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Dynamical mean-field analysis of adaptive Langevin diffusions:
Propagation-of-chaos and convergence of the linear response

Zhou Fan? Justin Ko! Bruno Loureirof Yue M. Lu$ Yandi Shen®

Abstract

Motivated by an application to empirical Bayes learning in high-dimensional regression, we study a
class of Langevin diffusions in a system with random disorder, where the drift coefficient is driven by a
parameter that continuously adapts to the empirical distribution of the realized process up to the current
time. The resulting dynamics take the form of a stochastic interacting particle system having both a
McKean-Vlasov type interaction and a pairwise interaction defined by the random disorder. We prove
a propagation-of-chaos result, showing that in the large system limit over dimension-independent time
horizons, the empirical distribution of sample paths of the Langevin process converges to a deterministic
limit law that is described by dynamical mean-field theory. This law is characterized by a system of
dynamical fixed-point equations for the limit of the drift parameter and for the correlation and response
kernels of the limiting dynamics. Using a dynamical cavity argument, we verify that these correlation and
response kernels arise as the asymptotic limits of the averaged correlation and linear response functions
of single coordinates of the system. These results enable an asymptotic analysis of an empirical Bayes
Langevin dynamics procedure for learning an unknown prior parameter in a linear regression model,
which we develop in a companion paper.
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1 Introduction

Let @ = (0y,...,04) € R? be a system of d interacting particles, evolving according to a stochastic dynamics
d d 1
T ~ ~ ~
46" — [—BX X' + (s(6", af))jzl}dt +V2ap!, = g(at, v 259;). (1)
=

Here X € R"*? is a matrix of random disorder, and s(-,a’) : R — R in the drift coefficient is a nonlinear
function driven by a stochastic time-dependent parameter & € R¥ that adapts to the past history {0°}sci0.-
(We defer formal definitions and conditions for the functions s(-) and G(-) to Section 2.) We will study the
pathwise convergence of the empirical measure 52‘;:1 69; and of the parameter a* to deterministic limits
as n,d — oo at a fixed rate, in this model (1) and in a closely related statistical model.

In the setting of 5 = 0, i.e. with no random disorder, the dynamics (1) take a pathwise-exchangeable form
as studied classically by [1,2], where the evolution d9§- of each j*" particle depends on the remaining particles
only via the empirical law é Z?Zl 5{9;_ becong L he convergence of this law in the asymptotic limit d — oo,
together with a resulting asymptotic decoupling of low-dimensional marginals of {6°}.c,4, is commonly
referred to as propagation-of-chaos. We refer to the classical monographs [3,4] for a detailed treatment of
such models, and to [5,6] and [7,8] for modern surveys and examples of recent quantitative convergence
results.

The study of propagation-of-chaos for dynamics with random disorder (5 # 0) has also a separate and
rich development in the literature, using techniques of dynamical mean-field theory (DMFT). DMFT was
initially developed to study Langevin dynamics in the soft Sherrington-Kirkpatrick (SK) model [9,10] and
related spherical p-spin models in spin glass theory [11-13], and relied on deep but non-rigorous techniques
of the dynamical cavity method [14, 15] and generating functional methods [16-18] of statistical physics.
In recent years, DMFT has been applied to shed insight into the learning dynamics in an increasingly
wide range of statistical and machine learning models, including matrix and tensor PCA [19-23], phase
retrieval and generalized linear models [15,24-26], Gaussian mixture classification [27,28], and deep neural
networks [29-33].

Pioneering work of [34-37] established the first mathematical formalizations of DMFT in variants of
the SK model, in the forms of large deviations principles for the empirical distributions of sample paths.
Mathematical results for spherical models were subsequently obtained in [38,39], and universality of such
results with respect to the law of the disorder in [40,41]. Recently, [42] developed a different and innovative
new approach to formalizing DMFT via time discretization and reduction to Approximate Message Passing
schemes [43-45], and applied this to derive a DMFT limit for gradient flow dynamics in statistical multi-
index models. A related strategy via iterative Gaussian conditioning was developed in [46], which extended
the results of [42] to a class of discrete-time Langevin and stochastic gradient dynamics. Non-asymptotic
analyses of the entrywise behavior of such dynamics were obtained in [47].

In this work, we will prove a DMFT approximation for the dynamics (1), which has both the above
elements of a pathwise-exchangeable interaction driven by the empirical law, as well as a pairwise interaction
driven by random disorder. Our motivation is the study of a variant of Langevin dynamics for posterior
sampling in a statistical linear model

y=X60"+e, 0 Cg(-,a"), N0,

where the regression coefficients of interest 67, .. ., 07 are distributed according to a prior law g( -, a*) that has
an unknown parameter a* € R¥. To implement empirical Bayes learning of a* [48-50], a Langevin dynamics



0

method was introduced in [51]! which, from an initial estimate or guess a°, evolves a prior parameter estimate

d
d 1 t ot
ey djgzl Valogg(6;,a") (2)

based on the coordinates of a coupled Langevin diffusion

d

det = Vg (—2}7”3' — X603+ logg(6}, af))dt +v2dbt (3)
j=1

that samples from the posterior law P(6 | X,y). Such dynamics comprise a minor extension of (1) (which

motivates our choice to study a disorder matrix having the covariance form X'X), and we state in (4-5)

of Section 2 an extended general dynamics that encompasses this application. We defer a more detailed

discussion and analysis of this specific empirical Bayes procedure to our companion paper [52], focusing in

this work on the formalization of the limiting dynamics in a general context.

We summarize the main contributions of our paper as follows:

1. Adapting and building upon the methods of [42], we prove a DMFT limit for the dynamics (1) (with a
natural extension to the dynamics (4-5) to follow). This will take the form of almost-sure convergence
to certain deterministic limits, as n,d — oo,

d n
. 1 W 1 W
{at}te[O,T] — {at}te[O,T]a 1 25{9;}%[01] = P({et}te[O,T])v n 25{773}%[01] = P({Wt}te[o,T])
=1 i=1

for the sample path of @ and for the empirical laws of sample paths of 8% and ' = X6°.

Each limit P({6"},c(0,r7) and P({n'}+c[0,1]) represents the law of a univariate stochastic process, which
is driven by the above limit {Oét}te[o,:r] for the evolving drift parameter, an additional Gaussian process
representing the mean field, and an integrated response. These Gaussian processes and integrated
responses are described by correlation and response kernels Cy, C,), Ry, R, where

{at}v Cé’; 0777 RG; Rn

are defined self-consistently from the laws P({6"},co0,77) and P({n'}icjo,r) via a system of dynamical
fixed-point equations. We establish that this dynamical fixed point is unique in a certain domain of
functions with exponential growth.

2. We show that the dynamics (1) admit a well-defined notion of a linear response function Rap(t,s)
for a class of observables A, B : R? — R, where Rap(t,s) represents a linear response of A(6?) to a
perturbation of the drift coefficient at a previous time s by VB(0%).

We then verify that the above DMFT correlation and response kernels Cy,C)), Rg, R, arise as the
mean-field limits of averages of the correlation and linear response functions for the “single-particle”
coordinate observables A(0), B(68) = 6; and A(0), B(0) = [X6 — y]; of the high-dimensional system.

Our methods and analyses in the first contribution above follow the approach of [42]. We incorporate
into the dynamical fixed-point system a deterministic limit {at}te[O,T] for the trajectory of the stochastic
drift parameter {@'},c(o,7], extend the analyses to encompass processes with more irregular sample paths
resulting from the additional Brownian diffusion term db? in the dynamics, and simplify the approach in [42]
for embedding a discrete-time DMFT system into a continuous-time limit.

Our second contribution above is, to our knowledge, novel in the mathematical literature on DMFT
(although anticipated by statistical physics derivations of the DMFT equations). To understand Ry, R,
as asymptotic limits of averaged single-particle linear response functions, we formalize a dynamical cavity
calculation that analyzes the response of a single coordinate 05 to a perturbation of ¢7 at a preceding
time s, via a DMFT approximation of the cavity system with this coordinate left out. This result will be

1 [51] proposed a nonparametric variant of this method, and we simplify our discussion here to a parametric formulation



important to our companion work [52], allowing us to transfer a fluctuation-dissipation theorem [53] from
the high-dimensional dynamics to the DMFT correlation and response kernels Cy, C';, Ry, R,. This will then
allow us to carry out an analysis of the long-time behavior of the DMFT equations in an approximately
time-translation-invariant setting, and to show convergence of the prior parameter estimate @’ in the above
empirical Bayes dynamics to a stationary point of a replica-symmetric limit for the model free energy.
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Notational conventions

Constants C,C’, ¢, ¢’ > 0 are independent of the dimensions n, d unless otherwise specified, and may depend
on the time horizon T, dimension K of the drift parameter, and scalar parameter 5 € R.

In a separable and complete normed vector space (M, || - ), for any p > 1, Pp(M) is the space of
probability distributions P on (M, || - ||) such that E¢p||€]|P < oo, Wp(-) is the Wasserstein-p metric on

Pp(M), and P, e b denotes W, (Pn,P) — 0 as n — oco. For a random variable { in M, we will use P(¢)
to denote its law. For a vector x € M", P(x) = LS 6z, € Pp(M) (for any p > 1) denotes the empirical
distribution of the coordinates x1, ..., x, of x.

On a Euclidean space R? | - || without subscript is, by convention, the Euclidean (i.e. f3) norm.
C(]0,T],R) is the space of continuous functions f : [0,7] — R equipped with the norm of uniform con-
vergence | flloc = supepo, ) [f(t)]. Z+ = {0,1,2,...} denotes the nonnegative integers, and R = [0, 00)
denotes the nonnegative reals. For a function f : R — R, Vf(x) € R? and V2f(x) € R?*4 are its gradient
and Hessian at x. For f:R?Y — R™ df(x) € R™ is its derivative at x. Tr M, || M||op, and || M| p are the
matrix trace, Euclidean operator norm, and Frobenius norm.

2 Model and main results

2.1 Model and dynamics

Let X € R"*? be a random matrix with independent entries, and y = X0* + & € R™ the observations of a
linear model with regression design X, regression coefficients 8* € R?, and noise € € R™.

Let s : R x RE — R be a Lipschitz drift function, G : R x Py(R) — RX a Lipschitz gradient map (where
P3(R) is the space of probability measures on R with finite second moment), {b'};>( a standard Brownian
motion on R?, and 8 € R a scalar parameter. We will study the dynamics

46" — [_3 X (X0 —y) + (s(0, af))jzl}dt +v2db! (4)
1 d
dat = g(at, Ez(sg;)dt (5)
j=1
with initial conditions
(6°,a°%) € RY x R¥. (6)



This encompasses the general dynamics (1) and the application (2-3) under a unified model: Specializing
to 8* = 0 and € = 0 (hence y = 0) recovers (1), while specializing to 3 = 072, s(#,a) = dglog g(f, a), and
G(a, P) = Epp[Valog g(0, a)] recovers (2-3). We will refer to these general dynamics (4-5) as an adaptive
Langevin diffusion.

We impose the following assumptions on the components of the above model and dynamics throughout
this work.

Assumption 2.1 (Model and initial conditions).
(a) (Asymptotic scaling) lim, 4 o0 & = 0 € (0, 00).

(b) (Random design) X = (x;;) € R™*% has independent entries satisfying Ez;; = 0, Ez?, = %, and
|Vdzi;]|, < C for a constant C' > 0 where || - ||, is the sub-gaussian norm.

(¢) (Linear model and initial conditions) 8°,0* & are independent of X, and y = X@* + €. For some
probability distributions P(6*,0°) and P(g) having finite moment generating functions in a neighborhood
of 0, and for each fixed p > 1, the entries of 8°, 8%, € satisfy the Wasserstein-p convergence almost surely

as n,d — 00,
1 1< w
y Z o, 90) P(6*,6°), ~ > 6., ¥ P(e). (7)
=1 =1

For a deterministic parameter a® € RX | almost surely lim,, 40 a° = .

Assumption 2.2 (Drift function). s : R x RX — R is twice continuously-differentiable, and for some
constant C' > 0 and all (6,a) € R x RE]

|5(6,0)] < C(L+ 18]+ llall2), IV (0,0)5(8, A)ll2, [|Vig,a)5(8, ) lop < C. (8)

Assumption 2.3 (Gradient map). Let /IS(O) =d! Z;l:l dg; denote the empirical distribution of coordinates
of @ € R%, and let Gi, : RX — R be the k" component of G.

(a) For some constant C' > 0 and all (o, P) € RE x Py(R),

IG(ct, P)l2 < C(1 + ||z + Ep[6%]'/2),  [IG(cr, P) = G(o', P')|2 < C(Jlev = &||2 + Wa(P,P")).  (9)

(b) Foreach k =1,..., K, (0 a) — Gr(a, P( )) is twice continuously-differentiable, and for some constant
C >0 and all (8,a) € R? x RE,

IVaGr(a, PO)> < C, V| VeGi(a,P(6))[l2 < C, (10)
max (]| V3G (0, P(9))lop: V[ VoVaGi(a, P(O))llops [ V2GH( PO)op) <C. (1)

Viewing (4-5) as a joint diffusion of (6%,a') on R4X  we remark that (8) and (10) imply that the
drift function of this joint diffusion is Lipschitz with respect to the Euclidean norm. Then there exists
a unique solution {6%,a'};>¢ to (4-5) with initial condition (6) that is adapted to the filtration F; :=
F({b*}scio. 0°,a% X, 0%, e), which will be the process of interest in our main results.

2.2 Existence and uniqueness of the DMFT fixed point

In this section we define the DMFT limit for the preceding dynamics (4-5). Let 6 = limy, 400 5 and
al = limy, 4— 00 a® be as in Assumption 2.1. Let

(0*,6°) ~ P(6*,6%)
denote scalar variables with the distribution (7). Let

{0'}io0, {u'}iz0



be univariate mean-zero Gaussian processes independent of each other and of (6*,6°), where {b'};>¢ is a
standard Brownian motion and {u'},;>o has a correlation kernel C () on [0,00), defined self-consistently
below. Let

{a'}=0

be a deterministic continuﬁous process on RX, also defined self-consistently below. We consider univariate
processes {0'};>0 and {%}tZSZO adapted to the filtration

]_-t@ = ‘/—"({bs}se[07t]7 {US}SE[O,t]aH*a 90)

(in the sense that ' and ‘99 for all s € [0,t] are Ff-measurable), defined by the stochastic differential
equations

d¢* = {—55(9‘e —0%) + (6", at)—l—/tR (t,5)(6° — 0")ds +u }dt—i-\/—dbt with 6" 0, (12)

06" AN o
d(55) = {—(55—393(9, ) /R t,s) ds]dtwmh%

We clarify that 695 is a notation for a univariate process on ¢ € [s, 00), defined via (13) for each s > 0.
Consider also

im0 =

=1 (13)

t=s

e~Ple),  (w {w'hizo),
where ¢ is a scalar variable with the distribution (7), and (w*, {w'};>0) is a univariate mean-zero Gaussian
process indexed by {x} U [0, 00), independent of e and with a correlation kernel Cy(-) on {x} U [0, 00) also

defined self-consistently below. We consider univariate processes {n'};>o and {g—zts}tzszo adapted to the
filtration

= ]:({wS}SStv w*v 5)7

defined by the integral equations

t
n' = —ﬂ/ Ry(t,s)(n° + w* —e)ds — w', (14)
0
o't ' Non
8;7}5 :ﬁ[—/ Rg(t,s)%ds + Ry(t, s)]. (15)

Again S—ZZ is a notation for a univariate process on ¢ € [s, 00), defined by (15) for each s > 0.
The centered Gaussian processes {u’};>¢ and (w*, {w'}+>¢) above have correlation kernels

E[u'u®] = Cy(t, s), E[lw'w®] = Cy(t, s), Elw'w*] = Cp(t, *), E[(w*)?] = Co(x,%).  (16)

Denoting by P(#") the law of 6 solving (12), the above deterministic process {a!};+>¢ and correlation/response
kernels C),, Cy, R, R are defined for all ¢ > s > 0 self-consistently by

d

&a = G(a*, P(6")) with at‘t:O =a’, (17)
Co(t,s) =E[0'0°], Ca(t,*) =E[0'0*], Ca(x,*) =E[(6%)?],
Cy(t,s) = B2 El(n' +w* —&)(n® +w* — ¢)], (18)
Ro(t, s) :E[%}, Ry(t, s) _5BE[8Z B

We note that the above process {g_ﬂ}tZsZO defined by (15) is in fact deterministic, but we keep the expec-
tation defining R, (¢, s) for symmetry of notation.

The equations (17-18) should be understood as ﬁxed point equations for «, Cy, C,), Ry, R,), where the
laws of the processes {6, Buz’ u'h>s>0 and {n, 8ws,w '}i>s>0 defining (17-18) are in turn defined by
a,Cy, Cy, Ry, R, via (12-16). For each fixed time horizon T > 0, let S(T") be a space of functions

(a Ce,Ong, )_ {a O(.)(t S) Cg(t *) Cg(* *) Cn(t, S),Re(t,S),Rn(t, 5)}0§s§t§T



having at most exponential growth, and S(7)°™ a subset of continuous such functions, whose precise
definitions we defer to Section 3.1 to follow. The following result establishes existence and uniqueness of a
fixed point to (17-18) in this space S(T")°"*.

Theorem 2.4. Under Assumptions 2.1, 2.2, and 2.3, for any fized T > 0:

(a) For any (a,Cy,Cy, Ry, Ry)) € S(T) and any realization of the mean-zero Gaussian processes {u'}i>¢
and (w*, {w'}i>0) satisfying (16) (independent of (0*,0°, {b'};>0) and & respectively), there exist unique
solutions to (12-13) and (14-15) adapted to {Ff}te[O,T] and {F{'}icjo,m for times 0 < s <t <T.

(b) There exists a unique fized point (o, Cy,Cy, Ro, Ryy) € S(T) satisfying (17-18) for the solution of part
(a). This fized point belongs to S(T)*°™, and in particular {a'}i>0 is a deterministic continuous process
on RE

The proof of Theorem 2.4 is given in Section 3. We will call the components of Theorem 2.4(a-b) the
unique solution of the DMFT system (12-18).

2.3 The dynamical mean-field approximation

The following is the first main result of our work, showing that the preceding solution to the DMFT system
describes the limit of {@"},c[o,71 and empirical distributions of coordinates of {6'}ic(o,r) and {n'}icio,m =
{X6"'},cj0,7) solving (4-5), for fixed time horizons T' > 0 in the limit n,d — oo.

Theorem 2.5. Suppose Assumptions 2.1, 2.2, and 2.3 hold. Denote
,’,,t — Xet, ,rl* = X@*

let 0%, ¢, n* = —w*, and {Ht,nt,at}te[oﬂ be the components of the unique solution to the DMFT system
(12-18) given by Theorem 2.4, and let P(-) denote the law of these components. Then for each fized T > 0,
almost surely as n,d — oo,

(a) (at)te[O,T] — (at)te[o,T] in C([OaT]vRK)'
(b) In the sense of Wasserstein-2 convergence over R x C([0, T],R) and R x R x C([0,T],R),

—_

d n
1 % .
7 Z 05,{0% }ecio.m) (9 {9 }te OT) n Zisnj,ai,{ng}te[”] — P(77 & {nt}te[O,T])-

i=1

The proof of Theorem 2.5 is given in Section 4. For ease of interpretation, we record here two corollaries
of this result. The first clarifies an implication of the above Wasserstein-2 convergence in terms of the
convergence of pseudo-Lipschitz test functions of finite-dimensional marginals of the processes.

Corollary 2.6. In the setting of Theorem 2.5, for any fized m > 1 and times tq,...,t, € [0,T], and for
any pseudo-Lipschitz test functions fp : R™™ — R and f, : R™? — R (i.e. satisfying |f(x) — f(y)] <
Clle = yll2(L + ||z||2 + llyll2)), almost surely as n,d — oo,

70730

IS

d
Z 0(07,0, ..., 0m) = Efe(07,0",...,0")
o - (19)
Ean(nragiunfla"'anEm)%Efn(n*uguntlw"untm)
i=1

where the expectations on the right side are under the joint laws of the solution to the DMFT system.

Proof. Any pseudo-Lipschitz function (6%, 0%, ... 0'm) — fa(0*,0%,... 6% ) is also a pseudo-Lipschitz func-
tion of the full sample path (6*,{6"},c(0,17) € R x C([0,T],R). Thus the first statement of (19) follows from
Theorem 2.5(b) and the characterization of Wasserstein-p convergence in [54, Definition 6.8 and Theorem
6.9], and the second statement follows similarly. O



The second corollary asserts an asymptotic decoupling of the finite-dimensional marginal distributions of
(6%, {Bt}te[O,T]) in a coordinate-exchangeable setting, which is the usual notion of propagation-of-chaos for
interacting particle systems.

Corollary 2.7. In the setting of Theorem 2.5, suppose in addition that (8*,0°) € R9*2 and X € R™*? gre
both invariant in law under permutations of the coordinates {1,...,d}.

Fiz any J > 1, and let P(607,;,{0}.;}co,1)) denote the joint law of sample paths (65,{0%}ieo,r) €
R x C([0,T],R) for j = 1,...,J. Let P(60*,{0'}1ci0,17)®” denote the J-fold product of the limit law in
Theorem 2.5(b). Then as n,d — oo, in the sense of weak convergence,

P( T:J7 {65:,]}756[0-,71]) — P(9*7 {et}tG[O,T])®J'

Proof. Under the stated assumptions and the definition of the process (4-5), the law of (6*,{6"},cj0.17) €
(R x C([0,T],R))? remains invariant under permutations of the coordinates {1,...,d}. Then the stated
. : . d « -
result is equivalent to convergence of the empirical law éZj:l 69;7{9;}t€[oﬂ to P(0*,{0"}1ej0,77) weakly in
probability (c.f. [4, Proposition 2.2]), and this is implied by Theorem 2.5(b). O

We clarify that P(7,,,{6%.,}icio,7]) in this statement refers to the law over all randomness including
that of 8*,0° and the disorder X. It would be interesting to also study propagation-of-chaos phenomena
conditional on parts of this randomness, and we leave such investigations to future work.

2.4 Interpretation of the DMFT correlation and response
Fixing X, 0% & and y = X0* + ¢, define the coordinate observables

¢(0) = 0;,  w:(6) = VB(XE — yy). (20)
Fixing also the initial conditions x = (8°,aY), for each pair 4, B € {e1,...,eq,T1,..., Ty}, define

{RAp(t s) o<s<t

as a response function for the joint dynamics (4-5) that satisfies the following condition: For any continuous
bounded function A : [0,00) — R and any ¢ > 0, consider the perturbed dynamics

I I g U, € ~t,e d
46"= — [—BXT(XOt’ —y) +eh(t)VeB(6"°,a") + (s(6%°, a" ))jzl}dt—i—\@ dbt

d
1
da'e = g(a", > g )t
J
Jj=1

with the same initial condition (8%, a%¢) = x. Denote the expectation conditional on X,0* & and x =
(0°,a%) as (f({0%,a'}1>0))x- Then for any ¢ > 0,

t
lim 2 ((A(64,6")) — (A0 a")x) = | Bp(t,5)h(s) ds. (21)
e—=0 ¢ 0
Thus R* 5(t, s) may be understood as the linear response of the observable A(0) at time ¢ to a perturbation
of the Langevin potential by B(@) at a preceding time s. Existence of such a response function for smooth
bounded observables in uniformly elliptic and hypoelliptic diffusions has been shown in [55,56]. We verify
in Proposition A.1 that the arguments of [56] may be extended to show also the existence of a response
function R 5(t, s) satisfying (21) in our adaptive Langevin diffusion, for a class of unbounded and Lipschitz
observables including all A, B € {e1,...,eq,T1,...,Tn}.

Let {0%,a'};1>0 be the solution to (4-5) with the given initial condition x = (6°,a°) of Assumption 2.1,
and define the corresponding correlation and response matrices

Colt,) = ((6096407),) o Calti) = ((es(0)ex(0)),)

)
7,k=1

Cy(t,s) = (<$a‘<9t)$k(05)>x)n

jk=1

, t, ( x . (t, ) ,
ot s) e (1:5) k=1

n

jk=1

L Ry(ts) = (B, (19)

G k=1
(22)



for the above coordinate observables eq,...,eq4,x1,...,2,. The following is the second main result of our
work, showing that the correlation and response kernels Cy, C,,, Rg, R, defining the DMFT limit in Theorem
2.5 are the almost-sure limits of the normalized traces of these matrices, i.e. the correlation and self-responses
of the observables e; and x; averaged across coordinates j =1,...,dand i =1,...,n.

