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Abstract

Standard procurement models assume that the buyer knows the quality of

the good at the time of procurement; however, in many settings, the quality is

learned only long after the transaction. We study procurement problems in which

the buyer’s valuation of the supplied good depends directly on its quality, which

is unverifiable and unobservable to the buyer. For a broad class of procurement

problems, we identify procurement mechanisms maximizing any weighted average

of the buyer’s expected payoff and social surplus. The optimal mechanism can

be implemented by an auction that restricts sellers to submit bids within specific

intervals.
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1 Introduction

Procurement is essential for many different types of organizations. For example, hospi-

tals rely on it to acquire medicines and medical devices (Bonaccorsi, Lyon, Pammolli,

and Turchetti, 2000), and governments use it to obtain weapons and public services

(Lalive, Schmutzler, and Zulehner, 2015). More generally, firms obtain most of their

production inputs as well as many components of their product lines from procurement.

In many procurement contexts, the buyer’s valuation of the supplied good depends

directly on its quality. However, at the time the procurement contract is signed, the

quality is often (at least partially) unverifiable in court and unobservable by the buyer.

For example, this issue arises in both medical and government procurement, when ac-

quiring medicines, medical devices, new weapons, or transportation systems. Although

the buyer may have an estimate of the good’s quality before signing the contract, the

true quality often remains uncertain until long after the contract is executed. As

pointed out by Manelli and Vincent (1995) and Lopomo, Persico, and Villa (2023),

in such contexts, buyers who run standard procurement auctions may harbor “qual-

ity concerns”—that is, aggressively bidding sellers could be offering low-quality goods,

potentially leading to undesirable outcomes.

In this paper, we ask the following question: how to optimally design the procure-

ment mechanism when quality concerns are present? Under mild regularity conditions,

a bid-restricted auction (BRA) turns out to be optimal for the buyer. A BRA is similar

to a second-price auction, which induces an equilibrium in weakly dominant strategies.

The primary difference is that sellers are restricted to bidding within a collection of

intervals; see Figure 1 for an illustration. The seller with the lowest bid wins the auc-

tion and supplies the good, with ties broken uniformly at random. In most cases, the

winning seller receives a payment equal to the second lowest bid; however, in special

circumstances, a “payment reduction rule” is applied, resulting in a payment lower

than the second lowest bid. This special rule helps eliminate sellers’ incentives to take

advantage of the “gaps” between the bid intervals.

More generally, we consider the problem of maximizing a weighted average of the

buyer’s expected payoff and the social surplus, subject to the requirement that the

buyer’s expected payoff is nonnegative. This constraint is particularly relevant in

government procurement design, as the government typically aims to avoid running

a deficit. In this more general setting, an optimal procurement mechanism is still a

BRA, although a stochastic reserve price might need to be introduced.
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b1 = 0 b1 b2 b2 = 1

Figure 1. The illustration of a BRA. Sellers who wish to participate in the auction must
submit a bid b within the two bid intervals, [b1, b1] and [b2, b2]. In other words, bids strictly
between b1 and b2 are not allowed.

The key insight is that the optimal BRA balances the tension between inducing price

competition and alleviating quality concerns. Leveraging the structure of a second-

price auction, a BRA fosters price competition within bid intervals, where quality

concerns are mild. By prohibiting bids in the “gaps” between bid intervals—where

quality concerns are severe—harmful price competition is eliminated. This reduces the

likelihood of selecting a seller offering a low-quality good, thereby mitigating quality

concerns. Put differently, while “global” quality concerns might necessitate abandoning

competitive bidding altogether, “local” quality concerns can effectively be addressed

by excluding certain bids from the auction.

We establish the optimality of BRA using a “reduced-form approach.” Specifically,

we transform the procurement design problem into choosing an interim allocation rule,

also known as a “reduced form” in the literature, that maximizes a linear functional

identified by some virtual surplus. An interim allocation rule specifies the expected

probability that the buyer procures from each seller based on their reports of their pri-

vate information. The interim allocation rule must satisfy a monotonicity constraint to

ensure truthtelling and Border’s (1991) condition to guarantee feasibility. We then ap-

ply techniques from linear optimization under a majorization constraint, developed by

Kleiner, Moldovanu, and Strack (2021), to solve for the optimal interim allocation. We

complete the argument by verifying that a BRA induces the optimal interim allocation.

The study of procurement problems with unverifiable and unobservable qualities

is pioneered by Manelli and Vincent (1995). They point out that in many cases, a

standard procurement auction may perform poorly due to quality concerns; instead,

it may be optimal to sequentially render take-it-or-leave-it offers to potential sellers.

Manelli and Vincent (2004) show that some “hybrid mechanisms,” which combine

elements of sequential offers and auctions, can be optimal in specific procurement

settings. In contrast to these studies, our work identifies procurement mechanisms

that maximize any weighted average of the buyer’s expected payoff and social surplus

across a broad class of procurement problems.

Lopomo, Persico, and Villa (2023) show that when the buyer’s virtual surplus is
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single-peaked, a mechanism called the Lowball Lottery Auction (LoLA) is optimal.

LoLA differs from a standard second-price procurement auction with a reserve price

only in that sellers are not allowed to bid below a certain “floor price.” Our work

generalizes Lopomo et al. (2023) by identifying the optimal procurement mechanisms

in a broader class of environments;1 indeed, when the buyer’s virtual surplus is single-

peaked, the optimal BRA is a LoLA. More importantly, our results elucidate that what

matters is not merely whether to use a floor price, but rather to disallow sellers from

submitting bids in certain intervals where quality concerns are severe. Furthermore,

Lopomo et al. (2023) do not impose the restriction that the buyer’s expected payoff

must be nonnegative, and therefore do not offer insights into how this constraint should

be addressed, an issue that can be relevant in practice.2

The remainder of this paper is organized as follows. Section 2 sets up and trans-

forms the optimal procurement design problem. For clearer insights, in Section 3 we

study the special case of maximizing the buyer’s expected payoff; Section 4 tackles

the general problem of maximizing any weighted average of the buyer’s payoff and the

social surplus, with the constraint that the buyer’s payoff has to be bounded below

by zero. Section 5 discusses an extension of the main model as well as a dynamic

implementation of the optimal mechanism. Section 6 concludes.

2 The procurement problem

The model, which is essentially the same as in Manelli and Vincent (1995, 2004),

consists of one buyer and n > 1 symmetric potential sellers. The buyer would like

to procure one unit of a product from one of the potential sellers. Each seller s has

private information qs ∈ [0, 1]. We will refer to qs as the quality of the product offered

by seller s; it can also be interpreted as seller s’s cost or reservation value.3 Qualities are

independently and identically distributed according to a continuous density function f ;

we denote the corresponding cumulative distribution function by F . We also assume

that f(q) > 0 for q ∈ (0, 1], and f(0) = 0 only if limq→0 (F (q)/f(q)) = 0. Since we

assume that the potential sellers are symmetric, we often suppress the subscript of a

1This is not merely a technical curiosity; violations of their assumption may naturally arise due
to the nature of the procurement setting (see Example 1 for a concrete example).

2Interested readers are directed to Che (2008) for a survey of the procurement literature and
Lopomo et al. (2023) for a review of recent developments on procurement design under quality con-
cerns.

3These interpretations are further elaborated in Section 5.1.
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seller’s quality.

All agents in our model are expected utility maximizers. If the buyer procures the

good from a seller, and a transfer t is made, the seller’s payoff is t− q. If a seller does

not sell, her payoff is zero. The buyer’s valuation for a good of quality q is a continuous

function v(q); we assume that v(0) ≥ 0. If the buyer makes a transfer t and receives

an object of quality q, her payoff is v(q) − t; if no trade occurs, the buyer’s payoff is

zero.

