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Abstract
In histopathology, tissue sections are typically stained using com-
mon H&E staining or special stains (MAS, PAS, PASM, etc.) to
clearly visualize specific tissue structures. The rapid advancement
of deep learning offers an effective solution for generating vir-
tually stained images, significantly reducing the time and labor
costs associated with traditional histochemical staining. However,
a new challenge arises in separating the fundamental visual char-
acteristics of tissue sections from the visual differences induced
by staining agents. Additionally, virtual staining often overlooks
essential pathological knowledge and the physical properties of
staining, resulting in only style-level transfer. To address these
issues, we introduce, for the first time in virtual staining tasks, a
pathological vision-language large model (VLM) as an auxiliary tool.
We integrate contrastive learnable prompts, foundational concept
anchors for tissue sections, and staining-specific concept anchors
to leverage the extensive knowledge of the pathological VLM. This
approach is designed to describe, frame, and enhance the direction
of virtual staining. Furthermore, we have developed a data augmen-
tation method based on the constraints of the VLM. This method
utilizes the VLM’s powerful image interpretation capabilities to
further integrate image style and structural information, proving
beneficial in high-precision pathological diagnostics. Extensive
evaluations on publicly available multi-domain unpaired staining
datasets demonstrate that our method can generate highly realistic
images and enhance the accuracy of downstream tasks, such as
glomerular detection and segmentation. Our code is available at:
https://github.com/CZZZZZZZZZZZZZZZZZ/VPGAN-HARBOR
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Figure 1: Three auxiliary methods for virtual staining tasks
proposed by us using the VLM: (a) Learnable contrastive
prompts based on the classification task. (b) Concept anchors
design based on LLM. (c) Visual calibration based on the VLM.

1 Introduction
Histopathological examination is widely regarded as the gold stan-
dard for the clinical diagnosis of diseases [5, 27, 45]. This process
typically involves histochemical staining, which differentiates vari-
ous tissue components through distinct colors to aid in pathological
diagnosis. Routine pathological examination commonly employs
Hematoxylin and Eosin (H&E) staining to highlight tissue mor-
phology for initial diagnostic purposes. However, H&E staining
often fails to provide sufficient diagnostic information for many
diseases. Consequently, the use of special stains [32, 61] offers
critical diagnostic insights across multiple dimensions [39]. For
instance, in renal pathology, Masson’s Trichrome (MAS) staining
is utilized to distinguish collagen fibers from muscle fibers, Peri-
odic Acid-Schiff (PAS) staining is employed to better visualize the
Glomerular basement membrane, Tubular basement membrane,
and Mesangial matrix (GTM) [3, 47], and Periodic Acid-Schiff with
Methenamine Silver (PASM) staining can more clearly delineate
the GTM on the basis of PAS [8, 42]. Nevertheless, the application
of special stains generally requires more time and incurs higher
labor costs. Moreover, when patients suffer from non-neoplastic
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kidney diseases [62], liver cirrhosis [31], or other conditions, pathol-
ogists may necessitate multiple types of special stains to achieve
a more accurate diagnosis. Therefore, the development of virtual
staining technology, which reduces the costs of special stains for
both pathologists and patients while addressing the need for multi-
staining on the same tissue section, holds significant importance in
clinical practice [66, 68].

Recent advancements in generative model [11, 21, 56] technol-
ogy have also spurred progress in the image-to-image (I2I) domain
within pathology [23, 33, 39, 41]. These advances enable stain style
transfer for color normalization [7, 60] and serve as a feature en-
hancement strategy [36]. They also train effective feature extractors,
boosting performance in subtype classification [24, 43]. However,
current pathological I2I methods largely follow the technical frame-
works established in the natural image domain, focusing primarily
on style transformation while neglecting the texture and cytologi-
cal structures of pathological sections, as well as the physical and
chemical properties of staining agents. This limitation undermines
the reliability of virtually stained sections as diagnostic tools. In our
view, expecting current generative models to possess the extensive
domain knowledge and cellular-level visual discernment required
in pathology is overly demanding. Such models urgently require a
pathology expert-level "assistant" to aid them in more effectively
accomplishing virtual staining tasks.

The advent of the VLM in pathology [25, 26, 44, 57–59, 64] has
made this endeavor feasible. Empowered by millions of pathology
image-caption pairs, it possesses extensive pathological knowledge
and robust capabilities in pathological image recognition. It has
achieved state-of-the-art performance in various tasks, including
pathology image classification, segmentation, caption generation,
text-to-image synthesis, image and text retrieval. Given its role
as an expert-level assistant in clinical decision-making, providing
comprehensive support to pathologists, we aspire to extend its
all-round excellence to the field of virtual staining. The provision
of advanced pathological knowledge by the VLM is expected to
potentially ensure that virtual staining results meet medical and
chemical standards. Furthermore, intermediate staining processes
could be characterized and fine-grained visual details might be
captured through the leveraging of the VLM’s powerful multimodal
information extraction capability, potentially leading to enhanced
performance of virtual staining.

In this paper, we present three attempts to leverage VLMs for
guiding virtual staining tasks. As shown in Figure 1(a), the con-
trastive prompting tuning employs contrastive learning strate-
gies and binary classification tasks to decode and extract the rich
information embedded in pathology VLMs. This enables the system
to articulate stain differentiation and staining processes that are
typically challenging to describe in human language. The concep-
tual anchoring method as presented in Figure 1(b) generates
foundational and stain-specific concept anchors by leveraging the
rich corpora produced by Large Language Model (LLM) [1, 14]
and the information compression capabilities of pathology VLM,
guiding the "variation and invariance" during the staining process.
For these two prompting strategies, we designed the Contrastive
Prompt Transfer (CPT), Constant Concept Anchoring (CCA), and
Independent Concept Reinforcement (ICR) modules, respectively.
Together with a unpaired I2I model as baseline, these components

form our method, the VLM-based Prompts Generative Adversarial
Network (VPGAN), which, to the best of our knowledge, represents
the first attempt to bridge GANs and pathology VLM. Additionally,
inspired by Xiong et al. [65], we argue that inference enhancement
based on DDIM [48] can effectively meet the demands of high-
resolution diagnostic tasks. However, in practice, existing methods
risk visual domain collapse (e.g. H&E2PASM). To address this, as
illustrated in Figure 1(c), we adopted a multi-level calibration
strategy based on the VLM, successfully improving the stability
and performance of inference enhancement. Built on CLIP [52] with
ResNet101 [19], our method dynamically adjusts texture and color
details across network layers, significantly improving inference
robustness. The inference enhancement method empowered by VP-
GAN and themulti-level calibration strategy together constitute our
Histopathology stAining expeRt Based On pRompts (HARBOR).
The contribution of this paper is summarized as follows:

• As far as we know, our proposed VPGAN is the first GAN based
on diversified prompts from the pathological VLM, which
serves as a super assistant for virtual staining.