Theorem 2.8. Suppose Assumptions 2.1, 2.2, and 2.8 hold, and (0,a) — V%&) a)s(G,a) and (0,a) —

V%aya)gk(a, ﬁ(@)) are uniformly Hélder-continuous for each k =1,..., K. Let Cy,C,, R, R, be the correla-
tion and response kernels of the solution to the DMFT system (12-18) given by Theorem 2.4. Then for any
fixzed t > s >0, almost surely as n,d — oo,

d~ ' TrCy(t,s) — Cy(t, s), d™1Tr Cy(t, *) — Cy(t, x), n~tTr G, (t, s) — Cy(t, s),
d~ ' TrRy(t,s) — Ry(t,s), n~ P Tr R, (¢, s) — Ry (t, s).

The proof of Theorem 2.8 is provided in Section 5. We note that the convergence of d~!'Tr Cy and
n! Tr C,, is an immediate consequence of Corollary 2.6. The additional content of this theorem is the
convergence of d"!'TrRy and n~! TrR,,, which relies on an inductive analysis of dynamics at a single
particle level using a dynamical cavity argument.

Remark 2.9. By an argument similar to our proof of Theorem 2.8, one may show that the DMFT response
kernels Ry(t,s) and R,(t,s) also represent the limits of d=' TrRy(t,s) and n=! Tr R, (¢, s) defined for a
non-adaptive version of the dynamics

40" = [-BXT(X6" —y) + (s(8},a")7_, |at + v2ap*

which replaces the adaptively-evolving drift parameter {a' };>¢ by its deterministic DMFT limit {a'};>¢. The
response matrices Ry, R, for this non-adaptive dynamics {ét}tzo are different from those for the adaptive
dynamics (4-5), in that a perturbation in the adaptive system affects {a'};>s whereas it does not change
{a'};>s in the non-adaptive system. However, our result implies that the almost-sure limits of d=! Tr Ry
and n~! Tr R,, coincide for these two dynamics, i.e. the propagation of the effect of the perturbation through
{a'} is negligible in the large-(n,d) limit.

The remainder of this paper will prove the preceding results of Theorems 2.4, 2.5, and 2.8.

3 Existence and uniqueness of the DMFT fixed point

In this section we prove Theorem 2.4. We assume throughout Assumptions 2.1, 2.2, and 2.3. Section 3.1
defines the spaces S(T') and S(T')°°®* and proves Theorem 2.4(a) on existence and uniqueness of the processes
(12-15). Section 3.2 then proves Theorem 2.4(b) on existence and uniqueness of the dynamical fixed point
via a contractive mapping argument similar to that of [42].



3.1 The function spaces S(T) and S(T')°"*

Let 72 = EA*? and 02 = Ee?, and let Cy > 0 denote a constant larger than the constants C' > 0 of (8) and
(9). Consider the following system of equations for functions @, ®¢,,®c,, Pr,, Pr, on [0,00):

%%(t) =4.1Co(1 + ®¢, (1)) + 3Co P, (t) with &, (0) = ||a°|?, (23)
t
%@cg (t) = (60%8% + 18C2 4+ 1.1)®¢, (t) + 6/ (t—s+1)*®%, (t —5)Pc, (s)ds
0
t
- 6(62ﬁ27'f +3C2 +3C20,(t) + / (t—s+1)°®% (t—s)ds- 77 + ¢, (t)) +2
0
with ®¢, (0) = E(6°)?, (24)
t
e, (1) = 256 [% / (t=5+1)2- O}, (t - )@c, (s)ds + 20, (1) + 272 + 02, (25)
0
t
%(I)Re(t) = (6|ﬁ| + CO)‘I)RS (t) +/ (I)Rn(t - S)‘I)RB (s)ds with (I)RB(O) = 1, (26)
, 0
B, (1) = 131( | @t = 5)r, (5)ds + 3lBln, 1), (27)
0

Lemma 3.1. The system (23-27) has a unique continuous solution. Defining

E(\) = {continuous functions f: Ry — Ry such that / e M f(s)ds < oo},
0

for any sufficiently large constant X > 0, this solution satisfies o, Pc,, o, , Pr,, Pr, € E()).

Proof. Let @, = (®¢,, Pr,), P9 = (P, Pc,, PR, ), and & = (&, Pp). For any two continuous solutions P
and @, there exists some M > 0 such that all components of both solutions are uniformly bounded over
[0,T] by M. The above equations then imply

t t
190(0) = B0 < [ ClIBGs) = D)5, [0,() = By(0)] < C( [ 19(5) = B(s)ds + | o(e) = Bo(0)])
for a constant C' > 0 depending on M,T. Applying Gronwall’s lemma to the second inequality shows
sup |y (s) — By (s)] < ¢’ sup, 126 (s) — o (s)]|- (28)
t

s€(0,t] s€l0
Then applying this in the first inequality gives
t
[[@o(t) — Po(t)]| < / c” sup [@o(r) — Po(r)l|ds,
0 rel0,s

so Gronwall’s lemma applied again shows @ (t) = ®4(t) for all t € [0, T]. Then by (28), also ®(t) = ®(t) for
all t € [0,T], so any continuous solution to (23-27) is unique.

It remains to show existence of a continuous solution with all components in E(\). Consider (26-27) as
a mapping from ®g,, Pr, on the right side to (i)Rm(i)Rn on the left side, i.e.

¢

byt =1+ [ (6181+ Co)r, () + | @, = on(s)as)ar

t
bie, () = 3I( | @t = 5)r, (5)ds + 3151, 1),
0
If @, Pr, € E()), then writing Lo(\) = [~ ®r,(s)e”**ds for the Laplace transform of ®, and similarly
writing L, Lo, in for those of ® Rn,fi) Ro» P R, taking Laplace transforms of the above gives

ALg(A) — 1 = (88| + Co)Lo(X) + Ly(A) La(N),

~ (29)
Ly(X) = |BILo(A\) Ly (A) + 657 Lo ().
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This implies in particular that Lg()\), L, (\) < oo, i.e. Pg,, imy7 € E(A). For ¢ > 0, define further
E(\ ) ={(®r,, ®r,) : Lo(A) < 1, Ly(X) < (687 + 1)}

If (®r,,Pr,) € E(A,¢), then for + > 0 sufficiently small and A > 0 sufficiently large, this implies Ly(\) <
A"H(1+ 0|8+ Co)e+ (682 +1)2) < vand L,y(N) < |B|(68%+1)i2+68% < (8% +1)¢, 50 (PR, Pr,) € E(),1).
For two pairs of inputs (L}, L,l7) and (L2, L%), note by (29) that the corresponding outputs satisfy

2z _ 0B+ Co L, |L31(66% + 1) |y — L]
1 2 1 2 n 1 2 6 n n

|Lg — Lg| < 5 |L9—L9|+—)\ |Lg — Ly| + \ ST

Ly, — L3 I =12 Bl 532

n 7l L Ul Ui WA Sy L — 12
6B2 +1 < IBIILo| 52 +1 +5[32+1| o 9|+552+1| o~ Lol

Thus, defining a weighted L'-norm on E(X) x E(X) given by |[(®gr,, Pr,)|| = [Lo(N)| + (68% + 1)Ly (N)],
one may check from the above that the mapping (®g,, ®r,) — (Pr,, <i>Rn) is Lipschitz on E(\) x E(\) with
respect to || - ||, with Lipschitz constant at most

8|8 + Co . 2(68% + 1)
A A

532
B2 +1
This is less than 1 for + > 0 sufficiently small and A > 0 sufficiently large, so (®g,, ®g,) (‘i)Rev(i)Rn) is a
contraction with respect to || -||. This norm is complete on E(X) x E(\), and E(), 1) is closed in E(\) x E()),
so by the Banach fixed-point theorem, there exists a unique fixed point (®r,, ®r,) € E(A, 1) C E(\) x E()\)
which is a solution to (26-27).

Given this solution to (26-27), consider now (23-25) as a mapping from (®,,®c,, ®c,) on the right
side to (fi)a,fi)ce,i)cn) on the left side. Now let Lo(N),Lg(A), Ly(A) denote the Laplace transforms of
(®o, Pcy, Pc, ), and define also the Laplace transforms K,(A\) = fot(s + 1)2‘1)%77(8)6_)‘5(18 and Kyp(A\) =
fg(s +1)2®%, (s)e”**ds. Choosing A large enough so that K, (), Ks(A) < oo, if @4, ®¢,, Pc, € E(N), then
taking Laplace transforms of (23-25) gives

" 4.1C,
Aa(A) = [@%)2 = TO +4.1CoLo(A) + 3CoLa())

+ 2|8 +

- 672 C
ALg(N) —E(0°)* = C1Lo(N) + 65,(A\) Lo(N) + 18CF La(N) + %Kn()\) + 6L, (\) + 72
Gs
A

for some constants Cj,Ca,C3 depending only on 4§, 3,Cy,02,72. For small + > 0, suppose further that

((I)OH (I)Cga (I)Cn) S E(A, L) where

Ly(\) = 282 Kp(N) L, (\) + 4632 Lo(\) +

E(\) = {(®a, ey, @c,) t La(X) <ty Lo(N) < ¢, Ly(A) < (4687 + 1)}

Then, using that limy_,o Kg(A\) = 0 and limy o K,(\) = 0, for sufficiently large A > 0 and small ¢ > 0,
the above Laplace transform equations imply (i)a,fi)ce,fi)cn) € E(A,¢). Furthermore, defining the norm
[(@a, Pc,, Po,)|| = |La(N)| + [Lo(N)| + (468% + 1)|L,(N)], it may be verified as above that the mapping
(Po, @y, Oc,) — (P, Pey, ‘icn) is Lipschitz in || - || on E(\,¢), with Lipschitz constant at most

71C;  Cy +6K,(\) + 18C3 +6(403% + 1) ) 4632
b\ + \ + 26 Kg()\)+4662+1.
For sufficiently large A > 0, this is again less than 1, so there exists a unique fixed point (®,®c,, ¢, ) €
E(\ ) C E(M\) x E(X\) x E(\) which solves (23-25). O

Let (®o,®c,, ®c,, PRy, Pr,) be the above solution to (23-27). For any T' > 0 and finite set D =
{di,...,dn} C (0,T), we call [0,d1),[d1,d2),...,[dn,T] the maximal intervals of [0,7]\ D. Fixing T > 0
and denoting

(Oé, 095 0777 R97 Rn) = {at; Og(t, S)a Og(t, *)7 Ce(*v *)a Oﬁ(ta S); R@(ta S)a Rn(tv S)}OSSStSTa

11



we define the space S = S(T) in Theorem 2.4 as
§= {(aa 095 Ona R@; RT]) : (an Cna a) € 8777 (RG; 095 a) € 89} (30)

Here S, = S, (T) is the collection of (R,,C,,a) such that, for some (possibly empty) discontinuity set
D c (0,T) of at most finite cardinality:

e C, is a positive-semidefinite covariance kernel on [0, 7] (identifying C) (s,t) = C,(t, s)) satistying
Cy(t,t) < ®¢, (t) forall 0 <t <T. (31)

Furthermore, Cy,(t, s) is uniformly continuous over s,t € I for each maximal interval I of [0,T]\ D,
and satisfies

|Co(tt) = 2Cy(t, 5) + Cy (s, 5)| < 35 {(T3 sup P, (r)?+T sup @, (1?) sup 2o, (r)

+6(2T sup @’Ce(r)—i—él)} “jt—s|lforalls,tel.  (32)
re0,T]

e R,(t,s) satisfies
|R,(t,s)| <@g, (t—s) forall 0 <s <t <T. (33)

Furthermore, R,(t,s) is uniformly continuous over s € I’ and t € I for any two (possibly equal)
maximal intervals I, I’ of [0,T]\ D.

o o satisfies
lat]|? < @4 (t) for all 0 <t < T. (34)

and is uniformly continuous on each maximal interval I of [0,7]\ D.
Similarly Sp = Sp(T) is the set of (Ry, Cy, ) such that

e (y is a positive-semidefinite covariance kernel on {x} U [0,T] (identifying Cy(s,t) = Cy(t,s) and
Cy(t,x) = Cy(x,1)) satisfying

Cy(t,t) < De, (t) forall 0 < t < T. (35)
Furthermore, Cy(t, s) is uniformly continuous over s,¢ € I for each maximal interval I of [0, 7]\ D and
satisfies
|Co(t,t) —2Cp(t, s) + Co(s,s)| < (2T sup ®g, () + 4)|t —s| for all s,t €1, (36)
re[0,T]

and Cy(t,*) is uniformly continuous over ¢ € I.
e Ry(t,s) satisfies
|[Ro(t,s)] < Pr,(t—s) forall0<s<t<T. (37)

Furthermore, Ry(t,s) is uniformly continuous over s € I’ and ¢ € I for any two (possibly equal)
maximal intervals I, I” of [0,T]\ D, and satisfies

|Ro(t,s) — Ro(t, s)| < ( sup. oy, (r)) |t' — | for each fixed s € [0,T] and all £, € [s,T]N 1. (38)
re|0,

e o' satisfies (34) and is uniformly continuous on each maximal interval I of [0,7]\ D.
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We define
Scont(T) = Scont C S, Sf]ont(T) = S;:]ont C Sn7 Sgont(T) = Sé:ont C S@

as the subsets of the above spaces where D = (), i.e. the above continuity conditions hold on all of [0, T].

Remark 3.2. By (32), letting {u'},c(o,r) be a mean-zero Gaussian process with covariance C,, for any
maximal interval I of [0,T]\ D, any s,t € I, and some constant C' > 0,

E(u! —u®)* = 3[E(u’ —u®)?)? < C|t — s

Then Kolmogorov’s continuity theorem ( [57, Theorem 2.9]) implies that there exists a modification of
{u'}1epo,7) that is uniformly Holder continuous on each such maximal interval I, and similarly for {w"};co 7]
with covariance Cy satisfying (36). We will always take {u'} and {w'} to be the versions of these processes
that satisfy this Holder continuity.

Let us now establish existence and uniqueness of the solutions to (12-15) given (o, Cy, C,, Ro, Ry)) € S.

Lemma 3.3. Fiz any T > 0, any (R,),Cy,a) € S, and any realizations of 6°,0%,{b'}i<r and {u'}i<p.
Then there exist unique F¢-adapted processes {0'},<r and {g_ii}sstST solving (12-13).

Proof. Consider the drift function
t
v(t, {0°}s<t) = —6B(0" — 6%) + s(0",a") + / Ry(t,s)(0° — 0%)ds + u.
0

Conditioning on 6%, 0* and {u'} and writing 0 for the process 6 = 0, we have (with probability 1 over §°, §*
and {u'})

T
sup |v(t,0)] < 6|80%| + sup |s(0,a")] —I—/ g, (t)dt- 0%+ sup |u’| < oo.
t€[0,T7] t€[0,77] 0 t€(0,T7]

Furthermore, for all ¢t € [0, T7,

T
ot {6 s<e) — 0(t, {6°}ozo)| < (5|ﬂ|+(9 sup 100s(6,)] + / Dp, (s)ds) sup, 18~ &),
,a)ERX se|0,

showing under Assumption 2.2 that {6°},<, — v(t, {0°}s<,) is Lipschitz in the norm of uniform convergence,
uniformly over ¢ € [0,T]. Then existence and uniqueness of a solution {#'};<r with 6%|;—o = 6° adapted to
the filtration of {b'},>¢ is classical, see e.g. [58, Theorem 11.2]. This solution is a measurable function of §°,
6*, and {u'}, and hence is also F{-adapted.

Conditioning now on {#'}, for any fixed s € [0, T, consider

t
v(t, {xs,}s/e[&t]) = —(5ﬁ — Ops(67, at))xt —I—/ R,(t, s ds.

S

This satisfies v(t,0) = 0 for all ¢ € [s,T] and

T
o0t G Yato) ~ o0 T Vo) < (1014w st + [ @, 0ar) s o 5,
(0,0) ERXRE 0 s'€[s,t]

SO {xsl}sle[sﬁt] — v(t, {xs/}s,e[sﬁt]) is also Lipschitz in the norm of uniform convergence, uniformly over
t € [s,T]. Then again for each s € [0, T], there exists a unique solution {g—ZZ}te[s,T] with g—gi t—s = 1, which

is adapted to the filtration 7, = F({6"},¢[s4) and hence also to F7, showing the lemma. O

Lemma 3.4. Fiz any T > 0, any (Ry, Cy, ) € Sp, and any realizations of € and (w*,{w'}i<r). Then there
ezist unique F,'-adapted processes {n'}i<r and {g—g}l}sStST solving (14-15).
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Proof. Conditional on ¢ and (w*,{w'}), the equations (14-15) are linear Volterra integral equations for
which the kernel (s,t) — Ry(t,s) is continuous on each maximal interval I of [0,7]\ D. Then, for each
maximal interval I = [a,b), given the values of {n'} for ¢ € [0,a], existence and uniqueness of {n'}¢c(q,p) 18
classical and follows from e.g. [59, Theorem 2.1.2]. Applying this successively to each maximal interval I
shows existence and uniqueness of {n'} over t € [0,7]. A similar argument shows, for each fixed s € [0, T},

the existence and uniqueness of { gf]}i} over t € [s,T]. Here g:]; is deterministic by its definition, while n’ is
a measurable function of €, w*, {w®}s<; and hence is adapted to F;'. O
Proof of Theorem 2.4(a). This follows from Lemmas 3.3 and 3.4. O

3.2 Contractive mapping

We fix T > 0. For any (R,,C,, ) € S,, define a map 7,0 : (R, Cy, ) = (R, Cy, &) by

06"

Rg(t, S) = E{%

|, Cotts) =BIO'0°), Colti) =EI'0), Cols, ) = E[(6),

d
Edt = G(a', P(0")) with a'|;—¢ = a°

where {6"},c(0,7] and {g—gi}ogsgth are the unique solutions to (12-13) given (R,,C,,«) and 6°, 6%, {u'},
guaranteed by Lemma 3.3, and P(6?) is the law of #*. Similarly, for any (Rg,Cy,a) € Sy, define a map
7—9_”7 : (R@,C@,d) — (R,,,Cn,a) by

ont

|, Calts) = SBR[ +w" =) +w" —<)], ol =a'

where {1'}¢c[0,r) and {g—gfs}OSKtST are the unique solutions to (14-15) given (Ry, Cp, @) and e, w*, {w'},
guaranteed by Lemma 3.4. Finally, define the composite maps

7;7—>77 = 7-9—>n O /n—0, 7-0—>0 = 7;7—>9 o 7-9_”7. (39)
The rest of this subsection is divided into two parts:

e (Part 1) We show in Lemma 3.5 (resp. Lemma 3.6) that 75—, maps Sy into S,, (resp. T, maps S,
into Sp).

e (Part 2) We equip S, and Sy with certain metrics and derive the moduli-of-continuity of the maps
Tn—o and Ty, in Lemmas 3.7 and 3.8, thereby concluding that 7,_,, and Ty in (39) are contractions
under these metrics.

Lemma 3.5. Ty_,,, maps Sy into S,,, and S§°™ into Sg‘mt.

Proof. (Condition for C,) Define &' = n* + w* — ¢, so that
t
g = —ﬁ/ Ry(t,s)¢%ds —w' +w* —¢
0
and C,(t, s) = §B2E[£'¢®]. Then by Cauchy-Schwarz,
t 2
Cy(t,t) < 25521[3[[32(/ Ry(t, s)gsds) + (w' —w* + 5)2}
0
t t
< 282 [/32/ (= s+ 1)2- Ro(t, s)2E(£*)2ds - / (t—s+1)"2ds+ 20 (1) + 272 + 02| (40)
0 0

1 t
<2032 {5 / (t—s+1)%- @%9 (t — 8)Cy(s,8)ds + 2®¢, (t) + 272 + 02 |.
0
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Recalling the equation for ®¢, (-) in (25),

1 t
@c, (t) = 206° | 5 / (t—s+1)% OF, (t = 5)0c, (s)ds + 2D, (1) + 277 + 07|,
0

Gronwall’s inequality implies that C,(t,t) < ®¢, (t), showing (31).
We now check (32) on each maximal interval I of [0,7]\ D where D C (0,T) is the discontinuity set of
Sy. Note that
C’I(tv t) — 2C7I(t7 s) + Cn(sv s) = 5ﬁ2E[(§t - 55)2]

= 5B2EK—[3 /Ot Ry(t,r)¢"dr + /05 Ry(s,r)¢"dr —w' + ws)z}
< 3682 [521@(/05 (Ro(t,r) — Ro(s, r))grdr)z + ﬁ2]E(/St Rolt, r)frdr>2 FE(w! - wS)ﬂ.

Using 62E(¢)? = Cy(t,t) < ®¢, (t) established above, together with the continuity conditions (38) for R
and (36) for Cp, for any s,t € I it holds that

IE(/O (Ro(t,r) — Rg(s,r))frdr>2 < S/OS(Rg(t,T) — Ry(s,r))*E(¢")2dr

2

T 2
< 5—2( sup <I>’Re (r)) - sup P, (r) - |t — s)?,
re[0,T] r€[0,T]

t 2 t
IE(/ Ro(t,r)g"dr)” < (t - s)/ Ry(t,r)*E(¢")%dr
1
< —5 sup Pg, (r)*- sup ¢, (r) [t —s]?
0B% refo,1] r€[0,T]
E(w' — w®*)? = Cy(t,t) — 2Cy(t, s) + Co(s,s) < (2T sup ®f, (r) +4) |t — s|.
re[0,T]
Combining these bounds shows (32) over s,t € I. Applying |E[¢5¢t — £5'¢]|2 < 2E(&5 — ¢ )2E(€)2 +
2E(£¥)2E(¢" —£")?, this shows also that Cj, (¢, s) is uniformly continuous over s,t € I. If (Cy, Ry, &) € S§™,

then D = ) so this maximal interval is I = [0, T7].

Condition for R,) By definition, R, (t,s) = S[— "Ry t,s"\R,(s',s)ds’ + dBRy(t, s)], hence
n n s n

t
Ro(t, )] < 181 [ 1Ro(t, IR )]s+ 5|3 Ro(t. )]
t—s
<IAI( [ (e =5 = IR+ 9IS+ BBl (0 5)).

Recalling the equation for ®z, in (27),

t—s
O, (t—s) = |¢3|(/0 fI)Re(t—s—s’)fl)Rn(s')ds’+5|[3|<I>Re(t—s)),

this implies for all ¢ € [s, T that |R,(t,s)| < ®g,(t — s), verifying (33). To show uniform continuity on
each pair of maximal intervals I, I’ defining Sy, observe first that for any s,s' € I’ and 7 > 0 for which
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s+1,8+71€el,
|R,(s" +7,8") — Ryy(s + 7, 9)|

<18|- +66%|Ro(s' +7,8') — Ro(s +7,5)|

—|ﬁ|/07

< |B|/0 |Ro(s + 7,5 +7)] - |Ry(s" +1,8)— Ry(s+r,s)dr

’

s+T s +T
/ Ro(s + 7,7) Ry (r, s)dr — / Ro(s" + 7,7)Ry(r, s")dr

Ro(s+ 7,8+ 7)Ry(s+7,8) — Ro(s' + 7,8 +7)Ry(s' +7,8)|dr + 68*|Ro(s' + 7,5") — Ro(s + 7, 3)]

+ |B|/ |Ro(s+7,5+71)— Ro(s' + 7,8 +7)| - |Ry(s +7,8)|dr + 68%|Ro(s' +7,5") — Ro(s +7,3)|.
0

Denoting by ojs_|(1) an error that converges to 0 uniformly in 7 as |s — 5’| — 0, observe that the last term
above is 0|,_4 (1) by the uniform continuity of Ry on I’ x I. For the second term, writing the range of
integration as [0,7] = AU B where r € A are the values for which s + r, s’ + r belong to a single maximal
interval of [0, 7]\ D and r € B are the values for which s+ r, s’ +r belong to two different maximal intervals,
the integral over r € A is oj,_y|(1) again by the continuity of Ry, while the integral over » € B is also
0|s—s(1) by the boundedness of Ry, R, and the bound |B| < C|s — s'| for the total length of B. Putting
this together,

|R,(s" +7,8") — Ry(s + 7,5)] < C/ |Ry(s" +7,8") = Ry(s +r,8)|dr + os_s(1).
0

Since R, (s',s") = Ry (s, s), the above and Gronwall’s inequality imply that
|Ry (s +7,8") = Ry(s + 7, 5)| = 0j5—s//(1) (41)
uniformly in 7. Now for any s € I’ and 7/ > 7 > 0 for which s + 7,5+ 71’ € I,
s+T
Ry(s+7,8) — Ryls +7.5)| < |3|/ [Ro(s +7'7) — Ro(s + 7, 1)|| Ry(r, )|dr
s+1’
[ IR+ 7 ) Ry )+ 018 Rl +7'5) = Ras + 7.,
s+T
so the continuity of Ry and boundedness of Ry, 12, again imply that
|Rn(8+7-178) _Rﬁ(8+778)| = O\T*T’|(1) (42)

uniformly in s. The statements (41) and (42) show that (s,7) — R, (s + 7, s) is uniformly continuous over
{(s,7):s€I',Tr >0,s+ 7 € I}, implying uniform continuity of (s,t) — R, (t,s) over (s,t) € I’ x I. Again
if (Cy, Rp, @) € S§°™, then this continuity holds over all of I = [0, 7.

