉
= 0. (48)

(b) If furthermore Assumption 2.7(b) holds, then almost surely,

lim
n,d→∞

1

d
logPg(y | X) = Eg∗,ω∗ logPg,ω(y) +

1

2

(
δ + log

2π

ω
− δ log

2πδ

ω
+ (1− δ)

ω

ω∗
+ ωσ2

( ω

ω∗
− 2
))

.

As discussed in Remark 2.6, the fixed-point equations characterizing these limits of the mean-squared-
error quantities MSE,MSE∗,YMSE,YMSE∗ are those derived via the replica method under an assumption
of replica symmetry. One may verify that the limit of the free energy in part (b) agrees also with the replica
prediction that was computed in [31, Eq. (20)].

The proof of Theorem 2.5 is given in Section 3, and the proofs of Theorem 2.9 and Corollary 2.10 are
given in Section 4.

2.4 Convergence of empirical Bayes Langevin dynamics

We now discuss results pertaining to the empirical Bayes Langevin dynamics (9–10) with a data-adaptive
evolution of the prior law.

2.4.1 A general condition for dimension-free convergence

We impose the following strengthening of Assumption 2.7, ensuring that {αt}t≥0 of the DMFT solution
remains confined to a bounded domain where the posterior log-Sobolev conditions of Assumption 2.7 hold
uniformly.

Assumption 2.11. Let {αt}t≥0 be the α-component of the DMFT system. There exists a compact subset
S ⊂ RK such that

αt ∈ S for all t ≥ 0.

Furthermore, there exists a (bounded) open neighborhood O ⊃ S and an X-dependent event E(X) on which
the statements of Assumption 2.7(a–b) hold with a uniform constant CLSI > 0 for every prior g ∈ {g( · , α) :
α ∈ O}.

Under this condition, we will show dimension-free convergence of the prior parameter {αt}t≥0 to a fixed
point of the replica-symmetric free energy. To state this result, let us recall the free energy

F̂ (α) = −1

d
logPg(·,α)(y | X)

of the linear model from (11), and denote by

F (α) = −Eg∗,ω∗ logPg(·,α),ω(Y )− 1

2

(
δ + log

2π

ω
− δ log

2πδ

ω
+ (1− δ)

ω

ω∗
+ ωσ2

( ω

ω∗
− 2
))

(49)

its asymptotic limit prescribed by Corollary 2.10, both viewed as a function of α ∈ O ⊂ RK . Here, the fixed
points (ω, ω∗) ≡ (ω(α), ω∗(α)) implicitly depend on α and are well-defined by Theorem 2.9 for all α ∈ O.
Recalling the law Pg∗,ω∗;g,ω(θ

∗, θ) from (40), let us abbreviate this law with g ≡ g(·, α) and fixed points
(ω(α), ω∗(α)) as

Pα ≡ Pg∗,ω∗(α);g(·,α),ω(α). (50)

We write θ ∼ Pα as shorthand for the θ-marginal of (θ∗, θ) ∼ Pα. We write also ⟨·⟩α for the expectation under
the posterior law Pg(·,α)(θ | X,y) in the linear model. The following lemma strengthens Corollary 2.10(b)
to convergence of F (α) and its gradient, uniformly over the compact subset S ⊂ O containing {αt}t≥0, and
shows also that a true prior parameter α∗ ∈ O must be a global minimizer of F (α).
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Lemma 2.12. Suppose Assumptions 2.1, 2.2(b), and 2.11 hold, and let S ⊂ O ⊂ RK be the domains of
Assumption 2.11. Then

(a) F̂ (α) and F (α) are continuously differentiable on O with gradients

∇F̂ (α) = −
〈
1

d

d∑
j=1

∇α log g(θj , α)

〉
α

, ∇F (α) = −Eθ∼Pα [∇α log g(θ, α)]. (51)

(b) Almost surely

lim
n,d→∞

sup
α∈S

|F̂ (α)− F (α)| = 0, lim
n,d→∞

sup
α∈S

∥∇F̂ (α)−∇F (α)∥2 = 0.

(c) If g∗(·) = g( · , α∗) for some α∗ ∈ O, then F (α∗) = infα∈O F (α).

We now show that under the uniform LSI condition of Assumption 2.11, the DMFT solution {αt}t≥0

converges as t → ∞ to a critical point α∞ of the asymptotic free energy F (α) (with possible additional
regularization by R(α)). Consequently, for a dimension-independent time horizon T > 0 and large system

sizes n, d, the learned prior parameter α̂T will be close to α∞, and the Langevin sample θ̂T will have entrywise
statistics close to those in the scalar Gaussian convolution model described by Theorem 2.5 for the limiting
prior g(·) = g( · , α∞).

Theorem 2.13. Suppose Assumptions 2.1, 2.2(b), and 2.11 hold. Let O ⊂ RK be as in Assumption 2.11,
define F (α) for α ∈ O by (49), and denote

Crit = {α ∈ S : ∇F (α) +∇R(α) = 0}.

Consider the empirical Bayes Langevin dynamics (9–10), and let {αt}t≥0 be the deterministic approximation
of {α̂t}t≥0 in the solution of the DMFT system in Theorem 2.3(b). Then {αt}t≥0 satisfies

lim
t→∞

dist(αt,Crit) = 0.

In particular, if all points of Crit are isolated, then there exists a limit

α∞ = lim
t→∞

αt ∈ Crit . (52)

Consequently, for any ε > 0, there exists a time horizon T := T (ε) > 0 independent of n, d such that for
any fixed t > T (ε), the solution {(θt, α̂t)}t≥0 of (9–10) satisfies almost surely

lim sup
n,d→∞

∥α̂t − α∞∥2 < ε, lim sup
n,d→∞

W2

(
1

d

d∑
j=1

δ(θ∗j ,θtj),Pα∞

)
< ε. (53)

The proof of Theorem 2.13 is given in Section 5.
Supposing that g∗(·) = g( · , α∗) for a true prior parameter α∗ ∈ O, in settings where R(α) = 0 and

the critical point α∞ ∈ Crit of F (α) is unique, Lemma 2.12(c) ensures that α∞ = α∗, and Theorem 2.13
then provides a guarantee for estimation of this true prior parameter as n, d → ∞. In general, F (α) may
have multiple critical points. Theorem 2.13 ensures convergence to a point α∞ ∈ Crit that is specified
deterministically by the initial conditions of Assumption 2.1(d), and successful learning of α∗ may require
multiple initializations from different starting values of α̂0. We discuss both types of settings in the following
examples.

2.4.2 Examples

We develop some further implications of Theorem 2.13 in a few specific examples of parametric models for
g( · , α). We explore also via numerical simulation the convergence of (θt, α̂t), the landscape of the replica-
symmetric free energy F (α), and the nature of its critical point set Crit in a few settings where a posterior
log-Sobolev inequality may not hold.
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Example 2.14. Consider the Gaussian prior

g(θ, α) =

√
ω0

2π
exp

(
−ω0

2
(θ − α)2

)
with varying mean α ∈ R and a fixed and known prior variance ω−1

0 , and suppose g∗(θ) = g(θ, α∗). Consider
the empirical Bayes dynamics driven by

G(α,P) = Eθ∼P[∂α log g(θ, α)]

in (27), with no regularizer (i.e. R(α) ≡ 0).
We verify in Section 5.2 that Assumptions 2.2(b) and 2.11 hold for this example, for a subset O ⊂ R

containing α∗. The posterior mean in the Gaussian convolution model (37) is given explicitly by

⟨θ⟩g(·,α),ω =
ω0

ω0 + ω
α+

ω

ω0 + ω
y.

Then the condition α ∈ Crit is 0 = ∇F (α) = Eθ∼Pα [ω0(α− θ)], i.e.

α = Eθ∼Pα
[θ] = Eg∗,ω∗ [⟨θ⟩g(·,α),ω] = Eg∗,ω

[ ω0

ω0 + ω
α+

ω

ω0 + ω
y
]
=

ω0

ω0 + ω
α+

ω

ω0 + ω
α∗,

so Crit consists of the unique critical point α∗. Theorem 2.13 then holds with α∞ = α∗, i.e. over a dimension-
independent time horizon, α̂t converges to α∗ (in the limit n, d → ∞ followed by t → ∞ as described in
Theorem 2.13), and the empirical distribution of coordinates of the Langevin sample θt converges to that of
the posterior distribution for the true prior N (α∗, ω−1

0 ).

Example 2.15. Consider more generally a log-concave location prior

g(θ, α) = exp
(
−f(θ − α)

)
where α ∈ R and f : R → R is a fixed strongly convex function, such that f is thrice continuously-
differentiable with Hölder-continuous third derivative, and

f ′(0) = 0, C ≥ f ′′(x) ≥ c0, |f ′′′(x)| ≤ C

for some constants C, c0 > 0 and all x ∈ R. Suppose again g∗(θ) = g(θ, α∗), and consider the empirical
Bayes dynamics driven by

G(α,P) = Eθ∼P[∂α log g(θ, α)]

with no regularizer.
We verify in Section 5.2 that Assumptions 2.2(b) and 2.11 hold for this example, for a subset O ⊂ R

containing α∗. Furthermore, we show in Section 5.2 via an adaptation of the Brascamp-Lieb argument
of [8, Theorem 3] that F (α) must be strongly convex on O. Hence, Crit consists again of the unique critical
point α = α∗, and Theorem 2.13 holds for α∞ = α∗.

We next consider two canonical examples where the prior g(θ, α) is a Gaussian mixture model that is
not log-concave in θ, and where the landscape of F (α) is also not necessarily convex in α. We will check the
uniform log-Sobolev condition of Assumption 2.11 and also characterize analytically the landscape of the
free energy F (α) for sufficiently large δ = lim n

d , and explore by simulation the learning dynamics and free
energy landscape for some smaller values of δ.

The sub-level sets of F (α) may not be bounded in these examples. To confine {αt}t≥0 to a bounded subset
of RK , we introduce an additional regularizer: Fix a radius D > 0, and let B(D) = {α ∈ RK : ∥α∥2 < D}
be the open ball of radius D. For a smooth function r : [0,∞) → [0,∞) having bounded derivatives of all
orders and satisfying

r(x) = 0 for all x ∈ [0, D], r(x) ≥ x−D for all x ≥ D + 1, r′(x) > 0 for all x > D, (54)

we fix the regularizer R : RK → R as
R(α) = r(∥α∥2). (55)
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Note that R(α) = 0 for all α ∈ B(D), so adding such a regularizer does not change the critical points
α ∈ Crit∩B(D). We show in Proposition 5.2 of Section 5.2 that adding such a regularizer indeed confines
the dynamics of {αt}t≥0 to a bounded domain.

We will study analytically a large-δ limit under a reparametrization of the noise variance σ2 by s2 = σ2/δ,
corresponding to a rescaling of the regression design X to have entries of variance 1/n and a rescaling of
the noise ε to have entries N (0, s2). The setting δ → ∞ with fixed s2 > 0 is a limiting regime in which
each coordinate of the posterior distribution of θ does not contract around its mode, the Bayes-optimal
mean-squared-error for estimating θ remains bounded away from 0, and the landscape of F (α) approaches
(up to an additive constant) the log-likelihood landscape in the scalar Gaussian convolution model y = θ+ z
where θ ∼ g(·, α) and z ∼ N (0, s2). We denote by

Gs2(α) = −Eg∗,s−2 [logPg(·,α),s−2(y)] (56)

the negative population log-likelihood in this model as a function of the prior parameter α, when the true
distribution of y is given by y = θ∗ + z with θ∗ ∼ g∗.

Proposition 2.16. Suppose Assumptions 2.1 and 2.2(b) hold, and the regularizer R(α) is given by (54–55)
with α0 ∈ B(D). Fix s2 = σ2/δ, and define

CritG = {α ∈ B(D) : ∇Gs2(α) = 0}.

Then, for any s2 > 0, there exists a constant δ0 := δ0(s
2) > 0 and a function ι : [δ0,∞) → (0,∞) with

limδ→∞ ι(δ) = 0 such that if δ > δ0, then Assumption 2.11 holds. Furthermore,

1. Each point of Crit∩B(D) belongs to a ball of radius ι(δ) around some point of CritG.

2. For each point α ∈ CritG where ∇2Gs2(α) is non-singular, there is exactly one point of Crit in the ball
of radius ι(δ) around α.

In particular, if g∗ = g( · , α∗) for some α∗ ∈ B(D), and if α∗ is the unique point of CritG and ∇2Gs2(α
∗) is

non-singular, then α∗ is also the unique point of Crit∩B(D).

Example 2.17. Consider a K-component Gaussian mixture prior

g(θ, α) =

K∑
k=1

pk

√
ωk
2π

exp
(
−ωk

2
(θ − αk)

2
)

with fixed mixture weights p1, . . . , pK and variances ω−1
1 , . . . , ω−1

K , parametrized by the mixture means
α ∈ RK . Let us suppose that g∗(θ) = g(θ, α∗) for some α∗ ∈ RK , and the variances ω−1

1 , . . . , ω−1
K are

distinct. We consider the empirical Bayes dynamics driven by

G(α,P) = Eθ∼P[∇α log g(θ, α)]−∇R(α),

where R(α) is a regularizer of the form (54–55) for which α0, α∗ ∈ B(D).
We verify in Section 5.2 that Assumption 2.2(b) holds. Then, for fixed s2 > 0 and all sufficiently large

δ, Proposition 2.16 ensures that the confinement and log-Sobolev conditions of Assumption 2.11 also hold,
and the proposition further establishes a 1-to-1 correspondence between the critical points of F and the
(non-singular) critical points of Gs2(α) in B(D). We note that, here, Gs2(α) is the negative population
log-likelihood in the Gaussian mixture model

Pg(·,α),s−2(y) =

K∑
k=1

pk ·
1√

2π(ω−1
k + s2)

exp
(
− 1

2(ω−1
k + s2)

(y − αk)
2
)

(57)

having the same mixture means α ∈ RK as the prior, and elevated mixture variances ω−1
k + s2. The

optimization landscape of Gs2(α) is well-studied in the literature, see e.g. [70–73], and in general Gs2(α)
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(a)

(d)

(b)

(e)

(c)

(f)

Figure 1: Simulations for the Gaussian mixture prior model 1
2N (α1, 1)+

1
2N (α2, 0.25) of Example 2.17, with

true mixture means α∗ = (1,−1) and linear model noise variance σ2 = δs2 for s = 0.5. Empirical Bayes

Langevin dynamics is run for a single instance (X,y) with max(n, d) = 5000, initialization θ0j
iid∼ N (0, 1), and

an Euler-Maruyama discretization of the dynamics. (a–e) Landscape of the replica-symmetric free energy
F (α) plotted (for visual clarity) as log(F (α)−F (α∗)+10−3), for δ ∈ {4, 2, 1, 0.5, 0.25}. Two stable fixed points
of 0 = ∇F (α) are depicted in red, with star indicating the true parameter α∗ = (−1, 1) and circle indicating
a second fixed point α† near (1,−1). Sample paths {α̂t}t≥0 from two different initial states α̂0 are shown
in blue and green. (f) Mean-squared-error 1

d∥θ
t − θ∗∥22 across iterations for these same two initial states, at

δ = 1. The predicted value for a posterior sample θ ∼ Pg(·,α)(· | X,y) is 1
d∥θ − θ∗∥22 ≈ mse(α) + mse∗(α),

depicted by dashed lines for α ∈ {α†, α∗}.

may have local minimizers in B(D) that are different from α∗. In such settings, Proposition 2.16 implies
that Crit must also have critical points different from α∗ for large δ.

We depict in Figure 1 a simulation of the landscape of F (α) and the dynamics (9–10) across a range of
values δ ∈ [0.25, 4], in a simple setting of 1

2N (α1, 1) +
1
2N (α2, 0.25) with K = 2 mixture components and

true mixture means α∗ = (−1, 1). The Almeida-Thouless condition for stability of the replica-symmetric
phase was computed in [31, Eq. (25)] to be (in our notation)

1− ω2

δ
Eg∗,ω∗ [Varg,ω[θ]

2] ≥ 0 (58)

where g(·) = g(·, α) and (ω, ω∗) = (ω(α), ω∗(α)). We have verified that this condition holds at each tested
δ > 0 and parameter α ∈ RK depicted in Figure 1, and thus we conjecture that the depicted replica-
symmetric free energy function F (α) is indeed the correct asymptotic limit of − 1

d logPg(·,α)(y | X) as
n, d → ∞ (even in settings where our assumption of a log-Sobolev inequality for the posterior law may not
hold). We observe, not only for large δ but across a range of values δ ∈ [0.25, 4], that the landscape F (α)
has two local minimizers, one fixed at the true parameter α∗ = (−1, 1) and a second minimizer α† whose
location depends on δ. As δ decreases, this second minimizer approaches (1,−1) — characterizing a prior
law with mixture means matching those of g∗ = g( · , α∗) but with the mixture variances reversed — and
the free energy difference F (α†) − F (α∗) approaches 0, indicating that it becomes increasingly difficult to
distinguish α† from the true parameter α∗. The dynamics {α̂t}t≥0 follow a smooth trajectory to one of α†

or α∗, depending on the initial state α̂0.
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(a)

(d)

(b)

(e)

(c)

(f)

Figure 2: Simulations for the Gaussian mixture prior model p1(α)N (0, 0.04)+ p2(α)N (0, 1)+ p3(α)N (0, 25)
of Example 2.18, with true weights p(α∗) = (0.6, 0.2, 0.2) and linear model noise variance σ2 = δs2 for

s = 0.2. Empirical Bayes Langevin dynamics are run for two initializations α̂0 with random θ0j
iid∼ N (0, 1)

(black and blue), and an initialization α̂0 near α∗ with ground truth θ0j = θ∗j (green). The remaining setup is
the same as in Figure 1. (a–e) Landscape of the replica-symmetric free energy F (α) for δ ∈ {4, 2, 1, 0.75, 0.5},
plotted as log(F (α)−F (α∗)+10−3) in the coordinates p(α) on the simplex. The unique critical point p(α∗)
is depicted as the red star. Sample paths of {p(α̂t)}t≥0 are shown in green, black, and blue. (f) Mean-
squared-error 1

d∥θ
t − θ∗∥22 across iterations for these same three initial states, at δ = 0.75. The predicted

value of mse(α∗) + mse∗(α
∗) for a posterior sample is depicted by the dashed line.

Example 2.18. Consider a K + 1-component Gaussian mixture prior

g(θ, α) =

K∑
k=0

pk(α)

√
ωk
2π

exp
(
−ωk

2
(θ − µk)

2
)
, pk(α) =

eαk

eα0 + . . .+ eαK

with fixed means µ0, . . . , µK and variances ω−1
0 , . . . , ω−1

K , parametrized instead by the mixture weights
pk(α) = eαk/(eα0 + . . . + eαK ). Let us suppose that g∗(θ) = g(θ, α∗) for some α∗ ∈ RK+1, and the pa-
rameter pairs (µ0, ω0), . . . , (µK , ωK) are distinct. We again consider the dynamics driven by

G(α,P) = Eθ∼P[∇α log g(θ, α)]−∇R(α),

where R(α) is a regularizer of the form (54–55) such that α0, α∗ ∈ B(D). This parametrization is over-
parametrized by a single parameter — however, defining the K-dimensional linear subspace E = {α ∈
RK+1 : α0 + . . . + αK = 0}, a direct calculation (c.f. Section 5.2) verifies that ∇α log g(θ, α) ∈ E and
∇R(α) ∈ E if α ∈ E. Thus, initializing α̂0 ∈ E ensures α̂t ∈ E for all t ≥ 0, and we may apply our preceding
results upon identifying E isometrically with RK .

We verify in Section 5.2 that Assumption 2.2(b) holds. Then again for fixed s2 > 0 and all large δ,
Proposition 2.16 ensures that Assumption 2.11 also holds, and there is a 1-to-1 correspondence between
the critical points of F and Gs2(α) on B(D). Here, Gs2(α) is the negative population log-likelihood of the
Gaussian mixture model

Pg(·,α),s−2(y) =

K∑
k=0

pk(α)

√
1

2π(ω−1
k + s2)

exp
(
− 1

2(ω−1
k + s2)

(y − µk)
2
)
. (59)
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Letting S = {(p0, . . . , pK) : p0+ . . .+ pK = 1, p0, . . . , pK > 0} be the open probability simplex, the mapping
α ∈ E 7→ p(α) ∈ S is a 1-to-1 smooth parametrization with smooth inverse, and the function Gs2 is strictly
convex in the parametrization by (p0, . . . , pK) ∈ S. Thus p∗ = p(α∗) ∈ S is the unique critical point where
∇pGs2 = 0, and the Hessian ∇2

pGs2 is nonsingular at p∗. This implies that α∗ ∈ E is also the unique critical
point where ∇αGs2 = 0, and ∇2

αGs2 is also non-singular at α∗. So for large δ, Proposition 2.16 ensures that
α∗ must be the unique point of Crit∩B(D).

Figure 2 depicts the simulated landscape of F (α) and dynamics (9–10) in a scaled-mixture-of-normals
model p1(α)N (0, 0.04)+p2(α)N (0, 1)+p3(α)N (0, 25) with all components having mean 0, across a range of
values δ ∈ [0.5, 4], and with true weights p(α∗) = (0.6, 0.2, 0.2). (We have again verified that the Almeida-
Thouless stability condition (58) holds at each depicted δ > 0 and parameter value α ∈ RK in these figures.)
We observe for all tested values δ ∈ [0.5, 4] that α∗ is the unique local minimizer and critical point of F (α).
However, as δ decreases, the landscape of F (α) flattens around α∗ along a direction representing a family of
priors g( · , α) having the same first two moments as g( · , α∗), reflecting that the problem of learning g( · , α∗)
beyond its second moment becomes increasingly ill-conditioned. The learned parameter {α̂t}t≥0 successfully
converges to α∗ from several different initial states α̂0 when δ ≥ 0.75, with mixing of Langevin dynamics
becoming increasingly slower as δ decreases. For δ = 0.5, the learned parameter {α̂t}t≥0 fails to converge
to α∗ under the tested time horizon from random initializations of θ0, but does converge to α∗ under a
ground-truth initialization θ0 = θ∗ and α̂0 close to α∗.

3 Analysis of approximately-TTI DMFT systems

In this section, we prove Theorem 2.5 on the equilibrium properties of the solution to the DMFT equations
under an assumption of approximate time-translation-invariance (from an out-of-equilibrium initialization).
We assume throughout this section that Assumptions 2.1 and 2.2(a) hold, and that the solution to the DMFT
system in Theorem 2.3(a) approximating the dynamics (7) with the fixed prior g(·) is approximately-TTI
in the sense of Definition 2.4. We denote by {θt}t≥0, {ηt}t≥0, and Cθ, Cη, Rθ, Rη the components of this
DMFT solution.

3.1 Analysis of θ-equation

We first derive, from analysis of the evolution (23) for {θt}t≥0, a representation of cttiθ (0), cttiθ (∞), cθ(∗) in
terms of cttiη (0), cttiη (∞), assuming a condition cttiη (0) − cttiη (∞) < δ/σ2 which ensures long-time stability of
{θt}t≥0 under (23). This condition will be checked in our subsequent analysis of the evolution of {ηt}t≥0.

Lemma 3.1. Suppose cttiη (0) − cttiη (∞) < δ/σ2. Set ω = δ/σ2 − (cttiη (0) − cttiη (∞)) and ω∗ = ω2/cttiη (∞).
Then

cttiθ (0) = Eg∗,ω∗⟨θ2⟩g,ω, cttiθ (∞) = Eg∗,ω∗⟨θ⟩2g,ω, cθ(∗) = Eg∗,ω∗ [⟨θ⟩g,ωθ∗]. (60)

The main idea of the proof is to apply the explicit form of cttiθ in (33) together with its fluctuation
dissipation relation with rttiθ in (36) to approximate Cθ, Rθ at large times by correlation and response

functions C
(M)
θ , R

(M)
θ that admit an interpretation as the effect of marginalization over auxiliary variables

(xt1, . . . , x
t
M ) in a Markovian joint evolution of (θt, xt1, . . . , x

t
M ) conditional on θ∗. In contrast to the original

high-dimensional dynamics of {θt}t≥0 in Rd, here M does not depend on (n, d), and the dynamics of
{xt1, . . . , xtM} will be decoupled given {θt}t≥0. This decoupling allows us to provide a simple explicit form
for the θ-marginal of the stationary distribution of (θ, x1, . . . , xM ) conditional on θ∗, which in the limit
M → ∞ will match the conditional distribution θ | θ∗ under the limit law Pg∗,ω∗;g,ω(θ, θ

∗).
To implement this idea, we will exhibit a coupling of the processes {θt}t≥0 driven by Cθ, Rθ and

{θtM,T0
}t≥0 driven by C

(M)
θ , R

(M)
θ from time T0 onwards, and then analyze the convergence of {θtM,T0

}t≥0

under the equivalent Markovian representation of its dynamics. The main technical challenge is to ensure ei-

ther that the discretization error ε(M) obtained by approximating Cθ, Rθ by C
(M)
θ , R

(M)
θ does not compound

exponentially over time, or that the convergence time of {θtM,T0
}t≥0 in the equivalent Markovian dynamics

is independent of the approximation dimension M . We will take the first approach here, by adapting ideas
around sticky and reflection couplings developed in [74, 75] to a setting of non-Markovian DMFT dynamics
for {θt}t≥0 and {θtM,T0

}t≥0.
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3.1.1 Comparison with an auxiliary process

Let us fix a positive integer M and define two sequences {am}Mm=0 and {cm}Mm=1 by

am = ι+
m√
M

for m = 0, . . . ,M,
c2m
am

= µη([am−1, am)) for m = 1, . . . ,M (61)

where µη is given in Definition 2.4. We set

R(M)
η (τ) =

M∑
m=1

c2me−amτ , C(M)
η (t, s) =

M∑
m=1

c2m
am

(e−am|t−s| − e−am(t+s)) + cttiη (∞).

A direct calculation of the covariance shows that

C(M)
η (t, s) = E[utMusM ] for utM = z +

M∑
m=1

cm

∫ t

0

e−am(t−s)√2 dbsm, (62)

where z ∼ N (0, cttiη (∞)) and {bt1}t≥0, . . . , {btM}t≥0 are standard Brownian motions independent of each other

and of z. In particular, C
(M)
η (t, s) is a positive-semidefinite covariance kernel on [0,∞).

For convenience, let us set

U(θ, θ∗) = − δ

σ2
(θ − θ∗) + (log g)′(θ),

so the DMFT equation (23) reads

dθt =
[
U(θt, θ∗) +

∫ t

0

Rη(t, s)(θ
s − θ∗)ds+ ut

]
dt+

√
2 dbt. (63)

Let {utM}t≥0 be a centered Gaussian process with covariance kernel C
(M)
η , defined in the probability space

of {ut, θt}t≥0 and independent of θ∗. Fixing a time T0 > 0, let {b̃t}t≥T0 be a standard Brownian motion ini-

tialized at b̃T0 = 0, independent of {ut}t≥0, θ
∗, and {θt}t∈[0,T ]. We consider an auxiliary process {θtM,T0

}t≥0

defined by

θtM,T0
= θt for t ∈ [0, T0],

dθtM,T0
=
[
U(θtM,T0

, θ∗) +

∫ t

0

R(M)
η (t− s)(θsM,T0

− θ∗)ds+ utM

]
dt+

√
2 db̃t for t ≥ T0.

(64)

We proceed to construct a coupling of {utM}t≥0 with {ut}t≥0 and of {b̃t}t≥T0
with {bt − bT0}t≥T0

defining
the DMFT solution {θt}t≥0, to yield a coupling of {θtM,T0

}t≥T0
with {θt}t≥T0

.

Lemma 3.2. For any M,T0, T > 0, there exists a coupling of {utM}t≥0 and {ut}t≥0 such that

sup
t∈[T0,T0+T ]

E(utM − ut)2 ≤ ε(M) +
√
T ε(T0),

where ε(M) does not depend on T0, T and ε(T0) does not depend on M,T , and limM→∞ ε(M) = 0 and
limT0→∞ ε(T0) = 0.

Proof. Define the covariance kernel C
(∞)
η (t, s) =

∫∞
ι

(
e−a|t−s| − e−a(t+s)

)
µη(da) + cttiη (∞) representing the

M → ∞ limit of (62). We will couple Gaussian processes with covariance kernels (C
(M)
η , C

(∞)
η ) and with

(C
(∞)
η , Cη) respectively.

Coupling of (C
(M)
η , C

(∞)
η ). Let M ′ > M be any positive integer for which

√
M ′ is an integer multiple of√

M , and let {ãm}M ′

m=0 and {c̃m}M ′

m=1 be the sequences as defined above with M ′ in place of M . Note then
that the grid points {aj}Mj=0 are a subset of the grid points {ãi}M

′

i=0. Let

utM ′ = z +

M ′∑
i=1

c̃i

∫ t

0

e−ãi(t−s)
√
2 db̃si (65)
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where z ∼ N (0, cttiη (∞)) and {b̃t1}t≥0, . . . {b̃tM ′}t≥0 are standard Brownian motions independent of each other

and of z. Then (62) shows that {utM ′}t≥0 has covariance C
(M ′)
η . Now, for each j = 1, . . . ,M , let

Ij = {i : aj−1 < ãi ≤ aj}, btj =
∑
i∈Ij

c̃ib̃
t
i

/√∑
i∈Ij

c̃2i

and set

utM = z +

M∑
j=1

cj

∫ t

0

e−aj(t−s)
√
2 dbsj .

Then {bt1}t≥0, . . . , {btM}t≥0 are standard Brownian motions independent of each other and of z, so (62) shows

also that {ut}t≥0 is a Gaussian process with covariance C
(M)
η .

We may now bound

E[(utM − utM ′)2] ≤ 4E
[( ∑

i:ãi>aM

c̃i

∫ t

0

e−ãi(t−s)db̃si

)2]

+ 4E
[( M∑

j=1

∑
i∈Ij

c̃i

∫ t

0

e−ãi(t−s)db̃is −
M∑
j=1

cj

∫ t

0

e−aj(t−s)dbsj

)2]
.

Since aM = ι+
√
M , the first term equals

∑
i:ãi>ι+

√
M c̃2i /ãi =

∑
i:ãi>ι+

√
M µη([ãi−1, ãi)), which is at most

some ε1(M) satisfying limM→∞ ε1(M) = 0, by finiteness of the measure µη. The second term is bounded as

E
[( M∑

j=1

∑
i∈Ij

c̃i

∫ t

0

e−ãi(t−s)db̃si −
M∑
j=1

cj

∫ t

0

e−aj(t−s)dbsj

)2]

= E
[( M∑

j=1

∑
i∈Ij

∫ t

0

(
c̃ie

−ãi(t−s) − cj c̃i√∑
ℓ∈Ij c̃

2
ℓ

e−aj(t−s)
)
db̃si

)2]

=

M∑
j=1

∑
i∈Ij

∫ t

0

(
c̃ie

−ãis − cj c̃i√∑
ℓ∈Ij c̃

2
ℓ

e−ajs
)2

ds ≤ 2(I + II),

where

I =

M∑
j=1

∑
i∈Ij

∫ t

0

c̃2i
(
e−ãis − e−ajs

)2
ds, II =

M∑
j=1

∑
i∈Ij

∫ t

0

c̃2i

(
1− cj√∑

ℓ∈Ij c̃
2
ℓ

)2
e−2ajsds.

Let ∆ = 1/
√
M be the spacing of {aj}Mj=0. Then, since |ãi − aj | ≤ ∆ and ãi ≤ aj for all i ∈ Ij ,

I ≤
M∑
j=1

∑
i∈Ij

∫ t

0

c̃2i e
−2aj−1ss2∆2ds ≤

M∑
j=1

∫ t

0

(∑
i∈Ij

c̃2i
ãi

)
aje

−2aj−1ss2∆2ds
(∗)
=

M∑
j=1

c2j

∫ t

0

e−2aj−1ss2∆2ds

where we use
∑
i∈Ij c̃

2
i /ãi =

∑
i∈Ij µη([ãi−1, ãi)) = µη([aj−1, aj)) = c2j/aj in (∗). Evaluating this integral,

for an absolute constant C > 0,

I ≤ C∆2
M∑
j=1

c2j
a3j−1

≤ C∆2

ι2

M∑
j=1

c2j
aj

≤ C∆2

ι2
µη([ι,∞)) ≤ ε2(M)

where limM→∞ ε2(M) = 0. For II, since c2j =
∑
ℓ∈Ij

aj
ãℓ
c̃2ℓ , we have |c2j−

∑
ℓ∈Ij c̃

2
ℓ | ≤ ∆

∑
ℓ∈Ij c̃

2
ℓ/ãℓ = ∆c2j/aj ,

and hence

II ≤
M∑
j=1

∑
i∈Ij

c̃2i
2aj

(cj −
√∑

ℓ∈Ij c̃
2
ℓ)

2∑
ℓ∈Ij c̃

2
ℓ

≤
M∑
j=1

(c2j −
∑
ℓ∈Ij c̃

2
ℓ)

2

2ajc2j
≤ ∆2

2

M∑
j=1

c2j
a3j

≤ ∆2

2ι2

M∑
j=1

c2j
aj

≤ ε3(M)
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where limM→∞ ε3(M) = 0. In summary, we have shown that supt≥0 E[(utM − utM ′)2] ≤ ε(M) for some
ε(M) → 0 as M → ∞.