By the revelation principle, it suffices to focus on direct mechanisms. A direct

mechanism is characterized by a pair of functions ps : [0, 1]
n → [0, 1] and ts : [0, 1]

n → R

for each seller s. If the sellers report q := (q1, . . . , qn), the buyer procures from seller

s with probability ps(q), and she makes transfer ts(q) to seller s. Because the buyer

wishes to acquire (at most) one unit of the product, for each q ∈ [0, 1]n, the feasibility

constraint must hold:
n∑

s=1

ps(q) ≤ 1; (F)

(F) requires that the probability that the buyer buys from one of the potential sellers

is less than or equal to 1.

If seller s reports q′s and assumes that the rest of the sellers report truthfully, she

would expect that the buyer procures from her with probability

Ps(q
′
s) :=

∫
ps (q

′
s, q−s) f

n−1 (q−s) dq−s,

where q−s := (q1, . . . , qs−1, qs+1, . . . , qn), and fn−1(q−s) :=
∏

k 6=s f(qk); she would ex-

pect to receive a monetary transfer of

Ts(q
′
s) :=

∫
ts (q

′
s, q−s) f

n−1 (q−s) dq−s.

We call Ps(·) the interim allocation probability for seller s. Then the expected

payoff of seller s with quality qs from reporting q′s can be written as

πs(q
′
s | qs) := Ts(q

′
s)− qsPs(q

′
s);

and we let πs(qs) := πs(qs | qs). We say that a direct mechanism {ps, ts}
n
s=1 is incentive

compatible if for each seller s, all q′s ∈ [0, 1], and (almost) all qs ∈ [0, 1], πs(qs) ≥

πs(q
′
s | qs); say that it is individually rational for the sellers if πs(qs) ≥ 0 for each
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seller s and qs ∈ [0, 1]. Finally, the buyer’s expected payoff under direct mechanism

{ps, ts}
n
s=1 is

πb :=

n∑

s=1

∫

[0,1]n
[v (qs) ps(q)− ts(q)] f

n(q) dq, (1)

where fn(q) :=
∏n

s=1 f(qs).

Lemma 1 characterizes the set of incentive compatible direct mechanisms and also

eliminates transfers from the buyer’s expected payoff. The proof is standard and hence

omitted.

Lemma 1. Let {ps(·)}
n
s=1 be a collection of allocation functions, where ps : [0, 1]n →

[0, 1] satisfying (F).

(1) There exists a collection of transfers {ts(·)}
n
s=1 such that {(ps(·), ts(·)}

n
s=1 is in-

centive compatible if and only if for each s = 1, . . . , n, Ps(·) is decreasing.

(2) For any incentive compatible direct mechanism {(ps(·), ts(·)}
n
s=1,

i. it is individually rational for the sellers if and only if πs(1) ≥ 0; and

ii. the buyer’s expected payoff is given by

πb =
n∑

s=1

∫ 1

0

[
v (qs)− qs −

F (qs)

f (qs)

]
ps(q)f

n(q) dq −
n∑

s=1

πs(1).

Without loss of generality, we can set πs(1) = 0 for all s = 1, . . . , n. Then by

Lemma 1, the weighted average of the buyer’s expected payoff (with weight γ) and the

social surplus (with weight 1− γ) can be written as

γ
n∑

s=1

∫ 1

0

[
v (qs)− qs −

F (qs)

f (qs)

]
ps(q)f

n(q) dq + (1− γ)
n∑

s=1

∫ 1

0

[v (qs)− qs] ps(q)f
n(q) dq

=

n∑

s=1

∫ 1

0

[
v (qs)− qs − γ

F (qs)

f(qs)

]
ps(q)f

n(q) dq (2)
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Therefore, we consider the following maximization problem:

max
{ps}ns=1

n∑

s=1

∫ 1

0

[
v (qs)− qs − γ

F (qs)

f(qs)

]
ps(q)f

n(q) dq

subject to (F)

Ps(·) is decreasing for each s = 1, . . . , n
n∑

s=1

∫ 1

0

[
v (qs)− qs −

F (qs)

f (qs)

]
ps(q)f

n(q) dq ≥ 0.

The inequality constraint requires that the buyer’s expected payoff must be nonnega-

tive.

When γ = 1, the above problem becomes the buyer’s expected payoff maximization

problem, which can be written as

max
{ps}ns=1

n∑

s=1

∫ 1

0

[
v (qs)− qs −

F (qs)

f (qs)

]
ps(q)f

n(q) dq

subject to (F)

Ps(·) is decreasing for each s = 1, . . . , n.

The inequality constraint is not needed because setting ps(q) = 0 for all q ∈ [0, 1]n and

for s = 1, . . . , n is feasible, ensuring that the value of the problem is nonnegative.

2.1 Detour: Majorization

Let f, g ∈ L1(0, 1) be decreasing. Say that f majorizes g, denoted by g ≺ f , if the

following two conditions hold:

∫ x

0

g(s) ds ≤

∫ x

0

f(s) ds for all x ∈ [0, 1], (3)

∫ 1

0

g(s) ds =

∫ 1

0

f(s) ds. (4)

Say that f weakly majorizes g, denoted by g ≺w f , if (3) holds (but not necessarily

(4)). In what follows, we make use of some results on maximizing a linear functional

under a majorization constraint developed by Kleiner et al. (2021). For readers’ con-

venience, we include these results in Appendix A.
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2.2 Transforming the problem: A reduced form approach

One novelty of this paper is that, instead of using a duality approach to characterize

the optimal ex post allocation rule, we adopt a reduced form approach: we solve for

the optimal interim allocation and identify a trading mechanism that implements it.

To this end, note that the objective function (2) can be written as, in terms of

interim allocation probabilities,

n∑

s=1

∫ 1

0

[
v (qs)− qs − γ

F (qs)

f (qs)

]
Ps(qs)f(qs) dqs.

Say that the collection of interim allocation probabilities {Ps}
n
s=1, where Ps : [0, 1] →

[0, 1] for each s, is implementable if there exists a collection of allocation probabilities

{ps}
n
s=1 satisfying (F) that induces {Ps}

n
s=1 as its interim allocations; that is, for each

s = 1, . . . , n and all qs ∈ [0, 1],

Ps(qs) =

∫
ps (qs, q−s) f

n−1 (q−s) dq−s.

Since the sellers are symmetric, it is without loss to restrict attention to symmetric

interim allocations; thus, we can drop the subscript s from Ps and qs, and write P and

q instead. Consequently, the objective further reduces to

n

∫ 1

0

[
v(q)− q − γ

F (q)

f(q)

]
P (q)f(q) dq, (5)

and the buyer’s expected payoff can be written as

n

∫ 1

0

[
v(q)− q −

F (q)

f(q)

]
P (q)f(q) dq.

Consider the quantile s = F (q), we define

P̃ (s) := P (F−1(s))

as the quantile interim allocation. Let P̃ ∗(s) := (1− s)n−1; it is not difficult to see

that P̃ ∗(·) is the quantile interim allocation of the allocation rule that always procures

from the seller with the lowest quality.

Border’s (1991) celebrated theorem characterizes the set of implementable interim
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allocations. Lemma 2 translates Border’s condition into majorization terminology.4

Lemma 2 (Border’s condition). A decreasing interim allocation rule P is imple-

mentable if and only if the associated quantile interim allocation P̃ (s) is weakly ma-

jorized by P̃ ∗.5

To simplify notation, let

hγ(q) := v(q)− q − γ
F (q)

f(q)

denote the integrand of (5) when the weight on the buyer’s expected payoff is γ; we

call hγ the weighted virtual surplus. In particular, let

g(q) := h1(q) = v(q)− q −
F (q)

f(q)

denote the buyer’s virtual surplus. By Lemma 2, the quantile interim allocation of a

direct mechanism that maximizes the weighted average can be found by solving

max
P̃∈Ωw(P̃ ∗)

∫ 1

0

hγ(F
−1(s))P̃ (s) ds (6)

s.t.