(Condition for «) By definition, the mapping & — « under Ty_,,, is the identity, so the required conditions
for a hold by those assumed for a. O

Lemma 3.6. 7,9 maps S, into S§o™.

Proof. (Condition for Cy) To verify (35), denote
¢
vl = —3B(0" — 0%) + s(0", ") +/ R, (t,s)(0° — 0)ds + u'.
0

Applying Ito’s formula to (0%)? yields

dCy(t,t) _ dE(0")?

dt o = E20''] +2 < 1L1-E(0")’ +E(')? +2. (43)
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(The bound holds with 1 in place of 1.1, and we enlarge this to 1.1 to accommodate a later discretized
version of this computation.) Using an argument similar to (40), and letting Cjy > 0 be the constant defining
(23-27) which upper bounds C > 0 in (8) of Assumption 2.2, we may bound E(v*)? as

t 2 t 2
E(v')? <6 {52B2E(9t)2 +628°72 + Els(0',a")?] + E(/ Ry (t,$)0"ds)” + IE(/ Ry (t,)0"ds) + E(ﬁ)?]
0 0
t
< (60%8% + 18C)E(0")* + 6/ (t—s+1)20% (1 — s)E(0°)*ds
0

t
+ 6(62ﬁ27*2 +3C2 +3020,(t) + /0 (t—s+1)*0% (t—s)ds- 77 + D¢, (t)). (44)

Applying this to (43) and comparing with the equation for ®¢, from (24),

t
%cbc@ (t) = (6028% + 18C2 + 1.1)®¢, (t) + 6/ (t—s+1)°®% (t—5)Pc,(s)ds (45)
0

t
+ 6(52ﬁ27-f +3C2 +3020,,(t) + /O (t—s+1)°®% (t—s)ds 77 + ¢, (t)) +2,

we see that since Cy(0,0) = ¢, (0), we have Cy(t,t) < Pg, (t).
Next we prove (36) for all 0 < s <t < T. We have 6" — 6 = fst v"dr 4+ v/2(b" — b*). Then it holds that

Co(t,t) — 2Cy(t, s) + Ca(s, s) = E[(0" — 0°)] < 2|t — s /t E(v")2dr + 4E (b — b%)2

<2t — s> sup |®f, (r)] + 4]t —s| < (2T sup P, (1) +4>|t — sl
rel0,7] r€(0,T]

where the second inequality compares (44) to the definition of ®f, (¢) in (45). This verifies (36). As in
the preceding argument for C,, this condition (36) and Cauchy-Schwarz implies that Cy(t, s) is uniformly
continuous over all 0 < s <t < T, and also that Cy(t, *) is uniformly continuous over all ¢ € [0, T.

(Condition for Ry) Let Ry(t,s) = E|2% | so that |Rg(t, s)| < Ry(t,s) by definition. Note that

ou
d | 06 d o6t a6 ¢ 05"
“@ “@ < ot ’ /
dtlous| — Idt ous| — (6|ﬁ|+|698(9 ' )l) ou?® +/5 Bt 5] ous ds
Lk ¢ o00°
< o l
< @131+ Col| s + [ @t = )| G (46)

where Cy > 0 is the constant defining (23-27) which upper bounds C' > 0 in (8) of Assumption 2.2. Taking
expectation on both sides yields

t—s
S R0(t.5) < G181+ CoRalts) + [ (= 5= 5)Rofs + 5/, 5)ds'
0

Recall the equation for ®p, in (26),

d t—s
E@RS (t—s)=(3|B] + Co)Pr,(t —s)+ / g, (t—s—5")Pg,(s")ds".
0
Since Ry(s,s) = 1 = ®g,(0), this implies for all ¢t € [s,T] that |Ry(t,s)| < Ry(t,s) < ®g,(t — s), verifying
(37) forall 0 < s <t <T.
To show (38) for all 0 < s <t <t < T, observe that we have

T

/tt, E[— (5ﬁ — Ops(0", ar)) gzs}dr + /tt, (/ST Ry, (r,7")Ro(r', s)dr')dr

t’ T
< [ (00314 CoRatros)dr + [ @n,(r = )Rt ) ar < |~ 1] sup @, (),
t s re[0,T]

|R9(t/7 8) - RG(tv S)' =
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verifying (38). In particular, this shows continuity of 7 — Rg(s + 7,s) uniformly over s € [0,7] and
7 € [0, T — s]. For continuity in s, observe that

d (005 9657
drl Ous ous’

st 9ps T
< (018 + Co) |5

ous  ous

gs+r 95'-{-7’
B R,(s' + 71,8 + r)a— dr.

Ry(s+T,5+7T) 50

o,
0

We may again divide the range of integration of the second term as [0, 7] = AU B where s+, s’ +r belong
to the same maximal interval defining S, for r € A, and to two different maximal intervals for » € B. Then
taking expectations on both sides above and applying boundedness of Ry, R,, continuity of R,, to bound the
integral over r € A, and |B| < C|s — s'| to bound the integral over r € B, this shows

d gs+7 95’+~r gs+T 95’+T T gs+r 95’+~r
D e el T Y ¥l T
dr | ou® ou?® ou?® ou® 0

B |1r) o)

s s’
where o,_|(1) converges to 0 uniformly in 7 as |s — s'| — 0. Then, since E| ng - gzs/

s+T s/ . . .
9~ — agus, } = 05—y|(1), s0 also s = Ry(s+7,s) is continuous uniformly over s € [0, 7]

and 7 € [0,T — s]. Thus (s,t) — Rg(t,s) is uniformly continuous over all 0 < s <¢ <T.

| =0, a Gronwall ar-

gument implies IE}

(Condition for &) By definition, we have

d

Cat =gl @)

with @° = a®. The condition (9) and boundedness of Cy shown above imply that « — G(a, P(6?)) is Lipschitz
uniformly over ¢ € [0,77], so there exists a unique solution {&'}c[o 7] of this equation, which is uniformly
continuous on [0, T]. Letting C > 0 be the constant defining (23-27) which upper bounds (9) of Assumption

2.3, and applying the above bound E(6%)? = Cy(t,t) < ®¢,(t), this solution satisfies

d _ ~ i~ _
18 I* < 20 168", PO))I] < 2Co(1+ VP, (1) + [la" )& < 4.1Co(1+ e, (1)) + 3Co|1a|*

(where we again relax a constant 4 to 4.1). Recalling the equation for ®, in (23),

d
afba(t) =4.1C(1 + P¢, (t)) + 3CoPu (),
since Cp > 0 and ||a%||?> = ®,/(0), this shows ||at[|? < @, (). O

Next we equip the spaces S, and Sp with metrics. Fixing a large constant A > 0, define

d(ar,00) = sup e M|la] - af
t€[0,T)
d(Cs,02) = inf [ E(w* —w$)2+ sup e *y/E(w! — w} 2]
(G0 CO) = (s qutpmciitos, qupymcg LV EWT — W8 F sip, (0 — )
d(C}], C?]) = inf sup e My /E(ul — ub)? (47)

{ui }~Ch {ub}~CF tel0,1)

d(Ré,Rg) = sup eiAt’Ré(t, s) — Rg(t,s)‘
0<s<t<T

d(R;,Rf]) = sup e_’\t|R,17(t,s) - R%(t, s)].

0<s<t<T

In the definitions of d(Cj,C32) and d(C%, C%) above, the infima are taken over all couplings of mean-zero
Gaussian processes with covariances (Cg,C3) and (C},C?). Writing X* = (R}, Cy, ;) € S, and Y' =
(RY, Ch, ;) € Sp for i = 1,2, let
(X', X?) =
d(Y',v?) =

(Ry, RY) + d(C}, C2) + d(an, o2), (48)

d
d(R}, R2) + d(Cy,C2) + d(ay, as). (49)
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Lemma 3.7 (Modulus of 7, 9). Let X' = (R}, C), ;) € Sy and Y' = T, 9(X") = (R}, C§, &) € Sp for
i =1,2. Then for any e > 0, there exists a constant A = \(g) > 0 sufficiently large defining the metrics (47)
such that

d(Y',Y?) <e-d(X!, X?).

Proof. We write C,C" > 0 for constants that may depend on T, but not on A, and changing from instance
to instance.

Bound of d(Cy,Cj). Let {uf}icpo,r) and {ub},cp0,7) be an optimal coupling in the definition of d(C}}, C?),
ie.,

sup e [E[(uf — ub)2] = d(C}), C2). (50)
t€[0,T]

Let {6} be the solution to (12) driven by {u},a}, R}} for i = 1,2, with a common Brownian motion {b'}
and initialization €°, i.e.

t
95:90—1—/ (—5ﬁ(9f— )+ s(07,a8) / R} (s,s) )6 —9*)ds'+uf)ds+\/§bt. (51)
0

By definition, we have E[0605] = E[0505] = Cy(t, s). Moreover,
E(0] — 0%)% <5[(I) + (I1I) + (I11) + (IV) + (V)]

where we set

:E(/ 5B|95—95|ds)
E(/| (07, a) — 5(63. 03)\ds)
(II1) E(/ 105" — 03| / |RL(s,s')|ds ds)
E(/ 05 =01 [ 17300~ B3G5 )
(/ |u1—u2|ds) .

t t
(1) < c/ E(05 — 05)*ds = O/ e eTPME (95 — 05)%ds
0 0

Term (I) satisfies

t /

C

< C sup e PME(F — 95)2/ ePsds < —e?M sup e PME(HL — 0L)2
t€[0,T7] 0 t€[0,T7]

To bound (II), applying the Lipschitz properties of s(-) in Assumption 2.2 and a similar argument,
t O/ 5 5
(n<c / (EOF - 032 + llas — a3 )ds < e sup e 2 (E(6] - 05)? + [laf — ab?)
0 tel0,T]

/
< Qez)‘t( sup e PME(F — 65)% + d(ozl,ozg)z).
t€[0,T]

For (II7), using the condition |R](t,s)| < ®g, (t — s) < C, we have
t

Cl
(IT1) < C [ E(6; —63)%ds < —e** sup e *ME(9] — 65)2.
0 t€[0,T]
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For (IV), using E(65 — 6%)% < 2Cy(s, s) + 272 < 2®¢, (s) + 272 < C, we have

t et t et
(Iv) < C’/ / (Ry(s,s") — R2(s, s’))2ds ds’ < C’/ / edsds’ - sup e PM(R)(t,s) — Ra(t, s))2
0 Js 0 Js 0<s<t<T
< Q/GZ)\td(Rl R2)2
p— A n7 77 M
Lastly for (V'), using (50), we have
¢’ o2t 1 2
)< C T —u3) ds<)\ -d(C,, C)
Combining these bounds, for a constant C' > 0 independent of A,
sup e PME(H] — 05)% < g( sup e ME(Q — 65)% + d(Xl,XQ)Q).
te[0,7T)] t€[0,T7]
Thus for any € > 0, choosing A = A(g) large enough and rearranging gives

sup e PME(GL — 05)% < 2d(X1T, X?)2.
t€[0,T)

Finally, let (w*, {w!}, {w}}) be a centered Gaussian process with second moments matching (6*, {04}, {64}).
Then (w*,{w!}) and (w*, {wh}) realizes a coupling defining the metric d(C}, C3) in (47), so

(09709)< sup e \/W sup e \/W<E dxl XQ) (52)

te[0,T) te[0,T]

Bound of d(R}, R3). Defining the processes gﬁi for i = 1,2 from the above coupling of {#%} and {65}, by
definition we have

2
S

895 ! s’ s azs ! . i 891‘ " ’
8u5_1_/5 (55—395(@, ))asd +/S (/ Ry, ") S ds )ds,

Then

a0t 96}
- <
L — S2| <Al(D) + (D) + (I11) + (IV)
where
395
/ ‘895 Gf a5 ) — 895(93 ,a2 H ]ds
N L NI P
= [ o[ (01 ) 2~ 2 v,
III / / /I) _R%(S/,Sﬂ) ’aaeljs Hds”dsl,
895// 895//
2 1 2 "3t
/ / IR2(s', ") = }ds ds’.

For (I), note that (46) implies |?9(§s | < C for a constant C' > 0 with probability 1. Then, using the
Lipschitz continuity of dps(-) in Assumption 2.2, we have

t t
(I)gc/ (E\ef’—95’\+|\a§’—ag’|\)ds/gc/ s’ sup e’AS/(E‘HfI—95,‘+Haf,—a§,|\)

s'€[0,T7]

C 4 ’ ’ 4 4
< =M sup e ( E(65" — 03 )2 + llo — a3 ||)
A w1

!
< %e)‘t(a (X X?) 4 d(ar,02)),
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the last step using (52) already shown. For (IT), applying the boundedness of dyps(-) in Assumption 2.2, we
have

t ’ ’
/ (1005 005 c’ a0t 908
N <cC As 4515{ 1 2:|d/<_>\t. 7>\tE‘_1_ 2|
iD= /S © us  ous 11T =N Ogig)gTe ou®  Ou®
For (II1), applying again (46) to bound |80l | < C,
C 1 p2
(IIT) < 3¢ ~d(R,, R,).
For (IV), applying |R727(t, 5)| <@g, (t—s) <C,
C’ o0t 0065
A% —eM sup e ME|— — 2.
( ) )\ OSSSE)ST ou’ ous
Combining these bounds,
a0t 06} C | 00 065
su e — — <—( sup e ME|—L — 2 +dX1,X2),
OSSSE)ST ou’ ous OSSSEST ous ou’ ( )
so rearranging and choosing A = A(¢) large enough gives
00t 065
d(R}, R < sup e ME|=2 — 22| <e-d(X', X?). 53
(R ) < swp o VE|TH -SR] <codxt XY (53)
Bound of d(a;1, &s3). By definition,
=« —I—/ G(ai,P(67))

for i = 1,2. Letting {0} and {64} be coupled as above and applying Assumption 2.3,

t t
It ~agl < ¢ [ (1o —asl + Wa(Pei).Pos))as < € [ (11 - a3l + /B(0; - 032 .

Then
t O/
&t — G < c/ eMds sup e*AS(H@i — a3 + \/E(63 — 9;)2) < S (d(@l,a@) te- d(Xl,XQ)).
0 s€[0,T] A
Choosing A = A(e) large enough and rearranging shows
d(ér,62) = sup e M|al —ahl| <e-d(X' X?). (54)
te[0,7)
The lemma follows from (52), (53), and (54). O

Lemma 3.8 (Modulus of Tp,). Let Y* = (Rj,Cj, &) € Sp and X' = Ty, (Y") = (C}, R}, i) € S for
1 =1,2. Then there exists a constant C > 0 such that for any sufficiently large X > 0 defining the metrics
(47),

d(X', X% <CO-dYhY?).

Proof. The proof is similar to that of Lemma 3.7 so we will omit some details. Again let C,C’",C" > 0
denote constants depending on 7" but not on .
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Bound of d(C},C?). Let (wi,{w}}) and (w3, {w}}) be an optimal coupling for which

E[(wi —w5)?] + sup e My /E[(w] —wh)?] = d(Cj, CF).

te[0,T]

Fori=1,2, let

t
7t = —ﬁ/ Ri(t, 5) (5 +wf — €)ds — wf
0

be the corresponding coupled solutions to (14). We write &f = n} + w} — €, so that

=5 [ Rt gias —ul i -
and Ci (t, s) = 6F2E[¢}€;]. Then
B -er<cl [ (Ry(t,5) — R3(t,5)*B(ED s + / "3t 9B(ET - £5)2ds + E(wf — ] —w} + up)?]
e / e D (R)(s) — RB(1,5))? + B(E — 65)°)ds + Elwd — wf — uh +u)?]
< %ﬂew(sg[%%] e PVE(E] — €)% + d(Ry, R3)2) +C"ePNd(Cy, CF)?.

Choosing A > 2C" and rearranging yields, for a constant C' > 0,

sup e PME(¢] - &5)? < C (YY)
t€[0,T

Then letting ({u}}, {ub}) be a centered Gaussian process with second moments E[u!u] = §B3?E[¢l€5], this
realizes a coupling defining d(C}, C7), so

d(C%,Cg) < sup ef)‘t\/IE[(u’i —ub)?] = /682 sup ] eiAt\/E(ff —&2 <O -d(YY?).

te[0,T tel0,T

Bound of d(R;, R?). Defining the (deterministic) process O, driven by R}, for i = 1,2, we have

ows
. t . . .
R, (t,s) = —B/ Ry(t, " )R, (s',s)ds" + 63> Ry(t, ),
hence

t t
R} (t.5) — B3(09) < 18] [ |RA0)  B3(e, )RS )l + (3] [ R [RE(S' ) — B ) s
+ 08| Ry(t,s) — Ry (t, s)]
t
< C/ e)‘s,e_’\s,|R717(s',s) — R2(s, s)|ds’ + CeMd(Ry, Rp)
Q’ Y’ —At|pl P2 At 1 p2
< —e sup e VR, (t,s) — R (t,s)] ) + Ce™d(Rg, Rp).
A 0<s<t<T

Choosing A > 2C" and rearranging yields
d(R),R}) = sup e MR)(t,s)— Ri(t,s)| < C-d(Ry,R;) <C-d(Y',Y?).

0<s<t<T

We note that a; = @&; for i = 1,2 by definition, so also d(a1, as) = d(a1,a2) < d(Y*!,Y?). Combining
these bounds shows the lemma. O
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Proof of Theorem 2.4(b). Combining Lemmas 3.7 and 3.8, for sufficiently large A > 0, the composition map
Ty—sn is a contraction on Sf,"“t with respect to the metric d(Xl, X2) and similarly 7y_¢ is a contraction on
S5ont. We note that for any sequence {Ck} of correlation functions in S, as k — oo,

d(C§,Cp) — 0 implies sup |Ch(s,t) — Cy(s,t)] — 0
s,t€[0,T)

by definition of the metric and Cauchy-Schwarz, while

sup |Ck(s,t) — Cy(s,t)| — 0 implies d(Cy,Cy) — 0
s,t€[0,T

by e.g. the construction of a coupling in [52, Lemma D.1]. The same holds for C,,, so each metric in (47)
induces a topology equivalent to that of uniform convergence over continuous functions on the appropriate
space [0,7T], {s,t:0<s<t<T} or {x}U{s,t:0<s <t <T} Furthermore, each condition defining
S,‘;"“t,Sg"’“t is closed with respect to this topology. Thus d(X}],Xg) and d(Y,',Y#) are complete metrics
on S;, S§°", so the Banach fixed-point theorem guarantees 7,-, and Tg_¢ have unique fixed points
X = (R, Cypa) € S and Y = (Rp, Cp, ) € S, for which also 7, 9(X) = Y. These fixed points
remain unique in S, and Sy, because Lemmas 3.5 and 3.6 imply that the images of T,—.,, To—¢ on S,), Sp are
contained in S;°™, §§°"*. Then the tuple (o, Cp, Gy, Re, Ry;)) € S is the unique fixed point in S solving
the dynamical fixed point equations (17-18). O

4 The dynamical mean-field approximation

In this section we prove Theorem 2.5. We assume throughout Assumptions 2.1, 2.2, and 2.3. The proof
consists of three steps:

e (Step 1) We prove in Section 4.1 a discrete DMFT limit for a discretized version of the dynamics.

e (Step 2) We show in Section 4.2 that, as the discretization step size goes to zero, the discrete DMFEFT
equations converge in an appropriate sense to (12-18).

e (Step 3) We show in Section 4.3 that, as the discretization step size goes to zero, the discretized
dynamics converges in an appropriate sense to (4-5).

This argument follows closely the approach of [42], although we will use in Steps 2 and 3 a different and
somewhat simpler piecewise-constant embedding of the discretized DMFT process and discretized Langevin
dynamics into continuous time.

4.1 Step 1: DMFT approximation of discrete dynamics

Fix a step size 7 > 0. We first define a discretized version of the process (4-5), which we denote by {6}
and {a’} for t € Zy = {0,1,2,.. }:

617 = 0l + (X (X6, —y) + s(65, 1)) + VI~ bt) (55)
1 d
G =at - 0(ah > ) (56)
j=1

with initialization (69,a9) = (0°,a"), where {b} is a discrete Gaussian process with by = 0 and in-
dependent increments bfy“ — bfy ~ N(0,7I). Here and throughout the sequel, we write as shorthand
s(0,a) = (s(ej,a));?:l. We set
nfy = X0fy, n* = X6*.
We correspondingly define a discretized version of the DMFT system (12-18): Given discrete-time cor-
relation and response matrices {C})(s,7)}r<s<t, {1](s,7)}r<s<¢ and a deterministic process {3 }s<; up to
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time ¢, define (in the probability space of (6*,60°) ~ P(6*,6°))

0Lt = 6L+ (—08(6L — 6") + s(6!, 0t + ZR” — %)+t ) + V(BT b))
with 6] = 6°, (57)
90t+1 y for s =t,
i = T 58
us, { 00, [( 6 + 9gs(0}, )) au + ZT s B (t,7m) gzg] for s < t. (58)

Here, {uf}o<s<: and {b%}o<s<; are mean-zero Gaussian vectors independent of each other and of (6*,6°),
where {ufy}ogsgt has covariance

E[uiul] = Cy(s,7), (59)

+1

and {2 }o<s<; has independent increments b5t — b3 ~ N(0,~) with b3 = 0. We note that 2 e I the usual

partial derivative of 93*‘1 in 3, whose form (58) is derived from (57) via the chain rule. These processes
then define {C} (s,7)}r<s<i+1, {C) (5, %) bs<t+1, {R)(5,7)}rcs<is1, and {ai}sgtﬂ up to time ¢ + 1 via

Cy(s,r) =E[0:07], Cj(s, %) =E[050%], Cj(x,%) = E[(6*)7],
505
s

6ufy}’ @

(60)

Ry(s,7) = E| Lol 4y Glal, P(8L)
where P(6!) is the law of 6/ .