Now note that for any fixed T0 and T , {utM ′}t∈[T0,T0+T ] has covariance kernel C
(M ′)
η that converges

uniformly to C
(∞)
η over [T0, T0+T ] asM ′ → ∞. It is direct to check from its definitions that C

(∞)
η satisfies the

condition (235) of Lemma D.1. So by Lemma D.1, there exists a coupling of {utM ′}t∈[T0,T0+T ] and a Gaussian

process {ut∞}t∈[T0,T0+T ] with covariance {C(∞)
η (t, s)}s,t∈[T0,T0+T ] such that supt∈[T0,T0+T ] E(utM ′ −ut∞)2 → 0

as M ′ → ∞. Combining this with the above bound supt≥0 E[(utM − utM ′)2] ≤ ε(M) and taking M ′ → ∞
shows supt∈[T0,T0+T ] E(utM − ut∞)2 ≤ ε(M).

Coupling of (C
(∞)
η , Cη). By the approximation (31) for Cη in Definition 2.4, we have for any t ≥ s ≥ 0

that

|Cη(t, s)− C(∞)
η (t, s)| ≤ ε(s) +

∫ ∞

ι

e−a(t+s)dµη(a),

so there exists a (different) function ε(T0) with limT0→∞ ε(T0) = 0 such that

sup
s,t∈[T0,T0+T ]

|Cη(t, s)− C(∞)
η (t, s)| ≤ ε(T0).

Here C
(∞)
η satisfies (235) for a constant C0 > 0 depending only on µη, so by Lemma D.1, there exists

a coupling of {ut∞}t∈[T0,T0+T ] with {ut}t∈[T0,T0+T ], the latter having covariance {Cη(t, s)}s,t∈[T0,T0+T ], for

which supt∈[T0,T0+T ] E(ut∞ − ut)2 ≤ C(
√

T ε(T0) + ε(T0)) for a constant C > 0.

Combining these two couplings yields a coupling of {utM}t∈[T0,T0+T ] with {ut}t∈[T0,T0+T ] such that

supt∈[T0,T0+T ] E(utM − ut)2 ≤ ε(M) + C(
√

T ε(T0) + ε(T0)), and extending this arbitrarily to a full cou-

pling of {utM}t≥0 and {ut}t≥0 and adjusting the value of ε(T0) shows the lemma.

Lemma 3.3. Suppose cttiη (0) − cttiη (∞) < δ/σ2. Then for any M,T0, T > 0, there exists a coupling of the
processes {θt}t≥0 and {θtM,T0

}t≥0 defined by (63) and (64) such that

sup
t∈[0,T0+T ]

E|θt − θtM,T0
| ≤ ε(M) +

√
T ε(T0),

where ε(M) does not depend on T0, T and ε(T0) does not depend on M,T , and limM→∞ ε(M) = 0 and
limT0→∞ ε(T0) = 0.

Proof. To ease notation, let us write θ̃t = θtM,T0
and ũt = utM . We couple {ut}t≥0 and {ũt}t≥0 according to

Lemma 3.2. By definition, {θt}t∈[0,T0] and {θ̃t}t∈[0,T0] coincide up to time T0.

To construct the coupling of θt and θ̃t for times t ∈ [T0, T0 + T ], we adapt the ideas of [74,75]: Fix some
ε > 0, and let h : [0,∞) → [0, 1] be a function such that h(0) = 0, h(x) > 0 for x > 0, h(x) = 1 for x ≥ ε,
and both x 7→ h(x) and x 7→

√
1− h(x)2 are Lipschitz. Let {bt}t≥T0

and {b̃t}t≥T0
be two standard Brownian

motions initialized at bT0 = b̃T0 = 0, independent of each other and of {ut}t≥0, {ũt}t≥0, θ
∗, and {θt}t∈[0,T0].

We define a coupling of {θt}t≥T0 and {θ̃t}t≥T0
by the joint evolutions, for t ≥ T0,

dθt =
[
U(θt, θ∗) +

∫ t

0

Rη(t, s)(θ
s − θ∗)ds+ ut

]
dt+ h(|θt − θ̃t|)

√
2 dbt +

√
2(1− h(|θt − θ̃t|)2) db̃t,

dθ̃t =
[
U(θ̃t, θ∗) +

∫ t

0

R(M)
η (t− s)(θ̃s − θ∗)ds+ ũt

]
dt− h(|θt − θ̃t|)

√
2 dbt +

√
2(1− h(|θt − θ̃t|)2) db̃t.

Thus the coupling of the Brownian motions defining these processes is by reflection at times t ≥ T0 where
|θt−θ̃t| ≥ ε, and it transitions to a synchronous coupling as |θt−θ̃t| → 0. Lévy’s characterization of Brownian
motion shows that the resulting marginal laws of {θt}t≥T0

and {θ̃t}t≥T0
indeed coincide with those of (63)

and (64).
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Let us write as shorthand

ξt = θt − θ̃t

vt = U(θt, θ∗) +

∫ t

0

Rη(t, s)(θ
s − θ∗)ds+ ut

ṽt = U(θ̃t, θ∗) +

∫ t

0

R(M)
η (t− s)(θ̃s − θ∗)ds+ ũt.

We derive a SDE for |ξt| that is analogous to [75, Eq. (66)]: For any t ≥ T0, since dξt = (vt − ṽt)dt +
2
√
2h(|ξt|)dbt, Itô’s formula yields

d(ξt)2 = 2ξt[(vt − ṽt)dt+ 2
√
2h(|ξt|)dbt] + 8h(|ξt|)2dt.

For a small constant β > 0, let Sβ : [0,∞) → [0,∞) be a twice continuously-differentiable approximation
to the square root, satisfying Sβ(x) =

√
x for x ≥ β, sup0≤x≤β |Sβ(x)| ≤ C, sup0≤x≤β |S′

β(x)| ≤ Cβ−1/2,

and sup0≤x≤β |S′′
β(x)| ≤ Cβ−3/2 for a universal constant C > 0. (A specific construction is given in [75, Eq.

(68)].) Then again by Itô’s formula, for any t ≥ T0,

dSβ((ξ
t)2) = S′

β((ξ
t)2)
[
2ξt(vt − ṽt)dt+ 4

√
2 ξth(|ξt|)dbt + 8h(|ξt|)2dt

]
+ 16S′′

β((ξ
t)2)(ξt)2h(|ξt|)2 dt. (66)

We may take the limit β → 0 via a dominated convergence argument: Applying S′
β(x) = x−1/2/2 for x ≥ β

and the bound |S′
β(x)| ≤ Cβ−1/2 for x < β, we have |S′

β((ξ
t)2)ξt(vt − ṽt)| ≤ max(C, 1/2)|vt − ṽt|. Since

vt − ṽt is continuous and hence integrable over [T0, t], by dominated convergence

lim
β→0

∫ t

T0

S′
β((ξ

t)2)ξt(vt − ṽt)dt =

∫ t

T0

lim
β→0

S′
β((ξ

t)2)ξt(vt − ṽt)dt =

∫ t

T0

sign(ξt)

2
(vt − ṽt)dt.

Applying the Lipschitz bound h(|ξt|) ≤ h(0) +C|ξt| = C|ξt| and a similar dominated convergence argument
for the other terms of (66), we obtain in the limit β → 0 that for t ≥ T0,

d|ξt| = sign(ξt)(vt − ṽt)dt+ 2
√
2 sign(ξt)h(|ξt|)dbt

which is the analogue of [75, Eq. (66)]. (There is no term corresponding to a local time of ξt at 0 that would
instead arise under a pure reflection coupling.)

Now let A : [0,∞) → [0,∞) be any continuously-differentiable function, and let f : [0,∞) → [0,∞) be
any continuously-differentiable function with absolutely continuous first derivative (for which Itô’s formula
applies, c.f. [76, Theorem 71]), and satisfying f ′(r) ∈ [0, 1] and f ′′(r) ≤ 0 for all r ≥ 0. Set

rt = |ξt|+
∫ t

0

A(t− s)|ξs|ds.

Then drt = d|ξt| + [A(0)|ξt| +
∫ t
0
A′(t − s)|ξs|ds] dt. Applying Itô’s formula and taking expectations gives,

for t ≥ T0,

d

dt
Ef(rt) = E

[
f ′(rt)

(
sign(ξt)(vt − ṽt) +A(0)|ξt|+

∫ t

0

A′(t− s)|ξs|ds
)
+ 4f ′′(rt)h(|ξt|)2

]
. (67)

Let us define κ : [0,∞) → R by

κ(r) = inf
{−(log g)′(x) + (log g)′(y)

x− y
: |x− y| = r

}
(68)

so that [−(log g)′(θt) + (log g′)(θ̃t)]/ξt ≥ κ(|ξt|). Let us set also

∆t =

∫ t

0

(∣∣Rη(t, s)−R(M)
η (t− s)

∣∣ · E|θs − θ∗|
)
ds+ E|ut − ũt|. (69)
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Then, under our assumption f ′(r) ∈ [0, 1], we have the bound

E
[
f ′(rt) sign(ξt)(vt − ṽt)

]
= E

[
f ′(rt) sign(ξt)

(
− δ

σ2
ξt −

(
−(log g)′(θt) + (log g)′(θ̃t)

)
+

∫ t

0

R(M)
η (t− s)(θs − θ̃s)ds+

∫ t

0

(
Rη(t, s)−R(M)

η (t− s)
)
(θs − θ∗)ds+ (ut − ũt)

)]
≤ − δ

σ2
E[f ′(rt)|ξt|]− E[f ′(rt)κ(|ξt|)|ξt|] + E

[
f ′(rt)

∫ t

0

R(M)
η (t− s)|ξs|ds

]
+∆t.

Applying this to (67), for all t ≥ T0,

d

dt
Ef(rt) ≤ E

[
−
( δ

σ2
−A(0)

)
f ′(rt)|ξt| − f ′(rt)κ(|ξt|)|ξt|+ 4f ′′(rt)h(|ξt|)2

]
+ E

[
f ′(rt)

∫ t

0

(
A′(t− s) +R(M)

η (t− s)
)
|ξs|ds

]
+∆t. (70)

Let us now choose the functions A(·) and f(·). For some small enough c0 ∈ (0, ι), let

A(0) =
δ

σ2
− c0, A(τ) = A(0)e−c0τ −

∫ τ

0

e−c0(τ−s)
( M∑
m=1

c2me−ams
)
ds.

This choice of A(τ) satisfies A′(τ) = −c0A(τ)−
∑M
m=1 c

2
me−amτ , i.e.

A′(τ) +R(M)
η (τ) = −c0A(τ). (71)

We will require that A(τ) ≥ 0 for all τ ≥ 0. To check this condition, observe that explicitly evaluating the
integral defining A(τ) yields

ec0τA(τ) = A(0)−
M∑
m=1

c2m
am − c0

(
1− e−(am−c0)τ

)
≥ δ

σ2
− c0 −

M∑
m=1

c2m
am − c0

≥ δ

σ2
− c0 −

M∑
m=1

c2m
am

· ι

ι− c0
,

the last inequality using am ≥ ι ≥ c0. Further bounding
∑M
m=1 c

2
m/am =

∑M
m=1 µη([am−1, am)) ≤

µη([ι,∞)) = cttiη (0) − cttiη (∞), this shows ec0τA(τ) ≥ δ
σ2 − c0 − ι

ι−c0 (c
tti
η (0) − cttiη (∞)). Then by the given

assumption that cttiη (0) − cttiη (∞) < δ/σ2, we obtain A(τ) ≥ 0 for a sufficiently small choice of c0 ∈ (0, ι)
and all τ ≥ 0, as desired. Applying (71) and A(0) = δ/σ2 − c0 into (70), and recalling the definition

rt = |ξt|+
∫ t
0
A(t− s)|ξs|ds, we get for all t ≥ T0 that

d

dt
Ef(rt) ≤ E

[
−c0f

′(rt)rt − f ′(rt)κ(|ξt|)|ξt|+ 4f ′′(rt)h(|ξt|)2︸ ︷︷ ︸
:=F (rt,ξt)

]
+∆t. (72)

We next proceed to bound the above quantity E[F (rt, ξt)]. Observe that under the convexity-at-infinity
condition for − log g(θ) in Assumption 2.2(a), there must exist constants R0, κ0 > 0 for which

κ(r) ≥ −κ0 for all r ≥ 0, κ(r) ≥ 0 for all r ≥ R0. (73)

Let us denote κ−(r) = max(−κ(r), 0). Then −κ(r)r ≤ κ−(r)r and κ−(r)r ∈ [0, κ0R0] for all r ≥ 0. Recall
the constant ε > 0 for which h(x) = 1 when x ≥ ε, and define K : (ε,∞) → [0, κ0R0] by

K(r) = sup
t≥T0

E
[
κ−(|ξt|)|ξt|

∣∣∣ rt = r, |ξt| > ε
]
.

Then define f : R → R by

f(0) = 0, f ′(r) = exp
(
−1

4

∫ max(r,2κ0R0/c0)

0

K(s)ds
)
for r ≥ 0.
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Note that f ′(r) is absolutely continuous as required, with f ′(r) ∈ [c1, 1] for all r ≥ 0 where c1 = exp(−κ2
0R

2
0

2c0
),

and f ′′(r) = − 1
4K(r)f ′(r)1{r < 2κ0R0/c0} ≤ 0. By these definitions, for any r > ε and t ≥ T0, we have

E[F (rt, ξt) | rt = r, |ξt| > ε] ≤ E
[
−c0f

′(rt)rt + f ′(rt)κ−(|ξt|)|ξt|+ 4f ′′(rt)h(|ξt|)2
∣∣∣ rt = r, |ξt| > ε

]
≤ E

[
−c0f

′(r)r + f ′(r)K(r) + 4f ′′(r)
∣∣∣ rt = r, |ξt| > ε

]
.

When r ≥ 2κ0R0/c0 we may apply f ′′(r) = 0 and K(r) ≤ κ0R0 ≤ c0r/2, to bound this above by
−(c0/2)f

′(r)r. When r ∈ (ε, 2κ0R0/c0) we may instead apply f ′′(r) = − 1
4K(r)f ′(r) to see that this equals

−c0f
′(r)r. Thus for all r > ε and t ≥ T0,

E[F (rt, ξt) | rt = r, |ξt| > ε] ≤ −(c0/2)f
′(r)r.

For any r ≥ 0, on the event |ξt| ≤ ε (which occurs with probability 1 when rt ≤ ε since A(t) ≥ 0), let us use
f ′′(rt)h(|ξt|)2 ≤ 0 and −f ′(rt)κ(|ξt|)|ξt| ≤ εκ0 to bound

E[F (rt, ξt) | rt = r, |ξt| ≤ ε] ≤ −c0f
′(r)r + εκ0.

Combining these cases and taking the full expectation over 1{|ξt| > ε} and over rt, we get for all t ≥ T0 that

E[F (rt, ξt)] ≤ −(c0/2)E[f ′(rt)rt] + εκ0.

Applying f ′(rt) ≥ c1 and rt ≥ f(rt) and putting this bound into (72), for all t ∈ [T0, T0 + T ],

d

dt
Ef(rt) ≤ −(c0c1/2)Ef(rt) + εκ0 + max

t∈[T0,T0+T ]
∆t.

Since f(rT0) = f(0) = 0, this differential inequality yields for all t ∈ [T0, T0 + T ],

Ef(rt) ≤
(
εκ0 + max

t∈[T0,T0+T ]
∆t

)1− e−(c0c1/2)(t−T0)

c0c1/2
≤ 2

c0c1

(
εκ0 + max

t∈[T0,T0+T ]
∆t

)
.

Since also rt ≤ c1f(r
t) from the lower bound f ′(r) ≥ c1, this gives Ert ≤ (2/c0)(εκ0 + maxt∈[T0,T0+T ] ∆t).

Applying that A(t) ≥ 0 for all t ≥ 0, we have |ξt| ≤ rt, so this gives finally

max
t∈[T0,T0+T ]

E|θt − θ̃t| = max
t∈[T0,T0+T ]

E|ξt| ≤ (2/c0)
(
εκ0 + max

t∈[T0,T0+T ]
∆t

)
.

We may choose ε such that εκ0 ≤ maxt∈[T0,T0+T ] ∆t. Thus, to conclude the proof, it remains to show

sup
t∈[T0,T0+T ]

∆t ≤ ε(M) +
√
T ε(T0). (74)

We note that under Definition 2.4, E|θt − θ∗| ≤ [E(θt − θ∗)2]1/2 = (Cθ(t, t)− 2Cθ(t, ∗) + Eθ∗2)1/2 ≤ C for a
constant C > 0 and all t ≥ 0. Then for the first term of ∆t, by property (35) of Definition 2.4,∫ t

0

|Rη(t, s)−R(M)
η (t− s)| · E|θs − θ∗|ds

≤ C

∫ t

0

|Rη(t, s)− rttiη (t− s)|ds+ C

∫ t

0

|rttiη (t− s)−R(M)
η (t− s)|ds

≤ Cε(t) +

∫ t

0

|rttiη (t− s)−R(M)
η (t− s)|ds

where here limt→∞ ε(t) = 0. Recalling the sequences {am}Mm=0, {cm}Mm=1 defining R
(M)
η ,

rttiη (τ)−R(M)
η (τ) =

∫ ∞

ι

ae−aτµη(da)−
M∑
m=1

c2me−amτ

=

M∑
m=1

∫ am

am−1

(ae−aτ − ame−amτ )µη(da) +

∫
a:a>aM

ae−aτµη(da),
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hence using the fact that h(a) = ae−aτ satisfies |h′(a)| ≤ 2e−aτ/2 and |am − am−1| = 1/
√
M ,∫ t

0

∣∣rttiη (τ)−R(M)
η (τ)

∣∣dτ ≤
M∑
m=1

∫ am

am−1

(∫ t

0

|ae−aτ − ame−amτ |dτ
)
µη(da) +

∫
a:a>aM

(∫ t

0

ae−aτdτ
)
µη(da)

≤
M∑
m=1

∫ am

am−1

(∫ t

0

(2/
√
M)e−am−1τ/2dτ

)
µη(da) + µη([aM ,∞))

≤ 4√
M

M∑
m=1

∫ am

am−1

1

am−1
µη(da) + µη([aM ,∞))

≤ 4

ι
√
M

µη([ι,
√
M)) + µη([

√
M,∞)) ≤ ε(M),

where limM→∞ ε(M) = 0. This bounds the first term of ∆t by ε(M) + Ct · ε(t). Bounding also the second
term E|ut − ũt| of ∆t by Lemma 3.2, we have

sup
t∈[T0,T0+T ]

∆t ≤ ε(M) +
√
T ε(T0) + sup

t∈[T0,T0+T ]

Ct · ε(t)

which implies (74) upon adjusting ε(T0). This completes the proof.

Adapting part of the previous argument, we record here a uniform bound on E(θt)4 for the solution
{θt}t≥0 of the DMFT equation.

Lemma 3.4. Suppose cttiη (0) − cttiη (∞) < δ/σ2. Then supt≥0 E(θt)4 ≤ C and supt≥0 E(θtM,T0
)4 ≤ C for a

constant C > 0 and all M,T0 > 0.

Proof. We prove the statement for {θt}t≥0. Let A : [0,∞) → [0,∞) be defined by

A(0) =
δ

σ2
− c0, A(τ) = A(0)e−c0τ −

∫ t

0

e−c0(τ−s)rttiη (s)ds

for a small enough constant c0 ∈ (0, ι). Here, by the conditions of Definition 2.4, rttiη (s) = −cttiη
′
(s) =∫∞

ι
ae−asdµη(a), and the same argument as in the preceding proof verifies that infτ∈[0,∞) A(τ) is bounded

below by a positive constant for a sufficiently small choice of c0 ∈ (0, ι) and all τ ≥ 0.
Let f : R → [0,∞) be a smooth approximation to the absolute value, satisfying f(x) = |x| for all |x| ≥ 1,

and 1+f ′(x) ·x ≥ f(x) ≥ |x|, |f ′(x)| ≤ 1, and |f ′′(x)| ≤ C for all x ∈ R and an absolute constant C > 0. Let

θ̄t = θt − θ∗, and set rt = f(θ̄t) +
∫ t
0
A(t− s)f(θ̄s)ds. Then by the DMFT equation (23) and Itô’s formula,

dθ̄t =
[
− δ

σ2
θ̄t + (log g)′(θt) +

∫ t

0

Rη(t, s)θ̄
sds+ ut

]
dt+

√
2 dbt,

drt = f ′(θ̄t)dθ̄t + f ′′(θ̄t)dt+
[
A(0)f(θ̄t) +

∫ t

0

A′(t− s)f(θ̄s)ds
]
dt,

d(rt)4 = 4(rt)3drt + 12(rt)2f ′(θ̄t)2dt.

Applying rt ≥ 0 and the bounds f ′(θ̄t)θ̄t ≥ f(θ̄t) − 1, |f ′(θ̄t)| ≤ 1, |θ̄s| ≤ f(θ̄s), and |f ′′(θ̄t)| ≤ C from the
definition of f(·), this gives

d

dt
E(rt)4 ≤ E

[
4(rt)3

(
− δ

σ2
[f(θ̄t)− 1] + f ′(θ̄t)(log g)′(θt) +

∫ t

0

|Rη(t, s)|f(θ̄s)ds+ |ut|+ C

+A(0)f(θ̄t) +

∫ t

0

A′(t− s)f(θ̄s)ds

)
+ 12(rt)2

]
.
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Then, using A(0) = δ/σ2 − c0 and A′(t− s) + rttiη (t− s) = −c0A(t− s) from the definition of A(·),

d

dt
E(rt)4 ≤ E

[
4(rt)3

(
−c0r

t+
δ

σ2
+f ′(θ̄t)(log g)′(θt)+

∫ t

0

|Rη(t, s)−rttiη (t−s)|f(θ̄s)ds+|ut|+C

)
+12(rt)2

]
.

When |θ̄t| ≥ 1, we must have f ′(θ̄t) = sign(θ̄t) = |θ̄t|/(θt − θ∗). Recalling the function κ(r) from (68), let us
bound in this case

f ′(θ̄t)[(log g)′(θt)− (log g)′(θ∗)] = −|θ̄t| · −(log g)′(θt) + (log g)′(θ∗)

θt − θ∗
≤ −κ(|θ̄t|)|θ̄t| ≤ κ0R0,

where κ0R0 is the deterministic upper bound for −κ(r)r. For |θ̄t| ≤ 1, let us apply instead the Lipschitz
bound |f ′(θ̄t)[(log g)′(θt)− (log g)′(θ∗)]| ≤ L where L is the Lipschitz constant of (log g)′ under Assumption

2.2(a). We also apply |Rη(t, s)− rttiη (t− s)| ≤ ε(t) from Definition 2.4, and
∫ t
0
f(θ̄s)ds ≤ rt/ infτ∈[0,∞) A(τ)

by the definition of rt, where we recall that infτ∈[0,∞) A(τ) is bounded below by a positive constant. Thus,
for some constant C ′ > 0, this yields

d

dt
E(rt)4 ≤ −4c0E(rt)4 + C ′ E

[
ε(t)(rt)4 + (rt)3(1 + |(log g)′(θ∗)|+ |ut|) + (rt)2

]
.

Since ut is a centered Gaussian variable, we note that E(ut)4 = 3[E(ut)2]2 = 3C(t, t)2 which is bounded
uniformly for all t ≥ 0 under Definition 2.4. Also E[|(log g)′(θ∗)|4] is finite by the Lipschitz continuity of
(log g)′ and finiteness of moments of θ∗ under Assumption 2.1. Then by Hölder’s inequality, E[(rt)3(1 +
|(log g)′(θ∗)| + |ut|) + (rt)2] ≤ C(E[(rt)4]3/4 + E[(rt)4]1/2) for some C > 0. Thus, for some C, T,R > 0
sufficiently large depending on C ′, c0, the above implies

d

dt
E(rt)4 ≤ C E(rt)4,

d

dt
E(rt)4 ≤ −4c0E(rt)4 + c0E(rt)4 < 0 whenever t ≥ T and E(rt)4 ≥ R.

This implies that supt≥0 E(rt)4 is bounded by a constant depending only on C, T,R. Then supt≥0 E(θt)4 is

also bounded since θt = θ̄t + θ∗ and |θ̄t| ≤ f(θ̄t) ≤ rt.

The argument to bound E(θM,T0)
4 is the same upon replacing Rη(t, s) and ut by R

(M)
η (t, s) and utM for

s, t ≥ T0, and we omit the details for brevity.

3.1.2 Convergence of the auxiliary process

Extending the definition (40) of Pg∗,ω∗;g,ω, let P
⊗2
g∗,ω∗;g,ω denote the law of a triple (θ∗, θ, θ′) where θ∗, θ are

generated according to (41) defining Pg∗,ω∗;g,ω and θ′ is a second independent copy of θ drawn from the
posterior measure conditional on y.

Lemma 3.5. Suppose cttiη (0) − cttiη (∞) < δ/σ2. Fix any M,T0 > 0, set ω(M) = δ/σ2 −
∑M
m=1 c

2
m/am and

ω
(M)
∗ = (ω(M))2/cttiη (∞), and let {θtM,T0

}t≥0 be the process (64). Then for any T, T ′ > 0,

W1

(
P(θ∗, θT0+T

M,T0
, θT0+T+T ′

M,T0
),P⊗2

g∗,ω
(M)
∗ ;g,ω(M)

)
≤ C

√
M(e−cT + e−cT

′
)

for some constants C, c > 0 not depending on M,T0, T, T
′.

Proof. Let z ∼ N (0, cttiη (∞)) and let {b̃t}t≥T0 and {btm}t≥0 for m = 1, . . . ,M be M + 1 standard Brownian
motions. These are all independent of each other, of θ∗, and of {θt}t∈[0,T ]. We note that the law of {θtM,T0

}t≥0

defined by (64) coincides with the marginal law of {θtM,T0
}t≥0 in the joint process

θtM,T0
= θt for t ∈ [0, T0],

dθtM,T0
=
[
− δ

σ2
(θtM,T0

− θ∗) + (log g)′(θtM,T0
) + z +

M∑
m=1

cmxtm

]
dt+

√
2 db̃t for t > T0, (75)

dxtm = [−amxtm + cm(θtM,T0
− θ∗)]dt+

√
2 dbtm for 1 ≤ m ≤ M, t ≥ 0 (76)
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with initial conditions x0
1 = . . . = x0

M = 0. Indeed, given {θtM,T0
}t≥0, the equations (76) for {xtm}t≥0 are

linear and have the explicit solutions

xtm = cm

∫ t

0

e−am(t−s)(θsM,T0
− θ∗)ds+

∫ t

0

e−am(t−s)√2 dbsm. (77)

Substituting these solutions into (75) gives (64), upon identifying utM = z +
∑M
m=1 cm

∫ t
0
e−am(t−s)√2 dbsm.

Here {utM}t≥0 is a centered Gaussian process independent of θ∗ and {b̃t}t≥T0 , with covariance kernel exactly

C
(M)
η (t, s) by (62). Thus the marginal law of {θtM,T0

}t≥0 coincides with the definition in (64).

For t ≥ T0, let x
t = (θtM,T0

, xt1, . . . , x
t
M ) and bt = (b̃t, bt1, . . . , b

t
M ). Conditional on θ∗ and z, the evolution

of {xt}t≥T0
defined by (75–76) is a standard (Markovian) Langevin diffusion given by

dxt = −∇H(xt | θ∗, z)dt+
√
2 dbt

with Hamiltonian

H(x | θ∗, z) = H(θ, x1, . . . , xM | θ∗, z) (78)

=
1

2

( δ

σ2
−

M∑
m=1

c2m
am︸ ︷︷ ︸

=ω(M)

)
(θ − θ∗)2 − log g(θ)− z θ +

M∑
m=1

am
2

( cm
am

(θ − θ∗)− xm

)2

=
ω(M)

2
(θ − θ∗ − z/ω(M))2 − log g(θ) +

M∑
m=1

am
2

( cm
am

(θ − θ∗)− xm

)2
+ const., (79)

for an additive constant not depending on x = (θ, x1, . . . , xM ). Note that the given condition cttiη (0) −
cttiη (∞) < δ/σ2 implies that ω(M) > 0 strictly.

Convergence of {xt}t≥T0
in Wasserstein-1 to a stationary law then follows from the results of [74]: For

any x = (θ, x1, . . . , xM ) and x′ = (θ′, x′
1, . . . , x

′
M ), we have

(x− x′)⊤(∇H(x | θ∗, z)−∇H(x′ | θ∗, z)) = (θ − θ′)(−(log g)′(θ) + (log g)′(θ′)) + (x− x′)⊤L(x− x′)

where

L =


δ
σ2 −c1 . . . −cM
−c1 a1
...

. . .

−cM aM

 .

By the positivity of the Schur complement ω(M) = δ/σ2 −
∑M
m=1 c

2
m/am ≥ δ/σ2 − (cttiη (0) − cttiη (∞))

and of am ≥ ι, this matrix L is strictly positive-definite, with smallest eigenvalue bounded away from 0
independently of M . Then, recalling the function κ(r) from (68),

(x− x′)⊤(∇H(x | θ∗, z)−∇H(x′ | θ∗, z)) ≥ (θ − θ′)2κ(|θ − θ′|) + c∥x− x′∥22

for a constant c > 0. Recalling also that κ(r) is positive for all r > R0 and some R0 > 0, and considering
separately the cases where |θ − θ′| ≤ R0 and |θ − θ′| > R0, this verifies that

inf
∥x−x′∥2=r

(x− x′)⊤(∇H(x | θ∗, z)−∇H(x′ | θ∗, z))
∥x− x′∥22

> c′

for all r > R′
0 and some constants c′, R′

0 > 0. Then by [74, Corollary 3], the Langevin diffusion {xt}t≥T0 has
the unique stationary law

P∞(x) ∝ exp(−H(x | θ∗, z)). (80)

Let us write x∞ ∼ P∞ and ⟨f(x∞)⟩ for a sample and Gibbs average under this stationary law. Let us write
also W1(·) for the Wasserstein-1 distance conditional on θ∗, z, and P(xT0+T | xT0 = x) for the conditional
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law of xT0+T given θ∗, z and the initial condition xT0 = x. Then also by [74, Corollary 2 and 3], there exist
constants C, c > 0 such that for any T > 0,

W1(P(x
T0+T | xT0 = x),P∞) ≤ Ce−cTW1(δx,P

∞) ≤ Ce−cT (∥x∥2 + ⟨∥x∞∥2⟩).

Similarly, for any T ′ > 0,

W1(P(x
T0+T+T ′

| xT0+T = x),P∞) ≤ Ce−cT
′
(∥x∥2 + ⟨∥x∞∥2⟩).