∫ 1

0

g(F−1(s))P̃ (s) ds ≥ 0,

where

Ωw(P̃
∗) :=

{
P̃ ∈ L1(0, 1) : P̃ is decreasing and P̃ ≺w P̃ ∗

}
.

A solution to problem (6) exists: Ωw(P̃
∗) is compact by the Helly’s selection theorem,6

and therefore the constraint set

Ωw(P̃
∗) ∩

{
P̃ ∈ L1(0, 1) :

∫ 1

0

g(F−1(s))P̃ (s) ds ≥ 0

}

is the intersection of a closed set and a compact set and hence also compact. The

4To the best of our knowledge, Gershkov, Goeree, Kushnir, Moldovanu, and Shi (2013) is the first
paper that connects Border’s condition to majorization (see their Footnote 4). We omit the proof of
Lemma 2 since it can be proved by slightly modifying the proof of, for example, Theorem 1 in Hart
and Reny (2015) or Theorem 3 in Kleiner et al. (2021).

5We use “increasing” and “decreasing” in the weak sense: “strict” will be added whenever needed.
6By “compact” we mean compact in the L1 norm topology. For a complete proof of this fact, see

the proof of Proposition 1 in Kleiner et al. (2021).
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argument is completed by noting that the objective function is continuous.

In particular, the buyer’s optimal interim allocation should solve the following prob-

lem:

max
P̃∈Ωw(P̃ ∗)

∫ 1

0

g(F−1(s))P̃ (s) ds. (7)

3 Buyer’s optimal procurement mechanisms

For cleaner intuition and simpler notation, in this section we study a special case of our

problem: the buyer’s expected payoff maximization problem, where the welfare weight

on the buyer is γ = 1. In Section 3.1, we solve the problem (7), and in Section 3.2 we

identify a trading mechanism that implements the solution we find. All proofs in this

section are relegated to Section B.

3.1 Buyer’s optimal interim allocation

To ensure that the monotonicity constraint in problem (7) holds, the ironing technique

(Myerson, 1981; Toikka, 2011) may be required. Define g̃(s) := g(F−1(s)) as the

quantile virtual surplus, and let

G(s) :=

∫ s

0

g̃(x)dx.

Let G be the concave hull of G: G(x) := sup{y : (x, y) ∈ co(G)}, where co(G) is

the convex hull of the graph of G. Equivalently, G is the pointwise smallest upper

semicontinuous and concave function that lies above G (see, for example, Kamenica

and Gentzkow, 2011). Call g := G
′
the ironed quantile virtual surplus.7 Adopting

the convention that sup∅ = 0, define

S := sup{s ∈ [0, 1] : g(s) ≥ 0}; (8)

our assumptions on v and F guarantee that S is well-defined.

Proposition 1. Let {[si, s̄i)}i∈I denote a collection of disjoint intervals with [si, s̄i) ⊆

[0, S] for each i ∈ I, such that

7Because G is concave, it is differentiable almost everywhere. At points where it is not differen-
tiable, we define g as the right derivative.
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• G is affine on [si, s̄i) for each i ∈ I, and

• G = G on [0, S]
/⋃

i∈I [si, si).

Then an optimal interim allocation P̂ satisfies

P̂ (s) =






(1− s)n−1 if s ∈ [0, S]
/⋃

i∈I [si, si) ,∫ si
si

(1−s)n−1 ds

si−si
if s ∈ [si, si) ,

0 if s ∈ (S, 1].

(9)

To understand Proposition 1, consider the auxiliary problem

max
P̃∈Ωw(P̃ ∗)

∫ 1

0

g(s)P̃ (s) ds, (10)

where the quantile virtual surplus g̃(s) in the original problem (7) is replaced by the

ironed quantile virtual surplus g(s). For s > S, the ironed virtual surplus is strictly

negative, and thus the buyer should not trade. Consequently, any solution P̆ of problem

(10) must satisfy P̆ (s) = 0. For s ≤ S; however, to maximize the objective, we would

like to set P̃ higher at points where g is larger. Since g is decreasing, this means that

we want to set P̃ (s) higher when s is smaller. We see from (3) that no P̃ ∈ Ωw(P̃
∗)

attains a larger value than P̃ ∗ = (1 − s)n−1 itself for small s; thus, P̃ ∗ solves the

auxiliary problem (10). Moreover, on each [si, si), since G is affine, g is constant, only

the mean of the interim allocation on that interval matters. Therefore, letting

P̂ (s) = E

[
P̃ ∗(t)

∣∣ t ∈ [si, si)
]
=

∫ si

si
(1− s)n−1 ds

si − si

on [si, si) for each i ∈ I and letting P̂ = P̃ ∗ otherwise would make P̂ a solution of

(10). In fact, if P̂ solves the auxiliary problem (10), it also solves the original problem

if and only if it is constant on [si, si) for each i ∈ I.8 Therefore, interim allocation P̂

defined by (9) solves problem (7), and thus is optimal.

Observe that ironing is required whenever the buyer’s virtual surplus function has

an increasing region; that is, there exists an interval (x, y) ⊆ [0, 1] such that g(q) is

increasing on (x, y). While it might be standard to assume that F/f is increasing

8This is the pooling property of Myerson (1981) and Toikka (2011), which states that for all open
intervals I ⊆ [0, 1], H(s) < H(s) for all s ∈ I implies that P̂ must be constant on I.
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(and hence −F/f is decreasing), requiring that g(q) is decreasing on [0, 1] also imposes

strong restrictions on v(q): roughly speaking, the buyer’s marginal valuation of quality

cannot be too high anywhere on the unit interval,9 which implies that the buyer’s

quality concerns cannot be too strong even locally. Therefore, in our problem, ironing

might be necessary, due to the nature of the procurement setting.

3.2 Implementation: Bid-restricted auctions

To find the buyer-optimal procurement mechanism, we need to find some trading mech-

anisms that implement the optimal interim allocation rule P̂ (s) identified in Proposi-

tion 1. To this end, we introduce the following class of mechanisms.

Definition 1. A bid-restricted auction (BRA) is a sealed bid auction with M ∈ N

bid intervals {[bi, bi]}
M
i=1, where b1 ≥ 0, bM ≤ 1, and for all i = 1, . . . ,M , bi ≤ bi and

bi < bi+1, with the following rules:

• Any seller who wishes to participate must submit a bid b within one of the bid

intervals; i.e., b ∈ ∪M
i=1[bi, bi].

• The seller whose bid is the lowest wins the auction; in the event of a tie, the

winning seller is chosen uniformly at random.

• If the winning bid is the only bid in its bid interval [bi, bi] for some i = 1, . . . ,M ,

and if the second-lowest bid equals bj for some j > i with k other sellers bidding

bj,
10 then the winning seller receives a payment of (bj + kbj−1)/(k + 1).

• Otherwise, the winning seller receives a payment equal to the second-lowest bid.

Intuitively, a BRA is similar to a second-price auction, with two key exceptions:

(i) sellers are allowed to bid only within certain bid intervals; and (ii) for any bid

interval that is not the highest, there is a “payment reduction rule.” Under this rule,

if the winning bid is the only bid in such a bid interval, the winning seller receives a

payment that is determined by the other sellers’ bids, which may be lower than the

second-lowest bid. The following result establishes an important property of BRAs; to

simplify the statement, we adopt the convention that b0 := 0.

9If we further assume that both v and f are differentiable, g(q) is decreasing if and only if
v′(q) ≤ 1 + (F (q)/f(q))′ for all q ∈ [0, 1]. For example, when qualities are uniformly distributed
on [0, 1], g(q) is decreasing if and only if v′(q) ≤ 2 for all q ∈ [0, 1].

10If only one seller submits a bid, we take the second-lowest bid to be bM .
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Lemma 3. In a BRA, it is a weakly dominant strategy for any seller to not bid if her

quality exceeds bM , bid her quality when q ∈ [bi, bi) for some i = 1, . . . ,M , and bid bi

if q ∈ [bi−1, bi) for some i = 1, . . . ,M .