Conversely, given {C) (s,7)}r<s<t, {Cj (s, %) }s<t, and {R}(s,7)}r<s<¢ up to time ¢, define (in the prob-
ability space of £ ~ P(g))

nfy = —ﬁZRg 8)(n5 +wl — )—wfy, (61)
an’ty t—1 8 a,r]; N
P = B[— T;rl Rj(t,r) s + R (t, s)} for s < t. (62)

Here, (w?,{w}}o<s<t) is a mean-zero Gaussian vector with covariance
Elwiw] = Cy(s,r),  Elwjwj]=Cg(s,%),  E[(w})’] = CF(x,%), (63)

. ont . . . . .
and again 6:}1 is the usual partial derivative computed from the chain rule. These define {C}(s,7)}r<s<t,

{RZ(Svr)}r<sgt up to time t via

6 s
Cy(s,7) = SB[ + 5 — )y + s —e)), Ry(s,m) =08 (5.2 ), (64)
Y

where we note that gﬁ is deterministic. These definitions should be understood in the iterative sense
Yy
002
{oi}sgtv {Ufy}s<t, {ﬁ}r<sgt = {Cg(& 7")7 Cg(s, *)}r§s§t7 {Rg(& T)}T<s§t; {Oés}sgt =
8 s
w3, {n5, w3 }s<t, {a—Z}}msgt = {0 (s,r) br<s<e, AR (5,7) bras<e = (65)
262
{05 o<1, {ul bs<tv, {6_‘9%’}r<s§t+1 = ...

with initialization 69 = 6°.
The goal of this section is to show the following discrete analogue of Theorem 2.5.
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Lemma 4.1. For any fized integer T > 0, almost surely as n,d — oo,

d
1 *
S ) PO -
1 *
n Zé(ni,ai,ng pree? ) = P(—w}, .3, 1y) (67)
i=1 v
@,...,a7) > (a2,...,aT). (68)

For convenience of the proof, we define also an auxiliary response function

on' on' — on;
v — v Iy v v
R)(t,%) = 38 ( (9wf;) where P 3 z::O RY(t, s) ( G * 1) (69)

s onS) 2 S
initialized from 87711 = 0. Here 67717 is the usual partial derivative of n,y with respect to w?, which is also
Y ¥

deterministic. We have the following basic fact relating the response functions (62) and (69).

ont t—1 on' t—1

Lemma 4.2. For anyt > 1, we have 8:}% == aﬁ; , and consequently RY(t,*) = —> " R)(t,s).
t t

Proof. Let us shorthand r,(t,s) = SZ”S for s < t and r,(t,*) = SZZ. We prove 7, (t,*) = — 30— Or,](t s)
Y vy

by induction, with the base case t = 1 verified by the initial conditions ,(1,%) = —y8 and r,(1,0) = 5.
Suppose the claim holds for some ¢, then

t

Tyt +1,%) = =B Rj(t+1,5)(ry(s,%) + 1)

s=0
t s—1
:—ﬂZRg(t—l—1,5)(—27“77(5,7“)4—1)
s=0 r=0
t t
ﬂ{z Z Ry(t+1,s)ry(s,7) — ZRg(t—l—l,r)}
r=0s=r+1 =0
t
zﬁZ( > R+ 1 )my(s,r) = By(t+1,m)) = BRI(+1,1)
Tt:fi s=r+1 t
== 1) =yt 1) == ry(t+ 1),
r=0 r=0
as desired. O

Proof of Lemma 4.1. Step 1: Convergence of auxiliary dynamics. Consider the following non-adaptive
auxiliary dynamics

6l =6 — W(BXT(XOt X0* —¢) - 50!, )) +V2(b5 —bl). (70)
This differs from {60!} in that we replace {@} by the deterministic process {af} of the discrete DMFT

system. Let 0, = X@fY We will first show

i i 151777,y g 5,4

d n
1 ) 1 .
325(9;,90 i) T2 p(6,69,....67), 525 o ) Tep(—wt el nf).  (T1)
! ! =1

The proof is based on a reduction to an AMP algorithm: Let € € R™ be as in the above dynamics, define

V= (6", 0°. b —b° ... bl - bel) c RAX(T+2)
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and let
e~ P(e), V=(6%,0°p",...,p7) ~ P(6*,0°) @ N(0,vI7).

Assumption 2.1 ensures that |¢] and ||v||2 have finite moment generating functions in a neighborhood of 0,
and for each fixed p > 1, almost surely as n,d — oo,

n

%25&. %5,

i=1

d
S oy, vV (72)
j=1

IS

where Vj is the 3™ row of V. Fixing some k > 1, consider the AMP iterations
. . /L_l .
Wi =Xgi(U',..., U5 V)= > f(W°,... Wie)(;; € R,
j=0
U =XTH(WO, . Whe) =) g, (U, U V)g,; € ROF
j=0

initialized at W° = Xgo(V), where the nonlinearities
fi=(finseoos fig) : RFOFD xR — RF 9i = (g1, -, gik) : RF x RTT2 5 RE

are Lipschitz-continuous and applied row-wise, the Onsager coefficients are recursively defined as
. T
€= (51E{dwjfi(wo,...,W1;g)D ERME 0<j<i,
‘ T
Gj = <E{de+1gi(U1,...,U%V)}) ERka, 0<j<i—1,

and {W7},;>0 and {U?};>1 are mean-zero Gaussian processes in R* independent of ¢,V with covariance
structure

E[WWIT) = E{gi(Ul, LUV (UYL U V)T} eRFF i >0,
E[UH1pi+T] = E{&fi(wo, L W) (WO, .,Wj;a)q eRF¥F i j>0. (74)
This is a standard form of an AMP algorithm, see e.g. [45,60]. The iterations for (W?, ..., WT-1) ¢ Rnx+T
and (U, ..., UT) € R T admit a mapping to the form of [60, Egs. (2.14) and (D.1-D.2)] with kT vector

iterates. Then by the AMP state evolution (c.f. [60, Theorem 2.21 and Remark 2.2]), under the conditions
of Assumption 2.1, almost surely as n,d — oo,

S
=

6U},...,U}",Vj M_/g P(Ula ) Um7 V)7

' (75)
W 0 m

5W¢0 ..... Wi e; _g P(W 7'-'5W ,E).

<
Il

NE

1
n -
1=1

We will now use the above state evolution to prove the desired conclusion (71). In the AMP algorithm
(73), let k = 2. We show the existence of Lipschitz nonlinearities g; = (g4.1,9i,2) : R% x RT+2 — R2 and
fi = (fi,lu fi)g) : R2(i+1) x R — R? such that

(07,0%) = g;(U',..., U} V), (76)
(-(ﬁ/é)(Xég — X" — e),()) = £;(W°,... Wi;e), (77)
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The base case is go(V) = (0°,0%) and fo(W%; &) = (—(8/5)(W{ — W9 — €),0) where W° = (W? W) =
(X0°,X6*). Supposing inductively that (76-77) hold for some Lipschitz functions go, fo, ..., g;, f;, We note
that this implies (£;¢)12 = (£j¢)22 = 0 for all £ < j. Then writing U’ = (U, UJ) € R¥*2, we have

J
Ul = XT (W )= (ge (UYL US V) (o) + ge2(UY -,UE;V)(éfjfz)m)
=0
8 . !
- —EXT(XOJ X0 —€)— Y gea(U V)(&e)in — Y (&e)ar - 07
=0 =0
So
070 = 01— (X (X0 X0 &) (B,) )+ V)
j
:0% (5(UJ+1 —i—Zggl , ..,UZ;V)(SJ[)H +Z(§j£)21 -0*) +78(03,a$)+\/§(bj+1 _bj)7
£=0 =0

and to satisfy (76) we may define g;11(+) as gj112(U", ..., U/t V) = 0* and

i i
gj+11 (UL U V) = g1 (U, U V) + 75(U7+1 Y g UL US V)G + D (&e)ar - 9*)
= =0

where we recall V = (6*,60° p1,..., pr). We note that 6 — s(6, 04%) is Lipschitz by Assumption 2.2, so this
function g;+1(+) is also Lipschitz by the induction hypothesis. Next, the condition gj+1,2(-) = 6* implies
(Cj+1.0)12 = (Cj11.0)22 = 0 for £ < j, and allows us to compute W7+ = (W‘{H,W‘;H) as W%’H = X0* and

i
Wi =Xg; .U U V) = Y (ff,l(WO, s WEE (G + fra(W0, . W €)(Cj+1.,z)21)
=0

J
= X0/ — Z fea(WO, s W e) (G

=0
Hence with
~ . . . J
X0/ — X0 —e =W Wi+ £ (WO, Whe)(Gre)n — e,
=0

to satisfy (77) we can define fj12 =0 and

J
Fia(WO, . Withie) = _g(WiHl - Wit Zfe,l(WO, WS (G — 5)' (79)

This is also Lipschitz by the induction hypothesis, completing the induction. So using (76-77), the state
evolution (75), and the fact that X, Y2 X implies f (Xn) Y2 r (X) for Lipschitz f, we conclude that

d
Y 7] 7} M_/§P9*790,”.’9T, — 1)
jz:; (67,60 ,.....07 ) ( ) nz; (n7oeai® 4T, )

Here, the laws on the right side are defined by setting W* = Wi for each i > 1, and

¢§

PW*,e.n’....n"). (80)

SHN

) )
Fia(WO L Whe) + W* +¢,

0" =g (U,..., U5 V), =3
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where {U'} = {(U},Ud)} and {W?} = {(W{, Wi)} are the Gaussian processes from AMP state evolution,
independent of £,V with covariance kernels given by (74).
Let us now show that

P0*,6°,...,0") =P(6",69,...,07), PW* e’ ....n") =P(—wi,end,....n0), (81)

e

where the laws on the right sides are the variables of the discrete DMFT equations. This will conclude the
proof of (71). To do so, let us define from the AMP state evolution variables (80) the quantities

i srritl i i . _ * i pi i i
uy, =0Uy, wi=-Wy, wi=-W* 0 =0, n,=n',

v
00, _ 1 09 qp iy, O _ 000 ' (82)
ou, douittT T T awd Bowd

(WO, ..., Whe).

Then it suffices to check that these quantities satisfy the discrete DMFT equations (57-64), by uniqueness
of the iterative construction (65) of the solution to these discrete DMFT equations. We first note that by
(74), {u} and (ws, {wZY}) thus defined are centered Gaussian processes with covariance

Eful ul] = 8E[fi1 (WO, Wie) f (WO, ..., W;e)] = 082E[(n' — W* —e)(o/ — W* —&)],
E[wiwi] = E[Qi,l(Ul, LUV (UL, ... UT; V)] = E[6i67),

Elw!w?] = Elgi (U,...,UV)go2(V)] = E[0°6"],

E[(w?)?] = Elgo.2(V)?] = E[(67)?],

which verifies (59) and (63) in light of (82).
We next check the recursions (58) and (62) for the response: Recall that the AMP Onsager corrections
are

(o)1t = E[%(Ul, N .,U%V)},

s+1
o oU; o (83)
N = i1 0 J. } N = [ i1 0 J.
(&5 ]E[éawf(w W) (G = B[S G (70, We)].
By definition of g;1 in (78), we have aalfgﬂ =0 for s > 7, 8gs+11 =~0ifs=j—1,and if s < j — 2,
i1
9gj1  0gj—11 g dge e\ 09i-11
= + 6 ——(&— + Y0ps(gj—1,1, ") =
oust Uit ZH iR (§-1,0)11 +v005(gj—1,1, 5 )8US+1
) g 3941
= (1+75(§j71,j71)11 +7395(9j71,1704?’1)) mjsif +70 Z (&-1.0) 8UfJ:1 (84)
l=s+1

where both sides are evaluated at (U*,...,U7; V). Similarly, by definition of f;1(-) in (79), we have Jp1 —

oW;
gfﬂ =0ifs>j, 3 afﬂ - ‘2‘7}/1 =—f3/§if s =7, and if s < j,

Ofj1  Bi=0fu B = Ofus B
amjff =5 2owy (Gie)n = —g( z; aw; (Ge) g(Cj,s)u), (85)
0fjn B 0fu B A Ot 3
31,{,25 =5 2 o (G = —g( Z+ Cg, 11+ 5 (G ) (86)

Here, these recursions imply that {g{};; } and {g{};; } are deterministic. Under the definitions (60), (64), and
1 2
(82), we have

Of;a
oW

1 ; )
RyG.8) = B[ 2L qn, v =

) 8U5+1 (Cj 5)11, Rn( ) = 52|:
1

H=0gaon. 67

04|’—‘
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Then by (84) and (85), {-2%:1:} and {2L1} satisfy the recursions

Ut oWy
99j0 _ (4 5 P 9gj-1,.1 RIG—1.0) 0ge1
puret = \1 7108 +70s(gj-10:057) ) Jrer +7 Z U= LO75
{=s+1
i—1
Ofjn ( E N Ofen B .
L _ RY(j. 05t — SR} (j.9))
6Wf ﬁ Z 9(]5 )an 5 9(]58) )
l=s+1
which verify (58) and (62) in view of (82) and above boundary conditions %q—j; =4 and gé{/j = —p3/é.
1

Finally we check the primary recursions (57) and (61). By (82), definition of gj+1.1(-) in (78), and
(§j.5)11 = —(&j.j)21 = — B, we have

09 = g (UL, ..., UTTLY)

J J
=6 + 75(Uf+1 + Zeg(ﬁj,e)n + Z(fj,e)zl : 9*) +s(07,0d) +V2p;

=0 =0
j—1 j—1 ‘
=0 =00 = 0) (0, 0d) + 90 Y _0°(§.0)0 +78 D 0% (€001 +0UT T+ V2p;. (88)
=0 =0
Similarly, by definition of f;1(-) in (79) and W§ = W*,
J g 0 7. * _ B — * J
W= ——fi (WO, Wie) + W 4= ——Z (G (nt = W* —e) + Wi, (89)
3 5 2
Applying (83), note that in (88) we have 4; := z;é (&e)a1 = 52; é gi{,i. Then by the recursion (86)

and first identification of (87), we have

Jj—lj-1 of j—1 s af j—1
A ==B03 > FeRilie) = =B Ry(0.s)03 Fie = =B Bi(.9)(As +5).
s=0 (=0 2 s=0

(=0 s=¢

This coincides with the recursion for {ﬁa } in (69). Hence 4; = ﬁﬁni = 3R)(j, %) = —3 ZJ ! o Ry (s s),

ow*
where the last step applies Lemma 4.2. Applylng this form of A; and (87), we may write the equations
(88-89) as

Jj—1

G =07 — 46307 — 0%) +ys(67,00) + 7 Y RY (G, 0)(0° — 6%) + U + V2p;,
=0

Jj—1
W==BY RyG,O0 - W —e)+ Wi,

which verifies (57) and (61) in view of (82). This verifies that the definitions (82) indeed satisfy (57-64),
concluding the proof of (71).

Step 2: Comparison with auxiliary dynamics. Let us now prove (66-68) for the original dynamics
with an adaptive drift parameter Ei‘fy. We will prove via induction that, almost surely as n,d — oo, for each
t=0,...,T,

Ligt _ gty2 ~t t
3”07_07H — 0, an, — . (90)
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Since

1 d 1 d 2 T 1 t -
(3259*90 3; 6,60 )) <ZEH 0y = 6, (1)

le 37,0 7 327,30 7 +=0
AES EZ ) <3 L - < 3 Lz, et - e
n = (ngeim® m? ) 0 (n7 il i) ) = —n T T o n oYy
= i1 - -

and || X||op is almost surely bounded for all large n, d, the above inductive claim together with (71) implies
(66-68).
The base case of t = 0 in (90) holds exactly. Suppose (90) holds up to time ¢. For ¢ + 1, we see that

1 ~ 1 ~ 1 5 ~
057 = 8572 < O (14 IXE,) 51105 — 041 + = 1s(6%, &%) — s(85,at)|1).

Applying boundedness of || X||op and Lipschitz continuity of s(-) in Assumption 2.2, we have by the induction
hypothesis that 5[0t — 61(|> — 0 almost surely. Next, we have by the Lipschitz continuity of G(-) in
Assumption 2.3 that

which converges almost surely to 0 by the induction hypothesis and the above implication (91). This
establishes the induction for (90) and hence completes the proof. O

a5 — ol <l — ol ]l +

g(at, Z5et) (ol P(8}))

< Clla — b | + Oy ( Z b, P(0L)).
=1

4.2 Step 2: Discretization error of DMFT equation

We now define a piecewise constant embedding of the components of the discrete DMFT system (57-64) into
continuous time, and show that this converges to the solution of the continuous DMFT system established
in Theorem 2.4, in the limit v — 0.

For all times ¢ € Ry, define

[t) = max{in iy < i € 2y} €9Zy, [ = [t] +7 €T, []=t] /v €2 (92)
Fixing T > 0, let D} be the space of functions (R),C,a,) = {(R](t,s),C](t,s),a’ }o<s<i<r that are
piecewise constant and right-continuous in (s, ¢) with jumps at yZy, ie. R](t,s) = 7;(“ |s]) for all

0 < s <t <T and similarly for C’,}Y ,a.y. Analogously, let D be the space of functions (R}, Cy,a,) =
{Ry(t,s),Cy(t,5), L Yocs<t<r that are piecewise constant and right-continuous with jumps at 7Z.

We define a map 7,7,, : Dy — Dy as follows: Given X7 = (RY,Cy,ay) € DY, let {ul }ie0,) be a
mean-zero Gaussian process with covariance C7, let {b'}+>0 be a standard Brownian motion, and define

= a0
processes {9%},56[07;@ and {5z bo<s<i<T by
il

_ [¢] _ _ ls] _ _
6. = 6 +/0 [—5/3(9; —0°) + 5(62,a2) +/0 R)(s,7) (8] — 67)dr + az} ds+ V2ol (93)

00", Lt] _ o0" lr) _ o0
— < _ o= 2l Y Y / )
6% =1+ 1{[s] < [t]} . {( 5B + ags(ow,av)) o + /M R)(r,r )aﬂ% dr ]dr (94)

Define from these processes

C(t,s) = E[e‘f 9} O (t, %) = E[e‘;e*} L CJ(x, %) = E[(6")?),
(95)

Ry(t.9) =E[2 i] Gt /OM G(a,P(@))ds
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and set 77, ,(X7) = (Rg,(_}'g,oiy) We also define a map T,', : Dj — Dy as follows: Given Y7 =

= - _17~>9 -7
(Ry,Cy, ) € D, let (w3, {w! }iejo,r) be a mean-zero Gaussian process with covariance C, and define

e
0= —ﬁ/ Ry (t, s)(7 4+ @} — e)ds — @, (96)
0
3773 _ e on’
= t,s)—1 <[t a(t Ldr.
s = PRt~ 151 < 10yp [ Ryt g o7)
Define from these processes
_ ont ~ I I -
RY(t,s) = 551[3[6@1 }, Co(t,s) = S6°E [(nfy +wl — )75 + 1wy —¢€)|, ozfy = oz’fy (98)
gt

and set 7, —m( ) = (R;Y], C’,'IV ,@). These maps may be understood as discrete approximations of 7,4 and
To—y constructed in Section 3.2, with domains restricted to the spaces D, and Dy of piecewise constant
inputs.

Recall the spaces Sp, Sy, S of Section 3.1. The following lemma shows that the above maps TY "o Ty L, are
well-defined, that the unique fixed point of these maps is a piecewise constant embedding of the discrete-time

DMFT system in Section 4.1, and that furthermore this fixed point belongs to S.

Lemma 4.3. (a) Given any X" € D) and realization of %, 6°, {bt}te[QT], and {’a’fy}te[07T]7 the processes
(93-9/4) have a unique solution, and this solution is piecewise constant and right-continuous with jumps
at yYZy. Consequently, T," ., is a well-defined map from D} to Dy.

—

(b) Given any Y7 € Dy and realization of € and (w},{w!}), the processes (96-97) have a unique solution,
and this solution is piecewise constant and right-continuous with jumps at vZy. Consequently, ﬁ_m 18
a well-defined map from D to Dy.

(c) The map T, =T

n—n n—0 ° 0—n
unique fized point in D). These fized points are given preczsely by

has a unique fized point in D, and the map Tolo =T, has a

—n ° 7]—)9

al =al =alll, CJt,s) =CJ(t],[s]), Cjlt,%) =Cy([t],*), C(t,s)=Cy([t], [s)),
e 1 fll=0 g, o [05 if [s] = [t] (99)
Ryt s) = {%Rg([t],[s]) if [s] <[], Byt ) = {%Rmﬂ,[s]) if [s] < [t]

for all 0 < s <t < T, where (aV,Cg,CJ,Rg,Rg) are the components of the discrete DMFEFT system
defined iteratively in time via (60) and (64).

(d) For any~y > 0 sufficiently small, we have T,”,,(Dy N Sy) € Dy NSy, Ty

L, (D NSp) CDYNS,, and the
fized point (99) belongs to S.

Proof. For (a), if X7 = (R},C),a,) € Dy, then {a!} is also piecewise constant and right-continuous by
these properties of C'V Then an easy 1nduct1on on k shows that (93) has a umque solut1on over t € [0, k)

= HM By definition, (94) is given by 8* =1 for all s >0 and
vy
t € [s,[s]). Then for each s > 0, an induction on k shows also that (94) has a unique solution on [s, [s]+ k)

for each integer k > 1, which is given by 9t

06! oLt
for each integer k > 1, which is given by au = aus , and furthermore this solution depends on s only via
a0t a9
[s], i.e. Jor = 0*“ 7. Thus the solutions of (93-94) are piecewise constant and right-continuous, implying
5 U~

the same properties for R}, Cj,& defined by (95). This shows (a). -
Part (b) follows from analogous inductive arguments, using that if Y7 = (Ry, Gy, &,) € Dy, then {w!}
_t
is also piecewise constant and right-continuous, and hence so are {7/} and {1
Y

Part (c) also follows by induction: Since any fixed point is piecewise constant, it suffices to consider the
values at yZy. By (93), 63 = 6°. Then by (95),

RJ(0,0)=1, (CJ(0,0)=E[(6°)%] =C)(0,0), C;(0,+)=E[0°0*] =C;(0,%), a&2=0.

0
Y
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Then by (96), 79 = —w9, so (79, w?) is equal in joint law to the discrete DMFT variables (19, w?). Then by
(98), any fixed pomt must satisfy

R}(0,0) =687 C7(0,0) = 68%E[(1)) + w} — £)*] = Cy(0,0), af =0.

Suppose inductively that there is a unique fixed point over times s < ¢ in {0,7,...,kv}, and consider
now t = (k + 1)7. The equations (93-94) and the piecewise constant nature of all processes imply

_ _ (k+1)y _ _ ls) _
UHDY = ghy +/]w [-5;3(9:’; —0") +5(02,a3) +/O R)(s,7)(08 — 0")dr + ]ds+ V20D — ph)

k—1
=08 + v(—éﬂ((%” —0%) + s(057,ak7) + 4 > R (ky, £y) (657 — 67) + u’”) + V20T — ),
=0
96 (k+1)y .
aang” =1, and for any j < k,
ooy agky Uty _ o0r ko 00"’
A +/ [(—5ﬁ + 0ps (0, &Ty)) = —|—/ R (r, ") — dr’} dr
oul 0wl Jry owd’  Ji+1)y o)
00k 69’” 85‘”
= = oul 37 +7[(—5ﬁ+395(9’” 04’”)) ol +7 Z R)( k%fv)a ]
=j+1 ’Y
Comparing these equations with (57-58) and applying vég(k% ty) = R)(k, 1), ’” = , and the equality
in law (af, ..., uk7) A (u3,...,uk) by the induction hypothesis, this shows the equahty in law

* N * — aefy
{0,007, 2 & e Vi< £ {67,0 T 5 ik
Then (99) holds for the components R}, Cy, &, of any fixed point up to times s < ¢ in {0,7,..., (k + 1)7}.
Now the equations (96-97) imply
k+1)y B
R = —p / Ry ((k + 1)y, 8)(; + @} — e)ds — w17
k
Z ((k+ 1)y, j7) () + wl — ) — w7,

7=0

a1 (k+1)’v .
W =6/%, and for all j < k,

8ﬁ£yk+1)v - (k+1)y _ 877;
——7— =BRe((k+1)7,j7) - f Ry((k+1)y,r)—=dr
ow Gty 0wy’

_ k on’y
= BRo((k+ Dvm) = By ) By((k+ 1)y, 1)
l=j+1 wy

Comparing these equations with (61-62) and applying again the induction hypothesis, this shows the equality
in law _
on.y

L i _10
{77;77 ﬁ}i<]§k+l = {77;7 12

ﬁz}iq‘s;ﬁl-

Then (99) also holds for the components Rg, C’,}Y, &~ of any fixed point up to times s < ¢in {0,7,..., (k+1)v},
completing the induction. Thus any fixed points of 7,7, and T, ., must satisfy (99) for all 0 < s <t <T,
implying also that such fixed points are unique in D} and D) by uniqueness of the iterative construction
(65) of the solution to the discrete DMFT equations. This shows (c).
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For (d), we check that 7,7, and T, ,, define contractive mappings on D) NS, and Dy NSy. Note that if
Y7 =(Ry,CY,ay) €Dy NSp and X7 =T, (Y7) = (R}, C}, ay), then setting & = 7}, + w} — ¢, the same

arguments as in Lemma 3.5 show
_ t] _
E(E)? < 2[/32/ (t—s+1)2- 0% (t — )E(E)%ds + 2B, (1) + 272 + 02},
0
_ Lt] _
(B3t 9) < 181 (1415 < L¢)) A | @, (= )R, 5)lds' + 018l n, (¢ — 5)).