Combining the two conditional couplings that attain these Wasserstein-1 bounds, and taking the average
over the sample path {xt}t≥T0

(which we denote by ⟨f(xt)⟩, still conditional on θ∗, z),

W1(P(x
T0+T , xT0+T+T ′

), (P∞)⊗2) ≤ C(e−cT + e−cT
′
)(⟨∥xT0∥2⟩+ ⟨∥xT0+T ∥2⟩+ ⟨∥x∞∥2⟩)

where (P∞)⊗2 is the law of two independent samples from P∞. The explicit form (77) for each {xtm}t≥0

implies that ⟨|xtm|⟩ ≤ cm
∫ t
0
e−ι(t−s)(⟨|θsM,T0

|⟩+ |θ∗|)ds+ (am)−1/2, and hence

⟨∥xt∥2⟩ ≤ C
√
M
(
1 + |θ∗|+

∫ t

0

e−ι(t−s)⟨|θsM,T0
|⟩ds

)
for a constant C > 0. Then, taking the full expectation over θ∗, z and applying E⟨|θtM,T0

|⟩ ≤ C by Lemma

3.4, we get E⟨∥xt∥2⟩ ≤ C ′
√
M for a constant C ′ > 0 and all t ≥ 0. Then, applying this above gives

EW1(P(x
T0+T , xT0+T+T ′

), (P∞)⊗2) ≤ C
√
M(e−cT + e−cT

′
) (81)

for some (different) constants C, c > 0.
Finally, note that the stationary law P∞(x) defined by (80) with Hamiltonian (79) describes a joint law

(conditional on θ∗, z) of (θ, x1, . . . , xM ) where xm | θ is Gaussian and independent across m = 1, . . . ,M ,
and θ has marginal law given exactly by P(θ | y) in the Gaussian convolution model (37) with obser-
vation y = θ∗ + z/ω(M). Here, the noise variable z/ω(M) is Gaussian with variance cttiη (∞)/(ω(M))2 =

(ω
(M)
∗ )−1, so the joint law of θ∗ and the (θ, θ′)-marginals of the conditional law (P∞)⊗2 given (θ∗, z) is pre-

cisely P⊗2

g∗,ω
(M)
∗ ;g,ω(M)

. Then, taking the (θ, θ′)-marginals of the coupling (conditional on θ∗, z) that attains

W1(P(x
T0+T , xT0+T+T ′

), (P∞)⊗2) and combining with the identity coupling of θ∗, we have

W1(P(θ
∗, θT0+T

M,T0
, θT0+T+T ′

M,T0
),P⊗2

g∗,ω
(M)
∗ ;g,ω(M)

) ≤ W1(P(x
T0+T , xT0+T+T ′

), (P∞)⊗2).

Taking the full expectation over θ∗, z on both sides and applying the bound (81) shows the lemma.

Lemma 3.6. Suppose cttiη (0)− cttiη (∞) < δ/σ2. For any M > 0, let

ω(M) = δ/σ2 −
M∑
m=1

c2m/am, ω
(M)
∗ = (ω(M))2/cttiη (∞),

ω = δ/σ2 − (cttiη (0)− cttiη (∞)), ω∗ = ω2/cttiη (∞).

Then limM→∞ W1(P
⊗2

g∗,ω
(M)
∗ ;g,ω(M)

,P⊗2
g∗,ω∗;g,ω) = 0.

Proof. Let (θ∗, θ, θ′) ∼ P⊗2
g∗,ω∗;g,ω, i.e. θ, θ

′ are two independent draws from the posterior law Pg,ω(θ | y) in

the scalar Gaussian convolution model (37) where y = θ∗ + ω∗−1/2z and z ∼ N (0, 1). Let ⟨·⟩g,ω be average
over θ, θ′ conditional on θ∗, z, and let F be the class of 1-Lipschitz functions f(θ∗, θ, θ′). Then, for any
f ∈ F ,

Eg∗,ω∗⟨f(θ∗, θ, θ′)⟩g,ω = E
∫
f(θ∗, θ, θ′) exp(−ω

2 [(θ
∗ + ω∗−1/2z − θ)2 + (θ∗ + ω∗−1/2z − θ′)2])g(θ)g(θ′)d(θ, θ′)∫

exp(−ω
2 [(θ

∗ + ω∗−1/2z − θ)2 + (θ∗ + ω∗−1/2z − θ′)2])g(θ)g(θ′)d(θ, θ′)
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where E on the right side is over θ∗ ∼ g∗ and z ∼ N (0, 1). Writing ⟨·⟩ for ⟨·⟩g,ω and κ2 for its associated
posterior covariance, the above is continuously-differentiable in (ω, ω∗) with

∂ωE⟨f(θ∗, θ, θ′)⟩ = E
[
κ2

(
f(θ∗, θ, θ′),− 1

2 [(θ
∗ + ω∗−1/2z − θ)2 + (θ∗ + ω∗−1/2z − θ′)2]

)]
∂ω∗E⟨f(θ∗, θ, θ′)⟩ = E

[
κ2

(
f(θ∗, θ, θ′), ωz

ω
3/2
∗

[(θ∗ + ω∗−1/2z − θ) + (θ∗ + ω∗−1/2z − θ′)]
)]

By the 1-Lipschitz bound for f and the identity VarX = 1
2E[(X −X ′)2] where X ′ is an independent copy

of X, we have κ2(f(θ
∗, θ, θ′), f(θ∗, θ, θ′)) ≤ C(κ2(θ, θ) + κ2(θ

′, θ′)) for an absolute constant C > 0. Then,
applying Cauchy-Schwarz to κ2(·) above, we get that (ω, ω∗) 7→ Eg∗,ω∗⟨f(θ∗, θ, θ′)⟩g,ω is locally Lipschitz-

continuous uniformly over f ∈ F . Since limM→∞
∑M
m=1 c

2
m/am = µη([ι,∞)) = cttiη (0) − cttiη (∞), we have

limM→∞(ω(M), ω
(M)
∗ ) = (ω, ω∗). Then this local Lipschitz continuity implies as desired

lim
M→∞

W1(P
⊗2

g∗,ω
(M)
∗ ;g,ω(M)

,P⊗2
g∗,ω∗;g,ω) = lim

M→∞
sup
f∈F

∣∣∣Eg∗,ω∗⟨f(θ∗, θ, θ′)⟩g,ω − E
g∗,ω

(M)
∗

⟨f(θ∗, θ, θ′)⟩g,ω(M)

∣∣∣ = 0.

We now complete the proof of Lemma 3.1.

Proof of Lemma 3.1. By Lemmas 3.3, 3.5, and 3.6, for any M,T0, T, T
′ > 0,

W1(P(θ
∗, θT0+T , θT0+T+T ′

),P⊗2
g∗,ω∗;g,ω) ≤ ε(M) + 2

√
T + T ′ ε(T0) + C

√
M(e−cT + e−cT

′
).

Setting T = T ′ = t, choosing T0 ≡ T0(t) so that limt→∞ T0(t) = ∞ and limt→∞
√
2t ε(T0(t)) = 0, and taking

t → ∞ followed by M → ∞, this shows

lim
t→∞

W1(P(θ
∗, θT0(t)+t, θT0(t)+2t),P⊗2

g∗,ω∗;g,ω) = 0.

In particular, we have the weak convergence in distribution of (θ∗, θT0(t)+t, θT0(t)+2t) to P⊗2
g∗,ω∗;g,ω. Lemma

3.4 implies that (θ∗, θT0(t)+t, θT0(t)+2t) is uniformly bounded in L4 and hence uniformly integrable in L2, so
this implies

lim
t→∞

W2(P(θ
∗, θT0(t)+t, θT0(t)+2t),P⊗2

g∗,ω∗;g,ω) = 0. (82)

Then, under Definition 2.4 and by definition of the law P⊗2
g∗,ω∗;g,ω, we have as desired

cttiθ (0) = lim
t→∞

Cθ(T0(t) + t, T0(t) + t) = lim
t→∞

E[(θT0(t)+t)2] = Eg∗,ω∗⟨θ2⟩g,ω,

cttiθ (∞) = lim
t→∞

Cθ(T0(t) + t, T0(t) + 2t) = lim
t→∞

E[θT0(t)+tθT0(t)+2t] = Eg∗,ω∗⟨θ⟩2g,ω,

cθ(∗) = lim
t→∞

Cθ(T0(t) + t, ∗) = lim
t→∞

E[θT0(t)+tθ∗] = Eg∗,ω∗ [⟨θ⟩g,ωθ∗].

3.2 Analysis of η-equation

We next derive from an analysis of the evolution (25) for {ηt}t≥0 a representation of cttiη (0), cttiη (∞) in terms

of cttiθ (0), cttiθ (∞), cθ(∗).

Lemma 3.7. It holds that

cttiη (0) =
δ

σ4

[
Eθ∗2 + σ2 + cttiθ (∞)− 2cθ(∗)(
1 + σ−2(cttiθ (0)− cttiθ (∞))

)2 +
cttiθ (0)− cttiθ (∞)

1 + σ−2(cttiθ (0)− cttiθ (∞))

]
, (83)

cttiη (∞) =
δ

σ4

Eθ∗2 + σ2 + cttiθ (∞)− 2cθ(∗)
(1 + σ−2(cttiθ (0)− cttiθ (∞)))2

, (84)

and in particular cttiη (0)− cttiη (∞) < δ/σ2.
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The argument is similar to the analysis of {θt}t≥0, where we may approximate the dynamics of {ηt}t≥0

at large times by a Markovian joint evolution of a system (ηt, xt1, . . . , x
t
M ). Our argument here is simpler

than before, as the dynamics of (ηt, xt1, . . . , x
t
M ) will be linear, from which we may explicitly analyze the

convergence of ηt and show that it is independent of M ; thus we will apply a simple Gronwall argument to
bound the propagation of the discretization error ε(M) over time.

3.2.1 Comparison with an auxiliary process

We again fix a positive integer M , and define {am}Mm=0 and {cm}Mm=1 by

am = ι+
m√
M

for m = 0, . . . ,M,
c2m
am

= µθ([am−1, am))

with µθ now instead of µη. For convenience, let us introduce ξt = ηt+w∗ − ε and vt = −wt+w∗ − ε, so the
DMFT equation (25) for {ηt}t≥0 is equivalently

ξt = − 1

σ2

∫ t

0

Rθ(t, s)ξ
sds+ vt. (85)

Here, {vt}t≥0 is a centered Gaussian process with covariance E[vtvs] = Cθ(t, s)−Cθ(t, ∗)−Cθ(s, ∗)+E(θ∗)2+
σ2. We set

R
(M)
θ (τ) =

M∑
m=1

c2me−amτ , C
(M)
θ (t, s) =

M∑
m=1

c2m
am

(e−am|t−s| − e−am(t+s)) + cttiθ (∞)

and define an auxiliary process {ξtM,T0
}t≥0 by

ξtM,T0
= ξt for t ∈ [0, T0)

ξtM,T0
= − 1

σ2

∫ t

0

R
(M)
θ (t− s)ξsM,T0

ds+ vtM for t ≥ T0 (86)

where {vtM}t≥0 is a centered Gaussian process with covariance E[vtMvsM ] = C
(M)
θ (t, s)−2cθ(∗)+E(θ∗)2+σ2,

defined in the probability space of {ξt}t≥0. (We check in the proof of Lemma 3.10 below that this is indeed
a positive-semidefinite covariance kernel.) We note that the process {ξtM,T0

}t≥0 may be discontinuous at T0;
this is inconsequential for our subsequent analysis.

Lemma 3.8. For any M,T0, T > 0, there exists a coupling of {ξt}t≥0 and {ξtM,T0
}t≥0 such that

sup
t∈[0,T0+T ]

E(ξt − ξtM,T0
)2 ≤ CeCT (ε(M) +

√
T ε(T0))

where ε(M) does not depend on T0, T and ε(T0) does not depend on M,T , and limM→∞ ε(M) = 0 and
limT0→∞ ε(T0) = 0.

Proof. Applying the approximation (30) and arguments analogous to Lemma 3.2, we have that

sup
s,t∈[T0,T0+T ]

|E[vtMvsM ]− E[vtvs]|

≤ sup
s,t∈[T0,T0+T ]

|C(M)
θ (t, s)− Cθ(t, s)|+ |cθ(∗)− Cθ(t, ∗)|+ |cθ(∗)− Cθ(s, ∗)| ≤ ε(M) + ε(T0),

and hence there exists a coupling of {vtM,T0
}t≥0 and {vt}t≥0 such that

sup
t∈[T0,T0+T ]

E(vt − vtM )2 ≤ ε(M) +
√
T ε(T0).
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We bound ξt− ξtM,T0
under this coupling of {vt}t≥0 with {vtM}t≥0: Let us write ξ̃

t = ξtM,T0
. We have ξt = ξ̃t

for t ∈ [0, T0), while for t ∈ [T0, T0 + T ],

E(ξt− ξ̃t)2 ≤ 3
[
E
(∫ t

0

R
(M)
θ (t−s)|ξs− ξ̃s|ds

)2
+E
(∫ t

0

|Rθ(t, s)−R
(M)
θ (t−s)||ξs|ds

)2
+E(vt−vtM )2

]
. (87)

From the explicit definition of R
(M)
θ (t− s), the first term of (87) satisfies

E
(∫ t

0

|R(M)
θ (t− s)||ξs − ξ̃s|ds

)2
= E

(∫ t

T0

|R(M)
θ (t− s)||ξs − ξ̃s|ds

)2
≤ C

∫ t

T0

E(ξs − ξ̃s)2ds

for a constant C > 0. Following the argument used to bound (74), the second term of (87) is bounded by
ε(M) + Cε(t)2 where ε(t) → 0 as t → ∞, while the third term is bounded by ε(M) +

√
T ε(T0) under the

above coupling. Then by Gronwall’s inequality,

sup
t∈[T0,T0+T ]

E(ξt − ξ̃t)2 ≤ CeCT
(
ε(M) + sup

t∈[T0,T0+T ]

ε(t)2 +
√
T ε(T0)

)
,

which implies the lemma upon adjusting ε(T0).

3.2.2 Convergence of the auxiliary process

Lemma 3.9. The value σ2
Z = Eθ∗2 + cttiθ (∞)− 2cθ(∗) + σ2 is positive.

Proof. Let {θt}t≥0 be the Langevin diffusion (7) for which the DMFT system of Theorem 2.5 is the large-
(n, d) limit. By Theorem 4.3 to follow,

Cθ(t, s)− Cθ(t, ∗)− Cθ(s, ∗) + E(θ∗)2 = lim
n,d→∞

E

[
1

d

d∑
i=1

(θti − θ∗i )(θ
s
i − θ∗i )

]
Since {θt}t≥0 is Markovian (conditional on X,y,θ∗), we have for all t ≥ s that

E

[
1

d

d∑
i=1

(θti − θ∗i )(θ
s
i − θ∗i )

]
= E

[
E

[
1

d

d∑
i=1

(θti − θ∗i )(θ
s
i − θ∗i )

∣∣∣∣∣ θs,X,y,θ∗

]]
= E

[
1

d

d∑
i=1

(θsi − θ∗i )
2

]
≥ 0,

hence Cθ(t, s)−Cθ(t, ∗)−Cθ(s, ∗)+E(θ∗)2 ≥ 0. Setting s = t/2 and taking the limit t → ∞ under Definition
2.4 shows cttiθ (∞)− 2cθ(∗) + Eθ∗2 ≥ 0, and the lemma follows.

Lemma 3.10. Let c = (c1, . . . , cM ), A = diag(a1, . . . , aM ), Λ = A+cc⊤/σ2, and consider the 2-dimensional
Gaussian law N (0,ΣM ) with

ΣM =

(
ρ2M κM
κM ρ2M

)
, κM = σ2

Z ·
[
1− c⊤Λ−1c/σ2

]2
, ρ2M = κM + c⊤Λ−1c,

where σ2
Z = E(θ∗)2 + cttiθ (∞) − 2cθ(∗) + σ2. Then there exists an error ε(T ) not depending on T0,M and

satisfying limT→∞ ε(T ) = 0, such that for any M,T0, T, T
′ > 0,

W2(P(ξ
T0+T
M,T0

, ξT0+T+T ′

M,T0
),N (0,ΣM )) ≤ ε(T ) + ε(T ′).

Proof. Let z ∼ N (0, σ2
Z), where σ2

Z > 0 by Lemma 3.9, and let {btm}t≥0 for m = 1, . . . ,M be standard
Brownian motions. We assume these are independent of each other and of {ξt}t∈[0,T ]. Then the law of
{ξtM,T0

}t≥0 coincides with the marginal law of {ξtM,T0
}t≥0 in the joint process

ξtM,T0
= ξt for t ∈ [0, T0)

ξtM,T0
=

M∑
m=1

cmxtm + z for t ≥ T0 (88)

dxtm = −[amxtm + cmξtM,T0
/σ2]dt+

√
2 dbtm for 1 ≤ m ≤ M, t ≥ 0 (89)
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with initial conditions x0
1 = . . . = x0

M = 0. Indeed, given {ξtM,T0
}t≥0, the equations (89) for {xtm}t≥0 have

the explicit solutions

xtm = − 1

σ2

∫ t

0

cme−am(t−s)ξsM,T0
ds+

∫ t

0

e−am(t−s)√2 dbsm,

and substituting this into (88) gives (86) upon identifying vtM = z +
∫ t
0

∑M
m=1 cme−am(t−s)√2 dbsm. It is

direct to check that {vtM}t≥0 thus defined has covariance C
(M)
θ (t, s)− 2cθ(∗)+E(θ∗)2 + σ2, so this coincides

with the law of {ξtM,T0
}t≥0 defined by (86).

Let us denote ξ̃t = ξtM,T0
, xt = (xt1, . . . , x

t
M ), and bt = (bt1, . . . , b

t
M ). For t ≥ T0, the evolution of

(ξ̃t, xt) ∈ RM+1 is a (Markovian) Ornstein-Uhlenbeck process. Substituting (88) into (89), we have

dxt = −[Λxt + cz/σ2]dt+
√
2 dbt for t ≥ T0

where c = (c1, . . . , cM ) and Λ = A+ cc⊤/σ2 with A = diag(a1, . . . , aM ). This has the solution, for t ≥ T0,

xt = e−Λ(t−T0)xT0 +
z

σ2
Λ−1(e−Λ(t−T0) − I)c+

∫ t

T0

e−Λ(t−s)√2 dbs.

Substituting back into (88),

ξ̃t = c⊤e−Λ(t−T0)xT0 + z
[
1 +

1

σ2
c⊤Λ−1(e−Λ(t−T0) − I)c

]
+

∫ t

T0

c⊤e−Λ(t−s)√2 dbs for t ≥ T0. (90)

Here, we note that the equation (85) implies that {ξt}t≥0 is itself a Gaussian process (given by a linear
functional of {vt}t≥0), so xT0 with coordinates

xT0
m = −cm

σ2

∫ T0

0

e−am(T0−s)ξsds︸ ︷︷ ︸
=Um

+

∫ T0

0

e−am(T0−s)
√
2 dbsm︸ ︷︷ ︸

=Vm

(91)

is a Gaussian vector. Consequently, the form (90) shows that for any T, T ′ > 0, (ξ̃T0+T , ξ̃T0+T+T ′
) has a

centered bivariate Gaussian law. To conclude the proof of the lemma, it suffices to show

|E[(ξ̃T0+T )2]− ρ2M |, |E[(ξ̃T0+T+T ′
)2]− ρ2M | ≤ ε(T ) + ε(T ′) (92)

|E[ξ̃T0+T ξ̃T0+T+T ′
]− κM | ≤ ε(T ) + ε(T ′) (93)

for some errors ε(T ), ε(T ′) that hold uniformly over all M,T0 > 0.
For (92), we may compute from the solution (90) that

E[(ξ̃T0+T )2] = c⊤e−ΛTE[xT0(xT0)⊤]e−ΛT c︸ ︷︷ ︸
=I

+σ2
Z ·
[
1 +

1

σ2
c⊤Λ−1(e−ΛT − I)c

]2
+ c⊤Λ−1(I − e−2ΛT )c︸ ︷︷ ︸

=II

.

Observe that ∥Λ−1/2c∥22 ≤
∑M
m=1 c

2
m/am =

∑M
m=1 µθ([am−1, am)) ≤ µθ([ι,∞)). Hence ∥Λ−1/2c∥2 ≤ C for a

constant C > 0 not depending on M . Since also λmin(Λ) ≥ ι > 0, we have ∥e−ΛT ∥op ≤ e−ιT , so

|II− ρ2M | ≤ ε(T )

for an error ε(T ) not depending on M . To bound I, write xT0 = U+V where U, V ∈ RM have the coordinates
Um, Vm in (91). Then, from the bound E[(u⊤xT0)2] ≤ 2E[(u⊤U)2]+2E[(u⊤V )2] for each unit vector u ∈ RM ,
we have

∥E[xT0(xT0)⊤]∥op ≤ 2∥E[UU⊤]∥op + 2∥E[V V ⊤]∥op.
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For the second term, ∥E[V V ⊤]∥op = ∥ diag(a−1
m (1− e−amT0))∥op ≤ ι−1. For the first term,

∥E[UU⊤]∥op ≤ E∥U∥22 = E
M∑
m=1

c2m
σ4

(∫ T0

0

e−am(T0−s)ξsds
)2

≤
M∑
m=1

c2m
σ4

∫ T0

0

e−am(T0−s)ds ·
∫ T0

0

e−am(T0−s)E(ξs)2ds.

Noting that E(ξt)2 = (σ4/δ)Cη(t, t) ≤ C for all t ≥ 0 under Definition 2.4, this gives ∥E[UU⊤]∥op ≤
C ′∑M

m=1 c
2
m/a2m ≤ C ′µθ([ι,∞))/ι. Combining these bounds shows ∥E[xT0(xT0)⊤]∥op ≤ C for a constant

C > 0 not depending on M,T0. Then, combining with the previous bounds ∥Λ−1/2u∥2 ≤ C and λmin(Λ) ≥ ι,
this shows |I| ≤ ε(T ), so |E[(ξ̃T0+T )2]− ρ2M | ≤ ε(T ). The bound for E[(ξ̃T0+T+T ′

)2] in (92) holds similarly.
For (93), we may compute similarly from (90)

E[(ξ̃T0+T )ξ̃T0+T+T ′
] = u⊤e−ΛTE[xT0(xT0)⊤]e−Λ(T+T ′)u

+ σ2
Z ·
[
1 +

1

σ2
u⊤Λ−1(e−Λ(T+T ′) − I)u

][
1 +

1

σ2
u⊤Λ−1(e−ΛT − I)u

]
+ u⊤Λ−1(e−ΛT ′

− e−Λ(2T+T ′))u,

and the arguments to show (93) from this form are the same as above.

Lemma 3.11. Consider the 2-dimensional Gaussian law N (0,Σ∞) with

Σ∞ =

(
ρ2∞ κ∞
κ∞ ρ2∞

)
, κ∞ =

Eθ∗2 + σ2 + cttiθ (∞)− 2cθ(∗)
(1 + σ−2(cttiθ (0)− cttiθ (∞))2

, ρ2∞ = κ∞ +
cttiθ (0)− cttiθ (∞)

1 + σ−2(cttiθ (0)− cttiθ (∞))
.

Then limM→∞ ∥ΣM − Σ∞∥op = 0.

Proof. This follows from noting that c⊤Λ−1c =
∑M

m=1 c
2
m/am

1+σ−2
∑M

m=1 c
2
m/am

via the Sherman-Morrison identity, and∑M
m=1 c

2
m/am →

∫∞
ι

µθ(da) = cttiθ (0)− cttiθ (∞) as M → ∞.

We now complete the proof of Lemma 3.7.

Proof of Lemma 3.7. By Lemmas 3.8, 3.10, and 3.11, it holds that

W2(P(ξ
T0+T , ξT0+T+T ′

),N (0,Σ∞)) ≤ CeC(T+T ′)(ε(M) +
√
T + T ′ ε(T0)) + ε(T ) + ε(T ′) + ε(M).

Taking first the limit M → ∞, then choosing T = T ′ = t and T0 ≡ T0(t) such that limt→∞ T0(t) = ∞
and limt→∞ e2Ct

√
2t ε(T0(t)) = 0 and taking t → ∞, this shows W2(P(ξ

T0(t)+t, ξT0(t)+2t),N (0,Σ∞)) → 0 as
t → ∞. Under Definition 2.4, this implies

σ4

δ
cttiη (0) = lim

t→∞

σ4

δ
Cη(T0(t) + t, T0(t) + t) = lim

t→∞
E[(ξT0(t)+t)2] = ρ2∞,

σ4

δ
cttiη (∞) = lim

t→∞

σ4

δ
Cη(T0(t) + t, T0(t) + 2t) = lim

t→∞
E[ξT0(t)+tξT0(t)+2t] = κ∞.

This shows the desired forms of cttiη (0) and cttiη (∞), and we have also from these forms that

cttiη (0)− cttiη (∞) =
δ

σ2

[
σ−2(cttiθ (0)− cttiθ (∞))

1 + σ−2(cttiθ (0)− cttiθ (∞))

]
<

δ

σ2
.
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3.3 Completing the proof

Proof of Theorem 2.5. By Lemmas 3.1 and 3.7, we have five equations (60), (83), (84) for the five variables
cttiθ (0), cttiθ (∞), cθ(∗), cttiη (0), cttiη (∞). Defining mse,mse∗ by (42), these equations show

ω =
δ

σ2
− (cttiη (0)− cttiη (∞)) =

δ

σ2 + (cttiθ (0)− cttiθ (∞))
=

δ

σ2 +mse
,

ω∗ =
ω2

cttiη (∞)
=

δ

Eθ∗2 + σ2 + cθ(∞)− 2cθ(∗)
=

δ

σ2 +mse∗
,

as well as

mse = cttiθ (0)− cttiθ (∞) = Eg∗,ω∗ [⟨θ2⟩g,ω − ⟨θ⟩2g,ω] = Eg∗,ω∗⟨(θ − ⟨θ⟩g,ω)2⟩g,ω,

mse∗ = Eθ∗2 − 2Eg∗,ω∗ [θ
∗⟨θ⟩g,ω] + Eg∗,ω∗⟨θ⟩2g,ω = Eg∗,ω∗(θ

∗ − ⟨θ⟩g,ω)2.

This verifies that the fixed-point equations (43) hold, where it is clear that ω, ω∗ are uniquely defined from
mse,mse∗ via (43). Defining ymse, ymse∗ by (42), we have also from the above forms of ω, ω∗ that

ymse =
σ4

δ
(cttiη (0)− cttiη (∞)) = σ2

(
1− ωσ2

δ

)
,

ymse∗ =
σ4

δ
(2cttiη (0)− cttiη (∞))− σ2 = σ2 +

ωσ4

δ

( ω

ω∗
− 2
)
,

verifying (44). Finally, the statement (45) is a consequence of (82) shown in the proof of Lemma 3.1.

4 Analysis of fixed-prior Langevin dynamics under LSI

In this section, we prove Theorem 2.9 and Corollary 2.10 that verify Definition 2.4 and deduce the replica-
symmetric limits for the Bayes-optimal mean-squared-errors and free energy, under Assumption 2.7 of a
log-Sobolev inequality (LSI) for the posterior law.

4.1 Preliminaries

4.1.1 Properties of Langevin dynamics

We review in this section two general results on a Langevin diffusion of the form

dθt = ∇U(θt)dt+
√
2 dbt (94)

with an equilibrium measure eU(θ). The first is a fluctuation-dissipation relation for its correlation and
response functions at equilibrium, and the second is a Bismut-Elworthy-Li representation for the spatial
derivative of its Markov semigroup. For bounded observables, similar fluctuation-dissipation theorems have
been stated and shown in [77, 78] and Bismut-Elworthy-Li formulae in [79, 80]. We give versions of these
results here for a class of unbounded observables which may have linear growth

A = {f ∈ C2(Rd,R) : ∇f,∇2f are globally bounded},

and a class of drift coefficients

B = {U ∈ C3(Rd,R) : ∇2U,∇3U are globally bounded and Hölder continuous}, (95)

drawing upon some analyses of our companion work [27, Appendix A].
We write

Ptf(θ) = E[f(θt) | θ0 = θ], Lf(θ) = ∇U⊤∇f(θ) + Tr∇2f(θ)

for the Markov semigroup and infinitesimal generator associated to (94). It is shown in [27, Proposition A.2]
that

f ∈ A, U ∈ B ⇒ ∇Ptf(θ),∇2Ptf(θ) are uniformly bounded over t ∈ [0, T ], θ ∈ Rd (96)

for any fixed T > 0. In particular, Ptf ∈ A for each fixed t > 0.
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Lemma 4.1. Suppose U ∈ B, and (94) has the unique stationary distribution q(θ) = eU(θ) with finite third
moments. Let {θt}t≥0 be the solution to (94) with initial condition θ0 = x, and let A ∈ A and B ∈ B.

(a) Define the response function Rx
AB(t, s) = Ps(∇B⊤∇Pt−sA)(x). Then Rx

AB(t, s) satisfies the following
condition: Fix any continuous bounded function h : [0,∞) → R. For each ε > 0, let {θt,ε}t≥0 denote
the solution of the perturbed dynamics

dθt,ε = ∇[U(θt,ε) + εh(t)B(θt,ε)]dt+
√
2 dbt

with the same initial condition θ0,ε = x. Then for any t > 0,

lim
ε→0

1

ε

(
E[A(θt,ε) | θ0,ε = x]− E[A(θt) | θ0 = x]

)
=

∫ t

0

Rx
AB(t, s)h(s)ds.

(b) Define the correlation function Cx
AB(t, s) = E[A(θt)B(θs) | θ0 = x]. Then for any t ≥ s ≥ 0, averaging

over an initial condition x ∼ q drawn from the stationary distribution,

∂tEx∼qC
x
AB(t, s) = −Ex∼qR

x
AB(t, s).

Proof. Part (a) is an application of [27, Proposition A.1] of our companion paper (specialized to this setting
of dynamics with a fixed and non-adaptive prior).

For part (b), we will use also from [27, Proposition A.2] that for A ∈ A, we have ∂tPtA = LPtA. Since
the dynamics (103) are Markovian with stationary distribution q(θ), we have

Ex∼qC
x
AB(t, s) = Ex∼q[E[A(θt−s) | θ0 = x]B(x)] = Ex∼q(B · Pt−sA)[x].

To differentiate under the integral in t, note that ∂t(B · Pt−sA) = B · LPt−sA. By the uniform boundedness
of ∇PtA,∇2PtA over t ∈ [0, T ], the Lipschitz-continuity of ∇B,∇U , and finiteness of third moments of q,
we have that (B · LPtA)[x] is uniformly integrable with respect to x ∼ q over t ∈ [0, T ]. Thus dominated
convergence applies to show

∂tEx∼qC
x
AB(t, s) = ∂tEx∼q(B · Pt−sA)[x] = Ex∼q(B · LPt−sA)[x].

On the other hand, using also that both ∇B⊤∇PtA and B · LPtA are integrable with respect to x ∼ q, we
have via integration-by-parts

Ex∼qR
x
AB(t, s) = Ex∼q(∇B⊤∇Pt−sA)[x] =

∫
q(θ)(∇B⊤∇Pt−sA)[θ]dθ

= −
∫

B(θ)

d∑
j=1

∂j [q ∂j(Pt−sA)](θ)dθ

= −
∫

B(θ)
[
q Tr∇2(Pt−sA) +∇(Pt−sA)⊤∇q

]
(θ)dθ

= −
∫

q(θ)B(θ)
[
Tr∇2(Pt−sA) +∇(Pt−sA)⊤∇ log q

]
(θ)dθ

= −Ex∼q(B · LPt−sA)[x].

Lemma 4.2. Suppose U ∈ B, and consider the solution (θt,Vt) ∈ Rd × Rd×d to

dθt = ∇U(θt)dt+
√
2 dbt, dVt = [∇2U(θt)]Vtdt (97)

with initial condition (θ0,V0) = (x, I), adapted to the canonical filtration of the Brownian motion {bt}t≥0.
Then for any f ∈ A and any t > 0,

∇Ptf(x) = E[Vt⊤ ∇f(θt) | (θ0,V0) = (x, I)] (98)

=
1

t
√
2
E
[
f(θt)

∫ t

0

Vs⊤dbs
∣∣∣∣ (θ0,V0) = (x, I)

]
(99)
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Proof. The first identity (98) is the statement of [27, Eq. (184)] (again specialized to this setting of dynamics
with a fixed and non-adaptive prior).

For the second identity (99), we use from [27, Proposition A.2] that for f ∈ A and any fixed t ≥ 0,
(s,θ) 7→ Pt−sf(θ) is C1 in s ∈ [0, t] and C2 in θ, with ∂sPt−sf(θ) = −LPt−sf(θ). Then Itô’s formula
applied to g(s,θ) = Pt−sf(θ) gives

f(θt) = g(t,θt) = g(0,θ0) +

∫ t

0

∂sg(s,θ
s)ds+

∫ t

0

∇θg(s,θ
s)⊤dθs +

∫ t

0

Tr∇2
θg(s,θ

s)ds

= Ptf(x) +

∫ t

0

(∂s + L)Pt−sf(θ
s)ds+

√
2

∫ t

0

∇Pt−sf(θ
s)⊤dbs

= Ptf(x) +
√
2

∫ t

0

∇Pt−sf(θ
s)⊤dbs.

Since ∇2U is bounded, {Vt}t∈[0,T ] is bounded over finite time horizons, so
∫ t
0
Vs⊤dbs is a martingale.

Multiplying both sides by this martingale and taking expectations gives

E
[
f(θt)

∫ t

0

Vs⊤dbs
∣∣∣∣ (θ0,V0) = (x, I)

]
=

√
2

∫ t

0

E
[
Vs⊤∇Pt−sf(θ

s) | (θ0,V0) = (x, I)]ds.