• We designed a VLM-based multi-level visual calibration mod-
ule to tackle data staining domain disintegration and enhance
data augmentation stability and performance.

• Our proposed method produced satisfactory images in three
virtual staining tasks and showed optimal performance under
different inference strategies, indicating it can meet diverse
scenario, cost and detection task requirements.

• Segmentation and detection accuracy across diverse glomeru-
lus datasets are improved by our method, and strong clinical
potential is demonstrated.

2 Related Work
2.1 Virtual Staining in Pathology Analysis
Virtual staining originates from the image-to-image (I2I) task in the
domain of natural images, aiming to accomplish the transfer of im-
age styles. With the recent surge in generative model technologies,
I2I tasks have also seen significant advancements by leveraging
baseline such as GAN [11] and DDPM [21]. Due to the scarcity
and high production costs of paired data, unpaired I2I models have
demonstrated greater potential. Zhu et al. [73]designed parallel sets
of generators and discriminators to perform staining and restora-
tion on unpaired data separately, achieving commendable results.
CUT [49] introduced contrastive learning methods, successfully
simplifying the style transfer process by eliminating the need for
paired generator-discriminator combinations. Building upon CUT,
Jung et al. [28]utilized graph neural networks to identify closely re-
lated patches, optimizing the contrastive learning algorithm. Zhao
et al. [70]incorporated stochastic differential equations into I2I tasks,
achieving a breakthrough in the application of diffusion architec-
tures for unpaired image style transfer. Kim et al. [29]attempted
to leverage Schrödinger bridges to compute the optimal path for
domain transfer.

In the field of pathology, virtual staining has demonstrated sig-
nificant clinical value. A series of H&E-to-IHC staining workflows
facilitate the detection of tumor markers, aiding in tumor clas-
sification and diagnosis [4, 33, 35, 41, 50, 67]. Virtual staining is
employed for tasks such as normalization [7, 20, 60] and tailing
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Figure 2: Overview of the proposed VPGAN and HARBOR. In the prompt generation phase, we employed prompt tuningmethod
to generate contrastive prompts based on a binary classification task. Utilizing the DeepSeek-R1, we created constant concept
anchors and independent concept anchors of different staining agents. During the training phase, we leveraged three types
of prompts and a pathological VLM to achieve the description, framing, and reinforcement of the virtual staining direction,
thereby optimizing the original virtual staining model. In the inference enhancement phase, we trained learnable denoising
prompt blocks based on structural and stylistic constraints, further improving the performance of virtual staining.

artifact reduction [22, 23, 38], enhancing the clarity of tissue sec-
tions by mitigating tailing effects and reducing batch effects in
pathological slides. Additionally, virtual staining exhibits poten-
tial as a proxy task to improve the visual perception capabilities
of models [24, 43]. Focusing on virtual staining tasks for kidney
tissue sections, Lin et al. proposed the UMDST [39] model, which
leverages multi-task learning based on stain classification and vir-
tual staining. This model can achieve style transfer across different
stains and even simulate virtual scenarios involving multiple stains.
Guan et al. [13]designed a style-guided module, showcasing ex-
ceptional performance and validating the medical significance of
virtual staining in glomerular segmentation and detection tasks.
Xiong et al. [65]concentrated on inference enhancement strategies,
utilizing the DDIM [48] architecture to achieve a leap in structural
consistency and clarity in virtual staining, thereby addressing the
challenges of high-precision medical diagnosis. However, none
of these methods incorporate the pathological VLM as a robust
assistant to provide enhanced visual recognition capabilities and
pathological knowledge, thereby improving the effectiveness of
staining.

2.2 Prompt Tuning in Vision-Language Models
As of now, the CLIP [52] architecture remains the mainstream in
the VLM and continues to play an irreplaceable role across vari-
ous visual domains. prompt tuning based on CLIP has also been

demonstrated to be an exceedingly simple yet effective strategy.
CoOp [72] and CoCoOp [71] have proven that learnable prompts
possess even greater fitting capabilities. Additionally, prompt tuning
has achieved exceptional results in tasks such as lighting adjust-
ment [37], rain and haze removal [63], image restoration [46] and
artistic style transfer [69].

The advancement of prompt tuningmethods in the field of pathol-
ogy is closely intertwined with the maturation of the VLM special-
ized in pathology. Works such as CONCH [44], MUSK [64], and
PLIP [25] have constructed diverse million-scale pathology text-
image pairs, demonstrating exceptional performance. Qu et al. [51]
pioneered the application of prompt tuning on pathological images,
enhancing the few-shot classification performance of pathologi-
cal slides and catalyzing the emergence of outstanding works in
subtype classification tasks using prompt Tuning [10, 12, 15, 16,
34, 54, 55]. Liu et al. [40]achieved the first application of prompt
tuning in survival analysis by transforming continuous survival
labels into textual prompts for ordinal survival learning. To the
best of our knowledge, our proposed VPGAN and HARBOR repre-
sent the first application of prompt tuning in virtual staining and,
more broadly, in medical I2I tasks. Our remarkable performance
has been highly encouraging, suggesting that prompt tuning based
on the pathology-specific VLM has the potential to become a "super
assistant" across all tasks in the field of pathology.
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3 Method
3.1 Prompts Generation
Our method generates different prompts to leverage the pathologi-
cal knowledge of the VLM for more precise guidance on the staining
domain. Moreover, it uses learnable prompts to capture the key
information during the virtual staining intermediate process.
Learnable contrastive prompts. Contrastive learning methods [6,
17] often excel in learning the fine-grained features of data such
as images. Meanwhile, prompt tuning methods [37, 51, 71, 72] en-
hance the accuracy of image text descriptions through a learnable
process. Inspired by both, It is proven by us that it is feasible to use
the contrastive learning method to capture important information
from the intermediate steps of virtual staining and convert it into
learnable text prompts during the virtual staining process.