Upper-bounding these integrals OM and || [L;J by fot and fst, we obtain as in Lemma 3.5 that C}(t,t) <
oo (t) and R;Y] (t,s) < ®g (t—s). All continuity conditions defining S,, are automatically satisfied since the
components of X7 are piecewise constant outside the knots D = [0,T]NyZ;. Thus X7 € S, i.e. ﬁ_m maps
D) NSy into DINS,.

Conversely, suppose X7 = (R}, C),a) € Dy NSy, and let Y7 = ﬁﬁn(Rg, Cy.,&). A small extension of
the argument in Lemma 3.6 shows Y7 € Sy. Let us explain this extension for Cy: Defining

L]
—t gt px gt ~t 5 4s _ gk —t
v, = —0p3(0,, — 0 )+S(97’av)+/0 RY(t,5)(05 — 0%)ds + .,
we have 0117 = 0! +~. 0! + V2(btY —bt) for t € yZ, . Then, analogous to the calculation using Ito’s formula
in Lemma 3.6, for sufficiently small v > 0,

Cqt+7,t+7) — CJ(t,t) = 29E6- 0, + v°E(3)* + 2y
ey _
< mE(%)Z + (1 =) +?E()? + 2y

_ t+y _
< 7(1.11@(9;)2 +E(0))? + 2) - / (1.1]E(9;)2 +E(02)2 + 2)ds,
t
the last equality holding because v, and ény are piecewise constant. Summing this inequality shows
t
CY(t,t) — C7(0,0) g/ (1.11E(9‘;)2+E(a;)2+2)d5
0

for all ¢ € [0,T]. Then, bounding E(?)? as in (44) of Lemma 3.6, this shows that Cy (¢,1) < ®¢, (t). Similar
extensions of the arguments in Lemma 3.6 show that R (t,s) < ®g,(t — s) and [|af[|* < ®o (1), s0 Y7 € Sp
as claimed. Then 7,",, maps D) NS, into Dy N Sp.

The same argument as in Lemmas 3.7 and 3.8 bound the moduli-of-continuity of 0 and T, L, in the
metrics d(-) of Section 3.2, implying that T, and T, ., are contractive for sufficiently large A > 0 defining
d(-). These metrics induce the topologies of uniform convergence on the spaces Dy NS, and D) NSy, which
are equivalent to closed subsets of finite-dimensional vector spaces and hence also complete. Then 7,7, and
T, o have unique fixed points in Dy NS, and D) NSy by the Banach fixed-point theorem. These must
coincide with the fixed point (99), by the uniqueness statement (without restriction to Sy and S,,) shown in

part (c¢). Thus this fixed point (99) belongs to S. O

Lemma 4.4. There exists a constant C > 0 (depending on T but not on \,~y) such that for all large enough
A > 0 defining the metrics (47) and all sufficiently small v > 0,

(a) For any X7 € D) NSy,
d(ﬁ]—W(XV)v,];LG(XV)) < Cﬁ

(b) For any Y7 € Dg N Sy,
d(To—n(Y7), T,L,,(Y7)) < OV
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Proof. We show part (a). Consider any X7 = (R},C},a,), and denote T, ,4(X7) = (Rg,Cp,@) and

7'77%9(XV) = (R},C],a,). Throughout, C,C" > 0 denote constants depending on 7" but not on A,y and

changing from instance to instance.

Bound of d(Cy, Cj). Given X7, let us couple the evolutions (12) and (93) by a common realization of {u!}
with covariance C’,’,Y and a common Brownian motion. Then by definition, we have

t s
0t = 0% + / [— 0B(0° —0%) +5(0°,a3) + / R)(s,s")(0° — 6*)ds' + ai} ds + V2,
0 0

v ¥ n

_ [t] _ B s] _,
gt 90+/ [—5ﬁ(e;—e*)+s(9§,a5)+/ Ry(s. (05— 0°)s + 73] ds + v2blt),
0 0

Then E(6" — 61)2 < 6[(I) + (II) + (II1I) + (IV) + (V) + (V)] where

(VI)=E(2b — v2blth)2.

By the same arguments as in the proof of Lemma 3.7, using the Lipschitz continuity of s(-) in Assumption
2.2, we may show

l Il ’l’ < CeQXt SU.p e—2>\S]E 95 98 2'
vy
s€[0,1

Applying s — |s| <+, t — |t] <, and the bounds for Rg, C’g implied by X7 € §,), we have
{IV)+(V)+ (VI) < Cr.

Then

sup e ME(F! — 9_3)2 <

< sup e ME(F! — 93)2 + C,
t€[0,T]

¢
A te[0,7)

and choosing large enough A > 0 yields

sup e My JE(0F —6)2 < C'\ /7. (100)

t€[0,T]

This implies as in the proof of Lemma 3.7 that d(Cy, Cy)) < C' /7.

Bound of d(Ry, R})). Denote by ry(t, s) = g—zz and 7) (t,s) = % the processes (13) and (94) defined from
the above coupling of {6} and {0’ }. Then by definition, we have

t s’
ro(t,s) =1 +/ [(—(56 + 893(95/,dfyl))7°9(3', s) +/ R)(s',s")ra(s", s)ds”} ds’,

L] o [s'] _
7o (t,s) =14+ 1{[s] < [t]} " [(—5ﬂ+895(9§,54i ))fg(s’,s)Jr/[ R)(s',8")rg (", 5)ds” | ds’.
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Hence Elrg(t,s) — 7 (t,s)| < (I) + (II) + (I1I) + (IV) where
L]

() = E|1{[s] < [t]} . ’(—5/3 + 9ps(6°, aj))m(s', 5) — (—55 + ags(é,{,a;’)) (s, s)’ds’} ,

(II) = E:l{M < LtJ}/(LtJ /[LWJ ’Rg(s',s”)(r@(s”,s) —Fg(s”,s))’dsﬁ ds’],

s
r [t]
(III)zEl{Mqu}/ /
L [s1 J(s,[s])U(Ls"],s")

(IV) = /( N (—55+ags(9s’,a;’))r9(s/,s)+ / R}(s',s")ro(s", 5)ds"

By the same arguments as in the proof of Lemma 3.7, using the above bound (100) and Lipschitz continuity
of Jps(+) in Assumption 2.2, we may show

RY(s',s")ro(s", s)

ds” ds’] ,

ds’.

C
(1) + (I1) < XeM(O<s1<1?<Te*M1E|r9(t, s) =7 (t, s)|) NoNGT

Applying [s] —s <7, s — |s'] <, and t — [t| <, we have
(III)+ (IV) < Cy.
Then

C
sup eiAtEhﬂH(ta S) - fg(ta S)| < < sup eiAtE|T9 (tv S) - ’Fg(ta S)| + Cﬁa
0<s<t<T 0<s<t<T

and choosing large enough A > 0 and rearranging gives

d(R97 Rg) < sup eiAtE|T9 (tv S) - ’Fg(tv S)| < Cﬁ
0<s<t<T

Bound of d(a, &.,). By definition,
[t]

t
dt = ao —|— / g(ds, P(@S))ds, Ozéi, - O[O + g(o:érsyv P(é'sy))dsa
0 0

so [lat —al|l < (I) + (IT) where

[t]
- | )

By the same arguments as in the proof of Lemma 3.7, using the above bound (100) and the Lipschitz
continuity of G(-) in Assumption 2.3, we have

t

ds.

‘g(asvp(es)) - g(&ﬁ,P(éﬁ))Hds, (I1) _/L

9(@.P))]

C _
(I) < <e* sup e*ASHdS—deHdS—FC'\/'_y
A s€1[0,T

Using ¢t — [t| <+, we have (IT) < C. So choosing A > 0 large enough and rearranging shows
d(d,dy) = sup e Ma' — &kl < Cy.
te[0,7)

This concludes the proof of (a). The proof of (b) is analogous, and we omit this for brevity. O

Lemma 4.5. Let {6"}ici0,1), {Wt]:te[o,T]; and {o'}ycpo,1) be the components of the solution to the DMFT
system in Theorem 2.4, and let {oi}te[O,T]: {ﬁ»ty}te[o,T], {O_éfy}te[o)T] be defined from the components of the
fized point (99) via (93) and (96). Then for any fized m > 0 and t1,...,tm €[0,T], as v — 0,

P(6". 0% ,....6m) 2 P(o*, 6, ... 00 (101)
P(@, 6,7, ..., 7)) 2% P(w*, e, ", ') (102)
{afy}tG[O,T] — {a'}eepo 1) (103)

where (108) holds in the sense of uniform convergence on C([0,T], R¥).
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Proof. Let X7 = (R},C},a,) and Y = (R},Cy,a,) be the components of the fixed point (99), and let
X = (R,,Cy,a) and Y = (Ry,Cy, ) be those of the unique solution to the continuous DMFT system
prescribed by Theorem 2.4. Let d(-) denote the metrics introduced in (48) and (49), for a sufficiently large
choice of A > 0. By Lemma 4.3, X7 € D) NS, for all sufficiently small v > 0, so 7;—,(X7) is well-defined.
Then, applying the fixed point conditions for X7 and X,

d(X, X7) = d(Tyosn(X), T,0,) (X)) < d(Toosn(X), Ty (X)) + d(Tysn (X7), T, (X7)).

v In—n

By Lemmas 3.7 and 3.8, 7, is a contraction on S, for large enough A > 0, for which the first term satisfies
d( Ty (X), Tymn (X)) < %d(X, X7). Thus, rearranging shows

A, X7) < 20(Ty oy (X7), T (X)) = 20(Ts g 0 Tysg (X7, T 0 Tyl (X)),

»In—n

Letting Y/ = T;,0(X7) € Sp and Y7 =T, ,(X7) € D) N Sy, this shows

d(X, X7) < 2d(Ton(Y'), Ty

9~>n

7)
1) € 2T oY)+ 2T )T ()
La(X

By Lemma 4.4, d(Y',Y"?) = d(T,—e(X"), T 7)) < C\/. Then by Lemma 3.8, the first term is
bounded as d(Tg—n(Y"), To—y(Y7)) < Cd(Y, YV) < C'"\/7. By Lemma 4.4, the second term is also bounded

as d(To—n(Y"),T,.,,(Y7)) < C\/7. So combining these statements and taking y — 0 shows

lim d(X,X?) =0,  limd(Y,Y")=0. (104)
¥—0 ¥—0

By definition of the metrics d(-), the convergence (104) implies the uniform convergence statement (103).

It also implies
lim su C,(t,s)—C(t,s)| = 0.
7—0 0<s<£)<T| n( ) n( )
We recall that Theorem 2.4 shows (R,, Cy, ) € S;°", for which the continuity property (32) holds for all
0 < s <t <T. Then there exists a coupling of {u'},c(o,r] and {@! },ejo,r) With covariance kernels Cy(t, s)
and CJ/(t, s) for which
lim sup E(u! —al)? =0,
70 ¢el0,17] ( 7)
see e.g. [52, Lemma D.1]. Defining {6*} and {6} by this coupling of {u'} and {u!} and a common Brownian
motion, the same arguments as leading to (100) shows
lim sup e ME(6' — 53)2 =0,
1=0¢e(0,1]
hence in particular lim,, o E(6" — 6)? = 0 for each fixed ¢ € [0, T] under this coupling, which implies (101).
A similar argument shows (102). O

4.3 Step 3: Discretization of Langevin dynamics

We now consider a piecewise constant embedding {91;, afy}tG[OvT] of the discretized Langevin process (55-56),
defined as .

gt _ plt] PN _t _ ~xpt

07_07’ Gy = Ay nW—XOW
where [t] € Z is as previously defined in (92). A simple induction shows that this is equivalently the solution
to a modification of the dynamics (4-5),

11
0;_00+/0 [—ﬁXT(Xéi—y)Jr((és a3))5 }dﬁfbm

7.4
=t ~0 =5 1
a,=a + ( g 595 )ds

We compare this to the solution {6%,a'};>o of the original dynamics (4-5), with n° = X6, to show the
following lemma.

(105)
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Lemma 4.6. Let {0',n',a'} be defined by (4-5), and let {Bi,ﬁi, _:} be defined by the piecewise constant
process (105). Then for any fited m > 1 and t1,...,t, € [0,T], there exists a function ¢ : Ry — Ry
satisfying lim, o t(y) = 0 such that almost surely

limsupr( 2(5(9* 0gtmy; dz59* g et%))<L(’y)

n,d— oo

lim sup Wg( 25 (sl et 25(771 o ﬁ;,,;)) < ()

n,d— oo

limsup sup Ha —OéVH < (7).
n,d—o00 t€[0,T]

We proceed to prove Lemma 4.6.

Lemma 4.7. Let {b'};>¢ be a standard Brownian motion on R%. For any fived T > 0, there evists a
constant C' > 0 depending on T such that almost surely

1
limsup sup —Hth <, limsup sup —=(||b’ — bl +|[b’ — b*l||) < C'\/ymax(log(1/7), 1).
d—oo tefo,1] Vd d—soo tef0,1] Vd

Proof. We first show that for any a,b € Ry with a < b, we have P(sup;¢(, d=12|bt — b?|| > u) <

exp ( cdu’” ) for any u > 1/4(b — a) and some constant ¢ > 0. To see this, for any A € (0, Q(b;‘ia)), we have

P(sup d~'/2[b" —=b"(| > u) = P( sup exp(A|[b’ —b?|*/d) > exp(Au?))
b]

tela,b] t€la,

—~

*) * %k
< e M Elexp(Ab? — be|2/d)] = e (1 — 2A(b — a) /d) /2,

where () applies Doob’s maximal inequality for the nonnegative submartingale {exp(A||b* —b®|?/d)}ie(a.0,
and (x*) applies the moment generating function of the y? distribution. Choosing A = ¢d/(b — a) for some
small enough ¢ > 0 and applying (1 — x) > e~ 2% for small x > 0, we have

2

d 2
Y + 2cd) < exp (—
—a

cdu

s6—a)

P( sup d~'/?||b! — b?|| > u) < exp (—
t€la,b]

for u > \/4(b — a), proving the inequality. For the first claim, we apply this with a = 0, b = T, u = V4T to
yield that P(sup,cp 7 d~/?|[b|| > vAT) < exp(—2cd), so the claim follows by the Borel Cantelli lemma.
For the second claim, let N = T/~ (assumed without loss of generality to be an integer greater than 1), and
I; = [(i — 1)v,iv) for i € [N]. Then applying the inequality over these intervals yields

P( sup (dy)~2|bt — blt)|| > u) < NmaX]P’(sup(d”y) 12||pt — bi7|| > u) < Ne—cdu’
te[0,7] tel;

for any u > 2. Hence by choosing u = C'y/log N for large enough C' > 0, we have P(sup,¢(o,7 (dy)~1/2|bt —
bl > CyIogN) < exp(—c/d). A similar argument applies to sup,c(o r9(dy)~*/?||b’ — bl*l||, proving the
second claim. O

Lemma 4.8. For any fited T > 0, there exists a constant C > 0 depending on T such that almost surely

limsup sup (IIGtH/\erIIatII) <C

n,d—o0o0 te[0,T

Proof. Let C' > 0 denote a constant depending on 7" and changing from instance to instance. Since

0! = 6° - /t (ﬂXT(Xé)S —y) - s(6°, as))ds +/2b,

0
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and [|s(8%,a%)| < C(Vd+ ||0%|| +Vd||a®||) by Assumption 2.2, we have for every t € [0,T] that
6% < 16°11 + CIX1Z, + 1) / " (16°] + Vala*) ) ds + Xyl + v+ sup [1]).
Next by Assumption 2.3, we have
@] < [1a°] +C/ (L+l6°ll/Vd +||a|)ds

Combining the above two bounds yields

1o~ / e, 18°1 im0 . IX Y b
&t < X2, + 1 ( + S)d-+C( +]1a%| + + sup +1)
i e < COIXI5, + 1) 7 llo”] 7 [[a”]] N A
(106)
Hence by Gronwall’s inequality, we have
16°]| : 2 16° | oy, IX Ty |[b]]
+ @) < Cexp(C(IXI13, + 1) (o + 18] + + sup +1).
te[o T] \/_ o \/E \/E te[0,7 \/E
Under Assumption 2.1, we have almost surely that
timsup ma (/@] = 6°), 7= X Ty, [Xlop) < C (107)
d_)oo \/E bl \/a b op — bl
so the conclusion follows from the first claim of Lemma 4.7. O

Proof of Lemma 4.6. Here and throughout, C' > 0 denotes a constant depending on 7" but not on ~, and
changing from instance to instance. We restrict to the almost-sure event where Lemmas 4.7 and 4.8 hold,
and (107) holds for all large n,d. Then, coupling (4) and (105) by the same Brownian motion, for any
0<t<T,

[t] t
t ot T s 0s 5. 5% s. AS T s s ~s
" — 6t SC/O (HX X(0° - 65)| + ||s(6%:a°) — 5(63: )||)ds+O/M [X X0° + 5(6°,5°)|ds
+V2[[b" — bl
Applying Lipschitz continuity of s(-) in Assumption 2.2 and the bounds of Lemma 4.8 and (107), this shows

t
6" — 8t || gc/o (Il — 03] + Vd||a® — a5|)ds + CyVd+C sup |b’ —blH|. (108)

)
K t€[0,T]

Similarly, using Assumption 2.3 and W3 (d ! Z?Zl Oy, d? Z;l:l 6v;) < d7Hu—vl|? for u,v € RY,
B d

’g s,dz59) (047,32159%)‘ ‘g S’dz59)‘
=

_C/O (Ia —a7||+ﬁ|\0 ~83))ds + O,

Combining the above display with (108), we have by Gronwall’s lemma

~t =t 1t)
|at —a | < ds+

Lt

~ =t 1 ~ O
sup ||at —a. || + —=||6* — 6] < Cy+ — sup ||b! — bl]. (109)
te[0,1] TV K Vd efo,1)
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By Lemma 4.7, there exists some C' > 0 such that

- bl < /5y max(log(1/7),1).

limsup sup —=|/b?
d—oo  t€[0,T] \/a”

Substituting this bound in (109) proves the claim on a. Noting that

1 & _
( 25(9* i,y dZ%* ...... 9*’"))S EZZ (05 =) PV \/—tSUP 16" — &3],

(=1 j=1 €[0,7]

this proves also the claim on 6, and the claim on 7 follows from [|n* — 7%|| < ||X[[op[|6" — 0% and the same
argument. |

4.4 Completing the proof
Proof of Theorem 2.5. For part (a), by the triangle inequality,

=t =t _ _
sup & —of|| < sup &~ 8|+ sup | - &+ sup |5 - o'l
t€[0,T] tel0,T

te[0,T] telo, T

Since {ai} and {dfy} are piecewise constant with values equal to those of the discrete processes of Section
4.1, Lemma 4.1 implies that the middle term converges to 0 a.s. as n,d — oo. Then, taking n,d — o
followed by v — 0 and applying also Lemmas 4.5 and 4.6 to bound the first and third terms in this limit,
this shows (a).

For part (b), similarly combining Lemmas 4.1, 4.5, and 4.6 shows that almost surely, for any m > 1 and
to,t1,--.,tm € [O,T],

d
Z o # PO, 0%, ... 6mm). (110)

] ] I 7

We now strengthen this to almost-sure convergence in the Wasserstein-2 sense over R x C([0,T]), equipped
with the product norm
10]lo = [67] + sup [¢"].
te[0,T]
By [54, Definition 6.8 and Theorem 6.9], it suffices to show weak convergence together with convergence
of the squared norm [|#||%,, which will be implied by convergence for all pseudo-Lipschitz test functions
f:RxC([0,T]) — R satistying

|£(0) = ()] < ClIO = 0 lloo (L + 18llo0 + 16| o0). (111)

Consider the event & where (110) holds for each m > 2 and {to,t1,t2,...,tm} = {0,7,27,...,T} with
v =T/m. Let {0 }eefo,r) be a piecewise linear interpolation of {6},c0,7]nyz, , and similarly let {9 Heelo, 1
be a piecewise linear mterpolatlon of the DMFT process {6° }tepo,r)- For any pseudo-Lipschitz functlon
f:RxC([0,T]) = R, we have

d
E Z f(07, {eé}tE[O,T]) —E[f(0*,{0" }reo,m))]| < () + (1) + (111) (112)
j=1
with

10548 acio.m) — ELF(0 {0 herom)]|

<
Il
a

—

~ —
~ ~
S~— S—

Il Il
Ul Ul
M= 1=

<
Il
-

10540 heetom) = £(8;, 48 heio.m)|

(I11) = |E[f(0",{0" }sejo,r)] — ELf (6, {ét}te[O,T])]’-
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For a piNece~wise lin(iar process 0 with knots at yZ,, f (07, {ét}te[oﬂ) may be understood as a function of
(07, 6°,67,6%7,...,607), where this function is pseudo-Lipschitz on R"™*2? by the pseudo-Lipschitz property
(111) for f. Then on the above event &, the Wasserstein-2 convergence (110) implies

lim (1) = 0.

n,d— o0

To bound (I1), let C,C" > 0 be constants depending on 7' (but not ) and changing from instance to
instance. Writing 6; = (65, {6 }+c(0,77) € R x C([0, T],R) and applying (111), we have

d - 1/2 1 d 5 1/2
D10y =< (1-+ 105 y<o(s Zne 0il%) (13 le) o a1y)
=1 j=1

&IQ

Set
F(0,0) = —BX" (X0 —y) +5(8,q)

so that by definition, #% = 67 + fg e/ F(0°,a%)ds + v2b.. Hence

T
sup (69)° < C((OD° + [ (e] F(6%.%) s + [y ).

t€[0,T

SO

L& d 1 R
E;It‘)jliogc( D)7 + (67 + 5 e [[F(@aY| + ZHb I12).

j=1
On an almost-sure event &', for all large n,d, we have that d=' 3 (67)* +d " Ej (9)> < C by Assumption
2.2, that sup,e(o 7 d~"||F(6',@")[|> < C by the definition of F(-) together with Assumption 2.2 and Lemma

4.8, and that d! > ;12 < C by Doob’s maximal inequality P[[|b;]|oc > 2] < 2¢=2"/(T) and Bernstein’s
inequality for a sum of independent subexponential random variables [61, Theorem 2.8.1]. Thus, on &’,

d
1
Sl < c (114)
j=1

Now fixing any a € (0,1/2), define the Hélder semi-norm [|0;{|o = sup; ;e(o 7y 105 — 05]/[t — s|*. Then, since
éj linearly interpolates ; at the knots yZ,

10; = 05lls0 < Y1161l

We have by definition 6} — 6% = fst e/ F(6",a")dr + \/§(b§ — b%), so by Holder’s inequality,
t 1 1-a
108 — 03] < [t — s|a(/ ]ejTF(BT,aT)]l*"‘dr) +V2[8 — b

<otv-s(( [ errenan?) s )

and hence
Zuo I <0 (g, sm 1FO 1 + an I2).

On an almost-sure event 5”, for all large n,d, we have sup,cord~"[|F(6',a")||> < C as above, and

d=! > ;|2 < C by the tail bound P[||bj[la > C + 2] < e~ for some C,c > 0 (sce e.g. [62, Theo-
rem 5.32, Example 5.37]) and Bernstein’s inequality. Thus on £”,

d
D116 — 05112 < v (115)
=1

SR
<
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Applying (114) and (115) to (113), on &' N E”,

limsup(17) < C~“.

n,d— oo

To bound (I11), similarly we have

iy < (=0 - 912.) " (1+ Ee2) (116)

By definition
t s
0t =6° + / [—5ﬁ(95 —0%) + s(0°,0°) + / R, (s, s (6% — 6*)ds’ + us} ds + /20"
0 0

Hence, applying |s(6°, )| < C(1+]0°|+]|e®||) by Assumption 2.2 and uniform boundedness of the continuous
functions o® and R, (s, s") over [0, T,

t
(0 < (14O + 07 + Jullz+ 012+ [ (s (0°7)as).
0 “relo,s]

Then Gronwall’s lemma gives

sup (612 < C (14 (0% + (0 + [lullZ + [PI%. )
t€[0,T]
We have E(0°)?,E(6*)* < C by assumption. Since {u'},cjo,r) has covariance Cy)(t, s) satisfying |Cy (¢, s)| <
C|t—s| by the condition (32) defining S(T)°°™, we have P[||[u]|oc > C+1] < e for some constants C, ¢ > 0
by a standard application of Dudley’s inequality [61, Theorem 8.1.6], so E|[u||2, < C. Similarly E||b]|%, < C,

so this gives
E[)2, < C. (117)

By definition we have also

t T
ot — 05 = / [—55(97“ —0%) + (67, a") +/ Ry(r, )07 — 0%)dr’ + ur}dr F V20— bY),
s 0

SO
t , ﬁ 11—«
0t — 0| < C|t—s|“(/ (1101 4+ sup 107 [+ ur]) T ar) " v - b
s r’€[0,r]
< C'Jt = 5|7 (14 100 + ulloc + 18]l )
Then
E|6]1%Z < C(1 +E[6]1% + Ellul% + E[|p]2) < ¢,
SO

E[6 — 8|3 <> E[0]l3 < C'y**. (118)

Applying (117) and (118) to (116) shows
(I11) < CH*.