Since Ptf ∈ A, we may apply (98) with Pt−sf in place of f to get∫ t

0

E
[
Vs⊤∇Pt−sf(θ

s) | (θ0,V0) = (x, I)]ds =

∫ t

0

∇Ps(Pt−sf)(x)ds = t · ∇Ptf(x).

Substituting above and rearranging shows (99).

4.1.2 Interpretation of the DMFT correlation and response

We remark that under Assumption 2.2(a), the log-posterior density logPg(θ | X,y) belongs to the function
class B, and Pg(θ | X,y) is the unique stationary distribution of (7). Fixing X,y,θ∗, consider the coordinate
functions

ej(θ) = θj , e∗j (θ) = θ∗j , xi(θ) =

√
δ

σ2
([Xθ]i − yi). (100)

(Here, e∗j is a constant function not depending on θ.) We define their associated correlation and response
matrices

Cθ(t, s) = (Cθ0
ejek

(t, s))dj,k=1, Cθ(t, ∗) = (Cθ0

eje∗k
(t, 0))dj,k=1, Rθ(t, s) = (Rθ0

ejek
(t, s))dj,k=1

Cη(t, s) = (Cθ0
xjxk

(t, s))nj,k=1, Rη(t, s) = (Rθ0
xjxk

(t, s))nj,k=1

(101)

where Cθ0

AB(t, s) and Rθ0

AB(t, s) are the correlation and response functions as defined in Lemma 4.1 for these
coordinate functions, under the dynamics (7) with fixed prior g(·) and the given initial condition θ0 of
Assumption 2.1.

The following result is a direct application of [27, Theorem 2.8].

Theorem 4.3 ( [27]). Suppose Assumptions 2.1 and 2.2(a) hold, and let Cθ, Cη, Rθ, Rη be the correlation
and response functions of the DMFT system in Theorem 2.3(a) approximating the dynamics (7). Then
almost surely as n, d → ∞,

d−1 TrCθ(t, s) → Cθ(t, s), d−1 TrCθ(t, ∗) → Cθ(t, ∗), n−1 TrCη(t, s) → Cη(t, s)

d−1 TrRθ(t, s) → Rθ(t, s), n−1 TrRη(t, s) → Rη(t, s).
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4.2 Posterior bounds and Wasserstein-2 convergence

Fixing the prior g(·) and the data (X,y), let us write for convenience

q(θ) = Pg(θ | X,y) ∝ exp

(
− 1

2σ2
∥y −Xθ∥22 +

d∑
j=1

log g(θj)

)
(102)

for the posterior density. The Langevin diffusion (7) with this fixed prior is then

dθt = ∇ log q(θt)dt+
√
2 dbt. (103)

We will use the notations

⟨f(θ)⟩ = Eθ∼q[f(θ)], Ptf(x) = ⟨f(θt)⟩x = E[f(θt) | θ0 = x]

where the former is an average under the posterior law q(·) conditional on X,y, and the latter is an average
over {θt}t≥0 solving (103) conditional on X,y and also the initial condition θ0 = x. We write as shorthand

Pt(x) = ⟨θt⟩x = (Pte1, . . . , Pted)[x] ∈ Rd.

We reserve ⟨f(θt)⟩ for the expectation conditional on X,y but averaging also over θ0.
For constants C0, CLSI > 0, define the (X,θ∗, ε)-dependent event

E(C0, CLSI) =
{
∥X∥op ≤ C0, ∥θ∗∥22, ∥ε∥22 ≤ C0d, the LSI (46) holds for q(θ)

}
. (104)

Note that under Assumptions 2.1 and 2.7(a), this event holds almost surely for all large n, d for some
sufficiently large choices of constants C0, CLSI > 0. All subsequent constants C,C ′, c, c′ > 0 in this section
may change from instance to instance, and are dimension-free and depend only on

C0, CLSI above, δ, σ
2, g∗ of Assumption 2.1, C, c0, r0 of Assumption 2.2(a), and log g(0). (105)

We record the following elementary bounds for the posterior expectation ⟨f(θ)⟩ = Eθ∼qf(θ).

Lemma 4.4. Suppose Assumption 2.2(a) holds. Then on the event where ∥X∥op ≤ C0, there exists a
constant C > 0 for which

⟨∥θ∥22⟩ ≤ C(d+ ∥y∥22), (106)

⟨∥∇ log q(θ)∥22⟩ ≤ C(d+ ∥y∥22), (107)

∥∇2 log q(θ)∥op ≤ C. (108)

In particular, on E(C0, CLSI), for a constant C ′ > 0 we have ⟨∥θ∥22⟩ ≤ C ′d and ⟨∥∇ log q(θ)∥22⟩ ≤ C ′d.

Proof. (108) is immediate from the form of log q(θ), the bound ∥X∥op ≤ C0, and Assumption 2.2(a).

For (106), write Eg,Pg for the expectation and probability over the prior θ ∼ g and θj
iid∼ g. We note

that under Assumption 2.2(a), we have

log g(θ) = log g(0) + θ(log g)′(0) +

∫ θ

0

∫ x

0

(log g)′′(u)dudx ≤ C(1 + |θ|)− (c0/2)(|θ| − r0)
2 ≤ C ′ − c′θ2

for some constants C,C ′, c′ > 0 depending only on the constants of Assumption 2.2(a) and on log g(0). Then
g is subgaussian, and for some constants C, c > 0 (c.f. [81, Eq. (3.1)])

Eg∥θ∥22 ≤ Cd, Pg[∥θ∥22 − Eg∥θ∥22 ≥ du] ≤ Ce−cdu for all u ≥ 1. (109)

Write

q(θ) =
1

Z
exp

(
−∥y −Xθ∥22

2σ2

) d∏
j=1

g(θj), Z = Eg
[
exp

(
−∥y −Xθ∥22

2σ2

)]
.
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We have by Jensen’s inequality − logZ ≤ Eg[∥y−Xθ∥22/2σ2] ≤ C(d+∥y∥22+Eg∥θ∥22) ≤ C ′(d+∥y∥22). Then
for any M > 0, also bounding the exponential from above by 1,〈

∥θ∥221{∥θ∥22 ≥ M}
〉
≤ 1

Z
Eg
[
∥θ∥221{∥θ∥22 ≥ M}

]
≤ eC

′(d+∥y∥2
2)Eg

[
∥θ∥221{∥θ∥22 ≥ M}

]
.

Integrating the tail bound (109) shows that this is less than d+ ∥y∥22 for M = C(d+ ∥y∥22) and a sufficiently
large choice of constant C > 0. Thus

⟨∥θ∥22⟩ ≤ M +
〈
∥θ∥221{∥θ∥22 ≥ M}

〉
≤ C ′(d+ ∥y∥22).

This shows (106). Since ∇ log q(θ) is C-Lipschitz by (108), and ∥∇ log q(0)∥22 ≤ 2∥X⊤y/σ2∥22 + 2d ·
(log g)′(0)2 ≤ C(d+ ∥y∥22), the statement (107) follows from (106).

Remark 4.5. In a later proof, we will require that (106) holds in a form

⟨∥θ∥22⟩ ≤ Cd+ (C/σ2)∥y∥22 (110)

for all large noise variances σ2 > 0, where C > 0 is a constant not depending on σ2. This may be seen
from the above arguments: Writing now C,C ′ > 0 for constants not depending on σ2, the above shows
− logZ ≤ (C ′/σ2)(d+ ∥y∥22), and hence ⟨∥θ∥221{∥θ∥22 ≥ M}⟩ ≤ d+ ∥y∥22/σ2 for M = Cd+(C/σ2)∥y∥22 with
a sufficiently large choice of constant C > 0.

Lemma 4.6. Suppose Assumption 2.2(a) holds. Let {θt}t≥0 be the solution to (9) with initial condition
θ0 ∼ q0, let qt(θ

t) be the law of θt, and let W2(·) the Wasserstein-2 distance, all conditional on X,θ∗, ε
(and averaging over θ0). Then on the event E(C0, CLSI), there exists a constant C > 0 such that

W2(qt, q) ≤ Ce−(2/CLSI)tW2(q0, q) for all t ≥ 0. (111)

Proof. For t ∈ [0, 1] we may apply a simple synchronous coupling and Grönwall argument: Let {θt}t≥0 and

{θ̃t}t≥0 be the solutions of (9) with initial conditions θ0 ∼ q0 and θ̃0 ∼ q, coupled by the same Brownian

motion. Then d
dt∥(θ

t − θ̃t)∥2 ≤ ∥ d
dt (θ

t − θ̃t)∥2 = ∥∇ log q(θt)−∇ log q(θ̃t)∥2 ≤ C∥θt − θ̃t∥2 by definition of
the Langevin equation (9) and by (108). Hence

∥θt − θ̃t∥2 ≤ eCt∥θ0 − θ̃0∥2. (112)

Letting (θ0, θ̃0) be the coupling of (q0, q) for which ⟨∥θ0 − θ̃0∥22⟩ = W2(q0, q)
2, we have that (θt, θ̃t) is a

coupling of (qt, q), so

W2(qt, q)
2 ≤ ⟨∥θt − θ̃t∥22⟩ ≤ e2Ct⟨∥θ0 − θ̃0∥22⟩ = e2CtW2(q0, q)

2.

Thus W2(qt, q) ≤ C ′W2(q0, q) for all t ∈ [0, 1], which implies (111) for t ∈ [0, 1] and some C > 0.
For t ≥ 1, under the curvature-dimension lower bound −∇2 log q(θ) ⪰ −L Id for a constant L > 0 that

is implied by (108), we apply from [82, Lemma 4.2] that

DKL(q1∥q) ≤
(

1

4α
+

L

2

)
W2(q0, q)

2, α =
e2L − 1

2L
. (113)

Under the LSI condition of E(C0, CLSI), we have the exponential contraction of relative entropy (c.f. [83,
Theorem 5.2.1])

DKL(qt∥q) ≤ e−2(t−1)/CLSI DKL(q1∥q) for all t ≥ 1. (114)

We have also the T2-transportation inequality (c.f. [83, Theorem 9.6.1])

W2(qt, q)
2 ≤ CLSI DKL(qt∥q), (115)

and (111) for t ≥ 1 follows follows from combining (113), (114), and (115).
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4.3 Properties of the correlation and response

In this section, on the event E(C0, CLSI), we now show approximate time-translation-invariance at large
times for the correlation and response matrices Cθ,Cη,Rθ,Rη defined in Section 4.1.2. We may write these
using our Markov semigroup notation as

Cθ(t, s) =
(〈

ek(θ
s)Pt−sej(θ

s)
〉
θ0

)d
j,k=1

, Cη(t, s) =
(〈

xk(θ
s)Pt−sxj(θ

s)
〉
θ0

)n
j,k=1

,

Rθ(t, s) =
(〈

∇ek(θ
s)⊤∇Pt−sej(θ

s)
〉
θ0

)d
j,k=1

, Rη(t, s) =
(
⟨∇xk(θ

s)⊤∇Pt−sxj(θ
s)
〉
θ0

)n
j,k=1

.

Lemma 4.7. Suppose Assumption 2.2(a) holds. Let Cθ,Cη,Rθ,Rη be defined for the dynamics (7), and
set

C∞
θ (τ) =

(〈
ek(θ)Pτej(θ)⟩

)d
j,k=1

, C∞
η (τ) =

(〈
xk(θ)Pτxj(θ)

〉)n
j,k=1

,

R∞
θ (τ) =

(〈
∇ek(θ)

⊤∇Pτej(θ)
〉)d

j,k=1
, R∞

η (τ) =
(〈

∇xk(θ)
⊤∇Pτxj(θ)

〉)n
j,k=1

where ⟨·⟩ is expectation under the posterior law q(·). Then on E(C0, CLSI) ∩ {∥θ0∥22 ≤ C0d}, there exist
constants C, c > 0 such that for all t ≥ s ≥ 0,

|TrCθ(t, s)− TrC∞
θ (t− s)| ≤ Cde−cs (116)

|TrRθ(t, s)− TrR∞
θ (t− s)| ≤ Cde−cs (117)

|TrCη(t, s)− TrC∞
η (t− s)| ≤ Cde−cs (118)

|TrRη(t, s)− TrR∞
η (t− s)| ≤ Cde−cs (119)

Proof. Momentarily let qt be the law of θt conditional on (X,y) and also on a fixed initial condition θ0 = x.
For any fixed t ≥ 0, denote by φt ∼ q a random vector such that (θt,φt) is a coupling of (qt, q) for which
⟨∥θt−φt∥22⟩x = W2(qt, q)

2, where W2(·) is the Wasserstein-2 distance conditional on X,y and θ0 = x. Then
observe that for any M -Lipschitz function f , we have

⟨∥f(θt)− f(φt)∥22⟩x ≤ M2⟨∥θt −φt∥22⟩x = M2W2(qt, q)
2. (120)

Furthermore W2(qt, q)
2 ≤ Ce−ctW2(δx, q)

2 ≤ 2Ce−ct(∥x∥22 + ⟨∥θ∥22⟩) for all t ≥ 0 by Lemma 4.6. Then,
applying (120) with f(x) = x and f(x) = ∇ log q(x), and applying (106–108) on the event E(C0, CLSI), we
have the basic estimates

⟨∥θt −φt∥22⟩x ≤ Ce−ct(∥x∥22 + d), ⟨∥∇ log q(θt)−∇ log q(φt)∥22⟩x ≤ Ce−ct(∥x∥22 + d),

⟨∥θt∥22⟩x ≤ C(∥x∥22 + d), ⟨∥∇ log q(θt)∥22⟩x ≤ C(∥x∥22 + d)

⟨∥φt∥22⟩ = ⟨∥θ∥22⟩ ≤ Cd, ⟨∥∇ log q(φt)∥22⟩ = ⟨∥∇ log q(θ)∥22⟩ ≤ Cd.

(121)

We note that also

∥Pt(x)− Pt(x̃)∥22 ≤ eCt∥x− x̃∥22, (122)

∥Pt(x)− Pt(x̃)∥22 ≤ Ce−ct(∥x∥22 + ∥x̃∥22 + d). (123)

Indeed, (122) follows from (112) and Jensen’s inequality. Also by Jensen’s inequality and (121),

∥Pt(x)− ⟨θ⟩∥22 = ∥⟨θt −φt⟩x∥22 ≤ Ce−ct(∥x∥22 + d), (124)

and applying this bound for both Pt(x) and Pt(x̃) yields (123).
For (116), note that for any s, τ ≥ 0,

TrCθ(s+ τ, s) =

d∑
j=1

⟨ej(θs)Pτej(θs)⟩θ0 . (125)
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Now let qs be the law of θs conditional on (X,y) and the given initial condition θ0 of Assumption 2.2, and
let (θs,φs) be the optimal Wasserstein-2 coupling of (qs, q) as above. Then

|TrCθ(s+ τ, s)− TrC∞
θ (τ)| ≤

d∑
j=1

〈∣∣ej(θs)Pτej(θs)− ej(φ
s)Pτej(φ

s)
∣∣〉

θ0

≤
d∑
j=1

〈∣∣(θsj − φsj)Pτej(θ
s)
∣∣〉

θ0 +
〈∣∣φsj(Pτej(θs)− Pτej(φ

s))
∣∣〉

θ0

≤
〈
∥θs −φs∥22

〉1/2
θ0

〈
∥Pτ (θs)∥22

〉1/2
θ0︸ ︷︷ ︸

I

+
〈
∥φs∥22

〉1/2〈∥Pτ (θs)− Pτ (φ
s)∥22

〉1/2
θ0︸ ︷︷ ︸

II

(126)

where we recall our shorthand Pt(x) = ⟨θt⟩x ∈ Rd.
We have I ≤ Cde−cs for all s ≥ 0 by (121) and ⟨∥Pτ (θs)∥22⟩θ0 ≤ ⟨∥θs+τ∥22⟩θ0 which follows from Jensen’s

inequality. For II, by (122) and (121), we have〈
∥Pτ (θs)− Pτ (φ

s)∥22
〉
θ0 ≤ eCτ ⟨∥θs −φs∥22⟩θ0 ≤ eCτ · Cde−cs.

Choosing a large enough constant s0 > 0, for τ ≤ s/s0, this gives ⟨∥Pτ (θs) − Pτ (φ
s)∥22⟩θ0 ≤ C ′de−c

′s. For
τ > s/s0, applying instead (123) and (121), we have ⟨∥Pτ (θs)−Pτ (φ

s)∥22⟩θ0 ≤ Ce−cτ (⟨∥θs∥22⟩θ0 + ⟨∥φs∥22⟩+
d) ≤ C ′de−c

′s. Thus, for some C, c > 0,〈
∥Pτ (θs)− Pτ (φ

s)∥22
〉
θ0 ≤ Cde−cs for all s, τ ≥ 0.

Thus also II ≤ Cde−cs, and applying these bounds for I and II to (126) shows (116).
For (117), note that

TrRθ(s+ τ, s) =

d∑
j=1

⟨(∂jPτej)[θs]⟩θ0 , TrR∞
θ (τ) =

d∑
j=1

⟨(∂jPτej)[θ]⟩. (127)

Let dPt(x) ∈ Rd×d be the Jacobian of the vector map x 7→ Pt(x). By (98) of Lemma 4.2 applied with f = ej
for each j = 1, . . . , d, we have

dPt(x) = ⟨Vt⟩x (128)

where (with slight extension of the notation) we write ⟨·⟩x for the average over {θt,Vt}t≥0 solving (97) with
initial condition (θ0,V0) = (x, I). For t ≥ 1, let us write also ∇Ptej(x) = ∇P1f(x) with f = Pt−1ej . Noting
that f ∈ A by (96), we may apply (99) of Lemma 4.2 with this f . Doing so for each j = 1, . . . , d gives

dPt(x) =
1√
2

〈
Pt−1(θ

1)

(∫ 1

0

(Vs)⊤dbs
)⊤〉

x

for t ≥ 1. (129)

In particular,
d∑
j=1

(∂jPτej)[x] = ⟨TrVτ ⟩x =
1√
2

〈
Pτ−1(θ

1)⊤
∫ 1

0

(Vs)⊤dbs
〉

x

(130)

with the second equality holding for τ ≥ 1.
Now let {θt,Vt}t≥0 and {θ̃t, Ṽt}t≥0 be the solutions to (97) with initial conditions (θ0,V0) = (x, I)

and (θ̃0, Ṽ0) = (x̃, I), coupled by the same Brownian motion {bt}t≥0, and write ⟨·⟩x,x̃ for the associated

average over {θt,Vt, θ̃t, Ṽt}t≥0 conditional on these initial conditions. By the form of (97) and by (108),
d
dt∥V

t∥op ≤ ∥∇2 log q(θt) ·Vt∥op ≤ C∥Vt∥op, so

∥Vt∥op ≤ eCt∥V0∥op = eCt. (131)
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Then also

d

dt
∥Vt − Ṽt∥F ≤ ∥[∇2 log q(θt)−∇2 log q(θ̃t)]Vt∥F + ∥[∇2 log q(θ̃t)](Vt − Ṽt)∥F

≤ ∥∇2 log q(θt)−∇2 log q(θ̃t)∥F ∥Vt∥op + ∥∇2 log q(θ̃t)∥op∥Vt − Ṽt∥F .

Applying ∇2 log q(θt)−∇2 log q(θ̃t) = diag((log q)′′(θtj)− (log q)′′(θ̃tj)), the bound ∥∇2 log q(θ)∥op ≤ C from
(108), |(log g)′′′(θ)| ≤ C under Assumption 2.2(a), and (112),

d

dt
∥Vt − Ṽt∥F ≤ C∥θt − θ̃t∥2∥Vt∥op + C∥Vt − Ṽt∥F ≤ CeCt∥x− x̃∥2 · eCt + C∥Vt − Ṽt∥F .

Integrating this bound,
∥Vt − Ṽt∥F ≤ C∥x− x̃∥2 for all t ∈ [0, 1].

So it follows from the first equality of (130) that for τ ∈ [0, 1],∣∣∣∣∣∣
d∑
j=1

∂jPτej(x)− ∂jPτej(x̃)

∣∣∣∣∣∣ =
∣∣∣〈Tr(Vτ − Ṽτ )

〉
x,x̃

∣∣∣ ≤ √
d
〈
∥Vτ − Ṽτ∥F

〉
x,x̃

≤ C
√
d∥x− x̃∥2.

Hence by (127) and (121), for τ ∈ [0, 1],

|TrRθ(s+ τ, s)− TrR∞
θ (τ)| ≤ C

√
d ⟨∥θs −φs∥2⟩θ0 ≤ C ′de−cs. (132)

For τ ≥ 1, we apply instead the second equality of (130) and Cauchy-Schwarz to obtain

√
2

∣∣∣∣∣∣
d∑
j=1

∂jPτej(x)− ∂jPτej(x̃)

∣∣∣∣∣∣
≤
∣∣∣∣〈Pτ−1(θ

1)⊤
∫ 1

0

(Vs)⊤dbs − Pτ−1(θ̃
1)⊤

∫ 1

0

(Ṽs)⊤dbs
〉

x,x̃

∣∣∣∣
≤
〈∥∥∥Pτ−1(θ

1)− Pτ−1(θ̃
1)
∥∥∥2
2

〉1/2
x,x̃

〈∥∥∥∥∫ 1

0

(Vs)⊤dbs
∥∥∥∥2
2

〉1/2

x

+
〈∥∥∥Pτ−1(θ̃

1)
∥∥∥2
2

〉1/2
x̃

〈∥∥∥∥∫ 1

0

(Vs − Ṽs)⊤dbs
∥∥∥∥2
2

〉1/2

x,x̃

=
〈∥∥∥Pτ−1(θ

1)− Pτ−1(θ̃
1)
∥∥∥2
2

〉1/2
x,x̃

〈∫ 1

0

∥Vs∥2Fds
〉1/2

x

+
〈∥∥∥Pτ−1(θ̃

1)
∥∥∥2
2

〉1/2
x̃

〈∫ 1

0

∥Vs − Ṽs∥2Fds
〉1/2

x,x̃

≤ C
√
d
〈∥∥∥Pτ−1(θ

1)− Pτ−1(θ̃
1)
∥∥∥2
2

〉1/2
x,x̃

+ C∥x− x̃∥2
〈∥∥∥Pτ−1(θ̃

1)
∥∥∥2
2

〉1/2
x̃

. (133)

Note that ⟨∥Pτ−1(θ̃
1)∥22⟩x̃ ≤ ⟨∥θ̃τ∥22⟩x̃ ≤ C(∥x̃∥22 + d) by (121). Applying (122–123), (112), and (121),〈∥∥∥Pτ−1(θ
1)− Pτ−1(θ̃

1)
∥∥∥2
2

〉
x,x̃

≤ e2C(τ−1)⟨∥θ1 − θ̃1∥22⟩x,x̃ ≤ Ce2Cτ∥x− x̃∥22 for all τ ≥ 1,〈∥∥∥Pτ−1(θ
1)− Pτ−1(θ̃

1)
∥∥∥2
2

〉
x,x̃

≤ Ce−c(τ−1)(⟨∥θ1∥22⟩x + ⟨∥θ̃1∥22⟩x̃ + d)

≤ C ′e−cτ (∥x∥22 + ∥x̃∥22 + d) for all τ ≥ 2.

Choosing a large enough constant s0 > 0, if τ ∈ [1, s/s0], then we may apply the former bound, (121), and
Cauchy-Schwarz to (133) to get

|TrRθ(s+ τ, s)− TrR∞
θ (τ)| ≤

〈∣∣∣∣ d∑
j=1

∂jPτej(θ
s)− ∂jPτej(φ

s)

∣∣∣∣〉
θ0

≤ CeCτ
√
d ⟨∥θs −φs∥2⟩θ0 + C

〈
∥θs −φs∥2(∥φs∥2 +

√
d)
〉
θ0

≤ C ′d(eCτ + 1)e−cs ≤ C ′′de−c
′s. (134)
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If τ ≥ s/s0, applying instead the latter bound to (133),

|TrRθ(s+ τ, s)− TrR∞
θ (τ)| ≤ Ce−cτ

√
d
(
⟨∥θs∥22⟩θ0 + ⟨∥φs∥22⟩+ d

)1/2
+ C

〈
∥θs −φs∥2(∥φs∥2 +

√
d)
〉
θ0

≤ C ′de−c
′s. (135)

Combining these bounds for τ ∈ [0, 1], τ ∈ [1, s/s0], and τ ≥ s/s0 in (132), (134), and (135) shows (117).
The arguments for Cη and Rη in (118–119) are similar: For (118), recall the definitions (100) and note

that∣∣∣TrCη(s+ τ, s)− TrC∞
η (τ)

∣∣∣
≤

n∑
i=1

〈∣∣∣xi(θs)Pτxi(θs)− xi(φ
s)Pτxi(φ

s)
∣∣∣〉

θ0

≤
n∑
i=1

〈∣∣∣(xi(θs)− xi(φ
s)
)
Pτxi(θ

s)
∣∣∣〉

θ0
+
〈∣∣∣xi(φs)(Pτxi(θs)− Pτxi(φ

s)
)∣∣∣〉

θ0

≤ δ

σ4

〈
∥X(θs −φs)∥22

〉1/2
θ0

〈
∥XPτ (θ

s)− y∥22
〉1/2
θ0

+
δ

σ4

〈
∥Xφs − y∥22

〉1/2〈
∥XPτ (θ

s)−XPτ (φ
s)∥22

〉1/2
θ0

.

The desired result (118) follows from the conditions ∥X∥op ≤ C0, ∥y∥22 ≤ C0d, and the preceding bounds for
(126).

For (119), note that

TrRη(s+ τ, s) =
δ

σ4

〈
TrX[dPτ (θ

s)]X⊤〉
θ0 , TrR∞

η (τ) =
δ

σ4

〈
TrX[dPτ (θ)]X

⊤〉. (136)

Let {θt,Vt}t≥0 and {θ̃t, Ṽt}t≥0 be the solutions of (97) with initial conditions (x, I) and (x̃, I). If τ ∈ [0, 1],
we apply (128) to obtain

|TrX[dPτ (x)]X
⊤ − TrX[dPτ (x̃)]X

⊤| ≤
〈
∥Vτ − Ṽτ∥F

〉
x,x̃

· ∥X⊤X∥F ≤
√
d ∥X∥2op ·

〈
∥Vτ − Ṽτ∥F

〉
x,x̃

,

which leads to the bound (132) up to a different constant depending on the bound C0 for ∥X∥op. If τ ≥ 1,
we apply (129) to obtain

√
2
∣∣∣TrX[dPτ (x)]X

⊤ − TrX[dPτ (x̃)]X
⊤
∣∣∣

≤
〈∣∣∣(Pτ−1(θ

1)− Pτ−1(θ̃
1)
)⊤

X⊤X
(∫ 1

0

Vs⊤dbs
)∣∣∣〉

x,x̃
+
〈∣∣∣Pτ−1(θ̃

1)⊤X⊤X
(∫ 1

0

(Vs − Ṽs)⊤dbs
)∣∣∣〉

x,x̃

≤ ∥X∥2op
[〈

∥Pτ−1(θ
1)− Pτ−1(θ̃

1)∥2
〉1/2
x,x̃

〈∫ 1

0

∥Vs∥2Fds
〉1/2

x

+
〈
∥Pτ−1(θ̃

1)∥2
〉1/2
x̃

〈∫ 1

0

∥Vs − Ṽs∥2Fds
〉1/2

x,x̃

]
.

This can be bounded in the same way as (133), (134), and (135) up to different constants depending on the
bound C0 for ∥X∥op. This shows (119).

Lemma 4.8. Suppose Assumption 2.2(a) holds. Let {θt}t≥0 be the solution to (7). Then on the event
E(C0, CLSI) ∩ {∥θ0∥22 ≤ C0d}, there exist constants C, c > 0 such that for all t ≥ s ≥ 0,∣∣TrCθ(t, s)− Ps(θ

0)⊤⟨θ⟩
∣∣ ≤ Cde−c(t−s) (137)

|TrRθ(t, s)| ≤ Cde−c(t−s) (138)∣∣∣∣TrCη(t, s)−
δ

σ4
(XPs(θ

0)− y)⊤(X⟨θ⟩ − y)

∣∣∣∣ ≤ Cde−c(t−s) (139)

|TrRη(t, s)| ≤ Cde−c(t−s) (140)

and furthermore ∣∣Ps(θ0)⊤⟨θ⟩ − ∥⟨θ⟩∥22
∣∣ ≤ Cde−cs (141)∣∣(XPs(θ

0)− y)⊤(X⟨θ⟩ − y)− ∥X⟨θ⟩ − y∥22
∣∣ ≤ Cde−cs (142)

43



Proof. For (137) and (141), observe that∣∣TrCθ(s+ τ, s)− Ps(θ
0)⊤⟨θ⟩

∣∣ = ∣∣〈θs⊤(Pτθs − ⟨θ⟩)
〉
θ0

∣∣
≤
〈
∥θs∥22

〉1/2
θ0

〈
∥Pτθs − ⟨θ⟩∥22

〉1/2
θ0 ≤ Cde−cτ ,

the last inequality applying (121) and (124). Similarly∣∣Ps(θ0)⊤⟨θ⟩ − ∥⟨θ⟩∥22
∣∣ = ∣∣(Psθ0 − ⟨θ⟩)⊤⟨θ⟩

∣∣ ≤ ∥⟨θ⟩∥2 · ∥Psθ0 − ⟨θ⟩∥2 ≤ Cde−cs.

For (138), recall from (127) that TrRθ(s + τ, s) =
∑d
j=1⟨(∂jPτej)[θs]⟩θ0 . Then by the first equality of

(130) and (131), we have |TrRθ(s + τ, s)| ≤ Cd for any τ ∈ [0, 1]. For τ ≥ 1, we apply instead the second

equality of (130) where
∫ t
0
Vs⊤dbs is a martingale. Then ⟨⟨θ⟩⊤

∫ 1

0
Vs⊤dbs⟩x = 0 for any initial condition

x ∈ Rd, so for any τ ≥ 1,∣∣∣∣∣∣
d∑
j=1

∂jPτej(x)

∣∣∣∣∣∣ =
∣∣∣∣〈(Pτ−1(θ

1)− ⟨θ⟩
)⊤ ∫ 1

0

Vs⊤dbs
〉

x

∣∣∣∣
≤
〈
∥Pτ−1(θ

1)− ⟨θ⟩∥2⟩1/2x

〈∫ 1

0

∥Vs∥2Fds
〉1/2

x

≤ Ce−cτ
√
d(∥x∥2 +

√
d),

the last inequality using the estimates (124) and (131). Then by (121) and Jensen’s inequality,

|TrRθ(s+ τ, s)| ≤
〈∣∣∣∣ d∑

j=1

(∂jPτej)[θ
s]

∣∣∣∣〉
θ0

≤ C ′de−c
′τ .

Combining these cases τ ∈ [0, 1] and τ ≥ 1 gives (138).
The arguments for (139), (140), and (142), are analogous to the above, and we omit these for brevity.

4.4 The DMFT system is approximately-TTI

We now prove Theorem 2.9, that under the log-Sobolev condition of Assumption 2.7(a), the DMFT system
of Theorem 2.3(a) is approximately-TTI in the sense of Definition 2.4.

Lemma 4.9. Under Assumptions 2.1, 2.2(a), and 2.7(a), the DMFT system prescribed by Theorem 2.3(a)
satisfies the conditions of Definition 2.4(1) with ε(t) = Ce−ct for some constants C, c > 0.

Proof. We restrict to the almost sure event where the convergence statements of Theorem 4.3 hold, and
where E(C0, CLSI) ∩ {∥θ0∥22 ≤ C0d} holds for all large n, d.

Consider first the statements for Cθ(t, s). Applying ∥θ0∥22 ≤ C0d and (137) of Lemma 4.8, for some
constants C, c > 0,

lim sup
n,d→∞

∣∣d−1 TrCθ(t, s)− d−1Ps(θ
0)⊤⟨θ⟩

∣∣ ≤ Ce−ct for all s ≤ t/2. (143)

By Theorem 4.3, limn,d→∞ d−1 TrCθ(t, s) = Cθ(t, s) for all t ≥ s ≥ 0. Then, for each s ≥ 0 and t ≥ 2s,

lim sup
n,d→∞

d−1Ps(θ
0)⊤⟨θ⟩ ≤ Cθ(t, s) + Ce−ct, lim inf

n,d→∞
d−1Ps(θ

0)⊤⟨θ⟩ ≥ Cθ(t, s)− Ce−ct.