The structure inherited from a second-price auction and the “payment reduction

rule” together imply that bidding as described in Lemma 3 is a weakly dominant

strategy. Like a standard second-price auction, BRA also has the property that a

seller’s bid affects the payment she receives only indirectly, through its influence on

the identity of the winner. Moreover, when the payment received by the winner differs

from the second-lowest bid, it helps eliminate the sellers’ incentives to take advantage

of the “gaps” between the bid intervals.

To see this, consider a seller with quality q ∈ [bi−1, bi). Because bids in the “gaps”

are not allowed, it is more likely for someone to bid the lower bound of a bid interval.

Therefore, the chance that some other sellers are also bidding bi may not be negligible.

In this case, if she bids bi and it turns out to be the lowest bid, her chance of winning is

at most 1/2, since ties are broken equiprobably. This may incentivize her to underbid—

for example, bidding just below bi−1—to increase her chances of winning. This is where

the payment reduction rule becomes relevant: the reduced payment must be chosen

carefully to eliminate the incentive for underbidding.11

A function h is said to be structured if there exists a finite partition of [0, 1]

into intervals on which h is either increasing or decreasing. If the virtual surplus g

is structured, then there exist L ∈ N and a collection of disjoint intervals {[si, si)}
L
i=1

such that G is affine on each interval [si, si) for i = 1, . . . , L, and coincides with G

on the complement [0, S]
/⋃L

i=1 [si, si). We refer to the intervals {[si, si)}
L
i=1 as pooling

intervals, and to the intervals comprising [0, S]
/⋃L

i=1 [si, si) as non-pooling intervals ;

it is easy to see that there are no more than L+ 1 non-pooling intervals.

Theorem 1. If the virtual surplus g is structured, and S > 0, a buyer-optimal pro-

curement mechanism is a BRA whose bid intervals are determined by

• if s1 = 0, then M = L, bi = F−1(si) for all i = 1, . . . ,M , bi = F−1(si+1) for

i = 1, . . . ,M − 1, and bM = F−1(S);

• if s1 > 0, then M = L+ 1, b1 = 0, bi = F−1(si−1) for i = 2, . . . ,M , bi = F−1(si)

for i = 1, . . . ,M − 1, and bM = F−1(S).

11The reduced payment cannot be too low either, as doing so may encourage some sellers to overbid.
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The optimality of BRA illustrates that prohibiting certain bids in an auction can

alleviate quality concerns by eliminating vicious competition in prices, thereby “restor-

ing” the auction’s optimality. The two conditions in Theorem 1 guarantee that a

bid-restricted auction maps every non-pooling interval to a bid interval, and every

pooling interval to a gap between two bid intervals. Consequently, every seller with

quality quantile in a non-pooling interval bids her quality, and every seller with quality

quantile in a pooling interval bids the highest quality of that interval.

By Lemma 3, every seller with quality quantile s in a non-pooling interval wins

if and only if the quality quantile of every other seller is above s, and therefore the

interim allocation probability P̂ (s) = (1 − s)n−1. Furthermore, sellers with quality

quantiles in the same pooling interval submit the same bid regardless of the exact

quality quantiles, which indicates that the interim allocation probability is constant

on the pooling intervals. Finally, if a seller has quality quantile above S, she does not

bid and hence never wins. In the proof, we formally show that the interim allocation

induced by the BRA described in Theorem 1 is exactly the optimal interim allocation

(9) in Proposition 1, which establishes the optimality of the described BRA.

In certain settings, the optimal BRA takes simple forms.

Corollary 1. (i) (Manelli and Vincent, 1995)

• If the virtual surplus is decreasing, the BRA with one bid interval [0, F−1(S)]

is optimal, which is equivalent to a standard second-price auction with re-

serve price F−1(S).

• If the virtual surplus is increasing, the BRA with a degenerate bid interval

{1} is optimal, which is equivalent to random allocation.

(ii) (Lopomo et al., 2023) If the virtual surplus is single-peaked, the BRA with one

bid interval [b, F−1(S)] is optimal.

(iii) If the virtual surplus is single-dipped, the BRA with two bid intervals [0, b] and

{1} is optimal.

Corollary 1 (i) and (ii) indicate that the BRA nests the optimal procurement mech-

anisms identified in Manelli and Vincent (1995) and Lopomo et al. (2023) as special

cases, respectively. Moreover, (iii) shows that the optimal mechanism when the virtual

surplus is single-dipped is also simple.

13



Note that the payment reduction rule does not apply in Lopomo et al. (2023), as

their assumptions limit the analysis to a single bid interval. In more general settings;

however, the payment reduction rule is necessary to deter underbidding by sellers whose

quality falls within a “gap” between two bid intervals. For example, the payment

reduction rule remains relevant even when the virtual surplus is single-dipped.

4 Optimal procurement mechanisms

In this section, we show that under certain regularity conditions, a bid-restricted auc-

tion (with a stochastic reserve price if necessary) maximizes any weighted average of

the buyer’s expected payoff and the social surplus, subject to the constraint that the

buyer’s expected payoff remains nonnegative. It is not difficult to see that without this

nonnegativity constraint, an analogue of Theorem 1 holds: as long as the weighted av-

erage hγ is structured, a BRA is optimal. However, when the nonnegativity constraint

is imposed, the problem becomes nontrivial. In Section 4.1 we solve problem (6) to get

an optimal interim allocation, and we discuss how to implement it in Section 4.2. All

proofs in this section are relegated to Appendix C.

4.1 Optimal interim allocation

To solve problem (6), we use a Lagrangian approach. Set up the Lagrangian with

multiplier λ:

Lγ =

∫ 1

0

[
h̃γ(s) + λg̃(s)

]
P̃ (s) ds,

where h̃γ(s) := hγ(F
−1(s)) is the quantile version of the weighted virtual surplus. De-

fine φγ(q;λ) := hγ(q) + λg(q), and let φ̃γ(s;λ) := φγ(F
−1(s);λ). Evidently, φ̃γ(s;λ) =

h̃γ(s) + λg̃(s), which is the quantile virtual surplus of the Lagrangian.

We solve the problem by maximizing the Lagrangian over all P̃ ∈ Ωw(P̃
∗), and

then find an appropriate Lagrangian multiplier such that the complimentary slackness

condition holds. More specifically, we iron φγ(s;λ) to make sure that the monotonicity

constraint holds: let

Φγ(s;λ) :=

∫ s

0

φ̃γ(s;λ) dx,

and

φγ(s;λ) :=
∂

∂s
Φγ(s;λ)
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is the ironed quantile virtual surplus of the Lagrangian. Similar to Proposition 1, for

all s such that φγ(s;λ) > 0, the optimal interim allocation P̂ is flat whenever ironing

is needed, and coincide with P̃ ∗(s) = (1 − s)n−1 otherwise. If there exists an interval

[S+, S0] on which φγ(s;λ) = 0, we may need to find some P satisfying

0 ≤ P ≤

∫ S0

S+
(1− s)n−1 ds

S0 − S+
:= A(S+, S0)

and set P̂ (s) = P on [S+, S0] to satisfy complementary slackness; the second inequality

in the above expression is needed because Border’s condition requires P̂ ≺w P̃ ∗.

Proposition 2. If there exist λ∗ ≥ 0, 0 ≤ S+ ≤ S0 ≤ 1, and a collection of disjoint

intervals {[si, s̄i)}i∈I with [si, s̄i) ⊆ [0, S0] for each i ∈ I, such that

(i) S+ = sup
{
s ∈ [0, 1] : φγ(s;λ

∗) > 0
}
and S0 = sup

{
s ∈ [0, 1] : φγ(s;λ

∗) ≥ 0
}
;

(ii) Φγ(s;λ
∗) is affine on [si, s̄i) for each i ∈ I and [S+, S0), and

(iii) Φγ(s;λ
∗) = Φγ(s;λ

∗) on [0, S+]
/⋃

i∈I [si, si),

then the interim allocation

P̂ (s) =






(1− s)n−1 if s ∈ [0, S+]
/⋃

i∈I [si, si)∫ si
si

(1−s)n−1ds

si−si
if s ∈ [si, si)

P if s ∈ (S+, S0]

0 if s ∈ (S0, 1]

(11)

with P ∈ (0, A(S+, S0)] satisfying the complementary slackness condition

λ∗

∫ 1

0

g̃(s)P̂ (s) ds = 0

is optimal.