As shown in Figure 1(a) and Figure 2(a) for the training process
of contrastive text prompts, we use the training set data from both
the source domain images 𝐼𝑠 ∈ R𝐻×𝑊 ×3 and the target domain
images 𝐼𝑡 ∈ R𝐻×𝑊 ×3 of the subsequent staining task as the overall
training set. We randomly initialize a positive prompt𝑇𝑝 ∈ R𝑁×512

and a negative prompt 𝑇𝑛 ∈ R𝑁×512. N represents the number of
embedded tokens in each prompt. Then, we feed the source and
target images to the image encoder 𝜙𝑖𝑚𝑎𝑔𝑒 of the VLM to obtain
their latent code. Meanwhile, we also extract the latent code of the
positive and negative prompts by feeding them to the text encoder
𝜙𝑡𝑒𝑥𝑡 . Based on the text-image similarity in the VLM latent space,
we use the binary cross entropy loss of classifying the source and
target images to learn the contrastive prompt pair:

L𝑝𝑟𝑜𝑚𝑝𝑡 = −(𝑎 ∗ 𝑙𝑜𝑔 (𝑎) + ( (1 − 𝑎) ∗ 𝑙𝑜𝑔 (1 − 𝑎) ) ), (1)

𝑎 =
𝑒cos(Φ𝑖𝑚𝑎𝑔𝑒 (𝐼 ),Φ𝑡𝑒𝑥𝑡 (𝑇𝑝 ) )∑

𝑖∈{𝑛,𝑝} 𝑒
cos(Φ𝑖𝑚𝑎𝑔𝑒 (𝐼 ),Φ𝑡𝑒𝑥𝑡 (𝑇𝑖 ) )

, (2)

where 𝐼 ∈ {𝐼𝑠 , 𝐼𝑡 } and 𝑎 is the label of the current image, 0 is for
negative sample 𝐼𝑠 and 1 is for positive sample 𝐼𝑡 .
Concept Anchors. In this section, we aim to generate patholog-
ical visual descriptions to serve as prior linguistic knowledge for
guiding the virtual staining task. To minimize manual effort, large
language models (LLMs) [1, 14] are employed to produce descrip-
tions related to different staining agents. Specifically, we input the
following query into the LLM: "We want to study the effects of dif-
ferent staining agents on the same liver pathological section. We will
use the histological images of human kidney at 40x magnification.
Please tell me the visual characteristics of Class staining compared
with other staining agents and the key observation areas." Following
a similar approach, we obtain the intrinsic feature description sets
for kidney tissue sections, thereby deriving a total of five concept
knowledge sets corresponding to the four staining classes and the
intrinsic features. Ultimately, we utilized the text encoder 𝜙𝑡𝑒𝑥𝑡 of
VLM to generate the final concept anchors.

3.2 VLM-based Prompts GAN
Building upon the aforementioned learnable contrastive prompts,
the invariant concept anchors of kidney tissue sections, and the
independent concept anchors of different staining agents, we pro-
pose the VLM-based Prompts Generative Adversarial Network

(VPGAN). This framework enhances the original GAN [11] archi-
tecture for unpaired data by meticulously characterizing the inter-
mediate staining processes, the fixed concepts of kidney tissue, and
the staining agent-specific concepts, thereby improving the overall
image generation quality. Furthermore, our VPGAN is adaptable to
any GAN architecture as an optimization method. After extensive
experimentation, we selected CycleGAN [73] as the baseline for this
paper, thereby achieving the optimal generation results. Apart from
our design, the configurations for the generator, discriminator, and
learning rate are all aligned with the original settings of CycleGAN.
Contrastive PromptTransferModule. Inspired byCLIP-LIT [37],
we prove that learnable contrastive prompts can achieve effective
image enhancement. Building on this, we introduce the Contrastive
Prompt Transfer Module (CPT), which decodes pathological in-
formation from the VLM to describe the intermediate staining
processes and subtle domain-specific differences in staining. To
the best of our knowledge, this represents the first application of
learnable contrastive prompts in GAN models.

Given the learnable contrastive prompts obtained from the prompts
generation step, we can train the CPT module with VLM-aware loss.
This loss is based on the contrastive differences between staining do-
mains and depicts the staining transfer process, thereby improving
the quality of virtual staining.

L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 =
𝑒cos(Φ𝑖𝑚𝑎𝑔𝑒 (𝐼 ),Φ𝑡𝑒𝑥𝑡 (𝑇𝑛 ) )∑

𝑖∈{𝑛,𝑝} 𝑒
cos(Φ𝑖𝑚𝑎𝑔𝑒 (𝐼 ),Φ𝑡𝑒𝑥𝑡 (𝑇𝑖 ) )

. (3)

Constant Concept Anchoring Module. In fact, the most signif-
icant difference between virtual staining and natural image style
transfer lies in the need to consider the preservation of texture
and shape, the authenticity of pathological features, and the real
physicochemical properties of staining agents. Merely achieving
the highest degree of fitting in terms of style will lead to a substan-
tial reduction in clinical efficacy. This is also the crucial reason why
a large number of evaluation metrics for virtual staining tasks place
greater emphasis on structural preservation [23, 39, 65]. In addi-
tion, the inherent properties in imaging, such as the magnification
of the slices and the imaging equipment used for the dataset, are
also taken into account. As described in the prompt generation, we
leverage the powerful capabilities of DeepSeek-R1 [14] and online
searches to obtain relatively accurate descriptions, and manually
remove parts with factual errors caused by LLM hallucinations.