Applying these bounds for (I), (IT), and (I1I) to take the limit n,d — oo followed by v — 0 in (112),
this shows that on the almost-sure event ENE'NE” (which does not depend on f), for every pseudo-Lipschitz
function f: R x C([0,7]) — R,

n,d— oo

d
tim =S 765, 16 eio.m) = ELFO°, (6 o)
j=1
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This implies on £ENE N E” that

d
1 1% "
E 259;,{9;}%[0@] - P(9 7{9t}te[0,T])'
j=1

For the convergence for 1, we note that n! = e[ X0 = e, X6 + fot e XF(6°,a%)ds +v2e/ Xbt. Then

applying similar arguments as above, fixing any a € (0,1/2), on an almost-sure event we have for all large
n,d that

1 — 1™
3l <en 3 mlk <o
=1 i=1

For the DMFT process we have ' = —3 fot Ry(t,s)(n® + w* —€)ds — w', hence

(nt)2 < C((w*)2+(wt)2+£2—|—/Ot(775)2ds)

so Gronwall’s lemma and a similar argument as above gives E||n||%, < C. Also

t %a 11—«
=l < Cle= st ([ (1l 1) TRar) Tt = 0] < €= s (] e+ e+ )
S

SO
Elgl2 < O (B(w")? +E? + Elln|, + Ellw2).

We recall that {w'},c(o,r) has covariance satisfying |Cy(t, s)| < Clt — s|, so P[|lw|o > C + 2] < 2e=°=" for
some C,c¢ > 0 (c.f. [62, Theorem 5.32]). Thus E||n[|2 < C. Applying these bounds, the same arguments as
above show the almost-sure convergence

n

1 1% "
- D Onrcitnthicom = P e 0" hepom)
=1

where we recall that n* on the right side is, by definition, n* = —w*. O

5 Convergence of the linear response

In this section, we prove Theorem 2.8. We assume throughout Assumptions 2.1, 2.2, 2.3 and the Holder-
continuity conditions of Theorem 2.8. We first state and prove in Section 5.1 an analogue of Theorem 2.8 for
the discrete-time dynamics introduced previously in Section 4.1, and then analyze the discretization error
and complete the proof of Theorem 2.8 in Section 5.2.

5.1 Convergence of response functions for discrete dynamics
We recall the discrete, integer-indexed dynamics (55-56), which we reproduce here as

61! = 6} —[BX (X6} —y) - 5(6,aL)| + V2(bT —bl), n) =Xe6)
~ ~ 14
G =G - G(al,Pe))), PO) =, (119)
j=1

We first show an analogue of Theorem 2.8 for these discrete dynamics.
For any s € Z and any j € [d] or i € [n], letting e; denote the j'" standard basis vector in either R? or
R™, define two sets of perturbed dynamics

gl (i) — ghni)e W[BXT (XOL ()2 — ) — 5(0L()= at=0)e) — cei1,_,| + V2(bET! — bl)

atrLede = Ghisde 4oy g(@(s,j),s, ﬁ(@(s,j),s)), (120)
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and
9t+1,[s,i] Ot [5,4] {ﬂXT(Xet s.i],e ) - 5(03,[5,1'],57 aty,[s,i],s) . EXTeilt:s:| T \/§(ti+1 - bty)
attblsie — glsile . g( ot[s,1],e (gt L., )) (121)
with the same initial conditions as (119). We set
nz&y,[s,i],s _ XO?[SJ]-,E. (122)

Comparing with (119), these dynamics have a perturbation to the drift in the direction of e; or X Te; at the
single time s € Z. Let Rj(t,s) = (Ry(t,5))¢,_; € R and R} (t,s) = (R} (t,5))';=; € R™" be matrices
of response functions defined by

(R (L, 9))ij = O:le=o(0557%), (R](t,9))ig = 08% - Oclemo (7).

where (-) denotes the expectation over only the randomness of {b! };cz, , i.e. conditional on (X, 8*,¢) and

on the initial conditions (02’(S’j)’5, a%(s"j)'f) = (03,[5,1'},57 a%[s'ﬂ*s) = (0°,a%) € RI*EK,

Recall also the discrete-time DMFT response functions Rj(t,s), R} (t,s) defined by (60) and (64). The
goal of this section is to prove the following analogue of the convergence statements for the response functions
in Theorem 2.8.

Lemma 5.1. For any fized s,t € Zy with s < t, almost surely

1 1
lim p TrR)(t,s) = R)(t,s), lim —TrRJ(t,s) = R)(t,s).

n,d— oo n,d—oo N

To ease notation, in the remainder of this section we will drop all subscripts v and write simply 8 = O,ty,
a' = al, b' = bl etc. to refer to the above discrete-time processes. We first establish in Section 5.1.1 a set
of dynamical cavity estimates, which we will then use to prove Lemma 5.1 in Section 5.1.2.

5.1.1 Dynamical cavity estimates

We introduce the following notations: For any j € [d] and ¢ € [n], denote
t_ (pt pt d ¢ ¢ d—1
0" =(0;,0-,) € RY, 0 €R, 0", e R,

n'=ml,n',)eR", nleR, n,eR"

where {6, }cz, are the components of the discrete-time process (119), and 8° ; are the coordinates of 6*
excluding the j* (and similarly for n?).
We consider the following leave-one-out versions of (119): For j € [d], let

XD = (Xiplpzj)ine € R4yl =X0g* 4 ¢ R” (123)
where X)) denotes X with 5" column set to 0. Define
gtt1.0) — gt:(d) _ 7{5()(0))""()((]‘)075,(]‘) _ y(j)) _ S(gt,(j)jat(j))} + \/ﬁ(bﬂ-l _ bt) c R4
Qr+Lu) = gt 4 4. g( t,<j>,|3(9t,<j>)) (124)
with initialization (9%(), a%@)) = (9° &%), and write as above
ot — (9t-’(j),055-j)) c Rd, 9;_7(j) €R, Gigj) c RI-L.

We note that for convenience of the proof, we define 0+ to be of the same dimension as 8, where one may
check from (124) that the dynamics of Oigj ) do not involve 9;’0 ) Similarly, for i € [n], let

XM = (ijlk;éi)kyj S RnXd, y[z] = XMO* + €,
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where X7 sets the it" row of X to 0. Define

0t+1,[i] _ et,[i] _ V[ﬂ(X[l])T(XM Ot,[i] _ y[l]) _ S(et,[i],at,[i]) + \/§(bt+1 _ bt) c Rd

QLI — tll 4 g(at,[i]7§(0t,[i])) (125)
also with initialization (9%l a%l) = (9°,a%), and write as above

,r’t-,[i] _ (nfv[l]7ni£l]) € R", n;?,[i] €R, E[Z] c R L.
By construction, {8%0) a%()} is independent of the 5 column of X, and {64, a®[1} is independent of
the " row of X.
The following lemma gives ¢5 estimates on the original dynamics (119) as well as on its difference with
the cavity versions (124) and (125).

Lemma 5.2. Fiz any T > 0. Then there exists a constant C > 0 (depending on T but not ) such that for
any v > 0, almost surely for all large n,d, we have for all0 <t < T/~ and all j € [d], i € [n] that

16\~ (GRS e R —

+ &t < C, + labW) <o, =L 4@kl <, 126
7 o] < 7 I [ < 7 ™| < (126)
049 < (1 + (6° bt 127
0] < C(1+]| J|+t€%{ag;ﬂlgl), (127)
|6%0) — ') +Vd|a"D —at| < (69| + 07| + b ]Ibﬁ»l + +/logd), (128)

5 Y

|64 — 6t + Vd|ab™ — &t < C(lei| + og d). (129)

Proof. Fixing a constant Cy > 0 large enough (depending on T') and any v > 0, define the event
& = {IXllop < Co, la° < Co, 62, 16°ll2 < CoV4d, [le]l2 < CoVd,

max ||bf|]2 < CoV/d for all large n, d}.
te[0,7/~]

Note that we have b’ ~ N(0,t7I), so P[||bt||2 > Cov/tyd] < e~ for some constants Cp,c > 0 and all large
n,d by a chi-squared tail bound. Then, taking a union bound over all ¢ € [0,7/y] N Z4 and applying the
conditions of Assumption 2.1 together with the Borel-Cantelli lemma, we see that this event £ holds almost
surely.

We restrict to the event £. Let C,C’ > 0 denote constants depending on Cy,T (but not on «) and
changing from instance to instance. For (126), we have by definition of {8%, &'} in (119) that

t—1

6" = 6"~ Y [AXT(X0° —y) — 5(6°,a°)| + V2b'
s=0

t—1
at=al + ng(aS, |3(95)).
s=0
Applying the bounds for s(-) and G(-) in Assumptions 2.2 and 2.3 and the conditions of &,

t—1
161 < vy (16°)+ V@l + V) + 6°] + V2 |Ib'|
s=0

t—1
l@ < oy (Ia) + lell/va+1) + a°)
s=0
SO
16°] 16

-1
[CH—— s _ [ f&
I+ — +|a' <C (1+—+ of)+1+—+a +1/ 51
ﬂlHlv§ 75+l 77 &0y I
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Iterating this bound over ¢ shows

1970 4 jari < 1+ o [+ 120 a0y + \ﬁ max llbﬂ <,
\/E \/E d s€[0,t]

the last bound holding for t < T'/~ and on €. This establishes the first claim of (126). The other two clanns of
(126) for the cavity dynamics hold by the same argument, noting that on £ we have also || X ||op, [| X ||op <
Cy for all j € [d] and i € [n].

For (127), we have by definition of (124) that

O = b D) 4 500D, @) 4 V20— b

Then
t<]>790+72 7(J) ot () +\/—bt

so applying the bound for s(-) in Assumption 2.2 and the bound ||a>()|| < C already shown in (126),

t—1
1+ 1059 <0y ST+ 1079)) + 14 169] + V2.
s=0

Iterating this bound gives, for all ¢ < T'/~,
t,(7) t 0 t / 0 t
1416077 < (1+ Cy)' (1 +169] + \/isxg[%ﬁ] b)) < C'(1 +169] + max b))

which shows (127).
For (128), by definition,

gttt _ gt+1.0) — (I — yﬁXTX) ot — (I — 7BX(J’)TX(J’))QIZ(J’) +8 (XTy — X(j)Ty(j))
+(s(6%,a") - 5(6"0),a")).
Then, applying the Lipschitz bound for s(-) in Assumption 2.2 and the conditions defining &,

6741 9D < (1+ Cy))l6" — 80| + Cyvdla =t — @t 10|
+CW(||< XUTX0) - XTX)640) + Xy - XOTyW) ). (130)

JZAtﬁj

Similarly, by the Lipschitz bound for G(-) in Assumption 2.3,
@t =@ttt < (14 Cy)llat —an D) + Cv6" — 0| /Vd.
Combining the above two inequalities yields
[0+ — 0D 4 Vd[jartt — @D < (14 Cv) (16" - 059 + V@' = a= D)) + CyA;,  (131)

and hence iterating this bound and using (8%¢),a%()) = (8°,a°), for any t < T/,
16° — 69| + Vd|jat —at | < Z (14 Cv)* &a} CyA,; < C' &aé(As,j.
= 5= s=

Let us now bound A, ;. Writing x; € R™ for the j® column of X, we have X = X — xje;r, hence
XTX - XWTXW =XTxje! +e;x/ X —e;x/xje], and

I(XOTXD — XTX)O || < X T, 05| + [x] X040 + [ X2, |07
< CIX|2,1659] 4 |x] XD gt )|, (132)
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Similarly, we have X Ty — X0 Ty0) = (XTX — XU TX0))9* + (X — X)) e so
IX Ty = XD TyO| < OX|2,165] + 1x; XD0%| + |x] ] (133)

By (127), we have |9§’(j)| < C(1 4 16| + supyepo,/+ [b5]) for ¢ < |T/v]. Applying this in the above two
bounds yields, on &,

A gc[1+|e‘§?|+|6;f|+ sup  |bh] + [x] XD + |x/ XDoM0)| + x|
t€[0,T/~]

Define the additional event £ where

sup max |x XDg*| 4 |xTX )94 0)| 4+ |x gl < Cpy/logd for all large n, d.

jeld) tel0,T/~]
Then the desired bound (128) holds for all large n, d on the event ENE’, so it remains to show that £ holds
almost surely for sufficiently large Cy > 0. For each j € [d] and t € [0,T/7], by independence between x;
and X, 040 we have that xTX( 19%(9) is subgaussian conditional on X @%0U) | so

_ _ (1)@t )
P ,X‘;X@mmzcwx o ||logd} < gmed

for some constants C, ¢ > 0 (conditional on X (@) @) and hence also unconditionally). Then, taking a union
bound over j € [d] and t € [0,T/v] N Z4+ and applying the Borel-Cantelli lemma, almost surely for all large
n’ d’

N X3 050) || log d
S”p"‘JTX“)at»Wgcsup\/” - lHogd
Jst 7.t

On the event € we have sup; , [| X040 < Cv/d by (126) already shown, so sup; |x;'—X(j)0t’(j)| < C'/logd
a.s. for all large n,d. The terms |ijX(j)0*| and |ij€| are bounded similarly, verifying that £ holds almost
surely as claimed, and concluding the proof of (128).

For (129), similar to above, we have

o4+ — 81| < (14 C)6" — 04| + CyVd|at — &t
+07(HX”XW—XT o1+ X Ty — XTI,

A
@t —att i < @t - atll)| + o (|jat — @bt + (16" — 051 /vd).
which implies
16° — 9411 + Vd ||at — atll|| < C&}}ASJ.

Using X = Xl 4 e;x], where x; € R? now denotes (the transpose of) the i** row of X, we have XX =
XEATX 4 ;%[ and X Ty — XU Tyl = x;(x] 0* +¢;), so

A < X o (1] 6°11] + xT 67|+ |eil)-
Using independence between x; and 8417, 8%, we obtain as above that on an almost sure event &', for all
large n,d we have A, ; < C(le;| + Iogd) for all ¢ € [0,T/~] N Z4 and i € [n], showing (129). O
5.1.2 Proof of Lemma 5.1

Lemma 5.3. For any T > 0, on the event where | X||op < Co, there exists a constant C > 0 (depending on
T,Cy but not v) such that

max  max {Ha l.—00" SJ)EH +\/_||<9 le—oal®” (8:9) 5”} < Cr,
0<s<t<T/v je[d]

(101200507 4 V0] o4
0<s<t<T /v i€[n

]gCW.
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Proof. For the first statement, we fix s, j, and shorthand @%(59).c gt:(s:7): a5 94 G*. By definition of the
process (120), we have for t > s+ 1

aa|a:00t+175 = (I - 'YBXTX + Diag(ags(et, at)))aa|5200t75 + 'YVaS(eta at)a€|8:0at7€,
Beleo@ e = (1 +~daG(at, ﬁ(ef)))aakzoam +1deG(at, P(61))9.|.—oB"<.
Then applying the conditions for s(-) and G(-) in Assumptions 2.2 and 2.3 and || X||op, < Co,

thmﬂw<a+cwwgwmw+owaﬂ@w
< (14 0702 |e=0d®

10c|e=0@

where C' > 0 is a constant independent of . Combining and iterating these inequalities yields, for all
tels+1,7/v,

10c]c=00" ¢ || + Vd||0:|z0a

< (O (o™ 4 VA D <0
134

using 0. |.—00°t1(59)¢ = ye; and 0.|.—oa*T(*)¢ = 0. This holds for all s € [0,7/~] and j € [d], showing
the first claim. The proof of the second claim is analogous, and omitted for brevity. |

Lemma 5.4. Let {0',a'} be given by (119). For each t € Z define the matriz
Q! =1 - 38X "X + yDiag(dys(8',a')) € R, (135)

Then for any fized s,t € [0,T/~] with t > s+ 1, almost surely

lim Za o081 = 2T (@72 ) = 0

n,d~>oo

lim Za|s_ bls-ile %Tr(xntfl...nsﬂxT):o

n,d—oo N

where by convention we set Q1. QT =1 fort =s+1.

Proof. Let us denote
d . .
Vas(et, at) _ (Vas(Hf, at)'l') | c RdXK, I‘t’(s’J) _ Vas(et, at)6€|€:0at7(s,J),8 c RY.

Then
0.le=g8" 1< = (1= 4BXTX + 5 Diag(0ps(6",8")) ) D.lemo®" 9 4 !5,

Qt

Iterating this identity with 0.|.—o@*+ (=) = ve; shows

Oc|emoBV D =411 Qe 4y ti Qi Qftieh) (136)
l=s+1
(where Q1. Q1 =T for £ =t — 1). This implies
t—1 d
Za ool 9% = % (@1 Q) + %ézzljz;ejnt—l Q). (137)

On an event where || X|op < Cy for all large n,d (which holds almost surely), by the Lipschitz continuity
of s(-) in Assumption 2.1 and bound in Lemma 5.3, we have ||Q'|,, < C, ||Vas(8%,a")||r < CVd, and
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[|0-|c=pa®(#9)2|| < C/V/d for all t, where C' > 0 is a constant (possibly depending on 7) changing from
instance to instance. Then by Cauchy-Schwarz,

d ) By d
]Zeynf—l QD] < \/Hntl . Q”lvas(Of,&l)HF A SN0 lmodt e |2 < VA,
j=1 j=1

which implies that the second term of (137) converges to 0 a.s. as n,d — oo. This proves the first claim.
The proof of the second claim is analogous, and omitted for brevity. O

Let us now introduce a notation for the discrete DMFT response process (57) prior to taking an expec-
tation. Fixing a univariate process 6 = {6'}4cz, and RX _valued process a = {a'}iez, as inputs, define the

following auxiliary process {rée’a)(t, 8) }s<t:

for s =t,

5
{(1—75ﬁ+7508(9t, )) L (t8) i Ry 0 (0,s)  for s <.
(138)

r (41, 8) =

Note that if the inputs {6, a'} are given by the discrete-time DMFT processes defined in (57) and (60),
then

06"
0,« 0,
g ts) =51, Elry ()] = Ry(t,s)
Y

which are precisely the auxiliary process defined in (58) and DMFT response function in (60). We will
instead consider (138) with inputs {0%,a"}+ez, given by the coordinates of {6*,a'} solving (119).

Lemma 5.5. Let {0',a'}icz, be defined by (119), and let R} (t,s) be the response function of its DMFT
limit defined in (60). Then for any fized s,t € Zy with s < t, almost surely

: (0 a) Y
NN Z = Rj(t.a)

Proof. First note that by the Lipschitz bound for dys(-) in Assumption 2.2, the a.s. convergence {a'} — {a'}
in Lemma 4.1, and a simple induction argument, we have almost surely

d
i (5= 5 ) -

By a similar induction argument using the boundedness and Lipschitz-continuity of dps(-), for each fixed

s < t, the map (99, . ,0;) — réej’a) (t + 1, s) is Lipschitz for each j. Then by the empirical Wasserstein-2
convergence for 6°,... 07 in (66) of Lemma 4.1, almost surely

n,d— o0

d
lm =35 (1, 5) = B (1, )]
=1

where the inputs (6, &) on the right side are the discrete-time DMFT processes (57) and (60), and E[] is the
expectation over their law. The lemma follows from noting that, by definition, R} (t,s) = E[ry (0.0 (t,s)]. O

We now proceed to prove Lemma 5.1.
Proof of Lemma 5.1. For any fixed s,t € Z, with s <, set also

rolt,s) = 52 (68) 'Ry (t,5)

48



and define the error terms
Ep?) = 0.)._8 007 1101 s), (139)
BLl = 9| _ont e — 570 (8, 5). (140)
We first prove by induction on t that for any p > 1 and s,t € Z with s < t, almost surely

d n
1 » 1 ;
lim S 1By =0, lim - > 1B =0, (141)
j=1 i=1

n,d— oo n,d— oo

Fixing any s € Z4, the base case t = s + 1 holds, as direct calculation via (120) shows that
Oclemofly D" =y =r Vs 4 1,5), jeld)
and similarly via (121),
Ocle=on *H1ME = 5| X eyl = + B

where n=t Y0 | |E; TP 5 0 as. under Assumption 2.1 while 7, (s 4 1, 5) = BRY(s+1,s) =~p.
Suppose by induction that (141) holds for this fixed s € Z; up to time ¢. Note that Lemmas 5.4 and 5.5
then imply, with the matrix Q¢ defined in (135), for each s < ¢, almost surely

n,d— oo

d
: 1 t—1 s+1 1 t,(s,5),e [ _
lim {7-3Tr(ﬂ 0 ) 228€|5:09j = RJ(t,s),
i= (142)

n,d— oo

. 1 — s 1 - EX) — —
lim {w;ﬁ(xnf LLIXT) =3 Oeon! ]} = By (t,5) = (68%) ' R) (L, 5).
=1

Claim for 88|€:09§-’(5’j)’5. We establish the claim (141) for Egﬂ’(s’j). Fixing both s € Z1 and j € [d],
let us shorthand 6%(*9: as @< and recall the notations 6' = (65,6 ) from Section 5.1.1 where 6! is the
jth coordinate of 8. Writing correspondingly X = (x;,X_;), we have

0151 = (T—9BX T, X, )05 — 48X (x,05° — y) +7s(6°5,6"%) + V2(b') —bL))
pithe = (1 —yB8]I%5]| )9t - yBx (X005 —y) +ys(65°,a5°) + V2(0i T — b))
atJrl,s — at,s 4 - g(at&,s7 P(et,s))
Define J
Vas(0',6t) = (vas(eg,atf) e RK pt =V 5(6!,a')0.].—oa" € RY.

i=1
Then, taking the derivative of 9;“’5 in e,
85|E:00§HE = (1 —BI1%;11* + y0as(6} At))@ le= 09 + 7t —”yﬁxTX,Ja o= 00t’§. (143)

Taking the derivative of 02? in e,

aa|a:093§- = (I - ’YBXL'X—J‘ + ’YDiag(aes(et:jla at_l))) 88|8:00t—_jl)8 - ’YBX—IijaJa:O@;_LS + ’Yrt:Jl

::Qi}l
Then, iterating this equality and using 0. |.— 005+1 (&0 — gives
t—1
5a|a:0032 = _'Yﬁ Z Qt,_Jl .. 'Q]i-;lX—_rij : a‘elazoefﬁE + v Z Qt, 1 Q]H_l c lij
k=s+1 k=s+1
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Plugging the above expression into (143), we have

Oclemot " = (1= 1Bl 12 +1005(85,@") ) - 0-]c=o8"

(I;)
t—1
+(B)? D x X R IXT 0o
k=s+1
(I1,k)
t—1
=8 Y x X Qe g (144)
k=s+1 —~
(ITT; %) vy
Analysis of (I;). We have
(I;) = (1 — 738 + 75 (05, a))rs @ (¢, s) + 117, (145)

where
7 = B8 = I%12) (0|00 ) + (1 = 108+ 1005(0%, @) ) By .

For any p > 1, by the induction hypothesis we have d~' 3~ |Eé’(s’j) [P — 0 a.s. By the conditions for X in
Assumption 2.1, d7' 37,16 — [|x;[*[P — 0 a.s. By Lemma 5.3, max; |0c|c=005°| < C a.s. for all large n,d,

while by Assumption 2.2, 9ps(-) is also bounded. Combining these bounds gives d~* > |r§j)|p — 0 a.s. for
any p > 1.