Taking t → ∞ on the right side of both statements shows that for each s ≥ 0, there exists a limit

c̃θ(s) := lim
n,d→∞

d−1Ps(θ
0)⊤⟨θ⟩ = lim

t→∞
Cθ(t, s). (144)

Next, (141) of Lemma 4.8 implies for some C, c > 0,

lim sup
n,d→∞

∣∣d−1Ps(θ
0)⊤⟨θ⟩ − d−1∥⟨θ⟩∥22

∣∣ ≤ Ce−cs for all s ≥ 0. (145)
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Then
lim sup
n,d→∞

d−1∥⟨θ⟩∥22 ≤ c̃θ(s) + Ce−cs, lim inf
n,d→∞

d−1∥⟨θ⟩∥22 ≥ c̃θ(s)− Ce−cs.

Taking s → ∞ on the right side of both statements shows that there exists a limit

cttiθ (∞) := lim
n,d→∞

d−1∥⟨θ⟩∥22 = lim
s→∞

c̃θ(s). (146)

Now consider C∞
θ (τ) as defined in Lemma 4.7. Let −L =

∫∞
0

a dEa be the spectral decomposition of −L
as a positive, self-adjoint operator on L2(q) (c.f. [83, Theorem A.4.2]), where {Ea}a≥0 is a family of orthogonal
projections onto an increasing family of closed linear subspaces of L2(q). In particular, E0f = ⟨f(θ)⟩ is the
projection onto the constant functions. For each τ ≥ 0 and all f, g ∈ L2(q), we then have

⟨f(θ)Pτg(θ)⟩ =
∫ ∞

0

e−aτd⟨f(θ)Eag(θ)⟩ (147)

understood as a Stieltjes integral with respect to the bounded-variation function a 7→ ⟨f(θ)Eag(θ)⟩ (c.f. [83,
Proposition 3.1.6(iii)]). The LSI on the event E(C0, CLSI) implies a spectral gap, i.e. the spectrum of −L is
included in {0} ∪ [1/CLSI,∞). Thus, fixing any constant ι ∈ (0, 1/CLSI), we have

d−1 TrC∞
θ (τ) = d−1

d∑
j=1

⟨ej(θ)Pτej(θ)⟩ = d−1
d∑
j=1

⟨ej(θ)E0ej(θ)⟩+ d−1
d∑
j=1

∫ ∞

ι

e−aτd⟨ej(θ)Eaej(θ)⟩

= d−1∥⟨θ⟩∥22 + d−1
d∑
j=1

∫ ∞

ι

e−aτd⟨ej(θ)Eaej(θ)⟩,

the first equality applying (147), and the second equality applying
∑
j⟨ej(θ)E0ej(θ)⟩ =

∑
j⟨θj⟨θj⟩⟩ = ∥⟨θ⟩∥2.

Define (n, d,X,y)-dependent scalars cθ,d,mθ,d > 0 and a positive measure µθ,d on [ι,∞) by

cθ,d = d−1∥⟨θ⟩∥22, mθ,d = d−1
d∑
j=1

∫ ∞

ι

d⟨ej(θ)Eaej(θ)⟩, µθ,d(S) = d−1
d∑
j=1

∫
S

d⟨ej(θ)Eaej(θ)⟩, (148)

noting that a 7→ d−1
∑d
j=1⟨ej(θ)Eaej(θ)⟩ is nondecreasing and hence defines a valid distribution function

for µθ,d. Then

d−1 TrC∞
θ (τ) = cθ,d +

∫ ∞

ι

e−aτµθ,d(da), mθ,d = µθ,d([ι,∞)). (149)

Applying (149) with τ = 0,

cθ,d +mθ,d = d−1 TrC∞
θ (0) = d−1⟨∥θ∥22⟩ ≤ C. (150)

In particular, µθ,d is finite and uniformly bounded in total variation norm for all (n, d). We claim that
τ 7→ d−1 TrC∞

θ (τ) is uniformly equicontinuous over all (n, d): Observe that∣∣∣d−1 TrC∞
θ (τ)− d−1 TrC∞

θ (τ ′)
∣∣∣ = ∣∣∣d−1

〈
θ⊤[Pτ − Pτ ′ ](θ)

〉∣∣∣
≤ d−1⟨∥θ∥22⟩1/2 · ⟨∥[Pτ − Pτ ′ ](θ)∥22⟩1/2

= d−1⟨∥θ∥22⟩1/2 · ⟨∥θ − P|τ−τ ′|(θ)∥22⟩1/2. (151)

[84, Theorem II.2.1] implies ∥Pt(x)− x∥22 ≤ C(1 + ∥x∥22)t for all t ∈ [0, 1] and a constant C > 0. This and
(121) imply that the right side of (151) is at most C ′|τ − τ ′| for a constant C ′ > 0 and all |τ − τ ′| ≤ 1, so
τ 7→ d−1 TrC∞

θ (τ) is uniformly equicontinuous as claimed. We note that for any M > 0, by the relation
(149), cθ,d + µθ,d([0,M)) + e−Mτµθ,d([M,∞)) ≥ d−1 TrC∞

θ (τ). Then setting τ = 1/M and rearranging
yields

(1− e−1)µθ,d([M,∞)) ≤ cθ,d +mθ,d − d−1 TrC∞
θ (1/M) = d−1 TrC∞

θ (0)− d−1 TrC∞
θ (1/M).
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So this uniform equicontinuity implies that the measures µθ,d are uniformly tight.
Then, there exists a subsequence {(nk, dk)}k≥1 of (n, d) along which µθ,d ⇒ µθ weakly, for some finite

positive measure µθ on [ι,∞). Recalling also that cθ,d = d−1∥⟨θ⟩∥22 → cttiθ (∞) as n, d → ∞ by the definition
(146), and setting

cttiθ (τ) = cttiθ (∞) +

∫ ∞

ι

e−aτµθ(da), (152)

this weak convergence applied to (149) implies limk→∞ d−1
k TrC∞

θ (τ) = cttiθ (τ). Combining this with the
convergence limk→∞ d−1

k TrCθ(s+ τ, s) = Cθ(s+ τ, s) by Theorem 4.3, for any s, τ ≥ 0 we have∣∣∣Cθ(s+ τ, s)− cttiθ (τ)
∣∣∣ ≤ lim sup

k→∞

∣∣∣d−1
k TrCθ(s+ τ, s)− d−1

k TrC∞
θ (τ)

∣∣∣ ≤ Ce−cs, (153)

where the last inequality holds by (116). Since Cθ(t, s) is non-random, this implies that cttiθ (τ) is also
non-random for every τ ≥ 0, and thus also the measure µθ is non-random. This shows (30).

The statement (31) follows analogously: By arguments parallel to (144) and (146), applying Theorem
4.3 and (139) and (142) shows that there exist limits

c̃η(s) := lim
n,d→∞

δ

nσ4
(XPs(θ

0)− y)⊤(X⟨θ⟩ − y) = lim
t→∞

Cη(t, s), (154)

cttiη (∞) := lim
n,d→∞

δ

nσ4
∥X⟨θ⟩ − y∥22 = lim

s→∞
c̃η(s). (155)

Note that

n−1 TrC∞
η (τ) = n−1

n∑
i=1

〈
xi(θ)Pτxi(θ)

〉
=

δ

nσ4
∥X⟨θ⟩ − y∥22 +

1

n

n∑
i=1

∫ ∞

ι

e−aτd⟨xi(θ)Eaxi(θ)⟩.

Defining

cη,n =
δ

nσ4
∥X⟨θ⟩ − y∥22, µη,n(S) =

1

n

n∑
i=1

∫
S

d⟨xi(θ)Eaxi(θ)⟩, mη,n = µη,n([ι,∞)), (156)

we have

cη,n +mη,n = n−1 TrC∞
η (0) =

δ

nσ4
⟨∥Xθ − y∥22⟩ ≤ C. (157)

So along some subsequence {(nk, dk)}k≥1, we have cη,n → cttiη (∞), µη,n ⇒ µη weakly for a finite positive

measure µη on [ι,∞), and limk→∞ n−1
k TrC∞

η (τ) = cttiη (τ) for the quantity

cttiη (τ) = cttiη (∞) +

∫ ∞

ι

e−aτµη(da).

By an argument parallel to (153) using Theorem 4.3 and (118), this shows |Cη(s+ τ, s)− cttiη (τ)| ≤ Ce−cs,
establishing (31).

Finally, for (32), observe that by Theorem 4.3, limn,d→∞ d−1Ps(θ
0)⊤θ∗ = Cθ(s, ∗). Noting that

lim sup
n,d→∞

d−1
∣∣(Ps(θ0)− ⟨θ⟩)⊤θ∗∣∣ ≤ lim sup

n,d→∞
d−1∥Psθ0 − ⟨θ⟩∥2 · ∥θ∗∥2 ≤ Ce−cs

by (124), this implies the existence of the limit

cθ(∗) := lim
n,d→∞

d−1⟨θ⟩⊤θ∗ = lim
s→∞

Cθ(s, ∗), (158)

which satisfies |Cθ(s, ∗)− cθ(∗)| ≤ Ce−cs. This shows (32).

Lemma 4.10. Under Assumptions 2.1, 2.2(a), and 2.7(a), the DMFT system prescribed by Theorem 2.3(a)
satisfies the conditions of Definition 2.4(2) with ε(t) = Ce−ct for some constants C, c > 0.
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Proof. We again restrict to the almost sure event where the convergence statements of Theorem 4.3 hold,
and where E(C0, CLSI) ∩ {∥θ0∥22 ≤ C0d} holds for all large n, d.

Consider first Rθ(t, s). By (138) of Lemma 4.8 and the convergence Rθ(t, s) = limn,d→∞ d−1Rθ(t, s) of
Theorem 4.3,

|Rθ(t, s)| ≤ Ce−ct for all s ≤ t/2. (159)

For s ≥ t/2, note that the forms of (149) and (152) imply that both d−1 TrC∞
θ (τ) and cttiθ (τ) are convex

and differentiable in τ ≥ 0. Then, along the subsequence {(nk, dk)}k≥1 of the preceding proof, the pointwise
convergence limk→∞ d−1

k TrC∞
θ (τ) = cttiθ (τ) implies also limk→∞ d−1

k ∂τ TrC
∞
θ (τ) = ∂τ c

tti
θ (τ) for each τ ≥ 0

(c.f. [85, Theorem 25.7]). By the fluctuation-dissipation relation of Lemma 4.1 applied with A = B = ej
for each j = 1, . . . , d, we have ∂τ TrC

∞
θ (τ) = −TrR∞

θ (τ). Then, defining rttiθ (τ) = −∂τ c
tti
θ (τ), this shows

limk→∞ d−1
k TrR∞

θ (τ) = rttiθ (τ). Combining with limk→∞ d−1
k TrRθ(s + τ, s) = Rθ(s + τ, s) from Theorem

4.3, for any s, τ ≥ 0 we have that∣∣Rθ(s+ τ, s)− rttiθ (τ)
∣∣ ≤ lim sup

k→∞

∣∣∣d−1
k TrRθ(s+ τ, s)− d−1

k TrR∞
θ (τ)

∣∣∣ ≤ Ce−cs,

where the last inequality applies (117). In particular, for any t ≥ 0,

|Rθ(t, s)− rttiθ (t− s)| ≤ Ce−c
′t for all s ∈ [t/2, t]. (160)

Together, (159) and (160) imply (34). The statement (35) follows analogously, and we omit this for brevity.

Proof of Theorem 2.9. This follows from Lemmas 4.9 and 4.10.

4.5 Limit MSE and free energy

We now show Corollary 2.10 on the asymptotic values of the mean-squared-errors and the free energy.

Proposition 4.11. Suppose Assumptions 2.1, 2.2(a), and 2.7(a) hold. Let YMSE∗ and the marginal like-

lihood Pg(y | X) be as defined in Corollary 2.10. Let E[· | X] denote the expectation with respect to θ∗j
iid∼ g∗

and εi
iid∼ N (0, σ2) conditioning on X. Then almost surely,

lim
n,d→∞

d−1 logPg(y | X)− d−1E[logPg(y | X) | X] = 0, lim
n,d→∞

YMSE∗ −E[YMSE∗ | X] = 0. (161)

Proof. We condition on X throughout, and restrict to the X-dependent event

{∥X∥op ≤ C0 and (46) holds}.

Note that by assumption, this event holds a.s. for all large n, d and does not depend on θ∗, ε.
For the first statement, let us consider

Z(θ∗, ε) = log

∫
exp

(
− 1

2σ2
∥Xθ∗ + ε−Xθ∥22 +

d∑
j=1

log g(θj)

)
dθ

(which coincides with logPg(y | X) up to an additive constant) as a function of (θ∗, ε). Then

∇θ∗Z(θ∗, ε) = − 1

σ2
X⊤(Xθ∗ + ε−X⟨θ⟩), ∇εZ(θ∗, ε) = − 1

σ2
(Xθ∗ + ε−X⟨θ⟩).

Under Assumption 2.1, note that θ∗ and ε have independent subgaussian entries, so there are constants
C1, c > 0 such that (c.f. [81, Eq. (3.1)])

P[∥θ∗∥22 + ∥ε∥22 > C1d] ≤ e−cd. (162)

When ∥θ∗∥22 + ∥ε∥22 ≤ C1d, we have the bound ⟨∥θ∥22⟩ ≤ Cd from (106). Applying this and ∥X∥op ≤ C0,

∥∇(θ∗,ε)Z(θ∗, ε)∥21{∥θ∗∥22 + ∥ε∥22 ≤ C1d} ≤ L
√
d
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for a constant L > 0. Thus Z(θ∗, ε) is L
√
d-Lipschitz on {∥θ∗∥22 + ∥ε∥22 ≤ C1d}, so its Lipschitz extension

Z̃(θ∗, ε) = inf
x∈Rd+n:∥x∥2

2≤C1d
Z(x) + L

√
d∥x− (θ∗, ε)∥2

is globally L
√
d-Lipschitz on Rd+n and Z̃(θ∗, ε) = Z(θ∗, ε) over {∥θ∗∥22 + ∥ε∥22 ≤ C1d}. Under Assumption

2.1, the joint distribution of (θ∗, ε) satisfies a log-Sobolev inequality by tensorization, implying the Lipschitz
concentration

P[|Z̃(θ∗, ε)− E[Z̃(θ∗, ε) | X]| ≥ td | X] ≤ 2e−t
2d/(2L2). (163)

We may bound

|E[Z̃(θ∗, ε) | X]− E[Z(θ∗, ε) | X]|

≤ E
[
1{∥θ∗∥22 + ∥ε∥22 ≥ C1d}

(
|Z̃(θ∗, ε)|+ |Z(θ∗, ε)|

) ∣∣∣ X]
≤ P[∥θ∗∥22 + ∥ε∥22 ≥ C1d | X]1/2

(
(E[Z̃(θ∗, ε) | X]2)1/2 + (E[Z(θ∗, ε) | X]2)1/2

)
Applying the upper bound Z(θ∗, ε) ≤ log

∫
exp(

∑d
j=1 log g(θj))dθ = 0, Jensen’s inequality lower bound

Z(θ∗, ε) ≥ Eg[− 1
2σ2 ∥Xθ∗ + ε −Xθ∥22] where Eg[·] is the expectation over θj

iid∼ g, and |Z̃(θ∗, ε) − Z(0)| =
|Z̃(θ∗, ε)− Z̃(0)| ≤ L

√
d(∥θ∗∥22 + ∥ε∥22)1/2, we obtain

|E[Z̃(θ∗, ε) | X]− E[Z(θ∗, ε) | X]| ≤ P[∥θ∗∥22 + ∥ε∥22 ≥ C1d | X]1/2 · Cd ≤ e−c
′d

for all large n, d, the last inequality applying (162). Thus (163) and (162) imply

P[|Z(θ∗, ε)− E[Z(θ∗, ε) | X]| ≥ td+ e−c
′d | X] ≤ 2e−t

2d/(2L2) + e−cd,

implying the first statement of (161) by the Borel-Cantelli lemma.
For the second statement, let us write

nYMSE∗(θ
∗, ε) = ∥Xθ∗ + ε−X⟨θ⟩∥22

viewed also as a function of (θ∗, ε). Writing κ2(·) for the covariance associated to the posterior mean ⟨·⟩,
differentiating in (θ∗, ε) gives, for any unit vectors u ∈ Rd and v ∈ Rn,

u⊤∇θ∗ [nYMSE∗] = 2(Xθ∗ + ε−X⟨θ⟩)⊤Xu− 2

σ2
κ2

(
θ⊤X⊤Xu, (Xθ∗ + ε−X⟨θ⟩)⊤Xθ

)
,

v⊤∇ε[nYMSE∗] = 2(Xθ∗ + ε−X⟨θ⟩)⊤v − 2

σ2
κ2

(
θ⊤X⊤v, (Xθ∗ + ε−X⟨θ⟩)⊤Xθ

)
.

The Poincaré inequality implied by the assumed LSI for Pg(θ | X,y) shows, for any vector x ∈ Rd,

κ2(x
⊤θ,u⊤θ) ≤ C∥x∥22.

On the event {∥θ∗∥22 + ∥ε∥22 ≤ C1d}, applying this Poincaré bound, Cauchy-Schwarz for κ2(·), and ∥X∥op ≤
C0 and ⟨∥θ∥22⟩ ≤ Cd from (106), we obtain |u⊤∇θ∗ [nYMSE∗]| ≤ C

√
d and |v⊤∇ε[nYMSE∗]| ≤ C

√
d for

any unit vectors u,v, and hence

∥∇θ∗,ε[nYMSE∗]∥21{∥θ∗∥22 + ∥ε∥22 ≤ C1d} ≤ L
√
d

for some constant L > 0. So nYMSE∗ is L
√
d-Lipschitz in (θ∗, ε) on {∥θ∗∥22+∥ε∥22 ≤ C1d}. For any (θ∗, ε),

we also have the bound |nYMSE∗(θ
∗, ε)| ≤ C(∥θ∗∥22 + ∥ε∥22)1/2 by (106), so the second statement of (161)

follows from the same Lipschitz extension and concentration argument as above.

Proof of Corollary 2.10(a). We restrict to the almost sure event where E(C0, CLSI) holds for all large n, d.
Observe that by (148) and (150),

MSE = d−1⟨∥θ − ⟨θ⟩∥22⟩ = d−1
(
⟨∥θ∥22⟩ − ∥⟨θ⟩∥22

)
= md = µd([ι,∞)),
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so limn,d→∞ MSE = µθ([ι,∞)) = cttiθ (0)− cttiθ (∞) by (152). Also

MSE∗ = d−1∥θ∗ − ⟨θ⟩∥22 = d−1
(
∥θ∗∥22 − 2⟨θ⟩⊤θ∗ + ∥⟨θ⟩∥22

)
,

so limn,d→∞ MSE∗ = E[θ∗2]− 2cθ(∗)+ cttiθ (∞) by Assumption 2.1 and the definitions (146) and (158). Thus
MSE → mse and MSE∗ → mse∗ for the quantities mse,mse∗ defined in (42).

Similarly
YMSE = n−1

〈
∥Xθ −X⟨θ⟩∥22

〉
= n−1

(
⟨∥Xθ − y∥22⟩ − ∥X⟨θ⟩ − y∥22

)
.

Then by (156) and (157), limn,d→∞ n−1∥X⟨θ⟩−y∥22 = σ4

δ c
tti
η (∞) and YMSE = σ4

δ µη,n([ι,∞)) → σ4

δ (c
tti
η (0)−

cttiη (∞)) = ymse as defined in (42). For YMSE∗, writing E[· | X] for the expectation over (θ∗, ε) as in
Proposition 4.11, observe first that

n−1E[∥X⟨θ⟩ − y∥22 | X] = n−1E[∥X⟨θ⟩ −Xθ∗∥22 | X]− 2n−1E[ε⊤(X⟨θ⟩ −Xθ∗) + σ2 | X],

and Gaussian integration-by-parts gives

E[ε⊤(X⟨θ⟩ −Xθ∗) | X] = E[ε⊤X⟨θ⟩ | X] = E[⟨∥Xθ −Xθ∗∥22⟩ | X]− E[∥X⟨θ⟩ −Xθ∗∥22 | X]

= E[⟨∥Xθ −X⟨θ⟩∥22⟩ | X] = nE[YMSE | X].

Thus

E[YMSE∗ | X] = n−1E[∥X⟨θ⟩ −Xθ∗∥22 | X] = n−1E[∥X⟨θ⟩ − y∥22 | X] + 2E[YMSE | X]− σ2. (164)

We remark that n−1∥X⟨θ⟩ − y∥22 and YMSE are bounded for all large n, d on the event E(C0, CLSI), by

the bound for ⟨∥θ∥22⟩ ≤ C from (106). Thus, applying YMSE → ymse and n−1∥X⟨θ⟩ − y∥22 → σ4

δ c
tti
η (∞)

as argued above and dominated convergence, the right side of (164) converges to ymse∗ = σ4

δ (2c
tti
η (0) −

cttiη (∞))−σ2 as defined in (42). Then the concentration of YMSE∗ established in Proposition 4.11 combined
with (164) show limn,d→∞ YMSE∗ = ymse∗.

To show the last statement (48), conditional on X,θ∗, ε and averaging over the initial condition θ0 ∼
q0 = g⊗d0 , let qt be the conditional law of θt. Consider a coupling of a posterior sample θ ∼ q with θt ∼ qt
such that ⟨∥θt − θ∥22⟩ = W2(qt, q)

2, where ⟨·⟩ denotes the expectation under this coupling and W2(·) is the
Wasserstein-2 distance, both conditional on X,θ∗, ε. For a given realization of (θt,θ) from this coupling,

considering the coordinatewise coupling of 1
d

∑d
j=1 δ(θ∗j ,θtj) with

1
d

∑d
j=1 δ(θ∗j ,θj) shows

W2

1

d

d∑
j=1

δ(θ∗j ,θtj),
1

d

d∑
j=1

δ(θ∗j ,θj)

2

≤ 1

d

d∑
j=1

(θtj − θj)
2 =

1

d
∥θt − θ∥22.

Then 〈
W2

(
1

d

d∑
j=1

δ(θ∗j ,θtj),
1

d

d∑
j=1

δ(θ∗j ,θj)

)2〉
≤ 1

d

〈
∥θt − θ∥22

〉
=

1

d
W2(qt, q)

2.

Applying Lemmas 4.4 and 4.6, W2(qt, q)
2 ≤ Ce−ct(⟨∥θ∥22⟩ + ⟨∥θ0∥22⟩) ≤ C ′de−ct on the event E(C0, CLSI),

for some constants C,C ′, c > 0. So on this event,

lim sup
n,d→∞

〈
W2

(
1

d

d∑
j=1

δ(θ∗j ,θtj),
1

d

d∑
j=1

δ(θ∗j ,θj)

)2〉
≤ C ′e−ct. (165)

Now by Theorem 2.3(a), for each fixed t ≥ 0, almost surely with respect to the randomness of both
X,θ∗, ε and θ0, {bt}t≥0 defining {θt}t≥0, we have

lim
n,d→∞

W2

(
1

d

d∑
j=1

δ(θ∗j ,θtj), P(θ
∗, θt)

)2

= 0 (166)
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where P(θ∗, θt) here is the law of (θ∗, θt) in the DMFT system. To take an expectation over the randomness
of θ0 and {bt}t≥0, note that from the definition (103), we have

θt = θ0 +

∫ t

0

∇θ log q(θ
s) ds+

√
2bt = θ0 +

∫ t

0

[ 1

σ2
X⊤(y −Xθs) + (log g)′(θs)

]
ds+

√
2bt,

where (log g)′ is applied entrywise. Then on E(C0, CLSI), by the Lipschitz continuity of (log g)′(θ), this
implies for a constant C > 0 that

d−1/2∥θt∥2 ≤
∫ t

0

Cd−1/2∥θs∥2 ds+ Ct+ d−1/2∥θ0∥2 +
√
2 d−1/2∥bt∥2.

Then for any T > 0, Gronwall’s inequality gives, for a constant C > 0,

sup
t∈[0,T ]

d−1/2∥θt∥2 ≤ CeCT
(
T + d−1/2∥θ0∥2 + d−1/2 sup

t∈[0,T ]

∥bt∥2
)

(167)

For any p > 1, applying

(
sup
t∈[0,T ]

d−1∥bt∥22
)p

≤ sup
t∈[0,T ]

d−1
d∑
j=1

|btj |2p ≤ d−1
d∑
j=1

sup
t∈[0,T ]

|btj |2p

and Doob’s Lp-maximal inequality, we have that ⟨(supt∈[0,T ] d
−1∥bt∥22)p⟩ is bounded by a (T, p)-dependent

constant. Similarly ⟨(d−1∥θ0∥2)p⟩ is bounded by a (T, p)-dependent constant, so〈(
sup
t∈[0,T ]

d−1∥θt∥22
)p〉

≤ CT,p

for a constant CT,p > 0, where ⟨·⟩ averages over θ0 and {bt}t≥0. Since W2(
1
d

∑d
j=1 δ(θ∗j ,θtj),P(θ

∗, θt))2 ≤
C(d−1∥θ∗∥22 + d−1∥θt∥22 + E(θ∗)2 + E(θt)2), this implies on the event E(C0, CLSI) that〈

sup
t∈[0,T ]

W2

(
1

d

d∑
j=1

δ(θ∗j ,θtj), P(θ
∗, θt)

)2p〉
≤ C ′

T,p (168)

for a different constant C ′
T,p > 0. In particular, for any fixed t ≥ 0 and p > 1, the squared Wasserstein-2

distance in (166) is uniformly bounded in Lp and hence uniformly integrable with respect to ⟨·⟩ for all large
n, d, so dominated convergence implies, almost surely,

lim
n,d→∞

〈
W2

(
1

d

d∑
j=1

δ(θ∗j ,θtj), P(θ
∗, θt)

)2〉
= 0. (169)

Combining (165) and (169) shows that for any fixed t ≥ 0, almost surely,

lim sup
n,d→∞

〈
W2

(
1

d

d∑
j=1

δ(θ∗j ,θj),Pg∗,ω∗;g,ω

)2〉
≤ C

(
e−ct +W2(P(θ

∗, θt), Pg∗,ω∗;g,ω)
2
)
.

By Theorem 2.5, we have
lim
t→∞

W2(P(θ
∗, θt), Pg∗,ω∗;g,ω) = 0

so taking the limit t → ∞ shows (48).

To show Corollary 2.10(b) on the asymptotic free energy, we will apply an I-MMSE argument, together
with the following proposition which guarantees continuity of mse,mse∗ in the noise variance σ2. In the
later proof of Theorem 2.13, we will require also continuity in the prior parameter α; thus we establish both
statements here.
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Lemma 4.12. Suppose Assumptions 2.1 and 2.2(b) hold. Fix any open subset O ⊂ RK , and suppose also
that Assumption 2.7 holds for each g ∈ {g(·, α) : α ∈ O}, where the constant CLSI > 0 is uniform over α ∈ O.
Consider any noise variance σ̃2 ≥ σ2, and define mse(σ̃2, α),mse∗(σ̃

2, α) by (42) via the (approximately-
TTI) DMFT limit of the Langevin dynamics (7) with a fixed prior g(·, α) in the linear model (4) with noise
variance σ̃2.

Then over any compact interval I ⊂ [σ2,∞) and compact subset S ⊂ O, mse(σ̃2, α),mse∗(σ̃
2, α) are

Lipschitz functions of (σ̃2, α) ∈ I × S.

Proof. Consider noise/prior parameters (s2, α) and (s̃2, α̃), where s2, s̃2 ≥ σ2. Let us couple the linear
models with noise variances s2 and s̃2 by y = Xθ∗ + sz and ỹ = Xθ∗ + s̃z, where z ∼ N (0, I). Fixing
X,θ∗, z, let us denote

U(θ) = − 1

2s2
∥Xθ∗ + sz−Xθ∥22 +

d∑
j=1

log g(θj , α)

so that q(θ) ∝ eU(θ) is the posterior law given (X,y) under parameters (s2, α). Denote similarly Ũ(θ) with

(s̃2, α̃) in place of (s2, α), and q̃(θ) ∝ eŨ(θ) as the posterior law given (X, ỹ). We condition on X,θ∗, z and
restrict to the event

E ′(C0, CLSI) = {∥X∥op ≤ C0, ∥θ∗∥22, ∥z∥22 ≤ C0d, (46) holds for both q and q̃},

which by assumption holds a.s. for all large n, d. We first derive a bound on the Wasserstein-2 distance
between q and q̃, conditional on X,θ∗, z.

Let {θt}t≥0 be the Langevin diffusion (103) with fixed prior g(·, α) and stationary distribution q(θ),
initialized as θ0 ∼ q0 where q0 has finite second moment and finite entropy. Let us write ⟨f(θt)⟩ for the
expectation over θ0 and {bt}t≥0 defining (103), conditional on X,θ∗, z. We apply the following argument
of [86] to bound the KL-divergence DKL(qt∥q̃) conditional on X,θ∗, z: Differentiating this KL-divergence in
time,

d

dt
DKL(qt∥q̃) =

d

dt

∫
qt(log qt − log q̃)

=

∫ ( d

dt
qt

)
(log qt − log q̃) +

∫
qt
qt

( d

dt
qt

)
︸ ︷︷ ︸

=0

=

∫ ( d

dt
qt

)
(log qt − Ũ + log Z̃).

The law of θt conditional on X,θ∗, z admits a density qt which is described by the Fokker-Planck equation

d

dt
qt = ∇ · [qt∇(log qt − U)]

with initial condition qt|t=0 = q0. Then, applying this Fokker-Planck equation and integrating by parts, we
obtain

d

dt
DKL(qt∥q̃) = −

∫
qt∇(log qt − U)⊤∇(log qt − Ũ)

= −
∫

qt ∥∇(log qt − Ũ)∥22 −
∫

qt∇(Ũ − U)⊤∇(log qt − Ũ)

≤ −(1/2)

∫
qt ∥∇(log qt − Ũ)∥22 + (1/2)

∫
qt∥∇(Ũ − U)∥22,

the last step applying Cauchy-Schwarz for the second term. By the LSI for q̃, the first term (the relative
Fisher information) is lower bounded as∫

qt ∥∇(log qt − Ũ)∥22 =

∫
qt

∥∥∥∇ log
qt
q̃

∥∥∥2
2
≥ 1

2CLSI
DKL(qt∥q̃).

Thus
d

dt
DKL(qt∥q̃) ≤ − 1

4CLSI
DKL(qt∥q̃) +

1

2
⟨∥∇Ũ(θt)−∇U(θt)∥22⟩︸ ︷︷ ︸

:=∆(t)

.
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Integrating this inequality shows, for some constants C, c > 0 depending only on CLSI and for any T > 0,

DKL(qT ∥q̃) ≤ C
(

sup
t∈[0,T ]

∆(t) + e−cT DKL(q0∥q̃)
)
. (170)

We now specialize (170) to the initialization q0 = q̃, and bound ∆(t). We have

∆(t) ≤

〈∥∥∥∥ 1

s2
X⊤(Xθ∗ + sz−Xθt)− 1

s̃2
X⊤(Xθ∗ + s̃z−Xθt)

∥∥∥∥2
2

+

d∑
j=1

(
∂θ log g(θ

t
j , α)− ∂θ log g(θ

t
j , α̃)

)2〉
.

Let C,C ′, C ′′ > 0 be constants depending on the compact sets S, I of the lemma statement and changing
from instance to instance. For α, α̃ ∈ S and s2, s̃2 ∈ I,

|s−2 − s̃−2| ≤ C|s2 − s̃2|, |s−1 − s̃−1| ≤ C|s2 − s̃2|, |∂θ log g(θ;α)− ∂θ log g(θ; α̃)| ≤ C∥α− α̃∥2,

the last inequality holding by Assumption 2.2(b). Thus

∆(t) ≤ C
[
∥X∥4op(∥θ∗∥22 + ⟨∥θt∥22⟩) + ∥X∥2op∥z∥22

]
(s2 − s̃2)2 + Cd∥α− α̃∥22.

On the event E ′(C0, CLSI), we have ⟨∥θt∥22⟩ ≤ C(⟨∥θ0∥22⟩ + d) by (121), and ⟨∥θ0∥22⟩ ≤ Cd under the
initialization q0 = q̃ which holds also by (121). Applying these bounds together with ∥X∥op ≤ C, ∥θ∗∥22 ≤ Cd,
and ∥z∥22 ≤ Cd by definition of E ′(C0, CLSI), we have

sup
t≥0

∆(t) ≤ C ′d(s2 − s̃2)2 + C ′d∥α− α̃∥22.

Applying this and q0 = q̃ to (170), we have on the event E ′(C0, CLSI) that

sup
t≥0

DKL(qt∥q̃) ≤ Cd(s2 − s̃2)2 + Cd∥α− α̃∥22.