Next, the goal of Constant Concept Anchoring Module (CCA)
is to quantify the invariance between the pre-staining images
𝐼𝑝𝑟𝑒 ∈ R𝐻×𝑊 ×3 and the post-staining images 𝐼𝑝𝑜𝑠𝑡 ∈ R𝐻×𝑊 ×3.
To this end, we generate the concept of renal slice invariance, de-
noted as R1×512, which is derived by first generating conceptual
descriptions via the LLM and subsequently transforming them into
textual embeddings through the VLM.We use CPT’s method to mea-
sure image-text correspondence with cosine similarity, obtaining
cosine similarities 𝑆𝑝𝑟𝑒 and 𝑆𝑝𝑜𝑠𝑡 for subsequent concept invariance
analysis. The formula is as follows:

𝑆𝑝𝑟𝑒 = 𝑒cos(Φ𝑖𝑚𝑎𝑔𝑒 (𝐼𝑝𝑟𝑒 ),Φ𝑡𝑒𝑥𝑡 (𝑇𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ) ) , (4)

𝑆𝑝𝑜𝑠𝑡 = 𝑒cos(Φ𝑖𝑚𝑎𝑔𝑒 (𝐼𝑝𝑜𝑠𝑡 ),Φ𝑡𝑒𝑥𝑡 (𝑇𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ) ) . (5)

Subsequently, to ensure the invariance of the constant concept
before and after staining, we employed the Mean Squared Error
(MSE) loss function to calculate the mean of the sum of squared
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VLM Calibration Loss

H&E

Figure 3: We demonstrate a fine-grained verification process
based on the VLM on the H&E2PASM task, enabling the pro-
gressive and successful verification of the staining domains.

differences between the cosine similarities 𝑆𝑝𝑟𝑒 and 𝑆𝑝𝑜𝑠𝑡 before
and after staining, thereby completing the delineation of the virtual
staining range. The formula for the constant concept loss function
L𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 is as follows:

L𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =
����𝑆𝑝𝑟𝑒 − 𝑆𝑝𝑜𝑠𝑡

����
2 . (6)

Independent Concept Reinforcement Module. The staining
effects are aimed to be further enhanced by us by leveraging the
independent concept anchors of staining agents generated by LLM.
Based on textual prompts from VLMs, more microscopic details that
are difficult to capture in conventional GANs can be obtained, such
as the staining effects of specific agents on cell nuclei in pathological
slides. It is important to emphasize that certain "shortcut" prompts
that quickly deceive the discriminator (e.g. black streaks produced
by PASM staining) will be eliminated, as their use would undermine
our goal of achieving fine-grained textual prompts and instead
exacerbate overfitting in style transfer. The final selected textual
prompts for the four staining agents are collectively represented
as R4×512 after being encoded into text embeddings by the VLM.
Subsequently, we compute the cosine similarity 𝑆𝑠𝑡𝑎𝑖𝑛 between
the stained image 𝐼𝑝𝑜𝑠𝑡 and the textual prompts 𝑇𝑠𝑡𝑎𝑖𝑛 containing
information about the four types of staining agents (H&E, MAS,
PAS, PASM). Based on the inherent preprocessing method and
computational rules of the CE loss, we perform a four-class proxy
task to ensure that the stained image 𝐼𝑝𝑜𝑠𝑡 approximates the target
staining domain as closely as possible. The formula is as follows:

𝑆𝑠𝑡𝑎𝑖𝑛 = 𝑒cos(Φ𝑖𝑚𝑎𝑔𝑒 (𝐼𝑝𝑜𝑠𝑡 ),Φ𝑡𝑒𝑥𝑡 (𝑇𝑠𝑡𝑎𝑖𝑛 ) ) , (7)

𝑝 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑆𝑠𝑡𝑎𝑖𝑛 ), (8)

L𝑠𝑡𝑎𝑖𝑛 = − 1
𝑚

𝑚∑︁
𝑖=0

(𝑜𝑛𝑒 − ℎ𝑜𝑡 )𝑝𝑖 · 𝑙𝑜𝑔 (𝑝𝑖 ), (9)

where 𝑝 represents the result of normalizing the similarity 𝑆𝑠𝑡𝑎𝑖𝑛 .
We use 𝑜𝑛𝑒 −ℎ𝑜𝑡 encoding to describe the category of the virtually
stained image, which is consistent with the category of the target
staining domain. In summary, the loss function of VPGAN is as
follows, where 𝛼 , 𝛽 , and 𝛾 are the hyperparameters therein:

L𝑡𝑟𝑎𝑖𝑛 = L𝑛𝑜𝑟𝑚𝑎𝑙 + 𝛼L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒 + 𝛽L𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝛾L𝑠𝑡𝑎𝑖𝑛 . (10)

3.3 Inference Enhancement
Dual-Path Inference (DPI) [65], based on DDIM [48], achieves in-
ference enhancement. It has been demonstrated that this method
improves the integrity of pathological tissue structures and signifi-
cantly reduces the distortion of virtually stained images. However,
it carries a substantial risk of staining domain collapse. To address
this issue, we introduce fine-grained structural verification based

on the VLM, which successfully resolves the problem of staining do-
main collapse and further enhances performance. The progressive
correction effects are illustrated in Figure 3.
Inference Enhancement Baseline.We adopted the same settings
as DPI and pre-trained a DDIMwith a step size of 50. As a result, we
can obtain the noisy image X𝑡𝑘 at the 𝑘-th step based on DDIM for
the original image 𝐼𝑝𝑟𝑒 . Similarly, we can get the intermediate noisy
image Y𝑡𝑘 for the image 𝐼𝑝𝑜𝑠𝑡 after virtual staining by VPGAN.
The recurrence formulas for X =

{
X𝑡1 ,X𝑡2 , · · ·,X𝑡𝑘 , · · ·,X𝑡50

}
and

Y =
{
Y𝑡1 ,Y𝑡2 , · · ·,Y𝑡𝑘 , · · ·,Y𝑡50

}
in DDIM are as follows:

X𝑡𝑘+1 =
√
𝛼𝑘+1

(
X𝑡𝑘

−
√
1 − 𝛼𝑘𝜖𝜃 (X𝑡𝑘

, 𝑘,𝐶𝑆 )√
𝛼𝑘

)
+
√︁
1 − 𝛼𝑘+1𝜖𝜃 (X𝑡𝑘

, 𝑘,𝐶𝑆 ),

(11)

Y𝑡𝑘+1 =
√
𝛼𝑘+1

(
Y𝑡𝑘

−
√
1 − 𝛼𝑘𝜖𝜃 (Y𝑡𝑘

, 𝑘,𝐶𝐸 )√
𝛼𝑘

)
+
√︁
1 − 𝛼𝑘+1𝜖𝜃 (Y𝑡𝑘

, 𝑘,𝐶𝐸 ) .