4.2 Implementation: Augmenting BRA if necessary

If the optimal interim allocation P̂ defined in (11) satisfies S+ = S0, it takes exactly

the same form as (9) in Proposition 1. Therefore, its implementation is described by

Theorem 1, by replacing S by S0. If, instead, S+ < S0, then to implement the optimal
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interim allocation we need to slightly modify the BRA. In this modified version, if a

seller with quality q ∈ (S+, S0] wins the auction, she supplies the good with probability

P/A(S+, S0). The details of this modification are described below.

Definition 2. An augmented bid-restricted auction (aBRA) is a sealed bid

auction with

• M ∈ N standard bid intervals {[bi, bi]}
M
i=1, where b1 ≥ 0, bM < 1, and for all

i = 1, . . . ,M , bi ≤ bi and bi < bi+1,

• an extra bid B with bM < B ≤ 1, and

• a qualification rate ζ ∈ (0, 1],

with the following rules:

• Any seller who wishes to participate must submit a bid b ∈ ∪M
i=1[bi, bi] ∪ {B}.

• With probability 1− ζ, sellers who bid B are disqualified, meaning that their bids

do not count.

• The seller whose bid is the lowest wins the auction; in the event of a tie, the

winning seller is chosen uniformly at random.

• If the winning bid is the only bid in its bid interval [bi, bi] for some i = 1, . . . ,M ,

and

– if, furthermore, the second-lowest bid equals bj for some j > i with k

other sellers bidding bj, then the winning seller receives a payment of (bj +

kbj−1)/(k + 1);

– if, furthermore, the second-lowest bid equals B with k other sellers bidding

B,12 then the winning seller receives a payment of ζ(B + kbM)/(k + 1).

• Otherwise, the winning seller receives a payment equal to the second-lowest bid.

Wemodify a BRA in three ways to obtain an aBRA. First, we introduce an extra bid

B that is strictly larger than the upper bound of the highest bid interval, b̄M . Second,

any seller who submits the extra bid B is qualified to participate in the auction only

with probability ζ , the qualification rate. Finally, if the second-lowest bid is B, the

12If only one seller submits a bid, we take the second-lowest bid to be B.
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winning seller receives a reduced payment that is further adjusted by the qualification

rate ζ , making sure that no seller with quality q ∈ (b̄M , B] is incentivized to bid below

b̄M to take advantage of the guaranteed qualification.

An aBRA can be also interpreted as a BRA with M + 1 bid intervals: {[bi, bi]}
M
i=1

and {B}, with a slightly adjusted payment rule and a stochastic reserve price. The

stochastic reserve price takes the value B with probability ζ (the qualification rate)

and the value bM with complementary probability. This reserve price is determined

only after the sellers have submitted their bids.

Theorem 2. Let λ∗ be the Lagrangian multiplier associated with the optimal interim

allocation identified in Proposition 2. Suppose φγ(q;λ
∗) = hγ(q)+λ∗g(q) is structured,

then

(a) if S+ = S0, the BRA described in Theorem 1 with S replaced by S0 is optimal.

(b) if S+ < S0, an aBRA with standard bid intervals as described in Theorem 1 with

S replaced by S+, extra bid F−1(S0), and qualification rate ζ = P/A(S+, S0) is

optimal.

Corollary 2 and Corollary 3 identify environments in which some simple trading

mechanisms are optimal.

Corollary 2. Suppose v(q)− q is strictly decreasing, F is twice continuously differen-

tiable, and both F and 1−F are log-concave. Then a second-price auction with reserve

price F−1(S) is optimal.

Corollary 2 specifies that if the buyer values marginal quality uniformly less than

the potential sellers, under standard distributional assumptions in the mechanism de-

sign literature, a second-price auction (with a reserve price if needed) maximizes any

weighted average of the buyer’s expected payoff and the social surplus.

Corollary 3. Suppose v(q) is concave, and F/f is convex in q, then φγ(q;λ
∗) is single-

peaked for all λ∗ ≥ 0. Consequently,

• if there do not exist 0 ≤ S+ < S0 ≤ 1 such that φγ(·;λ
∗) = 0 on [S+, S0], the a

BRA with one bid interval is optimal;

• otherwise, an aBRA with one standard bid interval [b, F−1(S+)] and extra bid

F−1(S0) is optimal.
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Assuming that v is concave implies that the buyer’s marginal valuation of quality

is decreasing. As pointed out by Lopomo et al. (2023), the convexity of F/f is satisfied

by many familiar distributions with bounded supports, including power distributions,13

(truncated) Pareto distributions, (truncated) exponential distributions. In fact, it is

also satisfied by Beta distributions with both parameters greater than or equal to 1.

5 Discussion

5.1 An extension of the main model

In the main model, the buyer’s valuation is assumed to be a deterministic function

of the sellers’ quality. Moreover, a seller’s cost, or her reservation value, is identical

to her quality. These assumptions are made to simplify notation and emphasize the

quality concerns. In many relevant applications; however, it might be more natural to

assume that the buyer’s valuation is a random variable, and/or take the sellers’ costs

as primitives. In what follows, we show that, even in these settings, focusing on the

main model is without loss.14

For concreteness, consider a buyer who would like to contract with one of several

potential suppliers to develop a new project, say a new production line. The cost

of supplier s, cs ∈ [0, 1], is her private information; the costs are independently and

identically distributed according to a continuous density function fC(·). The project’s

value is not perfectly revealed to the buyer until the end of the development phase

at the earliest, which is long after penning the contract. Consequently, at the time

of contracting the buyer’s valuation is a random variable Ξ. We assume that the

realization of Ξ, ξ ∈ [ξ, ξ], is not contractable. The buyer believes that Ξ and C

are correlated, and that the conditional distribution of Ξ is fΞ |C(·|c). One possible

assumption can be that Ξ and C are positively affiliated, or equivalently MTP2 (Karlin

and Rinott, 1980; see also Milgrom and Weber, 1982).

Let c = (c1, . . . , cn). Given a direct mechanism {ps(c), ts(c)}
n
s=1, where for each

cost profile c, ps(c) specifies the probability that the buyer contracts with supplier s,

and ts(c) is the transfer that the buyer pays to supplier s, the buyer’s expected payoff

13The CDF of a power distribution takes the form of F (x) = xα, where α > 0. When α = 1, we
get the uniform distribution.

14For brevity, in Section 5 we only discuss the buyer’s optimal problem; extending the analysis to
allow for any weighted average is straightforward.
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can be written as

πb =

∫

[0,1]n

[
n∑

s=1

∫ ξ

ξ

(ξ ps(c)− ts(c))fΞ |C(ξ|cs) dξ

]
fn(c) dc

=

∫

[0,1]n

n∑

s=1

[(∫ ξ

ξ

ξfΞ |C(ξ|cs) dξ

)
ps(c)− ts(c)

]
fn(c) dc

=

∫

[0,1]n

n∑

s=1

(E[Ξ |C = cs] ps(c)− ts(c)) f
n(c) dc,

where fn(c) :=
∏n

s=1 fC(cs). If we define v(cs) := E[Ξ |C = cs], we see from (1) that

the problem here is identical to the procurement problem we study above, and the

curvature of v(cs) is governed by the conditional distribution. For example, if Ξ and

C are positively affiliated, v(·) is increasing.