By lower-semicontinuity of KL-divergence and the T2-transportation inequality for q̃ implied by the LSI
(c.f. [83, Theorem 9.6.1]),

W2(q, q̃)
2 ≤ C DKL(q∥q̃) ≤ C lim inf

t→∞
DKL(qt∥q̃) ≤ C ′d(s2 − s̃2)2 + C ′d∥α− α̃∥22. (171)

This gives our desired bound on the Wasserstein-2 distance between q and q̃.
Now let ⟨f(θ)⟩q and ⟨f(θ)⟩q̃ be the posterior expectations under q (given y) and q̃ (given ỹ). Then by

Jensen’s inequality,
∥⟨θ⟩q − ⟨θ⟩q̃∥2 ≤ W2(q, q̃).

Applying |∥x∥22 − ∥y∥22| ≤ ∥x− y∥2 · ∥x+ y∥2 and Cauchy-Schwarz, also

|⟨∥θ∥22⟩q − ⟨∥θ∥22⟩q̃| ≤ W2(q, q̃) ·
√
2⟨∥θ∥22⟩q + 2⟨∥θ∥22⟩q̃ ≤ C

√
dW2(q, q̃)

where the last inequality applies ⟨∥θ∥2⟩q ≤ ⟨∥θ∥22⟩
1/2
q ≤ C

√
d on E(C0, CLSI) by (121), and similarly for q̃.

Then, denoting by MSE(s2, α) and MSE(s̃2, α̃) the values of MSE as defined in Corollary 2.10 under q and
q̃, we have

|MSE(s2, α)−MSE(s̃2, α̃)| =
∣∣d−1⟨∥θ − ⟨θ⟩q∥22⟩q − d−1⟨∥θ − ⟨θ⟩q̃∥22⟩q̃

∣∣
≤ d−1

∣∣⟨∥θ∥22⟩q − ⟨∥θ∥22⟩q̃
∣∣+ d−1

∣∣∥⟨θ⟩q∥22 − ∥⟨θ⟩q̃∥22
∣∣

≤ C ′W2(q, q̃)√
d

≤ C ′′|s2 − s̃2|+ C ′′∥α− α̃∥2.

Similarly

|MSE∗(s
2, α)−MSE∗(s̃

2, α̃)| =
∣∣d−1∥θ∗ − ⟨θ⟩q∥22 − d−1∥θ∗ − ⟨θ⟩q̃∥22

∣∣
≤ 2d−1∥θ∗∥2∥⟨θ⟩q − ⟨θ⟩q̃∥2 + d−1

∣∣∥⟨θ⟩q∥22 − ∥⟨θ⟩q̃∥22
∣∣

≤ C ′W2(q, q̃)√
d

≤ C ′′|s2 − s̃2|+ C ′′∥α− α̃∥2.
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Since E ′(C0, CLSI) holds a.s. for all large n, d, and Corollary 2.10(a) already proven shows limn,d→∞ MSE =
mse and limn,d→∞ MSE∗ = mse∗ a.s. at both (s2, α) and (s̃2, α̃), this implies

|mse(s2, α)−mse(s̃2, α̃)|, |mse∗(s
2, α)−mse∗(s̃

2, α̃)| ≤ C|s2 − s̃2|+ C∥α− α̃∥2,

so mse(s2, α) and mse∗(s
2, α) are locally Lipschitz as desired.

Proof of Corollary 2.10(b). We apply Corollary 2.10(a) and an I-MMSE relation for mismatched Gaussian
channels. Write E[· | X] for the expectation over (θ∗, ε) conditional on X as in Proposition 4.11. Let

I(y,θ∗) = E
[
log

P(y | θ∗,X)

Pg∗(y | X)

∣∣∣∣ X] = −E[logPg∗(y | X) | X]− n

2
(1 + log 2πσ2)

be the signal-observation mutual information in the linear model (4) conditional on X, where P(y | θ∗,X)
is the Gaussian likelihood of y and Pg∗(y | X) is the marginal likelihood (6) under the true prior g∗. Then

E[logPg(y | X) | X] = −DKL(Pg∗(y | X)∥Pg(y | X)) + E[logPg∗(y | X) | X]

= −DKL(Pg∗(y | X)∥Pg(y | X))− I(y,θ∗)− n

2
(1 + log 2πσ2) (172)

where here and throughout the proof, DKL(·) denotes the KL-divergence also conditional on X.
Let us denote the inverse noise variance by s−1 = σ2 and write

E(s, g) = E[YMSE∗ | X] = n−1E[∥X⟨θ⟩ −Xθ∗∥2 | X] (173)

for the expected YMSE∗ in the linear model (4) with assumed prior g and noise variance s−1. We clarify
that this means ⟨·⟩ in (173) is the posterior average under the law

Pg(θ | X,y) ∝ exp

(
−s

2
∥y −Xθ∥22 +

d∑
j=1

log g(θj)

)

and E[· | X] is the expectation over (θ∗, ε) where ε also has variance s−1. We write also I[s],DKL[s]
for the above quantities I(y,θ∗) and DKL(Pg∗(y | X)∥Pg(y | X)) in this model with noise variance s−1.
Then [87, Theorem 2] and [88, Eq. (24)] show the I-MMSE relations

d

ds
I[s] =

n

2
E(s, g∗),

d

ds
DKL[s] =

n

2

(
E(s, g)− E(s, g∗)

)
.

For any fixed n, d and X, in the limit s → 0, it is direct to check that I[s] → 0 and DKL[s] → 0. Thus, for
I(y,θ∗) ≡ I[σ−2] and DKL(Pg∗(y | X)∥Pg(y | X)) ≡ DKL[σ

−2] in the original model with noise variance σ2,
integrating these I-MMSE relations shows

DKL(Pg∗(y | X)∥Pg(y | X)) + I(y,θ∗) =
n

2

∫ σ−2

0

E(s, g)ds. (174)

Assumption 2.7(b) ensures that the posterior LSI (46) holds a.s. in the model with any noise variance s−1 ∈
[σ2,∞). Then applying Corollary 2.10(a) already shown and the concentration of YMSE∗ in Proposition
4.11, we have E(s, g) → ymse∗(s, g) a.s. for each s−1 ∈ (σ2,∞), where ymse∗(s, g) is defined by (42) via the
DMFT limit of the Langevin dynamics (7) with fixed prior g(·) in the linear model with noise variance s−1.
To apply dominated convergence, we note that on the event ∥X∥op ≤ C0, by the extension (110) of (106), we
have E(s, g) ≤ C for a constant C > 0 uniformly over all s ∈ [0, σ−2] and all n, d. Then, since ∥X∥op ≤ C0

holds a.s. for all large n, d, taking the limit n, d → ∞ and applying the bounded convergence theorem to
(174) shows that almost surely,

lim
n,d→∞

1

d

(
DKL(Pg∗(y | X)∥Pg(y | X)) + I(y,θ∗)

)
=

δ

2

∫ σ−2

0

ymse∗(s, g)ds. (175)
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Let us now fix the assumed prior g(·), write ymse∗(s) ≡ ymse∗(s, g), and let (mse(s),mse∗(s), ω(s), ω∗(s))
denote the fixed points (43) corresponding to ymse∗(s). Recall the marginal density Pg,ω(y) of the scalar
channel model (39), and define

f(ω, ω∗, s) = −Eg∗,ω∗ logPg,ω(y)−
1

2

(
2δ + log

2π

ω
− δ log

δs

ω
+ (1− δ)

ω

ω∗
+

ω

s

( ω

ω∗
− 2
))

(176)

=
ω

2
E θ∗2 − E log

∫
exp

(
ωθ(θ∗ + ω

−1/2
∗ z)− ω

2
θ2
)
g(θ)dθ︸ ︷︷ ︸

:=I

− 1

2

(
2δ − δ log

δs

ω
− δω

ω∗
+

ω

s

( ω

ω∗
− 2
))

︸ ︷︷ ︸
:=II

.

Here, the expectations in the second line are over θ∗ ∼ g∗ and z ∼ N (0, 1), and we have applied the explicit

form of Pg,ω(y) and evaluated Eg∗,ω∗ under the true model y = θ∗ + ω
−1/2
∗ z with some some algebraic

simplification. We now claim that

δ

2

∫ s

0

ymse∗(t)dt = f(ω(s), ω∗(s), s) (177)

for all s ∈ (0, σ−2). To show this, it suffices to check lims→0 f(ω(s), ω∗(s), s) = 0 and d
dsf(ω(s), ω∗(s), s) =

δ
2 ymse∗(s), which we may do as follows:

• Let MSE(s),MSE∗(s) denote the values of MSE,MSE∗ in a linear model with noise variance s−1. On
the event ∥X∥op ≤ C0, the bound (110) implies that MSE(s),MSE∗(s) ≤ C(1+s∥y∥22/d) for a constant
C > 0 (independent of s) and for all s−1 ∈ (σ2,∞). Taking the almost sure limit as n, d → ∞ shows
that mse(s),mse∗(s) ≤ C. In particular, in the limit s → 0, we have that mse(s),mse∗(s) remain
bounded, so ω(s), ω∗(s) ∼ δs by the fixed point relation (43). Then ω(s) → 0, ω∗(s) → 0, ω(s)/s → δ,
and ω(s)/ω∗(s) → 1 as s → 0. Applying this to (176) shows

lim
s→0

f(ω(s), ω∗(s), s) = 0.

• Differentiating the term I of (176) in ω, ω∗ and applying Gaussian integration-by-parts with respect to
z ∼ N (0, 1), we may check that

∂ωI =
1

2
E⟨(θ∗ − θ)2⟩g,ω − ω

ω∗
E⟨(θ − ⟨θ⟩g,ω)2⟩g,ω,

∂ω∗I =
ω2

2ω2
∗
E⟨(θ − ⟨θ⟩g,ω)2⟩g,ω.

Then at the fixed points (ω, ω∗) = (ω(s), ω∗(s)), we have

∂ωI|(ω,ω∗)=(ω(s),ω∗(s)) =
1

2
(mse(s) + mse∗(s))−

ω(s)

ω∗(s)
mse(s)

∂ω∗I|(ω,ω∗)=(ω(s),ω∗(s)) =
ω(s)2

2ω∗(s)2
mse(s).

Applying mse(s) = δ/ω(s)−σ2 and mse∗(s) = δ/ω∗(s)−σ2 by (43) and comparing with the derivatives
of the second term II of (176), this verifies

∂ωf(ω(s), ω∗(s), s) = 0, ∂ω∗f(ω(s), ω∗(s), s) = 0. (178)

Furthermore, direct calculation shows that at (ω, ω∗) = (ω(s), ω∗(s)),

∂sf(ω(s), ω∗(s), s) =
δσ2

2
+

ω(s)σ4

2

( ω(s)

ω∗(s)
− 2
)
=

δ

2
ymse∗(s),

the second equality using (44). Lemma 4.12 implies that mse(s),mse∗(s), ω(s), ω∗(s) are locally Lips-
chitz, and hence absolutely continuous, over s ∈ (0, σ−2). Then also s 7→ f(ω(s), ω∗(s), s) is absolutely
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continuous, and we may differentiate by the chain rule to get

d

ds
f(ω(s), ω∗(s), s) = ∂ωf(ω(s), ω∗(s), s) · ω′(s) + ∂ω∗f(ω(s), ω∗(s), s) · ω′

∗(s) + ∂sf(ω(s), ω∗(s), s)

= ∂sf(ω(s), ω∗(s), s) =
δ

2
ymse∗(s).

Combining the above arguments verifies the claim (177).
Applying (175) and (177) to (172) and writing (ω, ω∗) = (ω(σ−2), ω∗(σ

−2)) for the fixed points at the
original noise variance σ2, this shows

lim
n,d→∞

d−1E[logPg(y | X) | X] = −f(ω, ω∗, σ
−2)− δ

2
(1 + log 2πσ2).

Applying concentration of d−1 logPg(y | X) with respect to E[· | X] which is established in Propostion 4.11,
and substituting the form of f in (176), this shows Corollary 2.10(b).

5 Analysis of empirical Bayes Langevin dynamics

In this section, we prove Theorem 2.13 on the adaptive empirical Bayes dynamics with time-varying prior
parameter α̂t, and discuss further the examples of Section 2.4.2.

5.1 General analysis under uniform LSI

We introduce a few notational shorthands: Conditional on X,θ∗, ε, let

qα(θ) ≡ Pg(·,α)(θ | X,y)

be the posterior law under the prior parameter α. We write ⟨·⟩α for its posterior expectation. For θ ∈ Rd,
define

P̄θ =
1

d

d∑
j=1

δ(θ∗j ,θj), P̄α = ⟨P̄θ⟩α. (179)

Thus P̄α is a (X,θ∗, ε)-dependent joint law over variables (θ∗, θ) which satisfies

E(θ∗,θ)∼P̄α
f(θ∗, θ) =

1

d

d∑
j=1

⟨f(θ∗j , θj)⟩α =
1

d

d∑
j=1

∫
f(θ∗j , θj)qα(θ)dθ. (180)

We write θ ∼ P̄α as shorthand for the θ-marginal of (θ∗, θ) ∼ P̄α.
We note that under Assumptions 2.2(b) and 2.11, all constants in (105) are uniform over g ∈ {g(·, α) :

α ∈ O} for the bounded domain O of Assumption 2.11, where a uniform bound for | log g(0, α)| follows from
| log g(0, α)| ≤ | log g(0, 0)| + ∥∇α(log g(0, 0))∥2 · ∥α∥2 + C∥α∥22 as implied by (19) of Assumption 2.2(b).
Hence the bounds of Section 4.2 hold uniformly over α ∈ O. In particular, from (106),

sup
α∈O

⟨∥θ∥22⟩α ≤ C(d+ ∥y∥22) (181)

on an event {∥X∥op ≤ C0} that holds a.s. for all large n, d.

We first prove Lemma 2.12 on the derivatives of F, F̂ and uniform convergence of F̂ ,∇F̂ over S ⊂ O.

Proof of Lemma 2.12. For (a), differentiating

F̂ (α) = −1

d
log

∫ ( 1

2πσ2

)n/2
exp

(
− 1

2σ2
∥y −Xθ∥22 +

d∑
j=1

log g(θj , α)
)
dθ
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and applying the property (180), we have

∇F̂ (α) = −1

d

d∑
j=1

⟨∇α log g(θj , α)⟩α = −Eθ∼P̄α
∇α log g(θ, α). (182)

For the form of ∇F (α), define analogously to (176)

f(ω, ω∗, α) = −Eg∗,ω∗ logPg(·,α),ω(y)−
1

2

(
2δ + log

2π

ω
− δ log

δ

ωσ2
+ (1− δ)

ω

ω∗
+ ωσ2

( ω

ω∗
− 2
))

(183)

where the dependence on α is in Pg(·,α),ω(y). For any α ∈ O, let ω(α), ω∗(α) be the fixed points ω, ω∗
defined by (42) via the DMFT system for the dynamics (7) with fixed prior g ≡ g(·, α). (This DMFT
system is approximately-TTI for each α ∈ O by Assumption 2.11 and Theorem 2.9, hence ω(α), ω∗(α) are
well-defined.) Then

F (α) = f(ω(α), ω∗(α), α) +
δ

2
(1 + log 2πσ2). (184)

By the same calculations as (178), at the fixed points (ω(α), ω∗(α)), we have ∂ωf(ω(α), ω∗(α), α) = 0 and
∂ω∗f(ω(α), ω∗(α), α) = 0. By Lemma 4.12, ω(α), ω∗(α) are locally Lipschitz and hence absolutely continuous
over α ∈ O. Then F (α) is also absolutely continuous over α ∈ O, and differentiating by the chain rule gives

∇F (α) = ∇αf(ω, ω∗, α)
∣∣∣
(ω,ω∗)=(ω(α),ω∗(α))

= −∇α

[
Eg∗,ω∗ logPg(·,α),ω(y)

]∣∣∣∣
(ω,ω∗)=(ω(α),ω∗(α))

= −∇α

[
Eg∗,ω∗ log

∫ ( ω

2π

)1/2
exp

(
−ω

2
(y − θ)2 + log g(θ, α)

)
dθ

]∣∣∣∣
(ω,ω∗)=(ω(α),ω∗(α))

By definition Pα is the joint law of (θ∗, θ) under the generative process where (θ∗, y) are drawn from the Gaus-
sian convolution model defining this expectation Eg∗,ω∗ , and where θ ∼ Pg(·,α),ω(θ | y). Hence, evaluating
∇α above gives

∇F (α) = −Eθ∼Pα
∇α log g(θ, α).

For (b), let S ⊂ O be any compact subset of the domain O in Assumption 2.11, and let Q be a countable
dense subset of O. Define

E(C0, CLSI) = {∥X∥op ≤ C0, (46) holds for qα(θ) ≡ Pg(·,α)(θ | X,y) for every α ∈ O}.

Assumptions 2.1 and 2.11 ensure for some C0, CLSI > 0 that E(C0, CLSI) holds a.s. for all large n, d, where
this event depends only on X and not on θ∗, ε.

We restrict to the almost-sure event where the convergence statements of Corollary 2.10 and Proposition
4.11 hold for every α ∈ Q, and where E(C0, CLSI) holds for all large n, d. Note that Corollary 2.10 shows

F̂ (α) → F (α) for each α ∈ Q. To strengthen this to uniform convergence over S, note that Assumption
2.2(b) implies ∂θ∇α log g(θ, α) is uniformly bounded over (θ, α) ∈ R× S, so

∥∇α log g(θ, α)∥2 ≤ ∥∇α log g(0, α)∥2 + C|θ|.

Then, since ∇α log g(0, α) is bounded over α ∈ S by compactness of S, and supα∈S⟨∥θ∥22⟩α ≤ Cd by (181),
we have

sup
α∈S

∥Eθ∼P̄α
∇α log g(θ, α)∥2 ≤ sup

α∈S

1

d

d∑
j=1

⟨∥∇α log g(θj , α)∥2⟩α

≤ sup
α∈S

∥∇α log g(0, α)∥2 +
C

d

d∑
j=1

⟨|θj |⟩α ≤ C ′. (185)
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This shows ∇F̂ (α) is bounded over any compact subset S ⊂ O. Then for any compact S ⊂ O, the functions

F̂ (α) for all n, d are equicontinuous in a neighborhood of each point α ∈ S, and hence are uniformly
equicontinuous over S since a finite number of such neighborhoods cover S. Then by Arzela-Ascoli, the
convergence F̂ (α) → F (α) for each α ∈ Q implies uniform convergence over α ∈ S.

We next show the pointwise convergence ∇F̂ (α) → ∇F (α) for each α ∈ Q. Recalling our definition of
P̄θ in (179), and applying Jensen’s inequality and the convexity W2(λP+(1−λ)P′,Q)2 ≤ λW2(P,Q)

2+(1−
λ)W2(P

′,Q)2 of the squared Wasserstein-2 distance,

W2(P̄α,Pα)
2 ≤ ⟨W2(P̄θ,Pα)

2⟩α.

For each α ∈ Q, the right side converges to 0 as n, d → ∞ by the statement (48) of Corollary 2.10(a).
Thus limn,d→∞ W2(P̄α,Pα) = 0. Assumption 2.2(b) ensures that ∇α log g(θ, α) is Lipschitz in θ, so this
Wasserstein-2 convergence implies

lim
n,d→∞

∇F̂ (α) = lim
n,d→∞

Eθ∼P̄α
∇α log g(θ, α) = Eθ∼Pα∇α log g(θ, α) = ∇F (α)

for each α ∈ Q, as claimed.
To extend this to uniform convergence over any compact subset S ⊂ O, we differentiate (182) a second

time. Writing Varα,Covα for the variance and covariance under ⟨·⟩α,

∇2F̂ (α) = −1

d

〈 d∑
j=1

∇2
α log g(θj , α)

〉
α

− 1

d
Covα

[ d∑
j=1

∇α log g(θj , α)

]
. (186)

The first term is uniformly bounded over α ∈ S, by the same argument as showing boundedness of ∇F̂ (α)
above. For the second term, on the event E(C0, CLSI), for every unit vector v ∈ RK and α ∈ S,

Varα

[ d∑
j=1

v⊤∇α log g(θj , α)

]
≤ (CLSI/2)

〈 d∑
j=1

(
v⊤∂θ∇α log g(θj , α)

)2〉
α

by the Poincaré inequality for qα implied by its LSI. Since ∂θ∇α log g(θ, α) is bounded over α ∈ S, the second

term of (186) is also bounded on E(C0, CLSI). Thus ∇2F̂ (α) is uniformly bounded over α ∈ S for all large

n, d. This implies as above that for any compact S ⊂ O, the functions ∇F̂ (α) for all large n, d are uniformly

equicontinuous on S, so ∇F̂ (α) → ∇F (α) uniformly over α ∈ S. This shows part (b).
For part (c), note that if g∗ = g(·, α∗), then

E[F̂ (α) | X]− E[F̂ (α∗) | X] = d−1 DKL(Pg(·,α∗)(y | X)∥Pg(·,α)(y | X)) ≥ 0,

where here DKL(·) is the KL-divergence conditional on X. Thus α∗ is a minimizer of α 7→ E[F̂ (α) | X] over

RK . Applying the convergence F̂ (α)− E[F̂ (α) | X] → 0 for each α ∈ Q from Proposition 4.11, we have also

E[F̂ (α) | X] → F (α) for each α ∈ Q. Note that

∇αE[F̂ (α) | X] = −E[Eθ∼P̄α
∇α log g(θ, α) | X],

and that supα∈S E[⟨∥θ∥22⟩α | X] ≤ E[supα∈S⟨∥θ∥22⟩α | X] ≤ Cd on E(C0, CLSI), by (181). Then the argument

(185) shows also that ∇αE[F̂ (α) | X] is uniformly bounded and equicontinuous over α ∈ S, hence

lim
n,d→∞

sup
α∈S

|E[F̂ (α) | X]− F (α)| = 0.

Since α∗ is a minimizer of E[F̂ (α) | X], this implies that F (α) ≥ F (α∗) for every α ∈ S. Since this holds for
every compact subset S ⊂ O, this shows part (c).

We proceed to prove Theorem 2.13. Let {θt, α̂t}t≥0 be the solution of the adaptive Langevin equations (9–
10). Let {αt}t≥0 be the (deterministic) α-component of the DMFT limit of {α̂t}t≥0 prescribed by Theorem
2.3(b), and consider the SDE

dθ̃t = ∇θ̃

(
− 1

2σ2
∥y −Xθ̃t∥22 +

d∑
j=1

log g(θ̃tj , α
t)

)
dt+

√
2 dbt (187)
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which replaces α̂t by αt. We couple {θ̃t}t≥0 to {θt, α̂t}t≥0 via the same initial conditions θ̃0 = θ0 and α0 of
Assumption 2.1, and via the same Brownian motion {bt}t≥0.

We write qt for the density of θ̃t conditional on X,θ∗, ε and averaging over θ̃0, where q0 = g⊗d0 is the
initial density of θ̃0 = θ0. In parallel to (179), we denote

P̄θ̃t =
1

d

d∑
j=1

δ(θ∗j ,θ̃tj)
, P̄t = ⟨P̄θ̃t⟩ (188)

where ⟨·⟩ is the average with respect to θ̃t ∼ qt, i.e. the average over θ̃0 and {bt}t≥0. We write θ̃t ∼ P̄t for

the θ̃t-marginal of a sample (θ∗, θ̃t) ∼ P̄t.

Lemma 5.1. Under Assumptions 2.1 and 2.2(b), there exists a unique solution {θ̃t}t≥0 to (187). Letting

qt be the above conditional density of θ̃t, and letting V (q, α) be the Gibbs free energy (13), almost surely

lim sup
n,d→∞

sup
t∈[0,T ]

d

dt

(
V (qt, α

t) +R(αt)
)
≤ 0. (189)

Proof. Fixing C0 > 0 large enough, let

E(C0) = {∥X∥op ≤ C0, ∥θ∗∥22, ∥ε∥22 ≤ C0d}.

We restrict to the event where the almost-sure convergence statements of Theorem 2.3(b) hold and where
E(C0) holds for all large n, d.

Since {αt}t≥0 is continuous, for each T > 0, there exists a compact ball ST for which αt ∈ ST for all
t ∈ [0, T ]. By Assumption 2.2(b), (θ, α) 7→ ∂θ log g(θ, α) restricted to α ∈ ST is Lipschitz. Then the drift of
(187) is Lipschitz over each time horizon [0, T ], so (187) admits a unique solution {θ̃t}t∈[0,T ] (c.f. [84, Theorem
II.1.2]) over t ∈ [0, T ] for every T ≥ 0, and hence also over all t ≥ 0. We note that

d

dt
(θ̃t − θt) =

1

σ2
X⊤X(θt − θ̃t) +

[
∂θ log g(θ̃

t
j , α

t)− ∂θ log g(θ
t
j , α̂

t)
]d
j=1

.

Applying again the Lipschitz property of (θ, α) 7→ ∂θ log g(θ, α) over α ∈ ST and the bound ∥X∥op ≤ C0,
there is a constant C > 0 depending on C0, T such that∥∥∥∥ 1√

d

d

dt
(θ̃t − θt)

∥∥∥∥
2

≤ C√
d
∥θ̃t − θt∥2 + C∥αt − α̂t∥2.

Since supt∈[0,T ] ∥αt − α̂t∥2 → 0 by Theorem 2.3(b), a Gronwall argument implies

lim
n,d→∞

sup
t∈[0,T ]

1√
d
∥θ̃t − θt∥2 = 0. (190)

By the DMFT equation (27), the evolution of αt is given by

d

dt
αt = Eθt∼P(θt)∇α log g(θ

t, αt)−∇R(αt) (191)

where P(θt) is the law of the DMFT variable θt. The law qt of θ̃
t satisfies the Fokker-Planck equation

d

dt
qt(θ̃) = ∇θ̃ ·

[
qt(θ̃)∇θ̃

(
1

2σ2
∥y −Xθ̃∥22 −

d∑
j=1

log g(θ̃j , α
t) + log qt(θ̃)

)]
. (192)

Then, using (191) and (192) to differentiate V (qt, α
t) +R(αt),

d

dt

(
V (qt, α

t) +R(αt)
)
= −1

d

∫ ∥∥∥∥∇θ̃

( 1

2σ2
∥y −Xθ̃∥22 −

d∑
j=1

log g(θ̃j , α
t) + log qt(θ̃)

)∥∥∥∥2
2

qt(θ̃)dθ̃︸ ︷︷ ︸
:=FIt

(193)

−
(
Eθt∼P(θt)∇α log g(θ

t, αt)−∇R(αt)
)⊤(∫ 1

d

d∑
j=1

∇α log g(θ̃j , α
t)qt(θ̃)dθ̃ −∇R(αt)

)
.
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Here, the first term FIt (the relative Fisher information) arises from differentiation in qt and integration-by-
parts in θ̃, while the second term arises from differentiation in αt. Recalling the notation (188),∫

1

d

d∑
j=1

∇α log g(θ̃j , α
t)qt(θ̃)dθ̃ = Eθ̃t∼P̄t

∇α log g(θ̃
t, αt)

so we may write the above as

d

dt

(
V (qt, α

t) +R(αt)
)

= −1

d
FIt −

∥∥∥Eθ̃t∼P̄t
∇α log g(θ̃

t, αt)−∇R(αt)
∥∥∥2

+
(
Eθ̃t∼P̄t

∇α log g(θ̃
t, αt)− Eθt∼P(θt)∇α log g(θ

t, αt)
)⊤(

Eθ̃t∼P̄t
∇α log g(θ̃

t, αt)−∇R(αt)
)

︸ ︷︷ ︸
:=∆t

.

(194)

By the convexity W2(λP+ (1− λ)P′,Q)2 ≤ λW2(P,Q)
2 + (1− λ)W2(P

′,Q)2 and Jensen’s inequality,

sup
t∈[0,T ]

W2(P̄t,P(θ
∗, θt))2 ≤ sup

t∈[0,T ]

⟨W2(P̄θ̃t ,P(θ
∗, θt))2⟩ ≤

〈
sup
t∈[0,T ]

W2(P̄θ̃t ,P(θ
∗, θt))2

〉
, (195)

where ⟨·⟩ is the average over θ̃t ∼ qt, and P(θ∗, θt) is the joint law of the DMFT variables (θ∗, θt). By
Theorem 2.3(b) and (190), for any fixed T > 0 we have

sup
t∈[0,T ]

W2(P̄θ̃t ,P(θ
∗, θt))2 ≤ sup

t∈[0,T ]

2W2(P̄θ̃t , P̄θt)2 + 2W2(P̄θt ,P(θ∗, θt))2 → 0 (196)

almost surely as n, d → ∞. The same arguments as leading to (168) show that supt∈[0,T ] W2(P̄θ̃t ,P(θ∗, θt))2

is uniformly integrable with respect to ⟨·⟩ for all large n, d. Then applying (196) and dominated convergence
to bound the right side of (195), we get

lim
n,d→∞

sup
t∈[0,T ]

W2(P̄t,P(θ
∗, θt))2 = 0. (197)

Finally, applying that (θ, α) 7→ ∇α log g(θ, α) is uniformly Lipschitz over α ∈ ST by Assumption 2.2(b), this
Wasserstein-2 convergence implies

lim
n,d→∞

sup
t∈[0,T ]

∣∣∣Eθ∼P̄t
∇α log g(θ, α

t)− Eθ∼P(θt)∇α log g(θ, α
t)
∣∣∣ = 0,

hence limn,d→∞ supt∈[0,T ] |∆t| = 0 for the quantity ∆t of (194). As the first two terms of (194) are non-
positive, this shows (189).

Proof of Theorem 2.13. Let S ⊂ O ⊂ RK be the domains of Assumption 2.11. Fixing sufficiently large
constants C0, CLSI > 0, define

E(C0, CLSI) = {∥X∥op ≤ C0, ∥θ∗∥22, ∥ε∥22 ≤ C0d, and (46) holds for qα for every α ∈ O}.

We restrict to the event where the almost-sure convergence statements of Theorem 2.3(b) and Lemma 2.12
hold, and where E(C0, CLSI) holds for all large n, d. Throughout, C,C ′, c > 0 denote constants that may
depend on C0, CLSI and change from instance to instance.

On the event E(C0, CLSI), we first note that by Itô’s formula,

d∥θ̃t∥22 = 2(θ̃t)⊤
[( 1

σ2
X⊤(y −Xθ̃t) +

(
∂θ log g(θ̃

t
j , α

t)
)d
j=1

)
dt+

√
2 dbt

]
+ (2d)dt,

and hence

d

dt
⟨d−1∥θ̃t∥22⟩ ≤ C(1 + ⟨d−1/2∥θ̃t∥2⟩) + 2

〈
d−1

d∑
j=1

θ̃tj · ∂θ log g(θ̃tj , αt)
〉
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for a constant C > 0. Under the convexity-at-infinity condition of Assumption 2.2(b), there exist constants
C, c > 0 for which θ ·∂θ log g(θ, αt) ≤ C|θ|−cθ2 for all θ ∈ R and αt ∈ S. Applying this and Cauchy-Schwarz
to the above, we have for some constants C ′, c′ > 0 that d

dt ⟨d
−1∥θ̃t∥22⟩ ≤ C ′ − c′⟨d−1∥θ̃t∥22⟩. This implies on

E(C0, CLSI) that
d−1⟨∥θ̃t∥22⟩ ≤ C (198)

for a constant C > 0 and all t ≥ 0. The arguments leading to (168) show that for any fixed t ≥ 0, d−1∥θ̃t∥22
is uniformly integrable with respect to ⟨·⟩ for all large n, d. Since E(C0, CLSI) holds a.s. for all large n, d,
and limn,d→∞ d−1∥θ̃t∥22 = (θt)2 a.s. by Theorem 2.3(b) and (190) where θt here is the θ-component of the
limiting DMFT system, this implies also

E(θt)2 ≤ C (199)

for all t ≥ 0. Furthermore, for any s ≤ t, applying

θ̃t − θ̃s =

∫ t

s

[ 1

σ2
X⊤(y −Xθ̃r) +

(
∂θ log g(θ̃

r
j , α

r)
)d
j=1

]
dr +

√
2(bt − bs)

and uniform Lipschitz continuity of θ 7→ ∂θ log g(θ, α
r) for αr ∈ S, we have on E(C0, CLSI) that

d−1/2∥θ̃t − θ̃s∥2 ≤
∫ t

s

Cd−1/2∥θ̃r − θ̃s∥2 dr + C(t− s)(1 + d−1/2∥θ̃s∥2) +
√
2d−1/2∥bt − bs∥2.

Then by Gronwall’s inequality,

d−1/2∥θ̃t − θ̃s∥2 ≤ CeC(t−s)
(
C(t− s)(1 + d−1/2∥θ̃s∥2) + d−1/2 sup

r∈[s,t]

∥br − bs∥2
)
.