(12)
The diffusion model’s conditional variables are denoted as 𝐶𝑆 and
𝐶𝑇 , where 𝐶𝑆 represents the source domain category conditional
variable, and 𝐶𝐸 represents signifies the absence of additional con-
ditional variables to mitigate errors in the style trajectory. 𝜖𝜃 is
a neural network controlled by the parameter 𝜃 , and the main
function of this network is to predict noise.

Our objective is to augment each stained image by in proper
order training Z =

{
Z𝑡1 ,Z𝑡2 , · · ·,Z𝑡𝑘 , · · ·,Z𝑡50

}
, an initially zero-

initialized empty prompt map, which serves as an additional noise
prompt to achieve the effect of data augmentation. Z is trained
based on the SSIM structural constraint ofX and theMSE stylization
constraint of Y. The formula is as follows:

L𝑠𝑡𝑟𝑢𝑐𝑡 =

50∑︁
𝑘=0

2(𝜎Z𝑡𝑘
𝜎X𝑡𝑘 + 𝑐1 ) × (𝜎Z𝑡𝑘

X𝑡𝑘 + 𝑐2 )

(𝜎2
Z𝑡𝑘

+ 𝜎2
X𝑡𝑘

+ 𝑐1 ) (𝜎Z𝑡𝑘
𝜎X𝑡𝑘 + 𝑐2 )

, (13)

L𝑠𝑡𝑦𝑙𝑒 =

50∑︁
𝑘=0

����Z𝑡𝑘
− Y𝑡𝑘

����
2 . (14)

Among them, 𝜎X𝑡𝑘
and 𝜎Z𝑡𝑘

are the variances of X𝑡𝑘 and Z𝑡𝑘 ,
𝜎Z𝑡𝑘

X𝑡𝑘
is their covariance.

We denoise and restoreY based on the cues fromZ to obtain the
enhanced image 𝐼𝑒𝑛ℎ𝑎𝑛𝑐𝑒 ∈ R𝐻×𝑊 ×3. The formula is as follows:

Y∗
𝑡𝑘

= Y𝑡𝑘
+ Z𝑡𝑘

, (15)

𝜓 (Y∗
𝑡𝑘−1 ,𝐶𝑇 ) =

√
𝛼𝑘−1

(
Y∗
𝑡𝑘

− √
1 − 𝛼𝑘𝜖𝜃 (Y∗

𝑡𝑘
, 𝑘,𝐶𝑇 )

√
𝛼𝑘

)
+

√︁
1 − 𝛼𝑘−1𝜖𝜃 (Y∗

𝑡𝑘
, 𝑘,𝐶𝑇 ),

(16)

where the𝜓 function represents conditional sampling, and 𝐶𝑇 rep-
resents the target domain label. Finally, 𝐼𝑒𝑛ℎ𝑎𝑛𝑐𝑒 is obtained.
Structural Verification based on the VLM.Without altering the
DDIM-based inference enhancement framework, we aim to leverage
the powerful capabilities of VLMs to address the issue of staining
domain degradation. Since the focus here is primarily on correcting
structural and color-related aspects, we employ CLIP [52], a general-
purpose VLM, rather than pathology-specialized VLMs such as
CONCH. For the visual encoder 𝜑𝑖𝑚𝑎𝑔𝑒 , we utilize ResNet101 [19],
which allows us to extract intermediate layer features for detailed
corrections, thereby resolving staining domain degradation and
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Table 1: Comparison of different methods on H&E2MAS,H&E2PAS and H&E2PASM datasets. The parts with a red background
represent zero-cost inference methods, and the best results are marked in red. The parts with a blue background represent
inference enhancement methods, and the best results are marked in blue.

Method H&E2MAS H&E2PAS H&E2PASM

SSIM↑ CSS↑ MS-SSIM↑ PSNR↑ FID SSIM↑ CSS↑ MS-SSIM↑ PSNR↑ FID SSIM↑ CSS↑ MS-SSIM↑ PSNR↑ FID

CycleGAN [73] 0.7824 0.8336 0.7843 15.71 133.17 0.8654 0.8888 0.8914 17.12 149.81 0.5490 0.6391 0.4013 10.54 140.44
CUT [49] 0.7075 0.7519 0.8090 16.03 125.64 0.7157 0.7337 0.8496 16.65 103.02 0.2914 0.3180 0.3293 10.14 103.96
UGATIT [30] 0.6091 0.6322 0.8412 16.24 152.48 0.5658 0.5793 0.8542 16.70 111.04 0.3680 0.4013 0.3024 10.96 136.72
UNSB [29] 0.6224 0.6773 0.7823 14.38 120.13 0.6648 0.6752 0.8701 18.3 112.46 0.2849 0.3119 0.2938 10.39 87.54
PatchGCL [28] 0.3677 0.4199 0.6777 11.99 123.73 0.4940 0.5039 0.8011 16.46 91.99 0.2346 0.2573 0.2623 10.04 95.37
GramGAN [13] 0.6260 0.6767 0.8073 14.77 175.83 0.6938 0.7096 0.8739 17.12 154.06 0.5088 0.5653 0.5327 12.17 174.81
UMDST [39] 0.7514 0.7864 0.8571 17.16 187.99 0.7762 0.7958 0.9254 17.12 154.06 0.5845 0.6276 0.5432 12.23 129.59
VPGAN(Ours) 0.8158 0.8648 0.8526 16.49 112.06 0.9173 0.9339 0.9457 19.06 132.95 0.6650 0.7372 0.5997 12.65 125.28

DPI [65] 0.8971 0.9040 0.9278 20.86 193.94 0.8935 0.8883 0.9508 22.25 157.47 —— —— —— —— ——
HARBOR(Ours) 0.9063 0.9149 0.9312 21.02 152.94 0.9302 0.9343 0.9643 23.64 154.09 0.6736 0.7323 0.6498 13.30 132.77

 CycleGAN         CUT           UGATIT         UNSB        PatchGCL    GramGAN     UMDST          VPGAN           DPI            HARBOR
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Figure 4: The performance comparison of various existing methods and our proposed method for multiple stain transfer of the
same H&E-stained image.

further enhancing the robustness and performance of the inference
enhancement. The loss function is as follows:

L𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 =

50∑︁
𝑘=0

4∑︁
𝑙=0

𝛿𝑙 ·



𝜑𝑙

𝑖𝑚𝑎𝑔𝑒 (Z𝑡𝑘
) − 𝜑𝑙

𝑖𝑚𝑎𝑔𝑒 (Y𝑡𝑘
)




2
, (17)

where 𝛿𝑙 is the weight of the 𝑙-th layer of the image encoder in
the ResNet101 CLIP model. Finally, our inference-enhanced loss
function is as follows:

L𝑒𝑛ℎ𝑎𝑛𝑐𝑒 = 𝜇L𝑠𝑡𝑟𝑢𝑐𝑡 + (1 − 𝜇 )L𝑠𝑡𝑦𝑙𝑒 + 𝜆L𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛, (18)

𝜇 and 𝜆 all adjustable parameters. Details of hyperparameter set-
tings in our method can be found in the supplementarymaterials.