Example 1. A manufacturer would like to procure a machine for production. For

simplicity, suppose that her valuation is identical to the durability of the machine. She

believes that the two potential sellers’ costs are identically, independently, and uni-

formly distributed. Conditional on the cost realization c, her valuation Ξ is distributed

according to a Pareto distribution with scale 0.5 and shape 2.2− c.15 Consequently,

v(c) = E[Ξ |C = c] =
1.1− 0.5c

1.2− c
,

and g(c) = v(c) − 2c. We plot g and g in Figure 2a. By Proposition 1, the optimal

interim allocation is given by

P̂ (c) =

{
1− c c < 0.48,

0.26 c ≥ 0.48,

which is shown in Figure 2b. By Corollary 1, a BRA with two bid intervals [0, 0.48]

and {1} is optimal.

5.2 Dynamic Implementation

A BRA can be implemented with a descending clock auction format with irrevocable

exit and “clock jumps.” Specifically, the clock is lowered continuously starting from b̄M .

15The scale parameter can be interpreted as the length of the machine’s warranty.
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0.48
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P ∗(c) = 1− c

0.26

P̂ (c)

0.48 1

1

(b)

Figure 2. In panel (a), the blue curve is the buyer’s quantile virtual surplus g̃, and the orange
curve is the ironed quantile virtual surplus g. In panel (b), the blue curve is P ∗(c) = 1 − c
that appears in Border’s condition, and the orange curve is the optimal interim allocation
P̂ (c).

For each i = 2, . . . ,M , if the clock reaches bi and there are still sellers remaining, the

auctioneer announces that the clock will jump to bi−1; sellers may choose to exit exactly

when the clock jumps. The clock is lowered until one of the following occurs: only one

seller remains; the remaining sellers all exit simultaneously; or the clock reaches b1, at

which point all remaining sellers must exit. In the first case, the remaining seller wins

the auction; in the last two cases, the winner is selected uniformly at random from the

last few sellers exited simultaneously.

If a seller wins the auction by being the last remaining participant after k ≥ 1

sellers exit when the clock jumps at bi for some i = 2, . . . ,M , she receives a payment

of (bi + kb̄i−1)/(k + 1); if the final exit did not occur at a clock jump, she receives a

payment equal to the clock value at which the clock stopped. If a seller wins the auction

by being one of the last sellers who exited simultaneously, she receives a payment equal

to the clock value at the time of exit.

6 Conclusion

We explored procurement design problems in which the buyer’s valuation of the good

supplied depends directly on its quality, which is both unverifiable and unobservable.

We analyzed the problem of maximizing an arbitrary weighted average of the buyer’s

expected payoff and the social surplus, subject to the constraint that the buyer’s
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expected payoff remains nonnegative. To tackle this problem, we employed a novel

reduced-form approach utilizing techniques from linear optimization under a majoriza-

tion constraint. We found that a bid-restricted auction—a mechanism similar to a

second-price auction, featuring a dominant strategy equilibrium but restricting sellers

to bidding within specified intervals—is optimal.

In our analysis, we abstract from collusion, repeated interaction, and endogenous

seller entry to isolate the impact of quality concerns in procurement. Exploring the

optimal procurement mechanism under these concerns could be an interesting direction

for future research.

Appendix A Results on majorization

Denote the set of decreasing functions in L1(0, 1) that are majorized by f by

Ω(f) := {g ∈ L1(0, 1) : g is decreasing, g ≺ f};

similarly, denote the “weak majorization set” by

Ωw(f) := {g ∈ L1(0, 1) : g is decreasing, g ≺w f}.

The following results are taken from Kleiner et al. (2021) and modified to our

environment. Let A be an arbitrary subset of a topological vector space, we denote

the set of its extreme points by extA.

Theorem 3 (Theorem 1 in Kleiner et al., 2021). Let f ∈ L1(0, 1) be decreasing. Then

h ∈ extΩ(f) if and only if there exists a collection of disjoint intervals [xi, xi) indexed

by i ∈ I such that for almost all x ∈ [0, 1],

h(x) =





f(x) if x /∈
⋃

i∈I [xi, xi)∫ xi
xi

f(s)ds

xi−xi
if x ∈ [xi, xi) .

For B ⊆ [0, 1], denote by 1B(x) the indicator function of B: it equals 1 if x ∈ B

and 0 otherwise.

Corollary 4 (Corollary 2 in Kleiner et al., 2021). Let f ∈ L1(0, 1) be decreasing. Then

h ∈ extΩw(f) if and only if there exists θ ∈ [0, 1] such that h ∈ extΩ(f · 1[0,θ]) and

h(x) = 0 for almost all x ∈ (θ, 1].
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Now consider the problem

max
m∈Ω(f)

∫ 1

0

c(x)r(x) dx, (12)

where f ∈ L1(0, 1) is strictly decreasing, and c is a bounded function. Define

C(x) =

∫ x

0

c(s) ds,

and let C be its concave hull. Proposition 3 characterizes a solution to problem (12).

Proposition 3 (Proposition 2 in Kleiner et al., 2021). Let h ∈ extΩ(f), and let

{[xi, x̄i) : i ∈ I} be the collection of intervals described in Theorem 3. Then h is optimal

if and only if C is affine on [xi, x̄i) for each i ∈ I and C = C otherwise.

Appendix B Proofs for Section 3

B.1 Proof of Proposition 1

Because the objective function of problem (7) is linear, by Bauer’s maximum principle

(Aliprantis and Border (2006), Theorem 7.69, page 298), the maximum is attained

at an extreme point P̂ of Ωw(P̃
∗). By Corollary 4, there exists s̄ ∈ [0, 1] such that

P̂ is an extreme point of Ω(P̃ ∗ · 1[0,s̄]) and equals zero on [s̄, 1]. Furthermore, the

optimality of P̂ requires that the quality q̄ = F−1(s̄) must satisfy g(q̄) = 0; thus,

setting s̄ = sup{s ∈ [0, 1] : g(s) ≥ 0} = S suffices. Then Theorem 3 implies that P̂

must take the form of

P̂ (s) =






(1− s)n−1 if s ∈ [0, S]
/⋃

i∈I [si, si) ,∫ si
si

(1−s)n−1ds

si−si
if s ∈ [si, si) ,

0 if s ∈ (S, 1];

and by Proposition 3, the collection {[si, si) ⊆ [0, S] : i ∈ I} is pinned down by the

intervals on which G is affine.
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B.2 Proof of Lemma 3

First, consider a seller with q ≥ bM . Because the highest allowable bid is bM , if she

ever wins, her payoff is at most zero, which is no better than not bidding regardless of

what other sellers do.

Next, consider a seller has q ∈ (bi, bi) for some i = 1, . . . ,M ; let bmin
− denote the

minimum bid among all other sellers. By bidding exactly q, there are the following

cases:

• if bmin
− < q, the seller’s payoff is 0;

• if bmin
− ∈

(
q, b̄i

]
or bmin

− ∈
(
bj, b̄j

]
for some j > i, the seller’s payoff is bmin

− − q;

• if bmin
− = bj for some j > i, and there are k other sellers bid b = bmin

− , then the

seller’s payoff is (bj + kbj−1)/(k + 1)− q.

If the seller bids b < q instead, when b ≤ bmin
− < q she gets a strictly negative payoff

instead of 0, and otherwise she gets the same payoff as bidding q. If the seller bids

b > q, when bmin
− < b she gets zero, and when bmin

− ≥ b her payoff is otherwise identical

to bidding b = q, except for the case that bmin
− = b = bj for some j > i. In this case,

suppose k other sellers bid bj , then the seller’s (expected) payoff is (bj − q)/(k + 1).

But by bidding b = q, fixing other sellers’ bids, her payoff is (bj + kjbj−1)/(k + 1)− q,

and
bj + kb̄j−1

k + 1
− q −

bj − q

k + 1
=

k
(
b̄j−1 − q

)

k + 1
≥ 0,

where the inequality holds because i ≤ j − 1. Thus, for a seller with q ∈ (bi, bi) for

some i = 1, . . . ,M , bidding q is a weakly dominant strategy.