Then applying (198) and Doob’s maximal inequality shows

d−1⟨∥θ̃t − θ̃s∥22⟩ ≤ C(t− s) for all s ≤ t with t− s ≤ 1. (200)

We now show that for a constant C > 0,∫ ∞

0

∥∇F (αt) +∇R(αt)∥22dt < C. (201)

We remind the reader that qt is the law of θ̃t (conditioned on X,θ∗, ε) and qαt is the posterior law of θ
under the prior g ≡ g(·, αt). On E(C0, CLSI), the LSI for qαt and its implied T2-transportation inequality
(c.f. [83, Theorem 9.6.1]) imply for the Fisher information term FIt of (193) that

FIt ≥ C−1
LSI DKL(qt∥qαt) ≥ C−2

LSIW2(qt, qαt)2

for all t ≥ 0. The average marginal distribution of coordinates of θ̃t ∼ qt is the θ̃t-marginal of P̄t defined
in (188), and that of θ ∼ qαt is the θ-marginal of P̄αt as defined in (179). Considering the coordinatewise
coupling of P̄t, P̄αt , we see that W2(P̄t, P̄αt)2 ≤ d−1W2(qt, qαt)2, so

d−1FIt ≥ C−2
LSIW2(P̄t, P̄αt)2. (202)

Applying this and the uniform Lipschitz continuity of θ 7→ ∇α log g(θ, α) over α ∈ O guaranteed by Assump-
tion 2.2(b), ∥∥∥Eθ̃t∼P̄t

∇α log g(θ̃
t, αt)− Eθ∼P̄αt

∇α log g(θ, α
t)
∥∥∥2
2
≤ C ′ W2(P̄t, P̄αt)2 ≤ Cd−1FIt.

Then applying this as a lower bound for d−1FIt in (194), and applying also C−1(a − b)2 + b2 ≥ c0a
2 for a

constant c0 > 0 and all a, b ∈ R, we get from (194) that

d

dt

(
V (qt, α

t) +R(αt)
)
≤ −c0

∥∥∥Eθ∼P̄αt
∇α log g(θ, α

t)−∇R(αt)
∥∥∥2 +∆t.
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Now note from Lemma 2.12 that

Eθ∼P̄αt
∇α log g(θ, α

t) = −∇F̂ (αt).

Applying supt∈[0,T ] ∆t → 0 and the uniform convergence ∇F̂ (α) → ∇F (α) over α ∈ S from Lemma 2.12,
this shows a strengthening of (189): for any t ∈ [0, T ],

lim sup
n,d→∞

d

dt

(
V (qt, α

t) +R(αt)
)
≤ −c0∥∇F (αt) +∇R(αt)∥22.

Then for any T > 0,

c0

∫ T

0

∥∇F (αt) +∇R(αt)∥22 dt ≤ lim sup
n,d→∞

V (q0, α
0) +R(α0)− V (qT , α

T )−R(αT ).

Note that by the definition of V (q, α) in (13) and the conditions of finite moments and finite entropy for g0
in Assumption 2.1, V (q0, α

0) = V (g⊗d0 , α0) is bounded above by a constant on E(C0, CLSI) for all large n, d.
Also by the definition (13),

V (qT , α
T ) ≥ 1

d
DKL(qT ∥g(·, αT )⊗d) +

n

2d
log 2πσ2 ≥ n

2d
log 2πσ2

which is bounded below by a constant for all T and all large n, d. Then, applying also R(α0) ≤ C and
R(αT ) ≥ 0 and taking the limit n, d → ∞ followed by T → ∞, we obtain the claimed bound (201).

Consider the set
Crit = {α ∈ S : ∇F (α) +∇R(α) = 0}.

Suppose by contradiction that {αt}t≥0 has a limit point α∞ ∈ S that does not belong to Crit. Lemma 2.12
implies that ∇F (α) +∇R(α) is continuous over α ∈ O, so ∥∇F (α) +∇R(α)∥2 > δ for all α ∈ Bδ(α

∞) :=
{α : ∥α− α∞∥2 < δ} and some δ > 0. However, Assumption 2.2(b) and the DMFT equation (27) imply∥∥∥∥ d

dt
αt
∥∥∥∥
2

≤ Eθ∼P(θt)∥∇α log g(θ, α
t)∥2 + ∥∇R(αt)∥2 ≤ C(1 + E|θt|+ ∥αt∥2) ≤ C ′ (203)

for some constants C,C ′ > 0 and all t ≥ 0, where the last inequality applies (199) and the assumption
αt ∈ S. Then for each t0 ≥ 0 such that

αt0 ∈ Bδ/2(α
∞) (204)

we must have αt ∈ Bδ(α
∞) for all t ∈ [t0 − cδ, t0 + cδ] and some constant c > 0. Then

∫ t0+cδ
t0−cδ ∥∇F (αt) +

∇R(αt)∥22 dt ≥ 2cδ3. The condition (204) must hold for infinitely many times t0 because α∞ is a limit point
of {αt}t≥0, but this contradicts (201). Thus we must have α∞ ∈ Crit. Since this holds for every limit point
α∞ of {αt}t≥0, and S is compact, this implies limt→∞ dist(αt,Crit) = 0. If furthermore all points of Crit
are isolated, then the limit point α∞ of {αt}t≥0 must be unique, and

lim
t→∞

αt = α∞.

For the remaining statements (53), fix any ε > 0. Choosing T (ε) such that ∥αt − α∞∥2 < ε/2 for all
t > T (ε), we then have lim supn,d→∞ ∥α̂t − α∞∥2 < ε by Theorem 2.3(b), showing the first statement of
(53). For the second statement of (53), we note from (194) that

d

dt

(
V (qt, α

t) +R(αt)
)
≤ −1

d
FIt +∆t.

Then, by the same arguments as above, for some constant C > 0 and every T > 0,

lim sup
n,d→∞

∫ T

0

d−1FIt ≤ lim sup
n,d→∞

V (q0, α
0) +R(α0)− V (qT , α

T )−R(αT ) ≤ C.
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Recalling (202), this implies

lim sup
n,d→∞

∫ T

0

W2(P̄t, P̄αt)2dt ≤ C. (205)

For each fixed t ≥ 0, we have
lim

n,d→∞
W2(P̄t,P(θ

∗, θt))2 = 0 (206)

by (197). We have also by Jensen’s inequality for the squared Wasserstein-2 distance and (48) of Corollary
2.10(a),

lim sup
n,d→∞

W2(P̄αt ,Pαt)2 ≤ lim sup
n,d→∞

〈
W2(P̄θ,Pαt)2

〉
αt = 0 (207)

where ⟨·⟩αt is the average over θ ∼ qαt defining P̄θ. Then, combining (206) and (207), we have that
limn,d→∞ W2(P̄t, P̄αt) = W2(P(θ

∗, θt),Pαt). Applying this and Fatou’s lemma to (205), we obtain the bound∫ T
0
W2(P(θ

∗, θt),Pαt)2dt ≤ C. Since T > 0 is arbitrary, taking T → ∞ gives∫ ∞

0

W2(P(θ
∗, θt),Pαt)2dt ≤ C. (208)

For any s ≤ t, considering the coordinatewise coupling gives W2(P̄s, P̄t)
2 ≤ d−1⟨∥θ̃s − θ̃t∥22⟩ ≤ C(t− s),

where the second inequality holds for a constant C > 0 and all t− s ∈ [0, 1] by (200). Also

W2(P̄αs , P̄αt)2 ≤ d−1W2(qαs , qαt)2 ≤ C∥αt − αs∥22 ≤ C ′(t− s)2 (209)

by the Wasserstein-2 Lipschitz continuity of qα over α ∈ S shown in (171), and the bound (203) for dαt/dt.
Then taking the limit n, d → ∞ using (206) and (207), this shows

|W2(P(θ
∗, θt),Pαt)2 −W2(P(θ

∗, θs),Pαs)2| ≤ C(t− s)

for all t− s ∈ [0, 1]. Then t 7→ W2(P(θ
∗, θt),Pαt)2 is Lipschitz, so (208) implies

lim
t→∞

W2(P(θ
∗, θt),Pαt)2 = 0. (210)

We have similarly to (209) that W2(P̄αt , P̄α∞)2 ≤ d−1W2(qαt , qα∞)2 ≤ C∥αt − α∞∥22. Hence by (207), also
W2(Pαt ,Pα∞)2 ≤ C∥αt − α∞∥22, so

lim
t→∞

W2(Pαt ,Pα∞)2 = 0. (211)

Combining (210) and (211) show that for any ε > 0, there exists T (ε) > 0 such that W2(P(θ
∗, θt),Pα∞) <

ε for all t ≥ T (ε). The second statement of (53) follows from this and the almost sure convergence
limn,d→∞ W2(

1
d

∑
j δ(θ∗j ,θtj),P(θ

∗, θt)) = 0 ensured by Theorem 2.3(b).

5.2 Analysis of examples

Analysis of Examples 2.14 and 2.15. We prove the claims in Example 2.15 that Assumptions 2.2(b) and 2.11
hold, and that Crit consists of the unique point α = α∗. (Then these claims hold also in Example 2.14 for
the Gaussian prior, which is a special case.)

Assumption 2.2(b) is immediate from the given conditions for f(x). For Assumption 2.11, let us first
show that there exists a compact interval S ⊂ R for which {αt}t≥0 is confined to S (for all t ≥ 0): By
Lemma 5.1 (which does not require Assumption 2.11), for each fixed t ≥ 0, almost surely

lim sup
n,d→∞

V (qt, α
t)− V (q0, α

0) ≤ 0. (212)

By the Gibbs variational principle (12) and the lower bound − log g(θ, α) = f(θ − α) ≥ f(0) + c0
2 (θ − α)2,

V (qt, α
t) ≥ F̂ (αt)

= −1

d
log

∫
(2πσ2)−n/2 exp

(
− 1

2σ2
∥y −Xθ∥22 +

d∑
j=1

log g(θj , α
t)
)
dθ

≥ −1

d
log

∫
(2πσ2)−n/2 exp

(
− 1

2σ2
∥y −Xθ∥22 − f(0)d−

d∑
j=1

c0
2
(θj − αt)2

)
dθ
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Applying ∥X∥op ≤ C a.s. for all large n, d, it is readily checked by explicit evaluation of this integral over θ
that

V (qt, α
t) ≥ C +

c0
2
(αt)2 − 1

2d

(X⊤y

σ2
+ c0α

t1
)⊤(X⊤X

σ2
+ c0I

)−1(X⊤y

σ2
+ c0α

t1
)

a.s. for all large n, d and a constant C ∈ R depending on σ2, δ, f(0), c0, α
∗, where here 1 denotes the all-1’s

vector in Rd. We have

lim
n,d→∞

1

d
1⊤
(X⊤X

σ2
+ c0I

)−1

1 = σ2G(−σ2c0) <
1

c0

strictly, where G(z) = lim d−1 Tr(X⊤X − zI)−1 denotes the Stieltjes transform of the Marcenko-Pastur
spectral limit of X⊤X [89, Theorem 2.5]. Applying this to lower-bound the quadratic term in αt above, and
applying Cauchy-Schwarz to lower-bound the linear term, we get

V (qt, α
t) ≥ C ′ + c′(αt)2

for some constants C ′ ∈ R and c′ > 0. Now applying this and V (q0, α
0) = V (g⊗d0 , α0) ≤ C to (212), we

deduce that (αt)2 is uniformly bounded over all t ≥ 0, i.e. there exists a compact interval S for which αt ∈ S
for all t ≥ 0, as claimed. By enlarging S, we may assume without loss of generality α∗ ∈ S. Then, taking O
to be any neighborhood of S, the remaining LSI condition of Assumption 2.11 holds by the strong convexity
of f(x) and Proposition 2.8.

We now show that F (α) is strictly convex on O, by showing convexity of the original negative log-

likelihood F̂ (α): Fixing sufficiently large and small constants C0, c > 0, let us restrict to the event

E = {∥X∥op ≤ C0, ∥X1∥2 ≥ c
√
d}

which holds a.s. for all large n, d. Recalling the form of ∇2F̂ (α) from (186) and applying this with
− log g(θ, α) = f(θ − α),

F̂ ′′(α) =
1

d

〈 d∑
j=1

f ′′(θj − α)

〉
α

− 1

d
Varα

[ d∑
j=1

f ′(θj − α)

]
where ⟨·⟩α is the average under the posterior law corresponding to g(·, α), and Varα is its posterior variance.
Since f(x) is strictly convex, the posterior density of θ is strictly log-concave for each fixed α. Then, denoting

vα(θ) =
(
f ′′(θj − α)

)d
j=1

∈ Rd, Dα(θ) = diag
(
f ′′(θj − α)

)d
j=1

∈ Rd×d,

the Brascamp-Lieb inequality [83, Theorem 4.9.1] implies

Varα

[ d∑
j=1

f ′(θj − α)

]
≤
〈
vα(θ)

⊤
(
Dα(θ) +

X⊤X

σ2

)−1

vα(θ)

〉
α

Observing also that
∑d
j=1 f

′′(θj − α) = vα(θ)
⊤Dα(θ)

−1vα(θ), this shows

F̂ ′′(α) ≥ 1

d

〈
vα(θ)

⊤
[
Dα(θ)

−1 −
(
Dα(θ) +

X⊤X

σ2

)−1]
vα(θ)

〉
α

.

Applying the Woodbury matrix identity and 0 ⪯ σ2I + XDα(θ)
−1X⊤ ⪯ C ′ I on the event E for some

constant C ′ > 0,

F̂ ′′(α) ≥ 1

d

〈
vα(θ)

⊤
[
Dα(θ)

−1X⊤
(
σ2 I+XDα(θ)

−1X⊤
)−1

XDα(θ)
−1

]
vα(θ)

〉
α

≥ 1

C ′d

〈
vα(θ)

⊤Dα(θ)
−1X⊤XDα(θ)

−1vα(θ)

〉
α

=
1

C ′d
1⊤X⊤X1 ≥ c′,

the last inequality holding for some c′ > 0 on E . Thus, on E , F̂ (α) − (c′/2)α2 is convex over α ∈ R.
Since E holds a.s. for all large n, d and F (α) is the almost-sure pointwise limit of F̂ (α), this implies that
F (α) − (c′/2)α2 is also convex [85, Theorem 10.8], so F (α) is strongly convex as claimed. Lemma 2.12(c)
implies that ∇F (α∗) = 0, i.e. α∗ is a point of Crit, so by this convexity it is the unique point of Crit.
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Proposition 5.2. In the setting of Theorem 2.13, suppose R(α) is given by (54–55) with ∥α0∥2 ≤ D. Then
there exists a constant C(g∗, g0, α

0) > 0 depending only on (g∗, g0, α
0) such that the DMFT process {αt}t≥0

satisfies

∥αt∥2 ≤ D + C(g∗, g0, α
0)
(1 + δ

σ2
+ 1
)
for all t ≥ 0.

Proof. By Lemma 5.1, for each fixed t ≥ 0, almost surely

lim sup
n,d→∞

(
V (qt, α

t) +R(αt)
)
−
(
V (q0, α

0) +R(α0)
)
≤ 0. (213)

By definition of V (q, α) in (13), we have

V (q0, α
0) = V (g⊗d0 , α0) =

1

d

∫
1

2σ2
∥y −Xθ∥2

d∏
j=1

g0(θj)dθj +DKL(g0∥g(·, α0)) +
n

2d
log 2πσ2,

V (qt, α
t) =

1

d

∫
1

2σ2
∥y −Xθ∥2qt(θ)dθ +

1

d
DKL(qt∥g(·, αt)⊗d) +

n

2d
log 2πσ2.

Let ΠX ∈ Rn×n be the orthogonal projection onto the column span of X. Then, applying the above forms
with DKL(qt∥g(·, αt)⊗d) ≥ 0 and noting that ∥(I−ΠX)(y −Xθ)∥2 = ∥(I−ΠX)y∥2 which does not depend
on θ, we have

V (q0, α
0)− V (qt, α

t)

≤ 1

d

∫
1

2σ2
∥y −Xθ∥2

d∏
j=1

g0(θj)dθj −
1

d

∫
1

2σ2
∥y −Xθ∥2qt(θ)dθ +DKL(g0∥g(·, α0))

=
1

d

∫
1

2σ2
∥ΠX(y −Xθ)∥2

d∏
j=1

g0(θj)dθj −
1

d

∫
1

2σ2
∥ΠX(y −Xθ)∥2qt(θ)dθ +DKL(g0∥g(·, α0))

≤ 1

d

∫
1

2σ2
∥ΠX(y −Xθ)∥2

d∏
j=1

g0(θj)dθj +DKL(g0∥g(·, α0)).

Let us apply
∥ΠX(y −Xθ)∥2 ≤ 2∥ΠXε∥2 + 2∥X(θ∗ − θ)∥22,

∥X∥2op ≤ C(1 + δ), and ∥ΠXε∥2 ≤ Cmin(n, d)σ2 for a universal constant C > 0 a.s. for all large n, d. Then,
for a constant C(g∗, g0, α

0) > 0 depending only on g∗, g0, α
0,

lim sup
n,d→∞

V (q0, α
0)− V (qt, α

t) ≤ C(g∗, g0, α
0)
(1 + δ

σ2
+ 1
)
.

Applying this to (213) and noting that R(α0) = 0 because ∥α0∥ ≤ D, for every t ≥ 0 we get

R(αt) ≤ C(g∗, g0, α
0)
(1 + δ

σ2
+ 1
)
.

The lemma follows from this bound and the condition R(α) ≥ ∥α∥ −D whenever ∥α∥ ≥ D + 1.

Proof of Proposition 2.16. Fix any s2 = σ2/δ > 0. Throughout this proof, constants may depend on s2 but
not on δ. Proposition 5.2 implies that there exists a constant radius D′ > 0 (depending on s2 but not on δ)
such that for any δ > 1,

αt ∈ B(D′) for all t ≥ 0.

Set S = B(D′) and O = B(D′ + 1). Then for each fixed α ∈ O, Assumption 2.2(b) implies

C ≥ −∂2
θ log g(θ, α) ≥

{
c0 for |θ| ≥ r0

−C for all θ ∈ R
(214)
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for some C, r0, c0 > 0 uniformly over α ∈ O. By this bound (214) and Proposition 2.8(b), for some sufficiently
large δ0 = δ0(s

2) > 0, σ2 = δs2, and all δ ≥ δ0, the LSI (46) must hold for g = g(·, α) and each α ∈ O. This
verifies Assumption 2.11.

Throughout the remainder of the proof, let C,C ′, c, c′ > 0 denote constants not depending on δ that may
change from instance to instance. We compare the optimization landscape of F (α) with that of Gs2(α) over
O. Let mse(α), mse∗(α), ω(α), ω∗(α) be as defined by (42) and (43) for the prior g = g(·, α). We first bound
mse(α), mse∗(α), ω(α), ω∗(α): Write as shorthand ⟨·⟩ = ⟨·⟩g(·,α),ω(α) for the posterior expectation in the
scalar channel model (37). We have

⟨(y − θ)⟩2 =
1

Z

∫
(y − θ)2e−

ω(α)
2 (y−θ)2g(θ, α)dθ, Z =

∫
e−

ω(α)
2 (y−θ)2g(θ, α)dθ.

We separate the integrals over the sets {θ : e−
ω(α)

2 (y−θ)2 ≤ Z} and {θ : e−
ω(α)

2 (y−θ)2 > Z}, and on the latter
set apply the upper bound (y − θ)2 ≤ − 2

ω(α) logZ. This gives

⟨(y − θ)⟩2 ≤
∫
(y − θ)21{e−

ω(α)
2 (y−θ)2 ≤ Z}g(θ, α)dθ − 2

ω(α) logZ ≤ 2

∫
(y − θ)2g(θ, α)dθ,

the last inequality applying Jensen’s inequality to bound logZ ≥
∫
−ω(α)

2 (y−θ)2g(θ, α)dθ. It is clear from the

lower bounds of (214) and the boundedness of log g(0, α) and ∂θ log g(0, α) over α ∈ O that
∫
θ2g(θ, α)dθ < C

for some constant C > 0, for all α ∈ O. Thus this inequality shows

⟨(y − θ)⟩2 ≤ C(1 + y2),

which implies also

⟨(⟨θ⟩ − θ)⟩2 ≤ ⟨(y − θ)⟩2 ≤ C(1 + y2), ⟨θ⟩2 ≤ 2y2 + 2(y − ⟨θ⟩)2 ≤ 2y2 + 2⟨(y − θ)2⟩ ≤ C ′(1 + y2).

Taking expectations over y = θ∗ + ω∗(α)
−1/2z with θ∗ ∼ g∗ and z ∼ N (0, 1), we get mse(α),mse∗(α) ≤

C(1 + ω∗(α)
−1). Then applying ω∗(α)

−1 = (σ2 + mse∗(α))/δ ≤ s2 + C(1 + ω∗(α)
−1)/δ, for all δ > δ0

sufficiently large, this implies ω∗(α)
−1 ≤ C ′. This in turn shows by mse(α),mse∗(α) ≤ C(1 + ω∗(α)

−1) that

mse(α),mse∗(α) ≤ C. (215)

Let oδ(1) denote a quantity that converges to 0 uniformly over α ∈ O as δ → ∞ (fixing s2 = σ2/δ). Then,
applying (215) to the fixed point equations ω(α) = δ/(σ2 +mse(α)) and ω∗(α) = δ/(σ2 +mse∗(α)), we have

ω(α)−1 = s2 + oδ(1), ω∗(α)
−1 = s2 + oδ(1). (216)

We recall from Lemma 4.12 that ω(α), ω∗(α) must be continuous functions of α ∈ O. We now argue via
the implicit function theorem that for all δ > δ0 sufficiently large, these are in fact continuously-differentiable
over α ∈ O. For this, fix any α ∈ O and consider the map

fα(ω, ω∗) =

(
ω−1 − δ−1(σ2 + Eg∗,ω∗ [⟨(θ − ⟨θ⟩g(·,α),ω)2⟩g(·,α),ω])

ω−1
∗ − δ−1(σ2 + Eg∗,ω∗ [(θ

∗ − ⟨θ⟩g(·,α),ω)2]

)
. (217)

Thus (42) and (43) imply that 0 = fα(ω(α), ω∗(α)). Let us momentarily write as shorthand E = Eg∗,ω∗ and

⟨·⟩ = ⟨·⟩g(·,α),ω. Expressing y = θ∗ + ω
−1/2
∗ z, E may be understood as the expectation over θ∗ ∼ g∗ and

z ∼ N (0, 1). The expected posterior average E⟨·⟩ is given explicitly by

E⟨f(θ)⟩ = E
∫
f(θ)eHα(θ,ω,ω∗)dθ∫
eHα(θ,ω,ω∗)dθ

, Hα(θ, ω, ω∗) = ω(θ∗ + ω
−1/2
∗ z)θ − ω

2
θ2 + log g(θ, α),

and the derivatives in (ω, ω∗) may be computed via differentiation of Hα. Let us denote by κj(·) the jth

mixed cumulant associated to the posterior mean ⟨·⟩ = ⟨·⟩g(·,α),ω, i.e.

κ1(f(θ)) = ⟨f(θ)⟩, κ2(f(θ), g(θ)) = ⟨f(θ)g(θ)⟩ − ⟨f(θ)⟩⟨g(θ)⟩,
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etc. Then E[⟨(θ − ⟨θ⟩)2⟩] = E[κ2(θ, θ)] and E[(θ∗ − ⟨θ⟩)2] = E[(θ∗ − κ1(θ))
2], and differentiating in (ω, ω∗)

gives

∂ωE[⟨(θ − ⟨θ⟩)2⟩] = E[κ3(θ, θ, ∂ωHα(θ, ω, ω∗))],

∂ω∗E[⟨(θ − ⟨θ⟩)2⟩] = E[κ3(θ, θ, ∂ω∗Hα(θ, ω, ω∗))],

∂ωE[(θ∗ − ⟨θ⟩)2] = E[−2(θ∗ − κ1(θ))κ2(θ, ∂ωHα(θ, ω, ω∗))]

∂ω∗E[(θ∗ − ⟨θ⟩)2] = E[−2(θ∗ − κ1(θ))κ2(θ, ∂ω∗Hα(θ, ω, ω∗))]

We note that each absolute moment Eg∗,ω∗(α)[⟨|θ|k⟩g(·,α),ω(α)] is bounded by a constant over α ∈ O, by

continuity of this quantity in α and compactness of O. Then it is direct to check that each of the above four
derivatives evaluated at (ω, ω∗) = (ω(α), ω∗(α)) is also bounded by a constant over α ∈ O. This implies that
the derivative of the map fα(ω, ω∗) in (217) satisfies

dω,ω∗fα(ω, ω∗)
∣∣∣
(ω,ω∗)=(ω(α),ω∗(α))

=

(
−ω−2 + oδ(1) oδ(1)

oδ(1) −ω−2
∗ + oδ(1)

) ∣∣∣∣
(ω,ω∗)=(ω(α),ω∗(α))

= −s2 I+ oδ(1),

(218)
where the last equality applies (216). In particular, for δ > δ0 sufficiently large, this derivative is invertible.
Since fα(ω, ω∗) is continuously-differentiable in (ω, ω∗, α) (where differentiability in α is ensured by Assump-
tion 2.2(b) for log g(θ, α)), the implicit function theorem implies that for each α0 ∈ O, there exists a unique
continuously-differentiable extension of the root (ω(α0), ω∗(α0)) of 0 = fα0

(ω(α0), ω∗(α0)) to a solution of
0 = fα(ω, ω∗) in an open neighborhood of α0. This extension must then coincide with ω(α), ω∗(α), because
Lemma 4.12 ensures that ω(α), ω∗(α) are continuous in α. Thus ω(α), ω∗(α) are continuously-differentiable
in α ∈ O, as claimed. The implicit function theorem shows also that their first derivatives are given by(

∇αω
⊤

∇αω
⊤
∗

)
= −[dω,ω∗fα]

−1dαfα

∣∣∣
(ω,ω∗)=(ω(α),ω∗(α))

.

We may check as above that the α-derivatives

∂αj
E[⟨(θ − ⟨θ⟩)2⟩] = E[κ3(θ, θ, ∂αj

Hα(θ, ω, ω∗))],

∂αj
E[(θ∗ − ⟨θ⟩)2] = E[−2(θ∗ − κ1(θ))κ2(θ, ∂αj

Hα(θ, ω, ω∗))]

evaluated at (ω, ω∗) = (ω(α), ω∗(α)) are also both bounded by a constant over α ∈ O. By the definition of
fα, this implies dαfα|(ω,ω∗)=(ω(α),ω∗(α)) = oδ(1), so together with (218), this shows also

∇αω(α) = oδ(1), ∇αω∗(α) = oδ(1). (219)

Recall from Lemma 2.12 that

∇F (α) = −Eθ∼Pα∇α log g(θ, α) = −Eg∗,ω∗(α)⟨∇α log g(θ, α)⟩g(·,α),ω(α). (220)

Applying continuity of (ω, ω∗) 7→ Eg∗,ω∗⟨∇α log g(θ, α)⟩g(·,α),ω and the approximations ω(α)−1, ω∗(α)
−1 =

s2 + oδ(1) shown above, we have

∇F (α) = −Eg∗,s−2⟨∇α log g(θ, α)⟩g(·,α),s−2 + oδ(1) = ∇Gs2(α) + oδ(1), (221)

where Gs2(α) = −Eg∗,s−2 [logPg(·,α),s−2(y)] is the negative population log-likelihood (56) in the scalar channel
model with fixed noise variance s2. [Note that fixing an arbitrary point α0 ∈ O and integrating this gradient
approximation over α ∈ O, this also implies

F (α) = G(α) + (F (α0)−G(α0)) + oδ(1),

i.e. F approximately coincides withG up to an additive shift.] Furthermore, the above continuous-differentiability
of ω(α), ω∗(α) and (220) imply F (α) is twice continuously-differentiable over α ∈ O, and differentiating
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∇F (α) by the chain rule gives

∂αi
∂αj

F (α) = −∂ω

(
Eg∗,ω∗(α)⟨∂αi

log g(θ, α)⟩g(·,α),ω(α)
)
· ∂αj

ω(α)

− ∂ω∗

(
Eg∗,ω∗(α)⟨∂αi

log g(θ, α)⟩g(·,α),ω(α)
)
· ∂αj

ω∗(α)

− ∂αj

(
Eg∗,ω∗(α)⟨∂αi

log g(θ, α)⟩g(·,α),ω(α)
)
. (222)

Writing again E = Eg∗,ω∗ , ⟨·⟩ = ⟨·⟩g(·,α),ω, and κj for the cumulants with respect to ⟨·⟩, we have

∂ωE⟨∂αi log g(θ, α)⟩ = E[κ2(∂αi log g(θ, α), ∂ωHα(θ, ω, ω∗))]

∂ω∗E⟨∂αi log g(θ, α)⟩ = E[κ2(∂αi log g(θ, α), ∂ω∗Hα(θ, ω, ω∗))],

and these are bounded at (ω, ω∗) = (ω(α), ω∗(α)) over all α ∈ O. Furthermore

∂αj
E⟨∂αi

log g(θ, α)⟩ = E⟨∂αi
∂αj

log g(θ, α)⟩+ E[κ2(∂αi
log g(θ, α), ∂αj

log g(θ, α))].

Applying these and the bounds (219) to (222),

∂αi
∂αj

F (α)

= −Eg∗,ω∗(α)⟨∂αi
∂αj

log g(θ, α)⟩g(·,α),ω(α) − Eg∗,ω∗(α) Cov⟨g(·,α),ω(α)⟩(∂αi
log g(θ, α), ∂αj

log g(θ, α)) + oδ(1)

= −Eg∗,s−2⟨∂αi
∂αj

log g(θ, α)⟩g(·,α),s−2 − Eg∗,s−2 Cov⟨g(·,α),s−2⟩(∂αi
log g(θ, α), ∂αj

log g(θ, α))︸ ︷︷ ︸
=∂αi

∂αj
Gs2 (α)

+oδ(1)

Thus we have shown
∇2F (α) = ∇2Gs2(α) + oδ(1) (223)

where again oδ(1) converges to 0 uniformly over α ∈ O as δ → ∞.
The approximation (221) implies that ∇F + ∇R converges uniformly to ∇Gs2 + ∇R over α ∈ O, as

δ → ∞. Then for all δ > δ0 sufficiently large and for some function ι : [δ0,∞) → (0,∞) satisfying ι(δ) → 0
as δ → ∞, each point of Crit∩B(D) = {α ∈ B(D) : ∇F (α) = 0} must fall within a ball of radius ι(δ) around
a point of CritG = {α ∈ B(D) : ∇Gs2(α) = 0}. The approximation (223) further implies that for each such
ball around a point α0 ∈ CritG, ∇2F converges uniformly to ∇2Gs2 on this ball, as δ → ∞. If ∇2Gs2(α0) is
non-singular, then for all δ > δ0 sufficiently large, an argument via the topological degree shows that there
must be exactly one point of Crit in this ball (having the same index as α0 as a critical point of Gs2) — see
e.g. [90, Lemma 5]. This shows statements (1) and (2) of the proposition.

As a direct consequence of these statements, if α∗ is the unique point of CritG and ∇2Gs2(α
∗) is non-

singular, then there is a unique point of Crit∩B(D). If furthermore g∗(θ) = g(θ, α∗), then this point of
Crit∩B(D) must be α∗ itself, since ∇F (α∗) = 0 by Lemma 2.12(c).

Analysis of Example 2.17. We verify Assumption 2.2(b) for Example 2.17 of the Gaussian mixture model
with varying means. Let ι ∈ {1, . . . ,K} denote the mixture component of θ, and let ⟨f(ι, θ)⟩ = E[f(ι, θ) | θ]
denote the posterior average over ι given θ ∼ N (αι, ω

−1
0 ) and prior P[ι = k] = pk. Let κ2(·) denote the

covariance associated to ⟨·⟩. Then, since

log g(θ, α) = log

K∑
k=1

pk

√
ωk
2π

exp
(
−ωk

2
(θ − αk)

2
)
,

the derivatives of log g(θ, α) up to order 2 are given by

∂θ log g(θ, α) = ⟨ωι(αι − θ)⟩, ∂2
θ log g(θ, α) = κ2

(
ωι(αι − θ), ωι(αι − θ)

)
− ⟨ωι⟩

∂αi
log g(θ, α) = ωi(θ − αi)⟨1ι=i⟩, ∂αi

∂θ log g(θ, α) = ωi(θ − αi)κ2

(
1ι=i, ωι(αι − θ)

)
+ ωi⟨1ι=i⟩,

∂αi
∂αj

log g(θ, α) = ωiωj(θ − αi)(θ − αj)κ2(1ι=i,1ι=j)− 1i=jωi⟨1ι=i⟩
(224)
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In particular, |∂θ log g(θ, α)| ≤ C(1 + |θ|+ |αi|) and |∂αi log g(θ, α)| ≤ C(1 + |θ|+ |αi|), showing (19).
To bound the high-order derivatives of log g(θ, α) locally over α ∈ RK , let kmax ∈ {1, . . . ,K} be the

(unique) index corresponding to the smallest value of ωk. For any compact subset S ⊂ RK , there exist
constants B(S), c0(S) > 0 depending on the fixed values {p1, . . . , pK}, {ω1, . . . , ωK} and S such that for all
α ∈ S, we have

ωk
2
(θ − αk)

2 ≥ ωkmax

2
(θ − αkmax)

2 + c0(S)θ
2 for any θ > B(S) and all k ̸= kmax.