4 Experiments and Results
4.1 Datasets and Experiment Setup
Datasets. As depicted in Figure 5, we evaluated the performance of
our method on three open-source datasets. Following the settings
of UMDST [39] and DPI [65], we obtained and partitioned ANHIR
dataset [2] slices stained with H&E, MAS, PAS, and PASM, enabling
model training and performance validation. On the GS [13] dataset,
the virtual staining effect on glomerular detection and segmentation
at the ROI level was examined by us adhering to the GramGAN
setup. For the KPIs dataset [9], we normalized PAS slices across
different disease categories according to its data settings, thereby
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Figure 5: Overview of Downstream Task Datasets

enhancing the performance of glomerular object detection at the
patch level. Please refer to the supplementary materials for all
specific details of dataset division and preprocessing.
Evaluation Metrics. In this experiment, we employed five met-
rics to comprehensively evaluate the performance of pathological
image translation. First, the Structural Similarity Index (SSIM) was
used to measure the similarity in luminance, contrast, and structure
between images. Second, the Contrast Structural Similarity (CSS)
focused on assessing the preservation of contrast and structural de-
tails. Additionally, the Multi-Scale Structural Similarity (MS-SSIM)
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evaluated both fine details and global structures through multi-
scale analysis. Meanwhile, the Peak Signal-to-Noise Ratio (PSNR)
quantified the noise and distortion levels in the images. Finally,
the Fréchet Inception Distance (FID) assessed the distribution con-
sistency between generated and real images in the feature space.
These metrics ensured a thorough and reliable evaluation of the
results from multiple perspectives. Our approach achieved state-of-
the-art (SOTA) performance across multiple metrics, validating the
effectiveness of the proposed method.
Implementation Details. Our method is implemented in PyTorch
and trained on a workstation with 8 NVIDIA H100 GPUs. We
adopted CycleGAN [73] as the baseline for training VPGAN, setting
the batch size to 1 and training for 50 epochs. During the inference
enhancement phase, we utilized DPI [65] as the baseline. The data
preprocessing methods, optimizer, and learning rate settings were
kept consistent with the baseline. The remaining hyperparameter
configurations are detailed in the supplementary materials.

4.2 Comparison Results
VPGAN and HARBOR were compared with previous unpaired im-
age translation and virtual staining methods by us. Given the sub-
stantial computational cost and time overhead of the DDIM-based
inference enhancement technique (requiring 5-10 minutes for in-
ference enhancement on a single 256 × 256 image), we deemed it
necessary to separately evaluate zero-cost inference methods and
inference enhancement methods. This approach further validates
the versatility of our method across diverse scenarios.
Zero-Cost Inference Methods. We selected CycleGAN as the
baseline for VPGAN and compared it with various two-domain un-
paired image translation methods such as CUT [49], UGATIT [30],
UNSB [29], and PatchGCL [28], as well as multi-domain unpaired
image translation methods likeGramGAN andUMDST. As shown
in Table 1 and Figure 4, VPGAN achieved SOTA performance across
12 metrics on three datasets compared to other zero-cost inference
methods, and also demonstrated the best visual quality. It is clearly
evident that compared to the baseline CycleGAN, our method ef-
fectively addresses its limitations in the transitional style trans-
fer for the H&E2PASM and H&E2MAS tasks. By leveraging VLM-
based prompt constraints, VPGAN achieves remarkable results that
faithfully adhere to the staining characteristics of pathological im-
ages. Both CUT and PatchGCL demonstrate structural artifacts,
and the PatchGCL method entirely collapses in the H&E2MAS task.
GramGAN exhibits noticeable blurring at the edges of the images
and irregular stains in the H&E2PASM task, which contradicts
the physical properties of the staining agents. In contrast, UNSB
and UMDST perform slightly worse in terms of image clarity and
structural preservation. The diversity of issues encountered with
other methods underscores the versatility of VLMs as a virtual
staining assistant, playing a significant role in various aspects such
as pathological knowledge guidance and structural preservation.
Inference Enhancement Methods. Our method, HARBOR, in
comparison to the baseline DPI, has further rectified the deviation
in the style domain. In the H&E2PASM task, it successfully repaired
the complete collapse of the DPI staining domain (manifested by
the emergence of irrelevant green colors), and in the H&E2MAS
task, it also addressed the issue of green residual shadows in the cell

nuclei. In addition, visual calibration based on the VLM also enables
HARBOR to achieve the SOTA performance in all indicators among
inference enhancement methods. Compared to VPGAN, HARBOR
better demonstrates the texture and veins of the images. This is
due to the original images’ texture cues and VLMs’ strong visual
discrimination. This may be the underlying reason for its superior
performance over VPGAN across multiple metrics.