Analysis of (II;). Let
t.(7) _ T 7>Auw
QY =T—7B8X_ X+ Diag(dgs(6" )

be the analogue of Q ; defined by the cavity dynamics {6"() @)}, We first show that a.s. for all large
n, d, we have for every j € [d] that

_ t—1,(5 k+1
= x] XX T x; - x X0 oMt OXT x

< c,/log (1651-+ 1651+ max 871+ v/Iogd). (146)

To see this, note that

|"2

(Jk | < Z } TX_jnt L@) Q{fl,(j)(ng__

£,(5)\l—1 k+l~ T
i j ij )ij ...ﬂfj X,jxj
I=k+1

74
=T

Here Q° ; — Qﬁgj) = yDiag(dgs(0" ;,a") — 695(06?, a®()). Then we may bound

041,05 —1,(4 _ l, 0. (i
T ) < 215D QP IXT x| - Q50 QX T x; 1o - 1965(0% 5, 0) — 9ps(8°5),G5D))

0+1,(5 —1,(5
< CH)|Q5H Y QP IXT o - 125 lop - - - 1125 lop | X T 3¢5 2
(1655 — 6% |12 + V@t — & |l,). (147)

Since x; is independent of Qigj ) and X_ 4, we have by a subgaussian tail bound

P[ejﬂg_.;L(j)”'Qt_—jl,(j)X‘_rij e 10g e TQé+1 G) Qt_—jl,(j)ijH2 <e cd
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for each i = 1,...,d and some constants C,c > 0. Then, taking a union bound and applying the Borel-
Cantelli lemma, almost surely for all large n, d,

1+1 —1,(5 log z 1,( —1,(5
sup 255" MK T3l < sup O/ =0 1955 o 125 o X o
I

The right side is bounded by C’+/(logd)/d on an almost-sure event where ||X||op, < Cp holds for all large
n,d. Then, applying this to (147) and applying also Lemma 5.2 to bound the last term of (147), this shows
(146). By the conditions of Assumption 2.1 and the tail estimates of the Brownian motion in Lemma 4.7,
this bound (146) in turn implies d—! > |réj)’1k)|p — 0 a.s. for any p > 1.

Now consider

G = xTX a0 @Rt OXT g (X Qb0 Qkﬂ,(j)XT_)
y Lt ol 5.

r22 —J g

Since x; is independent of Qi(f ) and X_;, the Hanson-Wright inequality yields

ik Cv/logd Clogd e
P[] 2 max (2285 W, [Wilop)| < e

for some C,c > 0, where W = X_jﬂt:jl’(j) . Q]f;-l’(j)X—_rj. Again taking a union bound over j € [d] and

applying |[W/lop < Co and |W||p < CoV/d a.s. for all large n, d, this implies d~* > |ré;’2k)|p — 0 a.s. for any
p=>1
Finally, let X) € R"*“ be the embedding of X_; with 5 column set to 0 as defined in (123), and let

Qb0 =1 — X TXO) 4 4 Diag(ps(049),at(0))) e R4,
Consider
(d:k) ._ 1 ot—1.3) E+1,()x T 1 t—1 k+1~x T
i) = = T (XY et OXT ) - (XL X
%Tr (x0@-t0) @t OXOT) - %Tr (x@tarxT)
éTr (X(J')Qtfly(j) Qk+1()(X(J) X)T)

t—1
S L (Xo)Qt—l,(j)._.Qe+1,<j>(ge _Qfx(j))ﬂé—lluﬂk-i-lx—r)
d
l=k+1

1 .
T ((x@ —x)Qt Q’““XT)

Almost surely for all large n,d, for every j € [d] we have || X — X||p = ||x;]| < C and
1240 — Q|| < 48X TXY = XTX| p + 7] 9p5(6%P, ")) — dps(6", ")
< C(l +169] + [67] + ma D] + \/logd),
the second inequality applying the Lipschitz continuity of s(-) in Assumption 2.2 and Lemma 5.2. Then,

applying Tr(A — B)C < ||A— B||r||C||r < Vd|A— B||r||C|lop, we obtain a.s. for all large n, d that for every

J € d],
C

Vi

which implies as above that d~1 > |ré{§k)|p — 0 a.s. for any p > 1.

|T ]7k)| <

(1+ 109] + 167 + %%§]|bg|+\/logd),

o1



Combining these bounds for réj 1k), rg;), ré 3 ") the second statement of (142) for almost sure convergence

of d=1 Tr(XQ!~1 ... QF1XT) the induction hypothesis for approximation of 88|8:09f © by 7”9 ), and the
bound |85|5:09§’5| < C as. for all large n,d by Lemma 5.3, we get that

j ke
(I 1) = ?RW(t ) (e, 5) + r§R) (148)
where d=' 3 I’ = 0 as. for any p > 1.
Analysis of (I1I;). We apply a similar leave-one-out argument as above. Let

t (J) Vi S(eigj), at’(‘j))ag|5:0at’€ c Rd_l.

(Note that we replace only the first factor Vas(eigj ), a®)) by the cavity dynamics, leaving the second factor
unchanged.) Then

x, X0 x X LN  LaARCANGC)
J . — j — —j .

—J —J 7]
t—1 ) ) )
< > xentt el 0@l - etihet kit |
l=k+1
=y k)
XX QN0 QO k) (149)
:=v (k)

We note that a.s. for all large n,d, we have ||[r¥|| < Cv/d - C/v/d < C’ by the Lipschitz bound for s(-) in

(4:F)

Assumption 2.2 and Lemma 5.3. Then, using similar arguments as in the analysis of r;}" above, we have

d=1 Y7 [uR P — 0 as. for any p > 1. For the second term, we have

WOR = XX 0 ot (v s(0% @ )_vas(gﬁ-@ ak,<j>))5€|€:0ak,a

—1, k+1,
< Cllxs 11X llop 1275 o - 25D o (165, — 689 || + V@b — @@ )16z —oa™

which satisfies d=' Y7 [0 [P — 0 a.s. for all p > 1 by Lemmas 5.2 and 5.3. Thus
XjTXﬂ_Qt_ 1 Qk+1 li] _ XTX Qt LG) QkJJrl (9) Jk (J) + r:k)

where =1 Y7 [r0F)[P — 0 a.s. On the other hand, we have

x] X_; Q00 QOO -

t—1,(5 k+1,(5 k ~
x] X_; 970 ot 508 @k D) . o, |._ea"e
< x) X ;0000 Qb g 509 @k )0 —odh | .

Since X_;, Qt;'(jj), 02@ ), a* () are all independent of X;, a subgaussian tail bound and union bound shows,
a.s. for all large n, d, that for every j € [d],

] X_; @0 aF Oy 505D ak D)) < 0\/logd.
Since ||0-].=0a® || < C/+v/d by Lemma 5.3, this shows
(ITI; ;) = r§® (150)

where lim,, 400 d ™ 2?21 |r§j’k)|P =0 a.s. for any p > 1.
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Analysis of (IV}). By Assumption 2.2 and Lemma 5.3, [(IV})| < v||Vas(8%,a")||[|0:]c=0a" d a.s.

for all large n, d, hence

(1v;) = (151)

where limy, g—y00 d71 Z?:l |rflj)|p =0 a.s. for any p > 1.

Applying (145), (148), (150), and (151) back to (144),

t—1
(95|€:06‘§+1’8 = (1 — 0B + 7(9@3(6‘;, af))rg"j"” (t,s)+~ Z R?](t, k)réej"a)(k, s) + Eé“"(w)
k=s+1

(9J7a)(t+ 1 S) + Et"l‘l NEN)]
where lim,, 400 1 Z;l:l |E§H"(S’j) [P = 0 a.s. for each p > 1, concluding the proof the inductive claim (141)
t+1,(s,4)
for E, .

Claim for 0. |5 017 58 We now show the claim (141) for EtH'[S'i Again fixing s € Zy and i € [n],

let us shorthand n®[* ie and ol as pte and 6. Let us write n' = = (n¢,m",) as in Section 5.1.1, and
write correspondingly y = (yi,y—i), € = (€i,€_i), and X = [x;, X[,]T where x; € R? denotes now (the
transpose of) the i™ row of X, and X_; € R®~1xd Then

611 = 0 4y [=B(XT(X 160" —y ) + xil0" — i) + 5(6",6)| + V2(BUH — b
mih =0t 4y [—ﬁxi (XLi(X 6" —y i) +x: (0" — i) +x{ (67, @t"s)} +V2x{ (b —b")
at+1,s — at,s + v- g(at,s, P(Ot"a)).

Set
rl = V,5(0',a")0.|.—0a" € R%.

Then, taking the derivative of 775“" yields

Oclemont 1 = (1= 2Bl ) Delemont’® +x] (—¥BXT, X _; + 7y Diag(9ys(6",@")) ) 0-|c=06"* + 7"

(152)
Taking derivative of 8¢ yields
5a|a:00t’8 = (I - VﬁX——er—z + VDiag((?OS(et_la at—l))) aa'a:Oet_l o ’Ysza |a Ont b + Vrt_l'
::Qiﬁl
Iterating this equality and using 0. |.—o@°T 1[5 = yx; gives
t—1
Oclem0BV® = 41 Q% x — 4 Z QUM oty D el kR,
k=s+1 k=s+1
Plugging the above expression into (152), we have
Oc|e= 077t+1 € = (1 - 7ﬁ||xi|‘2)aa|6:077 +rX; (Qt - I)Qt—_il s Qs—tlxl
(1) (1)
-8 Z DO Q% 8 —on Z DQ QR pax Tt
k=s+1 k=s+1 —
(I11; 1) (IV)ik (Vi)
(153)
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The arguments to analyze these terms are similar to the above, and we will omit some details.
Analysis of (I;). By the induction hypothesis and concentration of |x;||? around 1,

(L) = (1= B)B  ry(t,s) + 1 (154)
where n =1 Y% | 1P = 0 a.s. for any p > 1.

Analysis of (I1;). Let Q"1 = T—~8XT X _, +~Diag(dys(611, atll)) with 0%, 3% given by the cavity
dynamics of (125). Set

r[;,]l = x;rni_zl e Qi—tlxz — x;rni_zll[z] . Qi"t;l,[z]xz
i —L[ s+1,[4 1 1 s 5
r[2)]2 _ x;rntﬂ_l.,[] . ,le'[ ]Xi -7 Trﬂt,il’[] .. .le’”

1

T Q- Qb
d

i 1 —1l
oy = S et -

Then the same arguments above yield n=! Y% | |r[2i7]j [P — 0 for each j = 1,2,3. Applying the same arguments
for t in place of ¢ — 1, and the first statement of (142) for both ¢ and t — 1,

(IL) =7 'R}(t+1,s) =y 'R}(t, s) + r3) (155)
where n =1 Y0 | P =0 as.

Analysis of (I11; 1), (IV;x), and (V;). Similar arguments as above show

(IT1; ) = (yB) T RY(t+ 1, k)ry(k, 5) — (v8) " Ry (¢, )ry (k, 5) + o™ (156)
(IV)ip = ri (157)
(V) =1l (158)

where n=t Y0 | ilMp 50, n1 > I e 0, and n! > IlP =0 as.

Applying (154), (155), (156), (157), and (158) back to (153), for an error term Ef,“’[s’i] satisfying
n~t Z?:l |Ef7+1’[s’l]|p — 0 a.s., we have

Oclemom; 1 = (L= BB ry(t,s) + Ry (t + 1,8) — Ry (t, s)

t—1
— > (RJ(t+1,k) — R} (t, 5))ry(k,s) + BLH
k=s+1
t—1
= |—yry(t,s) + Ry (t+1,5) — Z Ry(t+1,k)ry(k, s)}
k=s+1
t—1
BTt ) = Bi(tos) + 32 Ry )y (k)| 4B
k=s+1

=0
t
=RY(t+1,8)— > Ry(t+1,k)ryk,s) + BLHHlel
k=s+1

= ﬂflrn(t +1,5)+ Effl"[s’i].

This shows the inductive claim (141) for Ef7+1’[5’i], and hence concludes the induction.
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To conclude the proof, by boundedness of dys(-) and the definition (138), d~* Z?Zl réej &) (t,s) is bounded
by a constant. Furthermore, by the expansion (137) and its following arguments (which hold also at non-

zero € > 0), on the event ||X|op < Co, we have that d—* Z?:l 8592’(S’j)’8 is also bounded by a constant for
all sufficiently small ¢ > 0. Then, writing (-) for the expectation over only the discrete Brownian motion
{b}icz .» we may apply the dominated convergence theorem to the first statement of (141) to get, almost
surely,

d d
1 1 iy
lim d~ Tng( lim yi E - |e—o ! t, J)E — lim Z (. |g:09§-’( ,J),a>

n,d—o0 n,d— oo n,d—o0 d

the last equality holding by Lemma 5.5. Similarly we may apply the dominated convergence theorem to the
second statement of (141) to get, almost surely,

1 . 2 51]7 _ l - 2
nblgoon TrR,(t,s) = Er_r)looéﬁ ZB le=o( >—n1dlgoo<5ﬁ ;&,,( s)) = R)(t,s),

concluding the proof. O

5.2 Discretization of Langevin response function

In the following, we denote x = (6,a) € R4*E and consider (4-5) as a joint diffusion in the variables
xt = (0%, at). Let u: RTE — RIHK and M € RUEFTE)*(@+K) 1o defined by

u(x) = u(8,8) = (~6X" (X0~ y) + (s(0,,@)"_,. 9(a,P(6)))
M = Diag(IdXd, OKXK)

(159)

Given an initial condition x°

Vi e RUFK)X(A+E) defined by

€ R¥*E we consider the continuous-time dynamics for xt € R and

t
xt=x"+ / u(x*)ds + V2 Mb!
0
¢
Vi=14x +/ [du(x®)V?®]ds (160)
0

where du(x) € R(EHK)X(AHK) s the derivative of u(-) at x. We consider also a piecewise-constant version of
these dynamics

Lt)
XL =x+ / u(x3)ds + V2Mblt
0

t
9
. 1) _

Vi = Tgpk + /0 [du(x:) V2 ]ds (161)

where |t] € yZ is as previously defined in (92). We note that the process x* = (6*,a") in (160) is precisely
our adaptive Langevin process of interest (4-5). Similarly, the process Xv in (161) is the piecewise-constant

embedding from Section 4.3 of the discrete dynamics for x!, = (6%, a%,) which we have rewritten in (119).
Denoting [t] = |t] /v € Z+ as in (92), we have
x!, =xl = (0!l al!)) for all £ > 0. (162)

Throughout, we will write (-)xo for expectations only over the Brownian motion b, i.e. conditional on X, 6%, &

and the initial condition xY.
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Lemma 5.6. Let us write the block forms
Ut o« - U’ JiJ8 J ., J
t_ t _ [ Yy ty 1 2 <ty = (271 L2
vie(we ) v (w2 men =G ) e ()

with blocks of sizes d and K. Fizing any T > 0, on the event {||X||op < Co, ||ly|| < CoV/d}, there is a constant
C >0 (depending on T, Cy but not on ) such that for any v > 0, we have

sup [|J7 [lops 195 1 llop < C, sup || J5|1 e, |13 ol < CV/d,
te[0,T) t€[0,T]

t Jt t TJt (163)
sup |41 p, 13 5llF < C/V4, sup [[J4llr, [[J5 4llF < C,
te[0,T] te[0,T]
sup {[[U"{|op, VAW ||, [0 ||op, VAW [} < C, (164)
te[0,7)
sup [|[ULFY — Ul |lop < Cy,  sup [WIH —Wi|p < Cv/Vd. (165)
t€[0,7 t€[0,T

Furthermore, for some v : Ry — Ry satisfying limy_ t(y) = 0 and for any initial condition x° = (8°,a°),

(135 = 3l (195 = 3 ol : : A
s ST T S 1, 3l 1 Tl < ) (A7) 130 +1),
€10,

(166)

Proof. For (163), we have by definition that

}, Jt = (vas(ej.,afff :

j=1

Jt = —BX "X + Diag [(698(9§= at))j:l

Jt - d9g(ata P(Ot))v Jfl = dﬂég(atv P(Ot))a

and similarly for J! ,J! 5, J¢ 5,3 . Then the desired bounds (163) hold on the event where ||X]|o, < Co,
by Assumptions 2.2 and 2.3 for the derivatives of s(-) and G(-).

For (164), let us first prove the bounds for the discrete dynamics || U, ||op and ||W,,||r. By definition, for
each t € vZ,,

U = (14738 O 700, W W = o3 O 4 (1473 )W (167)
Then applying (163),
_ _ _ _ Cy . - _
1T llop < (14 CYITL lop + CVA[WElr, W5 |F < 7E||U§||op + 1+ WP,
which further implies that
105 lop + VAIWE [ < (14 2C7) ([T lop + VAW |r).

Tterating this bound from the initial conditions ﬁg =1I,; and Wg = Ox xq shows (164) for fny, th and all
t < T. For the continuous version ||[U*||o, and ||[W'||p, note that analogously

t t
U =10"+ / (J5U* + I5Wo)ds, W'=W" ¢ / (J5US + J5W*)ds
0 0

so L (U |op + VAW p) < C(||U[op + Vd|[W!|| ). Then (164) follows by Gronwall’s lemma.

For (165), we have by (167) and (163)

Hfjfy—w - ﬁfy”Op < 7(”33,1”01)”{]2”0;) + ||jny||FHny”F) < C%

W3 = Wi|p < v(llji,gllFHfJiIIop + {195 4

FIWLr) < Cy/V.
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For (166), we have by the Lipschitz continuity of s(-) in Assumption 2.2 that J¢ — jfy_l is diagonal with
|38 = I llr < C(|6" — 6] + Vd||at — a,YH). Next using the arguments that led to (109), we have that on
the event {||X||op < Co, ||yH < CoV/d}, with x° = (8°,a°),

A ~ =t ~|
(1610 + {104 1) x0 + Va(lla"|)xo + V(s e < C(16°]] + V@) + V) (168)
and

(16° = 04110 + V([Ja* — & )xo < 1()(116°] + Va[@"] + Va). (169)

This implies the desired bound for (||} —J¢ ;||r)x, and a similar argument leads to the bound for (||J4 —
I 5llF)x Next, by the derivative bounds for G(-) in Assumption 2.3, we have ||J? — J! 5| < C(/|0" —

6| /d+ o' —a H/\/E) and |34 =3¢ ,|lr < C(|60 — 6! /vVd + [|at — ain), hence the desired bounds also
follow by (169). O

Lemma 5.7. Define
& ={IXllop < Co, |yl < CoVd, |0°] < CoVd,||a°|| < Co for all large n,d}. (170)

Fizing any T > 0, there exists a constant C > 0 (depending on T, Cy but not on v) and a function ¢ : Ry —
Ry satisfying limy 0 ¢(y) = 0, such that on &€, for any v >0 and all 0 <s <t <T,

u(7) (171)
v(7)- (172)

Proof. Discretization of Rg. Let {P, };cz, be the Markov semigroup for the discrete dynamics (119), i.e
P f(x) = (f(x}))x. Then applying Proposition A.4, for any s,t € Z with s <,

|~ Tr Ry (t, s) —dilfy*lTng([t] 1, [s])]
In"' TR, (t,s) —n~ 'y TeRY([1] + 1, [s))|

I/\ I/\

aa|a—0<9tﬂf'syj)7€> ‘Perla Pt s— leJ (X)

This implies, for the given initial condition of the dynamics x° = (0°,a°), that
F I Tr R (¢ ZPS+16 P ei(x0).

Let {P;}:>0 analogously denote the Markov semigroup of the continuous dynamics (4-5), i.e. P.f(x) =
(f(x!))x. Then applying Proposition A.1, for any s,t € R, with s <,

d
TrRy(t,s) = P.0;Pi_ee;(x).

Jj=1

Thus, for all s,t € Ry with s <t,

TrRy(t, s) — v ' Tr R ([t]

Z o141 95 P - [Jei("O)’

d

= Ps(zajpt—sej_Zajpﬁ}—[sJei)(xo)‘Jf’( s = Pl (Z (1% ) 0)"
j=1 j=1

(I) (11)
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Bound of (I). By Proposition A.2(c), Z?:l 0;Pr_se;(x) = 320 ((VI7%);;)x, where {x!, V'},5¢ are the

j=1
solution to (160) with initial condition x° = x. Similarly, by Lemma A.5 and the identification (162),

Z;l:l 0Py _6i(x) = Z?Zl«\_f%”*tsj )jj)x, where {x!, V! }i>¢ are the solution to (161). Let us write

o)) w3 e B
with blocks of sizes d and K. Then
d
‘ Zath_sej(x) - 6jP[’Z]7[s]ej(x)} = ‘<Tf [SE Tfﬁ%tj_w)x‘
j=1

< V(U =05l p)x + d{)[05° = TR o). (173)

Since |(t — s) — ([t] — |s])| < C, the second term satisfies |[U*~* — U'~%||,, < Cy by (165). For the first
term, note that by definition

t t
U’ :UO+/ (J5U* + J5W*)ds, Wt:W0+/ (J5U* + J5W*)ds,
0 0
r 7t 0 Ltj IS TTS Is x7S X7 0 Ltj IS TTS s x7S
U7:U —|—/O (JmlUv—i—J%ZWV)ds, W7:W —|—/0 (JV73U7+J7)4WV)ds.
Hence
t ot Le] T 7 -
(0" = U F)x < (197 = I3 1 1P U lop)x + (195 1[lopU* = U || p)x
0

+ (135 = I3 2l P IW2 | F)x + (135 2l FITW* = V_Vilmx} ds

t
+ /L | [0 b + 1311

Let C,C" > 0 be constants depending on T but not ~, and let ¢(v),¢ (v) be constants depending also on
~ and satisfying ¢(7),/(y) — 0 as v — 0, all changing from instance to instance. By Lemma 5.6, with
x = (0,a), we have

U op < G, VAW |r < C 135 lop, 195,10l < O, 133115, 135 o]l < CVd,

(135 =35 sl < (IO + Valjal + V), (135 =I5 2l r)x < e8] + Vdla] + V),

hence
t
(U =0 ) < € [ (0" =03 )+ VAW = W5 )x)dds +(0) (0] + VAl + V). (174
Next we have

- Lt) _ _ ~
(W =Wl < [ [0 = 35,00 lopds + (1355 110° = T3 )

(195 = 33 4l £ IW* L) + (135 4| Rl W = W )| s

t
o N (LSRR SN

By Lemma 5.6, we have also

135117, 135 5l = < C/VA, 135w, 1354 F < C,
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(133~ T35l < ()IO) + VAN + VD), VG - T 4lle < (18] + Valal + Va)
which implies that
X ! s 7S s A7 S 00 P~
VAW =W e < C [ (107 = 0l VAW = Welhe)ds 4o (1 1) +1). - ams)

Combining (174) and (175) yields
(IU" = ULl r + VAW’ = W || )

< C/O ((IU* = U3 llp + VA|W* = W3[|r)x)ds + () (0] + Vdl[al| + Vd),

so Gronwall’s lemma gives sup,c(o 71(|[U* = UL || p)x + VA(|[W' = W ||p)x < (3)(|60]] + Vd| @] + Vd).
Hence the bound (173) reads, for x = (0, ),

d
| >0 Puses () = 3P yes(x)] < ) (V6] + d] + ). (176)
j=1

Applying this with x = x* = (6%, a*), this implies that
(1) < U7 (Vd(|6° o + d([l@*])x0 + d) < e(7)d,

the last step using the bound (168) and conditions for (8°,a°) on the event (170).

Bound of: (I1). Let f(x) = Z;l:l (?jP[;Y]i[S] e;(x). We first establish a Lipschitz b~0u~nd for f: Let {x!, V! }iez,
and {x!, V! }icz, be defined by (161) with initializations x = (8, @) and X = (8, @) respectively, coupled by
the same Brownian motion. We write (-) for the average over this Brownian motion, and denote by fJ‘fy, V~ny

and jt)l,jfmjt 3374 the blocks of ny and du(x!). Then, using f(x) = (Tr UI) with 7 = [t] — [s] as

vy 7,32
established above,

If(x) — f(%)| < [(Tr U] = Tr U])| < Vd(|U] - U7 || ). (177)
We apply a similar argument as in term (), noting that
IO =05 e < Al135 0 = 3l F 1T llop + (L+ 71135 1 lop) 0% = UL |
+ AT = T Sl P IWE I+ AT Ll P WE = W g,
W5 = W | < A1 35 5 = 35 5l F 105 llop + 7135 51 11T = UL 1
F AT s = Il e W E + (1 + (1T 4]l 2) W — W .