This implies there exists a constant C(S) > 0 for which

⟨1ι ̸=kmax
⟩ ≤ C(S)e−c0(S)θ

2

for all θ > B(S) and α ∈ S.

Let ι′ denote an independent copy of ι under its posterior law given θ. Then for any θ > B, any α ∈ S, and
any k ∈ {1, . . . ,K}, the posterior variance of 1ι=k is bounded as

⟨|1ι=k − ⟨1ι=k⟩|2⟩ ≤ ⟨|1ι=k − 1ι′=k|2⟩ ≤ 4⟨1ι̸=kmax or ι′ ̸=kmax
⟩ ≤ C ′(S)e−c0(S)θ

2

,

and similarly

⟨|ωι(θ − αι)− ⟨ωι(θ − αι)⟩|2⟩ ≤ C ′(S)(1 + θ2)e−c0(S)θ
2

.

Applying these bounds and Hölder’s inequality, all posterior covariances in (224) are exponentially small in
θ2 for θ > B(S), implying that all derivatives of order 2 in (224) are bounded over α ∈ S and θ > B(S).
Similarly they are bounded over α ∈ S and θ < −B(S), and hence also bounded uniformly over α ∈ S and
θ ∈ R since we may bound the cumulants trivially by a constant C(S) for θ ∈ [−B(S), B(S)]. The same
argument bounds all mixed cumulants of 1ι=k and ωι(αι − θ) of orders 3 and 4, and hence also all partial
derivatives of log g(θ, α) of orders 3 and 4 over α ∈ S and θ ∈ R. These arguments show also that as θ → ±∞,
uniformly over α ∈ S, κ2(ωι(αι − θ), ωι(αι − θ)) → 0 and ⟨ωι⟩ → ωkmax

, so ∂2
θ [− log g(θ, α)] → ωkmax

> 0,
verifying all statements of Assumption 2.2(b).

Analysis of Example 2.18. We verify Assumption 2.2(b) in Example 2.18 for the Gaussian mixture model
with fixed mixture means/variances and varying weights. Again let ι ∈ {0, . . . ,K} denote the mixture
component of θ, and let ⟨f(ι, θ)⟩ = E[f(ι, θ) | θ] denote the posterior average over ι given θ ∼ N (µι, ω

−1
ι ) and

prior P[ι = k] = eαk/(eα0 + . . .+ eαK ). Let κ2(·) denote the covariance associated to ⟨·⟩, and in addition, let

⟨·⟩prior and κprior
2 denote the mean and covariance over ι drawn from the prior P[ι = k] = eαk/(eα0+. . .+eαK ).

Then, since

log g(θ, α) = log

K∑
k=0

eαk

√
ωk
2π

exp
(
−ωk

2
(θ − µk)

2
)
− log

K∑
k=0

eαk ,

the derivatives of log g(θ, α) up to order 2 are given by

∂αi
log g(θ, α) = ⟨1ι=i⟩ − ⟨1ι=i⟩prior, ∂αi

∂αj
log g(θ, α) = κ2(1ι=i,1ι=j)− κprior

2 (1ι=i,1ι=j),

∂θ log g(θ, α) = ⟨ωι(µι − θ)⟩, ∂αi
∂θ log g(θ, α) = κ2

(
1ι=i, ωι(µι − θ)

)
,

∂2
θ log g(θ, α) = κ2

(
ωι(µι − θ), ωι(µι − θ)

)
− ⟨ωι⟩.

(225)

In particular, this shows
∑
k ∂αk

log g(θ, α) = 1 − 1 = 0, so ∇α log g(θ, α) always belongs to the subspace
E = {α ∈ RK+1 : α0 + . . . + αK = 0}. Also ∇R(α) = r′(∥α∥2) · α

∥α∥2
∈ E if α ∈ E. Furthermore,

|∂αi
log g(θ, α)| ≤ C and |∂θ log g(θ, α)| ≤ C(1 + |θ|), showing (19).
To bound the higher-order derivatives of log g(θ, α) locally over α ∈ E, let kmax ∈ {0, . . . ,K} be the

index corresponding to the smallest ωk, and among these the largest µk (if there are multiple ωk’s equal to
the smallest value). Then for some constants B, c0 > 0 depending only on the fixed values {µ0, . . . , µK} and
{ω0, . . . , ωK}, we have

ωk
2
(θ − µk)

2 ≥ ωkmax

2
(θ − µkmax)

2 + c0θ for any θ > B and all k ̸= kmax.
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This implies, for any compact subset S ⊂ E, there is a constant C(S) > 0 for which

⟨1ι̸=kmax
⟩ ≤ C(S)e−c0θ for all θ > B and α ∈ S.

Then the same arguments as in the preceding example show

⟨|ωι − ⟨ωι⟩|2⟩ ≤ C ′(S)e−c0θ, ⟨|ωι(µι − θ)− ⟨ωι(µι − θ)⟩|2⟩ ≤ C ′(S)(1 + θ)2e−c0θ,

implying via Cauchy-Schwarz that each order-2 derivative in (225) is bounded over α ∈ S and θ > B.
Similarly it is bounded over α ∈ S and θ < −B, hence also for all α ∈ S and θ ∈ R. The same argument
applies to bound the mixed cumulants of ωι and ωι(µι−θ) of orders 3 and 4, and thus the partial derivatives
of log g(θ, α) of orders 3 and 4. This shows also limθ→∞ ∂2

θ [− log g(θ, α)] = ωkmax
> 0 uniformly over α ∈ S,

and a similar statement holds for θ → −∞, establishing all conditions of Assumption 2.2(b).

A Proof of Theorem 2.3

Theorem 2.3(a) follows immediately from [27, Theorem 2.5], upon identifying s(θ, α) of [27, Theorem 2.5] as
(log g)′(θ) (with no dependence on α) and G(α,P) = 0. The required conditions of [27, Assumption 2.2] for
s(·) hold by Assumption 2.2(a), and the conditions of [27, Assumption 2.3] for G(·) are vacuous.

For Theorem 2.3(b), consider first the following global version of Assumption 2.2(b):

Assumption A.1. log g(θ, α) and R(α) are thrice continuously-differentiable and satisfy (19), and the
conditions (20) hold for constants C, r0, c0 > 0 globally over all α ∈ RK .

Under Assumption A.1, Theorem 2.3(b) again follows from [27, Theorem 2.5] upon identifying s(θ, α) =
∂θ log g(θ, α) and G(α,P) = Eθ∼P[∇α log g(θ, α)]−∇R(α), where all conditions of [27, Assumptions 2.2 and
2.3] may be checked from these conditions of Assumption A.1.

To show Theorem 2.3(b) under the weaker local conditions of Assumption 2.2(b), we may apply the
following truncation argument: Note first that twice continuous-differentiability of log g(θ, α) and R(α) imply
that ∇(θ,α) log g(θ, α) and ∇R(α) are locally Lipschitz. Together with the global linear growth conditions
of (19), this implies that there exists a unique (non-explosive) solution {(θt, α̂t)}t≥0 to the joint diffusion
(9–10) for all times (c.f. [91, Theorem 12.1]). Furthermore, since

θt = θ0 +

∫ t

0

(
− 1

2σ2
X⊤(Xθs − y) +

(
∂θ log g(θ

s
j , α̂

s)
)d
j=1

)
ds+

√
2bt

α̂t = α̂0 +

∫ t

0

(1
d

d∑
j=1

∇α log g(θ
s
j , α̂

s)−∇αR(α̂s)
)
ds,

under the growth conditions (19), this solution satisfies the bounds

∥θt∥2 ≤ ∥θ0∥2 + C

∫ t

0

(
∥X∥2op∥θs∥2 + ∥X∥op∥y∥2 +

√
d+ ∥θs∥2 +

√
d∥α̂s∥2

)
ds+

√
2 ∥bt∥2

∥α̂t∥2 ≤ ∥α̂0∥2 + C

∫ t

0

(
1 + ∥α̂s∥2 + ∥θs∥2/

√
d
)
ds

Fixing any T > 0, by the conditions of Assumption 2.2 and a standard maximal inequality for Brownian
motion (see [27, Lemma 4.7]) there exists a constant C0 > 0 large enough such that the event

E =
{
∥X∥op ≤ C0, ∥y∥2 ≤ C0

√
d, ∥θ0∥2 ≤ C0

√
d, ∥α̂0∥2 ≤ C0, sup

t∈[0,T ]

∥bt∥2 ≤ C0

√
d
}

holds a.s. for all large n, d. Then by a Gronwall argument, for a constant M = M(T,C0) > 0,

sup
t∈[0,T ]

∥θt∥2√
d

+ ∥α̂t∥2 < M
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holds on E . Applying the conditions of Assumption 2.2(b) with S = {α : ∥α∥2 ≤ M}, there exist functions
gM : R × RK → R and RM : RK → R such that gM (θ, α) = g(θ, α) and RM (α) = R(α) for all ∥α∥ ≤ M ,
and gM and RM satisfy Assumption A.1. Let {(θtM , α̂tM )}t≥0 be the solution of (9–10) defined with gM (·)
and RM (·) in place of g(·) and R(·), and let ηtM = XθtM . Then as argued above, Theorem 2.3(b) holds for
{(θtM ,ηtM , α̂tM )}t≥0, showing that a.s. as n, d → ∞,

1

d

d∑
j=1

δθ∗j ,{θtM,j}t∈[0,T ]

W2→ P(θ∗, {θtM}t∈[0,T ])

1

n

n∑
i=1

δη∗i ,εi,{ηtM,i}t∈[0,T ]

W2→ P(η∗, ε, {ηtM}t∈[0,T ])

{α̂t}t∈[0,T ] → {αtM}t∈[0,T ]

(226)

for limiting processes defined by the DMFT equations (22–28) also with gM (·) and RM (·) in place of g(·)
and R(·). Since {(θt,ηt, α̂t)}t∈[0,T ] = {(θtM ,ηtM , α̂tM )}t∈[0,T ] a.s. for all large n, d, this implies that (226)
holds also with {(θt,ηt, α̂t)}t∈[0,T ] in place of {(θtM ,ηtM , α̂tM )}t∈[0,T ]. Furthermore, the deterministic limit
process {αtM}t∈[0,T ] must satisfy ∥αtM∥ ≤ M for all t ∈ [0, T ], so the solution up to time T of the DMFT
equations (22–28) with gM (·) and RM (·) is also a solution of these equations with g(·) and R(·). This proves
Theorem 2.3(b) under Assumption 2.2(b).

B Correlation and response functions for a Gaussian prior

For illustration, we check Definition 2.4 explicitly for the dynamics (7) with a Gaussian prior

g(θ) =

√
λ

2π
exp

(
−λθ2

2

)
.

Then (7) is the Ornstein-Uhlenbeck process

dθt =
[
−
(X⊤X

σ2
+ λI

)
θt +

X⊤y

σ2

]
dt+

√
2 dbt. (227)

Lemma B.1. Under Assumption 2.1, let

µ = lim
n,d→∞

1

d

d∑
i=1

δλi(X⊤X/σ2)

be the almost-sure limit of the empirical eigenvalue distribution of X⊤X/σ2. Then for the dynamics (227)
with a fixed Gaussian prior, the corresponding DMFT system prescribed by Theorem 2.3(a) has the correlation
and response functions

Cθ(t, s) =

∫ [
E(θ0)2 · e−(λ+x)(t+s) +

E(θ∗)2x2 + x

(λ+ x)2
(1− e−(λ+x)t)(1− e−(λ+x)s)

+
1

λ+ x

(
e−(λ+x)|t−s| − e−(λ+x)(t+s)

)]
µ(dx)

Cθ(t, ∗) =
∫

E(θ∗)2x
λ+ x

(1− e−(λ+x)t)µ(dx)

Rθ(t, s) =

∫
e−(λ+x)(t−s)µ(dx)

Cη(t, s) =

∫ [
E(θ0)2xe−(λ+x)(t+s) + (E(θ∗)2x+ 1)

( x

λ+ x
(1− e−(λ+x)t)− 1

)( x

λ+ x
(1− e−(λ+x)s)− 1

)
+ (δ − 1) +

x

λ+ x

(
e−(λ+x)|t−s| − e−(λ+x)(t+s)

)]
µ(dx),

Rη(t, s) =

∫
xe−(λ+x)(t−s)µ(dx).
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Proof. Setting Λ = X⊤X
σ2 + λI, the dynamics (227) have the explicit solution

θt = e−Λtθ0 +Λ−1
(
I− e−Λt

)X⊤y

σ2
+

∫ t

0

e−Λ(t−s)√2 dbs

= e−Λtθ0 +Λ−1
(
I− e−Λt

)(X⊤X

σ2
θ∗ +

X⊤ε

σ2

)
+

∫ t

0

e−Λ(t−s)√2 dbs (228)

Recall the definitions of ej(θ) and xi(θ) from (100) and the associated correlation and response matrices
(101). Under Assumption 2.1, applying the explicit form (228) and independence of X,θ0,θ∗, ε, it is direct
to check that almost surely,

lim
n,d→∞

1

d
TrCθ(t, s) = lim

n,d→∞

1

d
⟨θt⊤θs⟩

= lim
n,d→∞

1

d
Tr

(
E(θ0)2 · e−Λ(t+s) + E(θ∗)2 ·

(X⊤X

σ2

)
(I− e−Λt)Λ−2(I− e−Λs)

(X⊤X

σ2

)
+

∫ t∧s

0

2e−Λ(t+s−2r)dr

)
+

1

d
Tr

(
Eε2 · X

σ2
(I− e−Λt)Λ−2(I− e−Λs)

X⊤

σ2

)
=

∫ [
E(θ0)2 · e−(λ+x)(t+s) +

E(θ∗)2x2 + x

(λ+ x)2
(1− e−(λ+x)t)(1− e−(λ+x)s)

+
1

λ+ x

(
e−(λ+x)|t−s| − e−(λ+x)(t+s)

)]
µ(dx)

and

lim
n,d→∞

1

d
TrCθ(t, ∗) = lim

n,d→∞

1

d
⟨θt⊤θ∗⟩ = lim

n,d→∞

1

d
Tr
(
E(θ∗)2Λ−1(I− e−Λt)

X⊤X

σ2

)
=

∫
E(θ∗)2x
λ+ x

(1− e−(λ+x)t)µ(dx).

Furthermore, the above form (228) for θt implies

Pt(θ) = e−Λtθ ++Λ−1
(
I− e−Λt

)(X⊤X

σ2
θ∗ +

X⊤ε

σ2

)
. (229)

Then ∇Ptej(θ) = ∇[e⊤j Pt(θ)] = e−Λtej is a constant function not depending on θ, and

lim
n,d→∞

1

d
TrRθ(t, s) = lim

n,d→∞

1

d

d∑
j=1

[∇e⊤j ∇Pt−sej ](θ
s) = lim

n,d→∞

1

d
Tr e−Λ(t−s) =

∫
e−(λ+x)(t−s)µ(dx).

By Theorem 4.3, this shows the forms of Cθ(t, s), Cθ(t, ∗), and Rθ(t, s).
From (228) and (229), we have also

Xθt − y = Xe−Λtθ0 +X
(
Λ−1

(
I− e−Λt

)X⊤X

σ2
− I
)
θ∗ +

(
XΛ−1

(
I− e−Λt

)X⊤

σ2
− In

)
ε

+

∫ t

0

Xe−Λ(t−s)√2 dbs
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and ∇Ptxi(θ) = (
√
δ/σ)∇[e⊤i X

⊤Pt(θ)] = (
√
δ/σ)e−ΛtX⊤ei. Then

lim
n,d→∞

1

n
TrCη(t, s) = lim

n,d→∞

1

n
· δ

σ2
(Xθt − y)⊤(Xθs − y)

= lim
n,d→∞

1

dσ2
Tr

(
E(θ0)2 · e−ΛtX⊤Xe−Λs

+ E(θ∗)2 ·
(
Λ−1

(
I− e−Λt

)X⊤X

σ2
− I
)
X⊤X

(
Λ−1

(
I− e−Λs

)X⊤X

σ2
− I
)

+

∫ t∧s

0

2 e−Λ(t−r)X⊤Xe−Λ(s−r)dr

)
+

1

dσ2
Tr

(
Eε2 ·

(
XΛ−1

(
I− e−Λt

)X⊤

σ2
− In

)⊤(
XΛ−1

(
I− e−Λs

)X⊤

σ2
− In

))
=

∫ [
E(θ0)2xe−(λ+x)(t+s) + (E(θ∗)2x+ 1)

( x

λ+ x
(1− e−(λ+x)t)− 1

)( x

λ+ x
(1− e−(λ+x)s)− 1

)
+ (δ − 1) +

x

λ+ x

(
e−(λ+x)|t−s| − e−(λ+x)(t+s)

)]
µ(dx),

and

lim
n,d→∞

1

n
TrRη(t, s) = lim

n,d→∞

1

n

n∑
i=1

[∇x⊤
i ∇Pt−sxi](θ

s) = lim
n,d→∞

1

n
· δ

σ2

n∑
i=1

e⊤i Xe−Λ(t−s)X⊤ei

= lim
n,d→∞

1

dσ2
TrXe−Λ(t−s)X⊤ =

∫
xe−(λ+x)(t−s)µ(dx).

By Theorem 4.3, this shows the forms of Cη(t, s) and Rη(t, s).

From Lemma B.1 it is apparent that the approximations (30–32) and (34–35) hold with ε(t) = Ce−ct

and

cinitθ (s) = −
∫

E(θ∗)2x2 + x

(λ+ x)2
e−(λ+x)sµ(dx), cttiθ (∞) =

∫
E(θ∗)2x2 + x

(λ+ x)2
µ(dx)

cttiθ (τ) = cttiθ (∞) +

∫
1

λ+ x
e−(λ+x)τµ(dx), rttiθ (τ) =

∫
e−(λ+x)τµ(dx), cθ(∗) =

∫
E(θ∗)2x
λ+ x

µ(dx)

cinitη (s) =

∫
(E(θ∗)2x+ 1)λx

(λ+ x)2
e−(λ+x)sµ(dx), cttiη (∞) =

∫
(E(θ∗)2x+ 1)λ2

(λ+ x)2
µ(dx) + δ − 1

cttiη (τ) = cttiη (∞) +

∫
x

λ+ x
e−(λ+x)τµ(dx), rttiη (τ) =

∫
xe−(λ+x)τµ(dx).

These functions cttiθ , cttiη have the forms (33) for the positive, finite measures µθ(da) = a−1µ(d(a − λ)) and

µη(da) = [(a − λ)/a]µ(d(a − λ)) supported on a ∈ [λ,∞). Furthermore, these functions cttiθ , cttiη , rttiθ , rttiη
satisfy the fluctuation-dissipation relations (36), verifying all conditions of Definition 2.4.

C Sufficient conditions for a log-Sobolev inequality

We prove Proposition 2.8 on a log-Sobolev inequality for the posterior law.

Lemma C.1. Under Assumption 2.2(a), the prior density g(·) satisfies the LSI (17). Furthermore, consider
the law

P(θ) =
g(θ)e−

a
2 θ

2+bθ

Z
, Z =

∫
g(θ)e−

a
2 θ

2+bθdθ. (230)

For any a > 0 and b ∈ R, this law P(θ) also satisfies the LSI (17). Both statements hold with the constant
CLSI = (4/c0) exp(8r

2
0(c0 + C)2/(πc0)) where C, c0, r0 are the constants of Assumption 2.2(a).
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Proof. Applying x = min(x,−c0) + max(x+ c0, 0), define

ℓ−(θ) = log g(0) + (log g)′(0) · θ +
∫ θ

0

∫ x

0

min
(
(log g)′′(u),−c0

)
dudx

ℓ+(θ) =

∫ θ

0

∫ x

0

max
(
(log g)′′(u) + c0, 0

)
dudx

so that log g(θ) = ℓ−(θ) + ℓ+(θ). Then set

ℓ̃−(θ) = − logZ − aθ2 + bθ + ℓ−(θ)

so that logP(θ) = ℓ̃−(θ) + ℓ+(θ). By definition we have ℓ′′−(θ) = min((log g)′′(θ),−c0) ≤ −c0 and also

ℓ̃′′−(θ) = −a+ ℓ′′−(θ) ≤ −c0. We have (log g)′′(u)+ c0 ≤ 0 for all |u| > r0 and (log g)′′(u)+ c0 ≤ c0 +C for all
|u| ≤ r0. Hence |ℓ′+(θ)| ≤ r0(c0 + C). Thus both log g(θ) and logP(θ) are sums of a c0-strongly-log-concave

potential ℓ−(θ) or ℓ̃−(θ) and a r0(c0 + C)-Lipschitz perturbation ℓ+(θ). Then [92, Lemma 2.1] shows that
both laws satisfy a LSI with constant CLSI = (4/c0) exp(8r

2
0(c0 + C)2/(πc0)).

Proof of Proposition 2.8. Under condition (a), the posterior density is strongly log-concave, satisfying

−∇2 logPg(θ | X,y) =
1

σ2
X⊤X− diag

(
(log g)′′(θj)

)d
j=1

⪰ c0I.

Hence (46) with CLSI = 2/c0 follows from the Bakry-Emery criterion. Clearly this holds for any noise
variance σ2 > 0, verifying Assumption 2.7.

The proof under condition (b) is an adaptation of the argument of [93]; see also [10, Theorem 3.4] and [94]
for similar specializations to the linear model. Under the conditions for X of Assumption 2.1, by the Bai-Yin
law ( [95, Theorem 3.1]), for any ε > 0 the event

E(X) =
{
(
√
δ − 1)2+ − ε ≤ λmin(X

⊤X) ≤ λmax(X
⊤X) ≤ (

√
δ + 1)2 + ε

}
hold a.s. for all large n, d (where δ = limn/d). Thus, choosing some sufficiently small ε > 0 and setting

κ = (
√
δ − 1)2+ − 2ε, τ2 = σ2

(
[(
√
δ + 1)2 − (

√
δ − 1)2+ + 3ε]−1 − ε

)
, Σ = σ2(X⊤X− κ I)−1 − τ2 I,

we have X⊤X−κ I ⪰ ε I, (X⊤X−κ I)−1 ⪰ ( τ
2

σ2 +ε) I, and hence Σ ⪰ εσ2 on E(X). Since σ2(X⊤X−κ I)−1 =
Σ+ τ2I, we have the Gaussian convolution identity

e−
1

2σ2 θ⊤(X⊤X−κI)θ ∝
∫

e−
1

2τ2 ∥θ−φ∥2
2e−

1
2φ

⊤Σ−1φdφ.

Then the posterior density Pg(θ | X,y) satisfies

Pg(θ | X,y) ∝ exp
(
− 1

2σ2
∥y −Xθ∥2

) d∏
j=1

g(θj)

∝ exp
(
− 1

2σ2
θ⊤(X⊤X− κI)θ

) d∏
j=1

g(θj) exp
(
− κ

2σ2
θ2j +

x⊤
j y

σ2
θj

)

∝
∫

e−
1
2φ

⊤Σ−1φ
d∏
j=1

g(θj) exp
(
− κ

2σ2
θ2j −

1

2τ2
(θj − φj)

2 +
x⊤
j y

σ2
θj

)
dφ.

Defining

qφj
(θj) =

1

Zj(φj)
g(θj) exp

(
− κ

2σ2
θ2j −

1

2τ2
(θj − φj)

2 +
x⊤
j y

σ2
θj

)
,

Zj(φj) =

∫
g(θj) exp

(
− κ

2σ2
θ2j −

1

2τ2
(θj − φj)

2 +
x⊤
j y

σ2
θj

)
dθj ,

µ(φ) =
e−

1
2φ

⊤Σ−1φ
∏d
j=1 Zj(φj)∫

e−
1
2φ

′⊤Σ−1φ′ ∏d
j=1 Zj(φ

′
j)dφ

′
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this gives the mixture-of-products representation

Pg(θ | X,y) =

∫ d∏
j=1

qφj (θj)︸ ︷︷ ︸
:=qφ(θ)

µ(φ)dφ.

Then for any f ∈ C1(Rd),

Ent[f(θ)2 | X,y] = Eφ∼µ Entθ∼qφ f(θ)2 + Entφ∼µ Eθ∼qφf(θ)
2. (231)

For the first term of (231), note that inside the exponential defining qφj
(θj) we have κ ≥ −2ε and

τ2 ≤ σ2((1 + 3ε)−1 − ε), so the coefficient of θ2j is negative for sufficiently small ε > 0. Then by Lemma

C.1, qφj
(θj) satisfies the univariate LSI (17) with constant CLSI := (4/c0) exp(8r

2
0(c0 + C)2/(πc0)). So the

product law qφ satisfies the LSI with the same constant by tensorization, and

Eφ∼µ Entθ∼qφ f(θ)2 ≤ CLSI Eφ∼µEθ∼qφ∥∇f(θ)∥22 = CLSI Eθ∼q∥∇f(θ)∥22. (232)

For the second term of (231), note that

−∇2
φ logµ(φ) = Σ−1 − diag

(
(logZj)

′′(φj)
)d
j=1

= Σ−1 + diag
( 1

τ2
− 1

τ4
Varθj∼qφj

[θj ]
)d
j=1

.

The LSI for qφj implies Varθj∼qφj
[θj ] ≤ (CLSI/2) by its implied Poincaré inequality. Applying (

√
δ + 1)2 −

(
√
δ − 1)2+ = 4

√
δ1{δ > 1} + (

√
δ + 1)21{δ ≤ 1} and the given condition (b) for σ2, we see that for a

sufficiently small choice of ε > 0, we have τ2 ≥ CLSI/[2(1 − ε)]. Then this gives −∇2
φ logµ(φ) ⪰ (ε/τ2)I.

Then by the Bakry-Emery criterion, µ satisfies the LSI Entφ∼µ f(φ)
2 ≤ (2τ2/ε)Eφ∼µ∥∇f(φ)∥22, hence

Entφ∼µ Eθ∼qφf(θ)
2 ≤ 2τ2

ε
Eφ∼µ∥∇φ(Eθ∼qφf(θ)

2)1/2∥22.

Denote by qφ−j the product of components of qφ other than the jth. We compute

∂φj
(Eθ∼qφf(θ)

2)1/2 =
∂φj

Eθ∼qφf(θ)
2

2(Eθ∼qφf(θ)
2)1/2

=
Eθ−j∼qφ−j

∂φjEθj∼qφj
f(θ)2

2(Eθ∼qφf(θ)
2)1/2

=
Eθ−j∼qφ−j

Covθj∼qφj
[f(θ)2, θj ]

2τ2(Eθ∼qφf(θ)
2)1/2

.

We apply [96, Proposition 2.2]: For any law ν on Rd satisfying a LSI Entν f
2 ≤ CLSI Eν∥∇f∥22, and for any

smooth functions f, g : Rd → R,

Covν [f
2, g] ≤ C sup

θ∈Rd

∥∇g(θ)∥2 · (Eνf2)1/2(Eν∥∇f∥22)1/2

where C depends only on the LSI constant CLSI of ν. Applying this to the univariate law ν = qφj
, followed

by Cauchy-Schwarz,

Eθ−j∼qφ−j
Covθj∼qφj

[f(θ)2, θj ] ≤ C1(Eθ∼qφf(θ)
2)1/2(Eθ∼qφ(∂θjf(θ))

2)1/2

where C1 depends only on the LSI constant CLSI for qφj
. Summing over j = 1, . . . , d gives

∥∇φ(Eθ∼qφf(θ)
2)1/2∥22 =

d∑
j=1

[
∂φj (Eθ∼qφf(θ)

2))1/2
]2

≤
d∑
j=1

( C1

2τ2

)2
Eθ∼qφ(∂θjf(θ))

2 =
( C1

2τ2

)2
Eθ∼qφ∥∇f(θ)∥22.

Thus

Entφ∼µ Eθ∼qφf(θ)
2 ≤ 2τ2

ε

( C1

2τ2

)2
Eθ∼µEθ∼qφ∥∇f(θ)∥22 =

C2
1

2ετ2
E[∥∇f(θ)∥22 | X,y]. (233)
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Applying (232) and (233) to (231) completes the proof of (46), on the above event E(X). Since the given
condition (b) also holds for all σ̃2 ≥ σ2 when it holds for σ2, this verifies Assumption 2.7.

Finally, under condition (c), we note that on the above event E(X) we have

−∇2 logPg(θ | X,y) =
1

σ2
X⊤X− diag

(
(log g)′′(θj)

)d
j=1

⪰ εI

for all σ2 ≤ [(
√
δ − 1)2 − ε]/(C + ε), so (46) holds by the Bakry-Emery criterion. Choosing ε > 0 small

enough, under condition (c) we have [(
√
δ − 1)2 − ε]/(C + ε) > 4C0

√
δ, so that (46) holds with CLSI = 2/ε

for σ2 > [(
√
δ − 1)2 − ε]/(C + ε) by the analysis of condition (b). Thus, on E(X), (46) holds with a uniform

constant CLSI > 0 for all σ2 > 0, again verifying Assumption 2.7.

D Auxiliary lemmas

Lemma D.1 (Coupling of Gaussian processes). Let {K(t, s)}t,s∈[0,T ] and {K̃(t, s)}t,s∈[0,T ] be two positive
semidefinite covariance kernels such that for some ε > 0 and C0 > 0

sup
t,s∈[0,T ]

|K(t, s)− K̃(t, s)| ≤ ε, (234)

and

sup
t,s∈[0,T ]

K(t, t) +K(s, s)− 2K(t, s) ≤ C0|t− s|. (235)

Then there exists a coupling of the two mean-zero Gaussian processes {ut}t∈[0,T ] and {ũt}t∈[0,T ] with covari-

ances E[utus] = K(t, s) and E[ũtũs] = K̃(t, s) such that

sup
t∈[0,T ]

E[(ut − ũt)2] ≤ (6C0 + 3)
√
Tε+ 15ε.

Proof. Fix γ > 0, and let ⌊t⌋ = max{iγ : i ∈ Z+, iγ ≤ t} where Z+ = {0, 1, 2, . . .}. Let vt = u⌊t⌋ and
ṽt = ũ⌊t⌋ so that E[vtvs] = K(⌊t⌋ , ⌊s⌋) and E[ṽtṽs] = K̃(⌊t⌋ , ⌊s⌋). Then by (235) and (234),

sup
t∈[0,T ]

E(ut − vt)2 ≤ C0γ, sup
t∈[0,T ]

E(ũt − ṽt)2 ≤ C0γ + 4ε.

Let X = (v0, vγ , v2γ , . . . , v⌊T⌋) ∈ RN , where here N ≤ T/γ+1, and similarly let X̃ = (ṽ0, ṽγ , ṽ2γ , . . . , ṽ⌊T⌋) ∈
RN . Let Σ, Σ̃ ∈ RN×N be the covariance matrices ofX, X̃, so Σij = K(iγ, jγ) and Σ̃ij = K̃(iγ, jγ). Coupling

X and X̃ by X = Σ1/2Z and X̃ = Σ̃1/2Z where Z ∼ N (0, I), for each i = 1, . . . , N ,

E(Xi − X̃i)
2 = e⊤i (Σ

1/2 − Σ̃1/2)2ei ≤ ∥Σ1/2 − Σ̃1/2∥2op
(∗)
≤ ∥Σ− Σ̃∥op ≤ Nε.

Here (∗) follows from [97, Theorem X.1.3], and the last inequality applies (234). Then we have

sup
t∈[0,T ]

E(ut − ũt)2 ≤ 3
[

sup
t∈[0,T ]

E(ut − vt)2 + sup
t∈[0,T ]

E(vt − ṽt)2 + sup
t∈[0,T ]

E(ũt − ṽt)2
]

≤ 6C0γ + 12ε+ 3
N

max
i=1

E(Xi − X̃i)
2 ≤ 6C0γ + 12ε+ 3(T/γ + 1)ε.

The conclusion follows by choosing γ =
√
Tε.
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