4.3 Ablation Study on VPGAN
As shown in Table 2 and Table 3, we conducted a series of ablation
studies on each module of VPGAN and the underlying VLM assis-
tants. These studies demonstrated the necessity of each module
and enabled the selection of the Best VLM for the staining task.
Module Ablation of VPGAN. We investigated the functions and
necessity of the CPT, CCA, and ICR modules in VPGAN, as shown
in Table 2. Excitingly, the results on three datasets indicate that
the functions of these modules are complementary rather than
simply a superposition of performance. It can be observed that the
enhancement of fixed style domains is achieved by the ICR module,
which is also reflected in the general improvement of the FIDmetric.
The CPT module is capable of representing complex intermediate
coloring processes, leading to performance enhancements across
multiple metrics. The CCA module, when used alone for structural
invariance correction, may even yield results inferior to the base-
line. However, when combined with other modules that describe
the coloring process and reinforce specific coloring domains, it
collectively achieves superior outcomes. This conclusion is quite
intriguing. Drawing an analogy to our daily lives, an assistant who
only points out what cannot be done might be quite frustrating. Yet,
after summarizing the specific workflow and key tasks, appropriate
regulations and reminders can further enhance work efficiency.
Performance Differences across VLMs. Due to differences in
data sources, data volume, and training methods, VLMs may exhibit
performance variations in virtual staining tasks. We conducted a
comparative analysis of the effectiveness of CLIP [52] on natu-
ral images and pathology-specialized models such as PLIP [25],
MUSK [64], and CONCH [44] on VPGAN across three datasets:
H&E2MAS, H&E2PAS, and H&E2PASM. As shown in Table 3, the
experimental results demonstrate that CONCH achieves the opti-
mal performance on VPGAN. Based on the experimental results,
we observed that CLIP even leads to a performance degradation
compared to the baseline, which may stem from its inherent incom-
patibility with medical texts and staining tasks. The performance
differences between PLIP and other pathology-specialized VLMs
are attributed to its slightly inferior data volume and quality, which
is also reflected in VLM-based subtype classification and survival
analysis tasks. CONCH and MUSK demonstrated comparable re-
sults, but CONCH exhibited more balanced outcomes, likely due to
its training data sources. Consequently, we selected CONCH as the
VLM for our method, as it achieved the best average performance.

4.4 The Optimal Interval of the Calibration
In contrast to the reasoning enhancement component inH&E2PASM,
we observed that on H&E2MAS, reasoning enhancement exhibits
a more pronounced effect within a certain range of the correction
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Table 2: An ablation study was conducted on the CPT, CCA, and ICR modules in the VPGAN. All the research was carried out
on H&E2MAS, H&E2PAS, and H&E2PASM. The best values are highlighted.

Module H&E2MAS H&E2PAS H&E2PASM

CPT CCA ICR SSIM↑ CSS↑ MS-SSIM↑ PSNR↑ FID SSIM↑ CSS↑ MS-SSIM↑ PSNR↑ FID SSIM↑ CSS↑ MS-SSIM↑ PSNR↑ FID

- - - 0.7824 0.8336 0.7843 15.71 133.17 0.8654 0.8888 0.8914 17.12 149.81 0.5490 0.6391 0.4013 10.54 140.44
✓ - - 0.7964 0.8574 0.8335 15.35 121.83 0.8729 0.8926 0.8907 18.52 143.20 0.5447 0.6422 0.4342 10.27 138.88
- ✓ - 0.7686 0.8375 0.8321 14.80 124.10 0.8601 0.8813 0.8931 17.92 147.93 0.5236 0.6144 0.3732 10.50 140.06
- - ✓ 0.7599 0.8310 0.8180 14.66 109.41 0.9031 0.9234 0.9219 18.27 134.02 0.5858 0.6541 0.4214 11.51 143.79
✓ ✓ - 0.7763 0.8618 0.8411 15.80 135.45 0.8839 0.8812 0.8923 18.84 153.31 0.6278 0.6972 0.6069 11.97 151.22
✓ - ✓ 0.7993 0.8520 0.8416 15.59 122.43 0.9102 0.9081 0.9414 18.02 140.16 0.6495 0.7031 0.5734 12.57 127.65
- ✓ ✓ 0.7450 0.8061 0.7983 15.28 113.73 0.8592 0.8932 0.8864 17.31 137.84 0.5901 0.6528 0.4370 11.52 132.18
✓ ✓ ✓ 0.8158 0.8648 0.8526 16.49 112.06 0.9173 0.9339 0.9457 19.06 132.95 0.6650 0.7372 0.5997 12.65 125.28

Table 3: Comparison of different VLMs’ effect onH&E2MAS, H&E2PAS andH&E2PASMdatasets. The best values are highlighted.

VLM H&E2MAS H&E2PAS H&E2PASM

SSIM↑ CSS↑ MS-SSIM↑ PSNR↑ FID SSIM↑ CSS↑ MS-SSIM↑ PSNR↑ FID SSIM↑ CSS↑ MS-SSIM↑ PSNR↑ FID

CLIP [52] 0.7215 0.7531 0.7309 16.20 155.34 0.8336 0.8528 0.8817 17.04 145.98 0.5827 0.6465 0.4835 11.89 143.08
PLIP [25] 0.7776 0.8567 0.8217 15.12 114.03 0.8745 0.8866 0.9000 18.23 141.29 0.6591 0.6922 0.5075 10.93 139.67
MUSK [64] 0.8259 0.8624 0.8670 16.71 130.43 0.8854 0.8871 0.9202 18.95 153.22 0.6437 0.7052 0.6214 12.42 127.42
CONCH [44] 0.8158 0.8648 0.8526 16.49 112.06 0.9173 0.9339 0.9457 19.06 132.95 0.6650 0.7372 0.5997 12.65 125.28

Table 4: Search for the optimal value of the hyperparameter
𝜆 for calibration in the H&E2MAS task.

𝜆 setting SSIM↑ CSS↑ MS - SSIM↑ PSNR↑ FID

𝜆 = 0.00 0.8794 0.8942 0.9254 19.86 197.52
𝜆 = 0.0005 0.8797 0.9023 0.9231 20.12 173.20
𝜆 = 0.001 0.9063 0.9149 0.9312 21.02 152.94
𝜆 = 0.005 0.8925 0.9010 0.9219 20.83 147.94
𝜆 = 0.01 0.8738 0.9048 0.9283 20.07 142.83
𝜆 = 0.05 0.8682 0.8700 0.8928 19.53 230.78

VLM Calibration Loss

H&E

Figure 6: Unlike H&E2PASM, H&E2MAS correction shows
post-staining domain re-collapse from over-correction, ne-
cessitating exploration of the optimal correction interval.

loss function compared to H&E2PAS and H&E2PASM tasks. How-
ever, when the constraint properties become excessively strong,
it leads to a secondary collapse in the staining domain, resulting
in an unrealistic bright pink color. This intriguing phenomenon
necessitates the search for the optimal hyperparameter 𝜆 in the
correction loss function on the H&E2MAS dataset, guiding the
reasoning enhancement to the optimal staining range.