Now consider a seller with q ∈ [bi−1, bi] for some i = 1, . . . ,M (recall that we set

b0 := 0). By bidding bi, there are the following cases:

• if bmin
− ≤ bi−1, the seller’s payoff is 0;

• if bmin
− = bi, the seller’s payoff is (bi − q)/(k + 1) if k other sellers bid bi;

• if bmin
− ∈

(
bj , b̄j

]
for same j ≥ i, the seller’s payoff is bmin

− − q;

• if bmin
− = bj for some j > i, and there are k other sellers bid b = bmin

− , then the

seller’s payoff is (bj + kjbj−1)/(k + 1)− q.
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If the seller bids b ≤ bi−1 instead, she loses when bmin
− < b and get zero payoff; when

b ≤ bmin
− ≤ b̄i−1, the seller payoff is bounded above by zero. When bmin

− = bi, and k

other sellers bid bi, the seller gets (bi + kb̄i−1)/(k+1)− q; but the payoff from bidding

bi is (bi − q)/(k + 1), and

(
bi + kb̄i−1

k + 1
− q

)
−

bi − q

k + 1
=

k
(
b̄i−1 − q

)

k + 1
≤ 0,

where the inequality holds because q ≥ b̄i−1. Otherwise, the seller gets the same payoff

as bidding bi. If the seller bids b > bi, her payoff is 0 if bmin
− < b, and if bmin

− ≥ b, the

seller gets the same payoff as bidding bi unless bmin
− = b = bj for some j > i. In this

case, suppose k other sellers bid bj , the seller’s payoff is (bj − q)/(k + 1); but in this

case, by bidding bi the seller gets (bj +kbj−1)/(k+1)− q, which is no lower. Therefore,

for a seller with q ∈ [bi−1, bi] for some i = 1, . . . ,M , bidding bi is a weak dominant

strategy.

Finally, notice that the argument above also establishes that bidding the quality

is a weakly dominant strategy if the seller’s quality is bi for some i = 1, . . . ,M . This

completes the proof.

B.3 Proof of Theorem 1

The description of the BRA in the statement of the theorem and Lemma 3 together

indicate that

• If a seller’s quality quantile s ∈ [0, S)
/⋃L

i=1 [si, si) (that is, in a non-pooling

interval), she bids her quality: b = q = F−1(s).

• If a seller’s quality quantile s ∈ [si, si) for some i = 1, . . . , L (that is, in a pooling

interval), she bids the lower bound of a bid interval.

• If a seller’s quality quantile s ≥ S for some i = 1, . . . , L, she does not bid.

Therefore, for s ≥ S, the interim allocation probability PBRA(s) is zero. Moreover, by

the definition of a BRA, a seller with quality quantile s ∈ [0, S)
/⋃L

i=1 [si, si) wins if and

only if all other sellers have quality quantiles above s, which happens with probability

(1− s)n−1. Consequently, PBRA(s) = (1− s)n−1 for all s ∈ [0, S)
/⋃L

i=1 [si, si).

Now consider a seller with quality quantile s ∈ [si, si) for some i = 1, . . . , L. She

could only win the auction when there is no seller with s < si; there are the following

24



cases:

• All other n−1 sellers have s ≥ si. This case happens with probability (1− si)
n−1,

and in this case this seller wins with probability 1.

• One other seller has s ∈ [si, si), and n − 2 other sellers have s ≥ si. This case

happens with probability
(
n−1
1

)
(1− si)

n−2 (si − si), and in this case this seller

wins with probability 1/2.

• Two other seller has s ∈ [si, si), and n − 3 other sellers have s ≥ si. This case

happens with probability
(
n−1
2

)
(1− si)

n−3 (si − si)
2, and in this case this seller

wins with probability 1/3.

• ...

• n − 2 other sellers have s ∈ [si, si), and one other seller has s ≥ si. This case

happens with probability
(
n−1
n−2

)
(1− si) (si − si)

n−2, and in this case this seller

wins with probability 1/(n− 1).

• All other sellers have s ∈ [si, si). This case happens with probability
(
n−1
n−1

)
(si − si)

n−1,

and in this case this seller wins with probability 1/n.

Therefore, the interim allocation probability for this seller with quality quantile s ∈

[si, si) is given by

(1− si)
n−1 +

(
n− 1

1

)
(1− si)

n−2 (si − si)

2
+

(
n− 1

2

)
(1− si)

n−3 (si − si)
2

3
+

· · ·+

(
n− 1

n− 2

)
(1− si) (si − si)

n−2

n− 1
+

(
n− 1

n− 1

)
(si − si)

n−1

n
. (13)

Observing that for every k = 0, . . . , n− 1,

1

k

(
n− 1

k

)
=

1

n

(
n

k + 1

)
;

(13) can therefore be written as

1

n

(
n

0

)
(1− si)

n−1 +
1

n

(
n

1

)
(1− si)

n−2 (si − si)

2
+

1

n

(
n

2

)
(1− si)

n−3 (si − si)
2

3
+

· · ·+
1

n

(
n

n− 1

)
(1− si) (si − si)

n−2

n− 1
+

1

n

(
n

n

)
(si − si)

n−1

n
,
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which is equivalent to

(
n

1

)
(1− si)

n−1 (si − si) +
(
n

2

)
(1− si)

n−2 (si − si)
2 + · · ·+

(
n

n

)
(si − si)

n

n (si − si)

=

(
n

0

)
(1− si)

n +
(
n

1

)
(1− si)

n−1 (si − si) + · · ·+
(
n

n

)
(si − si)

n −
(
n

0

)
(1− si)

n

n (si − si)

=
(1− si)

n − (1− si)
n

n (si − si)
=

∫ si

si
(1− s)n−1 ds

si − si
,

where the second equality follows from the binomial theorem, and the third equality

follows from the fundamental theorem of calculus. Thus, PBRA(s) =

∫ si
si

(1−s)n−1 ds

si−si
on

[si, si) for every i = 1, . . . , L.

Summing up, we have established that the interim allocation probability induced

by the BRA described in the statement of Theorem 1, PBRA, equals to the interim

allocation probability P̂ defined by (9) in Proposition 1 F -almost everywhere, which

implies that the BRA described in the statement of the theorem is indeed a buyer-

optimal procurement mechanism.

Appendix C Proofs for Section 4

C.1 Proof of Proposition 2

Let

Hγ(s) =

∫ s

0

h̃γ(x) dx and Φγ(s;λ) =

∫ s

0

φ̃γ(s;λ) dx,

and let Hγ and Φγ be the concave hulls of Hγ and Φγ , respectively. We further define

{[xi, xi)}i∈I and {[y
i
, yi)}i∈J be the collections of intervals on which Hγ and Φγ are

affine, respectively. Now let

hγ(s) = H
′

γ(s), and φγ(s;λ) =
∂

∂s
Φγ(s;λ);

hγ(s) and φγ(s;λ) are the ironed quantile social surplus and the ironed quantile virtual

surplus of the Lagrangian, respectively. By construction, both are decreasing in s.

Define Z :=
{
s ∈ [0, 1] : hγ(s) = 0

}
; Z is the set of points on which the ironed quantile

social surplus is zero. There are two cases in which Z is empty: either hγ(1) > 0, or

hγ(0) < 0. Because hγ(0) < 0 represents the uninteresting case that it is undesirable to
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trade under incomplete information, we assume that if Z is empty, we have hγ(1) > 0.