By Lemma 5.6, we have | U!||op, VA|W! ||r < C, and || | |lop,
more similar arguments to (166) in Lemma 5.6 show that

132 .1l 3 3
wAlle A3, 134 4l < C. Further-

(1950 =I5 llm), (195 2 = 35 oll ), dCI1 TS 5 =I5 slle), V(TS 4 = 34 4lle)
<c(|o' - 6"+ vala' -a'|l)y < c'(le - 6]l + Vala - al),
the quantities in the last expression denoting the differences in initial conditions. Hence
(105 = UL || + VAW = W )
< (14 CN{[T, = ULl + VAW, = W ) + C (116 - 8] + Valla - al)).
Iterating this bound gives (|[U7 — fJ;HF> < C(||6 - 8| + Vd||a — @l|), which applied to (177) yields our
desired Lipschitz bound

f(x) = f(%)] < CVd(||0 - 8] + Vd||a - al).
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Then, writing x° = (6°,a°) for the original initial conditions,

(II)= |(P, - P

S Sls s nls ~5 =|s|+
1RGO = (R0 — (R o| < V(07 — 8L + Vidl|a® — &5 o
[s]

where we couple {(6,a")},>0 and {0, ai}tzo by the same Brownian motion. Bounding
([16° — 0517 )0 < ([6° — 85 1)x0 + {[165 — 8577 ||)o

and similarly for @, and then applying (168) and (169), we obtain on the event (170) that

s 0ls ~s =[s]+ ~
(116° — 81+ + V@ — &7 o < () (16°] + Val|a®| + V) < Cu(y)V.
Hence also
(I1) < o(y)d.
The proof of (171) is completed by combining the bounds for (I) and (I7).
Discretization of R,. Let P, and P, be the discrete and continuous Markov semigroups defined above.

Let z;(8,a) = e] X0. Introduce the matrix E € R?(“+K) defined by E(f,a) = 6, so that this reads
7;(x) = e] XEx for x = (0,Q). Then for any s,t € Z; with s < ¢, Proposition A.4 gives

ae|5:0<n:7[syi]7€>x = ’YP’Y-i-lezTXEVPt’Y—s—lxi(x)'

S

Let us introduce the shorthand P/ (x) = (x)x as a map P : RT™K — RK so Pl;(x) = e/ XEP] (x).

Denote also dP;(-) : RITE — RUEFK)x(d+K) a5 the derivative of this map x — P} (x). Then the above may
be written as

Ocle=o (") = 7P, (] XEAPY () TE X ;) (%),
implying that
YRS (1s) = 08° 3 Pl (e XEAPY () TBTX e, ) (x°) = 08P, Tr AP, _, ()BT X XE|(x").
i=1
By Proposition A.1, we have analogously for any s,¢ € Ry with s <t that
TrR,(t,s) = 682 P, Tr [dP—s()ET X XE|(x").
Hence for all s,t € Ry with s <t,

| Te R (t,5) = 77 TR (1] + 1, [s))

_552{

P, Tr [(dPt,S(-) . dP[Z]i[S]())ETXTXE} (XO)’ ¥ ‘(PS — P Tr [dP[ZHS] (-)ETXTXE} (XO)‘ } .

(1 (I1)

Bound of (I). Note that by Proposition A.2(c), TrdP;,_s(x)E'X"XE = (Tr VI *E"X T XE), = (Tr Ut~*.
X T X)x, where {x*, V! },>¢ follow the dynamics (160) and U? as before is the upper-left block of V*. Similarly,
Lemma A.5 yields that TrdP]_ (x)ETXTXE = (Tr Vi ETXTXE), = (Tr U5~ PIXTX),, where

{x!,Vi}>0 follow (161). Hence, with x = (8, ),

’ Tr (dPt_s(x) 4P

e (x))ETXTXE’ = (Tr(U'* — T LHXTX),

< VA|IX[I2, (10 = T )
< un)(Vdlo|| +dljall + d)
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using the preceding bounds leading to (176). Then applying this with x = x* shows (I) < ¢(7)d.

Bound of (/7). Let f(x) = Tr dP[Z]_
arguments as above,

(5] (x)E'XTXE = Tr(ﬁwxXTX, where 7 = |t] — |s]. By the same
f(x) = f(x)] < CVd(||6 - 8] + Vd||a —al),
leading to (/1) < ¢(y)d. Combining these bounds for (I) and (IT) shows (172). O

We now conclude the proof of Theorem 2.8.

Proof of Theorem 2.8. The claims for d ' Tr Cy(t, s), d~* Tr Cy(t, *), and n~! Tr C, (¢, s) follow immediately
from the definitions of these quantities, Corollary 2.6 applied with fy(6°%,60%) = 0°60, fo(0*,0") = 6*0¢,
I e,n®nt) = 88%(n* —n* —e)(n* — n* — ¢), and an application of the dominated convergence theorem
to take expectations over {bt}te[O,T] in the almost-sure convergence statements of Corollary 2.6.

For the claim for d=! Tr Ry(t, s), for any s,t € [0,T] with s < t, by Lemma 5.7, almost surely

1 1 1
limsup |= TrRo(t,s) — — - = Tr Ry ([t] + 1, [s])| < ¢().
n,d— oo d Y d

By Lemma 5.1 and the identification (99) of Lemma 4.3, almost surely

fim RG]+ 1,15 = - B + L[s) = R3¢+ 7.5,

n,d—00 7y

The bound (104) implies uniform convergence of R (¢, s) to R} (t,s) as v — 0, and R} (¢, s) is continuous in
s,t by Theorem 2.4 and the definition of the space S¢°**. Thus

lim |R) (t + 7, s) — Ro(t,s)] = 0.
y—0
Then, taking the limit n,d — oo followed by v — 0 shows almost surely

1
lim p TrRy(t,s) — Ro(t,s)| = 0.

n,d— oo

The proof of the claim for n=! Tr R, (¢, s) is the same. O

A Existence of linear response functions

A.1 Continuous dynamics

Fix any dimension m > 1, and consider the function classes
A= { f:R™ = R twice continuously-differentiable : V f(x), V2 f(x) are globally bounded},
B= { f:R™ — R™ twice continuously-differentiable :

V fi(x), V2 fi(x) are globally bounded and Hélder-continuous for each i = 1,... ,m}.

We consider a general stochastic diffusion over x! € R™ given by
dx! = u(x")dt + V2 M db' (178)

where b € R™ is a standard Brownian motion, u(-) a Lipschitz drift function, and M € R™*™ a deterministic
diffusion coefficient matrix. We note that the joint evolution of x* = (8%,a') in (4-5) is of this form, with
m =d+ K and with u(-) and M as defined in (159). The conditions of Theorem 2.8 ensure that this drift
function wu(-) satisfies u € B.

We prove in this section the following result:
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Proposition A.1. Suppose u € B, and let {x'};>0 be the solution of (178) with initial condition x° = x.
For anya e A, b€ B, and x € R™, define

R(t,s) = Ps(b" VP_sa)(x) (179)

where P,f(x) = E[f(x!) | x° = x]. Then {R(t,s)}o<s<t is the unique continuous function for which the
following holds:

Let h: [0,00) = R be any continuous bounded function, and for each € > 0 let {x"*};>¢ be the solution
of the perturbed dynamics

ax"e = (u(x"€) + eh(t)b(x"%) ) dt + VEM db! (180)

0,e

with the same initial condition x*¢ = x. Then for any t > 0,

lim E(E[a(xtvs) | x%¢ = x] — Efa(x!) | x° = x]) - /O t R(t, s)h(s)ds.

e—0 ¢

Statements similar to Proposition A.1 have been established in [55,56]. Our setting here is somewhat
non-standard, in that M may be rank-degenerate, so the PDE describing the law of {x’};>¢ is not uniformly
elliptic. We show Proposition A.1 in two steps, first deriving regularity estimates for the Markov semigroup
{P,}+>0 in such settings using the results of [63], and then applying the proof idea of [56, Theorem 3.9] with
these regularity estimates in place of the Schauder estimates derived therein from uniform ellipticity.

We will write

Pif(x) = (f(x"))xo=x = E[f(x') | x” = x] (181)
for the Markov semigroup associated to (178). When the initial condition x" = x is clear from context, we
will abbreviate (f(x")) = (f(x"))xo—x. We denote the infinitesimal generator L of this semigroup by

Lf(x) =u(x)"'Vf(x)+TrMM' V2f(x). (182)
Throughout this section, constants C,C’, ¢ > 0 may depend on the dimension m and the functions u, a, b.
Proposition A.2. Suppose the assumptions of Proposition A.1 hold. Let u; : R™ — R be the it" coordinate
of u, and let Oju; and 0;0,u; be its first-order and second-order partial derivatives.

(a) For each x € R™, the diffusion (178) has a unique solution {x'};>o with initial condition x° = x.

Furthermore, there exists a modification x*(x) of this solution for each initial condition x° = x such that
x'(x) is jointly continuous in (t,x) and twice continuously-differentiable in x.

(b) For every i = 1,...,m, let 2t(x) be the i*" coordinate of x*(x), and let vi(x) = Val(x) € R™ and
H!(x) = V2zl(x) € R™*™ be its gradient and Hessian in x. Then (vi(x), H!(x)) are solutions to the
first and second variation processes

dvi =377 Qju(x'(x)) - vi dt
dH} = (X7 950kui(x' (%)) - viviT + 3070 dju(x! (x)) - HY ) dt

with initial conditions v?(x) = e; (the i™ standard basis vector in R™) and H)(x) = 0.

Furthermore ||[vi(x)||2, [|H!(X)|lop < €t for some C' > 0 and all x € R™ and t > 0.

(183)

(¢c) For any f € A, the map (t,x) — P,f(x) is continuously-differentiable in t and twice continuously-
differentiable in x, and furthermore VP, f(x), V2P, f(x) are uniformly bounded over t € [O T] and
x € R™ for any fived T > 0. For any t > 0 and initial condition x° = x, letting (x',vi, H!) =
(x!(x), vi(x), H!(x)) be as defined in parts (a) and (b), we have

VP, f(x <Zaf >

(184)
V2P, f(x) <Z<96kf vtv;T+Zaf >
7,k=1
and
8tPtf(X) = Pth(X) = LPtf(X) (185)
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Proof. Since the coordinates of u € B are Lipschitz with bounded and Holder-continuous first and second
derivatives, part (a) follows directly from [63, Theorems I1.1.2, 11.3.3].

For part (b), since u € B has bounded and Hélder-continuous first derivative, [63, Theorem I1.3.1] shows
that x’(x) has derivative V!(x) = dyxx! € R™*™ solving the first-variation equation

dV? = [du(x)]Vidt, V°=1

Noting that vi = Vaf(x) is (the transpose of) the i row of V?, this gives the first equation of (183) with
initial condition v = e;. Next, consider the joint diffusion

d(x!, V) = P(x!, Vt)dt + V2(Mdbt,0),  P(x,V) = (u(x), [du(x)]V).

The condition u € B implies also that P(x, V) has bounded and Holder-continuous first derivative dP(x, V),
which we identify as a square matrix of dimension (m + m?) x (m + m?) under the vectorization of V.
Then [63, Theorem I1.3.1] applied again shows that (x*(x), V'(x)) has derivative U* = d v)(x*, V') €

R(m+m*)x(m+m?) golving the second-variation equation
dU* = [dP(x!, VH)]U'dt, U'=1 (186)

Noting that H! = V2z!(x) is the block of U* corresponding to dxv?, and that the block corresponding to dyx’
is V!, one may check that the restriction of (186) to the dxv! block gives exactly the second equation of (183)
with initialization H? = 0. If C' > 0 is an upper bound for sup,cgm [|du(x)|lop and supycpm |[dP(x, V)| op,
then integrating these equations gives || V¥|lop < e“Y[|[VO|lop = et and ||U?|op < €U ||op = e, which
implies the bounds for v and HY.

For part (c), consider any f € A. Applying (b) and the chain rule,

fo(xt(x)) = Z 8jf(xt)vf»
! - (187)
Vi (x) = Y 050k f(x)ViviT + )0, f(x")HY.
j=1

jk=1

By parts (a—b) and the condition f € A, for any T > 0, the right sides of (187) are uniformly bounded and
continuous in (¢,x) over t € [0,T]. Then dominated convergence implies that P, f(x) is twice continuously-
differentiable in x, that VP, f(x) = Vx(f(x"))xo—x = (Vxf(x(x))) and V2P, f(x) = VZ(f(x'))xo—x =
(V2 f(x'(x))), and that these are also uniformly bounded and continuous over ¢ € [0,7] and x € R™.

For the derivative in ¢, by It6’s formula

F) = )+ [ Loe)ds+ [ Vr6e)TVEMabe

where L is the generator defined in (182). Since V f(x®) is bounded over s € [0,t] and x*® is adapted to the
filtration of {b*}, the last term is a martingale, so taking expectations gives

P = () = 160 + [ (L7,
Hence, differentiating in ¢, for any ¢ > 0 we have
0P f(x) = (LE(x)) = PLf (). (188)
By Jensen’s inequality, for any s,¢ > 0, we have
(PLA)) < (LA = ((u(x) TV + TrMMT V2 (x))2) < L+ ([x]3),

the last inequality holding for some C' > 0 by boundedness of V f, V2 f and the Lipschitz continuity of u. Then
[63, Theorem I1.2.1] implies that PsLf(x!(x)) is uniformly bounded in L? over compact domains of s,¢ > 0
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and of the initial condition x € R™, and hence is also uniformly integrable over these domains. This uniform
integrability for s = 0 and dominated convergence shows that (Lf(x?)) in (188) is continuous in (¢,x), and
hence P, f is continuously-differentiable in ¢. Taking the limit ¢ — 0 in (188), also Lf(x) = lim;_,0 0; P, f (x).
Then applying this with P, f € A in place of f,

*

LP.f(x) = lim 0, Py f(x) = lim 8,(P, f(x)) & (L7 (")) = PLF(x).

Here, to justify (x), we note that 9sPsf(x') = PsLf(x") by (188), so (*) follows from uniform integrability
of this quantity and dominated convergence to take the limit lims_,o 0s(Psf(x")) = lims_o(PsLf(x")) =
(Lf(x")). Combining with (188), this shows all claims about 9, P; f in part (c). O

Now consider the perturbed dynamics (180) for any € > 0. Let us denote the perturbed drift as

u®(t,x) = u(x) + eh(t)b(x).

For any ¢t > s > 0, we define its (time inhomogeneous) Markov semigroup and infinitesimal generator

P f(x) = (f())womx = E[f(x') | x* =x],  Lif(x) = (t,x)" Vf(x) + TrMM'V*f(x).
The following extends the semigroup regularity estimates of Proposition A.2 to this perturbed process.

Proposition A.3. Suppose the assumptions of Proposition A.1 hold. Then for any f € A, the map
(5,t,x) = P, f(x) is continuously-differentiable in (s,t) and twice continuously-differentiable in x, and
furthermore VPatf( ), V2PE, f(x) are uniformly bounded over s,t € [0,T] and x € R™ for any fized T > 0.
We have

0P, (%) = PS,Lif(x),  0sPS,f(x) = —LPS, f(%). (189)

Proof. We omit the superscript € and write x = x%¢. The same arguments as in Proposition A.2 using [63,
Theorems I1.1.2, 11.3.1, I1.3.3] show, for each s > 0 and x € R™, there exists a modification {x'(s, x)}t>S
of the solution to (180) with initial condition x* = x, such that x’(s,x) is jointly continuous in (s, t, x) an
twice continuously-differentiable in x. Each component z!(s,x) of this solution has gradient vi = Vyzl(s, )
and Hessian H! = VZ2z!(s, x) solving

avi =Y 9jus(t,x (s, x)) - vhdt
dHY = (7, 9,00 (1, xH(s,x)) - vivh T + ™ jus(t,x! (s, x)) - HE)dt

with initial conditions v{(s,x) = e; and H(s,x) = 0. Furthermore, ||[vi(s,x)|2, [ H:(s,%)|lop < C~*) for
some C >0and allx € R™ and t > s > 0.

Then for any f € A, the same dominated convergence argument as in Proposition A.2 shows that PZ, f(x)
is twice continuously-differentiable in x, where its first and second derivatives are uniformly bounded and
continuous in (s,¢,x) over s,¢t € [0,7] and may be computed by differentiating in x under the integral.
The same argument as in Proposition A.2 using Itd’s formula shows also that Pg,f(x) is continuously-
differentiable in ¢, with

OuP;, f(x) = PoyLif(x) = (Lif(x"))xe—x-

For the derivative in s, we have by It6’s formula for any A > 0,
o—nsf () = (f(x7))xs-nox = f(x) +/ h<Lif(XT)>xs—h:x dr.

The same argument as in Proposition A.2 shows that L¢ f(x'(s,x)) is uniformly integrable over compact
domains of t > s > 0 and of x € R™, so by dominated convergence we have limp, o, yt5(L5f(X"))ys-heyx =
LE(x). So taking the limit h — 0 above and rearranging shows

Py f(x) — f(X)'

e T s—h,s
LSS () = lim -

(190)
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Then for any s < ¢, applying this to PS,f € A in place of f gives

Pouf (%) = PLy S (%) Pof(x) = Pry ((P5 ) (%)

i h = jim h

= —LiPS f (%),

ie. PS,f(x) is left-differentiable in s. Here —LSPZ,f(x) = —u®(s,x)' VPE, f(x) — Tt MM V2P, f(x)
is continuous in (s,?,x) by the contlnulty of VP¢,f and V2P‘€tf argued above. Then Pg,f(x) is also
continuously-differentiable in s with 9, P%, f(x) = LEPE (%), O

Proof of Proposition A.1. Let {x'};>0 and {x"“};>¢ be the solutions to the unperturbed and perturbed
diffusions. Let {P;} and L be the semigroup and infinitesimal generator for {x'};>o, and let {P$,} and L
be those for {x"¢};>0. We write s, d; for the derivatives in s,t and reserve V f(t,x) for the grad1ent of fin
its second argument x.

For any ¢ > s and r € [s,t], define f*(r,x) = P ,a(x). Then by It6’s formula applied to the unperturbed
process {x'}:>o0,

t t
fa(t,xt):f‘g(s,xs)—i—/ (&—I—L)f‘g(r,xr)dr—i—/ Vfa(r,xr)—r\/il\/[dbr.

Proposition A.3 shows P7,a € A, so Vf*(r, x") is uniformly bounded and the last term is a martingale.
Then, taking expectations under the initial condition x* = x and applying (189),

t
(@O s = (R o = £330+ [ @0+ 1 omnr
t
= P;ta(x) + / ((-LS + L)Pita(xT»xs:xdr
t
= ;ta(x) — / ah(r)<(bTVPf7ta)(xT)>xs:xdr
t
= P;ta(x) - 5/ h(T)PT,S(bTVPﬁta)(X)dT.
Applying this also with ¢ = 0 and PQ . = P._s and taking the difference, we obtain the identity
t
Pga(x) — Pi_sa(x) = a/ h(r)PT,S(bTVPita)(x)dr. (191)

From the definition of P, f(x) and form of VP, f(x) in (184), we have

P (bTVPa)(x) = <(bTVP;ta)(xT*S)> N (192)
VP, _,(b"VP:,a) <Za% [bTVPE a](x"~ S)v55> : (193)
i=1 X0=X

Since b € B is Lipschitz by assumption, and P ,a € A by Proposition A.3, we have

(6T V P a)(x" )], [0, [bT VP a](x7 )] < C(L+ [x"°12)
for some C' > 0. Then these quantities are uniformly integrable over bounded domains of s < r <t and x,
by [63, Theorem II.2.1]. Furthermore ||v; ||z is bounded by Proposition A.2(b), so the integrands on the

right sides of both (192-193) are also uniformly integrable over these domains. Then applying dominated
convergence, we may differentiate (191) in x under the integral to obtain

t
VP;,a(x) — VP_sa(x) = a/ h(T)VPT,S(bTVPita)(x)dT,
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and take the limit € — 0 to get VP5 ,a(x) — VP;_ a(x). Applying this with s = r to the right side of (191),
and taking the limit ¢ — 0 in (191) using uniform integrability of (192), we arrive at

. Pfia(x) — P_sa(x)
lim —
e—0 g

— / t h(r)Pr_s(b"VP,_,a)(x)dr.

For s = 0, this means

e—=0 ¢

i 2 () ~ o)) = [ HOIPLOT R a) 0

verifying that (21) holds with response function R(t, s) given by (179). Continuity of this function R(¢, s) in
(s,t) follows from the above uniform integrability statements, together with continuity of ¢ — VPy(x) in ¢
as shown in Proposition A.2.

For uniqueness, observe that if R(¢, s) is any continuous function different from R(t, s), then they must
differ on a subset of (s,t) of positive Lebesgue measure. Then there exists a continuous bounded function
h: [0,00) — R such that fot R(t,s)h(s)ds # fot R(t, s)h(s)ds, implying that R cannot satisfy (21). Thus this
response function R(¢,s) is unique. O

A.2 Discrete dynamics
We record (elementary) analogues of the preceding results for discrete dynamics
x = x! 4 u(xh) + V2M(b!! — bt) (194)

where {b'};cz, is a Gaussian process with b’ = 0 and independent increments b*™! — b’ ~ N(0,~I), for
some v > 0. The following is an analogue of Proposition A.1.

Proposition A.4. Suppose u : R™ — R™ is Lipschitz, and let {x'}icz, be the solution of (194) with initial
condition x° = x. For any Lipschitz functions a : R™ — R and b : R™ — R™, define

R(t,s) = Ps(b" P(VP_s_1a))(x)

where P, f(x) = E[f(x!) | x" = x]. Then for any s,t € Z, with s < t,

R(t,s) = lim * (Efa(x") | x°* =] ~ Ela(x') | x° = x])

e—=0 ¢
where {xt"f}tez+ 1s the solution of the perturbed dynamics

Xt-i—l,a _ Xt,a + u(Xt’E) + Eb(xt’a)lszt + \/iM(bt-i-l _ bt)

0,e _

with the same initial condition x X.

Proof. Write as shorthand P = Py. If f is L-Lipschitz, then (coupling the processes with initializations x,y
by the same {bt})

IPf(x) — Pf(y)| = [E[f(x +u(x) — V2MDb")] — E[f(y + u(y) — V2MDb")]| < L(1 + L.)|x — y||

where L, is the Lipschitz constant of u. Hence Pf is Lipschitz, so P, f is Lipschitz for all ¢ > 0.
Let Pf be the Markov semigroup for the dynamics

x = xt fu(x) +eb(x!) + V2M (b — bl),
and write as shorthand P® = Py. Then by definition,

Ela(x"?) | x%¢ =x] = P,P°P,_, 1(x),
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SO

1 o 0e .
lim = (E[a(xt’ ) [ %% = x] — Ela(x?) | x° = x]) = O.]ccoPsPEP_y_1a(x). (195)

Note that for any L-Lipschitz function f, we have
D-P* f(x) = O-E[f(x + u(x) + eb(x) + b")] = b(x) "E[V f(x + u(x) + eb(x) + b')] (196)
where the derivative may be taken under the expectation by dominated convergence. In particular,
Oele=0 P f(x) = b(x) "E[Vf(x + u(x) + b")] = b(x) " P(V f)(x).

The derivative (196) is also bounded for all ¢ > 0 by L||b(x)||, which is integrable under Ps since b is Lipschitz.
Then again by dominated convergence,

Oe|e=0Ps PE Py 1a(X) = Ps0:|c—oP°P;_s_1a(x) = Py(b" P(VPi_s_1a))(x),
and the result follows from applying this to (195). O
The following is an analogue of the first statement of (184).

Lemma A.5. Let {x'}icz, be the solution to (194) where u(-) is Lipschitz, and consider the first variation
processes

m
1t ety Lot
v; —vi—l—g Ojui(x") - v}
j=1

with initializations v9 = e;. Denote P,f(x) = E[f(x!) | x* = x] = (f(x)). Then for any Lipschitz function
fiRFE LR,

VPf(x) = <§ajf<xf>v§>.

Proof. Stacking V! = [vi ... vl ]T € R™*™ with initial condition V° = I,,,, the evolution of V* is

VI = [+ du(x")|V*

where du is the derivative of u(-). Writing x*(x) for the dependence of x’ on the initial condition x° = x,

and writing dx!(x) for its derivative in x, by the chain rule we have dx'*!(x) = [I + du(x")]dx!(x), with
initial condition dx°(x) = I. Thus (V*)T = dx*(x) for all £ > 0, so

Vif (' (x)) = [dx' (x)] TV f(x') = Y 9/ (xS
j=1
By dominated convergence we have VP, f(x) = Vx(f(x!(x))) = (Vxf(x'(x))), and the result follows. O
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