By Corollary 1 on page 219 and Theorem 2 on page 221 of Luenberger (1969),

P̂ ∈ Ωw(P̃
∗) solves problem (6) if and only if there exists λ ≥ 0 such that P̂ maximizes

L, and the complementary slackness condition

λ

∫ 1

0

g̃(s)P̂ (s) ds = 0

holds. Consequently, an optimal P̂ can be found using the following algorithm:

Step 1. Check that if there exists ŝ ∈ [0, 1], either ŝ ∈ Z, or Z = ∅ and ŝ = 1 such

that

P̂ (s) =






(1− s)n if s ∈ [0, ŝ]
/⋃

i∈I [xi, xi)∫ xi
xi

(1−s)n−1ds

xi−xi
if s ∈ [xi, xi)

0 if s ∈ (ŝ, 1]

satisfies ∫ 1

0

g̃(s)P̂ (s) ds ≥ 0.

If so, we can set λ = 0, which implies that the quantile virtual surplus of the Lagrangian

coincides with the ironed quantile social surplus: φγ(s; 0) = hγ(s). Setting S+ = S0 =

ŝ, P̂ solves problem (6). If not, go to Step 2.

Step 2. We must have λ > 0, otherwise we could have found an ŝ in Step 1. Now

we search for λ > 0 such that there exists unique s̃ that φγ(s;λ) = 0, and the “induced

interim allocation”

P̂ (s) =





(1− s)n if s ∈ [0, s̃]
/⋃

i∈J [yi, yi)∫ yi
y
i
(1−s)n−1ds

yi−y
i

if s ∈ [y
i
, yi)

0 if s ∈ (s̃, 1]

satisfies ∫ 1

0

g̃(s)P̂ (s) ds = 0.

If we can find such a (λ, s̃) pair, P̂ solves problem (6); if not, go to Step 3.

27



Step 3. There must exist an interval [S+, S0] ⊆ [0, 1] with S+ < S0 such that φ(·;λ) =

0 on [S+, S0], and there exists P with

0 ≤ P ≤

∫ S0

S+
(1− s)n−1 ds

S0 − S+

such that

P̂ (s) =





(1− s)n if s ∈ [0, S+]
/⋃

i∈J [yi, yi)∫ yi
y
i
(1−s)n−1ds

yi−y
i

if s ∈ [y
i
, yi)

P if s ∈ (S+, S0]

0 if s ∈ (b, 1]

satisfying ∫ 1

0

g̃(s)P̂ (s) ds = 0

solves problem (6).

C.2 Proof of Theorem 2

Part (a) follows from Theorem 1, and it suffices to prove Part (b). To that end, we

first establish the aBRA analogue of Lemma 3.

Lemma 4. In an aBRA, it is a weakly dominant strategy for any seller to not bid if

her quality exceeds B, bid her quality when q ∈ [bi, bi) for some i = 1, . . . ,M , bid bi if

q ∈ [bi−1, bi) for some i = 1, . . . ,M , and bid B if q ∈ [bM , B).

Proof. Because the highest allowable bid is B, if a seller with q ≥ B ever wins, her

payoff is at most zero, which is no better than not bidding regardless of what other

sellers do.

Now consider a seller with q ∈ [bM , B). By bidding B, there are two cases (recalling

that bmin
− denotes the minimum bid among all other sellers):

• if bmin
− ≤ bM , the seller’s expected payoff is 0;

• if bmin
− = B, and k other sellers bid B, the seller’s expected payoff is ζ(B−q)/(k+

1).

If the seller bids b ≤ bM instead, when bmin
− ≤ bM , the seller’s expected payoff is at most

zero. When bmin
− = B, and k other sellers bid B, the seller gets ζ(B+kb̄M)/(k+1)− q;
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but the payoff from bidding B is ζ(B − q)/(k + 1), and

ζ
B − q

k + 1
− ζ

(
B + kb̄M
k + 1

− q

)
=

ζk

k + 1

(
q − b̄M

)
≥ 0,

where the inequality holds because q ≥ b̄M . Therefore, bidding B is a weakly dominant

strategy for sellers with q ∈ [b̄M , B).

To show that bidding the quality q is a weakly dominant strategy for a seller with

quality q ∈ (bi, b̄i) for some i = 1, . . . ,M , it suffices to compare bidding q with bidding

B, as all other possible bids are covered by the proof of Lemma 3. If she bids her quality

q, as described in the proof of Lemma 3, her payoff is at least zero when bmin
− ≤ b̄M .

When bmin
− = B and k other sellers bid B, with probability 1 − ζ all other sellers

are disqualified (i.e., no other sellers submit a legit bid), and therefore this seller gets

bmin
− − q = B − q; with probability ζ , this seller’s payoff is given by ζ

(
B+kb̄M
k+1

− q
)
. If

she bids B instead, with probability 1− ζ she is disqualified and gets zero payoff, and

with probability ζ her payoff is ζ(B − q)/(k + 1), which is strictly worse than bidding

q either way. This shows that bidding the quality q is a weakly dominant strategy for

a seller with quality q ∈ (bi, b̄i) for some i = 1, . . . ,M . An analogous argument shows

that for a seller with quality q ∈ [b̄i−1, bi] for some i = 1, . . . ,M , a weakly dominant

strategy is bidding bi. This completes the proof.

Proof of Theorem 2. Using Lemma 4, the proof of Theorem 1 indicates that the interim

allocation probability induced by the aBRA, PaBRA, equals to P̂ defined by (11) in

Proposition 2 F -almost everywhere on [0, 1]\ [S+, S0). For a seller with quality quantile

s ∈ [S+, S0), Lemma 4 implies that it is a weakly dominant strategy for her to bid

B. With probability 1 − ζ , this seller is disqualified, which means that she wins

with probability 0. With probability ζ , this seller is qualified; following the same

steps as in the proof of Theorem 1, we see that she wins the auction with probability∫ S0

S+
(1− s)n−1 ds/(S0 − S+). Thus, the interim allocation probability for this seller is

PaBRA(s) = ζ ·

∫ S0

S+
(1− s)n−1 ds

S0 − S+
+ (1− ζ) · 0 = P,

where the second equality follows from the definition of the qualification rate ζ . There-

fore, PaBRA = P̂ F -almost everywhere, which implies that the aBRA described in Part

(b) of the theorem is indeed optimal.
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C.3 Proof of Corollary 2

We first claim that −F/f is decreasing. To see this, differentiate to obtain (−F/f)′ =

−1 − (−Ff ′/f 2). When f ′(q) ≤ 0, because 1 − F is log-concave, −Ff ′/f 2 ≥ (1 −

F )f ′/f 2 ≥ −1; if instead f ′(q) > 0, −Ff ′/f 2 ≥ −1 since F is log-concave. Thus,

(−F/f)′ ≤ 0. Then since v(q)− q is strictly decreasing, for any γ ∈ [0, 1], both hγ(q)

and g(q) are strictly decreasing, and so are g̃ and h̃γ . Therefore, the virtual surplus of

the Lagrangian, φ̃γ(s;λ) = h̃γ(s)+λg̃(s) must be strictly decreasing for any λ ≥ 0 and

γ ∈ [0, 1]. Consequently, for any λ ≥ 0, there must exist a unique S̄ ∈ [0, 1] such that

φ̃(S̄;λ) = 0. The result thus follows.

C.4 Proof of Corollary 3

If φγ(0;λ
∗) < 0, then it is optimal not to buy from any potential seller. This is

equivalent to a (trivial) BRA with the lone bid interval {0}.

Now suppose φγ(0;λ
∗) = m ≥ 0. Because both v(q)−q and −F (q)/f(q) are concave

under our assumptions, so is φγ(q;λ
∗) since it is a nonnegative linear combination of

v(q)− q and −F (q)/f(q). Thus, φγ(q;λ) is single-peaked. Consequently, there exists

c ∈ [0, 1] such that φγ( · ;λ
∗) = m on [0, c] and decreasing on [c, 1]. Then by Theorem 2,

if S+ = S0, a BRA with one bid interval [b, S0] is optimal; otherwise, an aBRA with

one standard bid interval [b, F−1(S+)] and extra bid F−1(S0) is optimal.
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