Table 4 demonstrates the effects of reasoning enhancement un-
der different 𝜆 settings in the H&E2MAS task. It can be observed
that, within a certain parameter range, the calibration loss function
effectively corrects the collapse in the style domain, which is also
reflected in the continuous decrease of the FID score. At 𝜆 = 0.001,
the optimal structural correction result is achieved, along with a

Table 5: We use MAP@[0.50:0.95] to evaluate the accuracy of
ROI-level glomeruli detection and segmentation.

Tasks H&E PASM PAS MAS
(real) (generated) (generated) (generated)

Detection 0.543 0.559 0.548 0.546
Segmentation 0.567 0.581 0.574 0.528

Table 6: Patch-level glomerulus segmentation accuracy.

Method Average Merge Normalization by VPGAN

Unet [53] 87.93 87.12 88.57

style correction result that approximates the optimal outcome. The
optimal range for correction is derived from our experiments. Inter-
estingly, when the 𝜆 used for correcting the color domain is greater
than or equal to 0.05, another type of collapse in the color domain
occurs. This indicates that the correction process based on the VLM
is dynamic, and granting the "assistant" too much power can lead
to disastrous results.

4.5 Downstream Tasks
Our model’s superior performance in multi-scale glomerular detec-
tion and segmentation on ROI and patch-level datasets was vali-
dated. Due to significant color and pathological differences among
DS, KPIs, and ANINR datasets, we trained and tested each sepa-
rately, maintaining consistent preprocessing and training. Given
DDIM’s size constraints, we conducted downstream experiments
only on VPGAN, showcasing our method’s clinical value.
ROI-level glomerular detection and segmentation. The GS
dataset, a paired human kidney slice dataset with four virtual stain
registrations and manually annotated glomerular masks, was uti-
lized to validate the ROI-level performance of VPGAN. Following
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the methodology of GramGAN, H&E was virtually stained into
MAS, PAS, and PASM, and glomerular detection and segmentation
were implemented using Mask R-CNN [18]. As shown in Table 5,
VPGAN-based virtual staining significantly enhances detection and
segmentation performance, particularly in the H&E2PASM task.
Patch-level glomerular segmentation. We performed patch-
level glomerulus segmentation following KPIs, using four PAS-
stained viral sub-datasets with distinct color variations, as shown
in Figure 5(b). We hypothesized VPGAN normalization could im-
prove segmentation, validated in Table 6. Average reflects mean test
results from separate sub-dataset training, merge represents com-
bined dataset training results, and normalization denotes pre-merge
VPGAN data normalization, highlighting our method’s potential.

5 Conclusion
In summary, we have introduced a novel unpaired slice virtual
staining model designed for the virtual staining of pathological im-
age slices. Our approach employs multiple Vision Language Model
(VLM)-based prompts to achieve staining domain delineation and
enhancement that aligns with actual pathological characteristics. It
is crucial to highlight that we are the first in the pathological field
to utilize contrastive learning methods to describe the complexity
information in the staining process, thereby enhancing the staining
effects. Additionally, we have provided a VLM-revised inference en-
hancement scheme to mitigate the risk of staining domain collapse.
Our method has demonstrated the effectiveness of VLM-assisted
virtual staining tasks and has been proven to serve as a data aug-
mentation method for downstream tasks, such as glomerulus detec-
tion and segmentation. Importantly, the boundaries of VLM-based
pathological prompt tuning tasks have been expanded by us, and
more prompt schemes in virtual staining have been showcased.

Acknowledgments
This project was funded by the National Natural Science Foundation
of China 82090052.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

[2] Jiří Borovec, Jan Kybic, Ignacio Arganda-Carreras, Dmitry V Sorokin, Gloria
Bueno, Alexander V Khvostikov, Spyridon Bakas, Eric I-Chao Chang, Stefan
Heldmann, KimmoKartasalo, et al. 2020. ANHIR: automatic non-rigid histological
image registration challenge. IEEE transactions on medical imaging 39, 10 (2020),
3042–3052.

[3] Gloria Bueno, Lucia Gonzalez-Lopez, Marcial Garcia-Rojo, Arvydas Laurinavicius,
and Oscar Deniz. 2020. Data for glomeruli characterization in histopathological
images. Data in brief 29 (2020), 105314.

[4] Fuqiang Chen, Ranran Zhang, Boyun Zheng, Yiwen Sun, Jiahui He, and Wenjian
Qin. 2024. Pathological semantics-preserving learning for H&E-to-IHC virtual
staining. In International Conference on Medical Image Computing and Computer-
Assisted Intervention. Springer, 384–394.

[5] Richard J Chen, Tong Ding, Ming Y Lu, Drew FK Williamson, Guillaume Jaume,
Bowen Chen, Andrew Zhang, Daniel Shao, Andrew H Song, Muhammad Shaban,
et al. 2024. Towards a General-Purpose Foundation Model for Computational
Pathology. Nature Medicine (2024).

[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A
simple framework for contrastive learning of visual representations. In Interna-
tional conference on machine learning. PmLR, 1597–1607.

[7] Cong Cong, Sidong Liu, Antonio Di Ieva, Maurice Pagnucco, Shlomo Berkovsky,
and Yang Song. 2022. Colour adaptive generative networks for stain normalisation
of histopathology images. Medical Image Analysis 82 (2022), 102580.

[8] Kevin de Haan, Yijie Zhang, Jonathan E Zuckerman, Tairan Liu, Anthony E Sisk,
Miguel FP Diaz, Kuang-Yu Jen, Alexander Nobori, Sofia Liou, Sarah Zhang, et al.
2021. Deep learning-based transformation of H&E stained tissues into special
stains. Nature communications 12, 1 (2021), 4884.

[9] Ruining Deng, Tianyuan Yao, Yucheng Tang, Junlin Guo, Siqi Lu, Juming Xiong,
Lining Yu, Quan Huu Cap, Pengzhou Cai, Libin Lan, et al. 2025. KPIs 2024
Challenge: Advancing Glomerular Segmentation from Patch-to Slide-Level. arXiv
preprint arXiv:2502.07288 (2025).

[10] Kexue Fu, Linhao Qu, Shuo Wang, Ying Xiong, Ilias Maglogiannis, Longxiang
Gao, Manning Wang, et al. 2024. Fast: A dual-tier few-shot learning paradigm
for whole slide image classification. Advances in Neural Information Processing
Systems 37 (2024), 105090–105113.

[11] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, DavidWarde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. Advances in neural information processing systems 27 (2014).

[12] Jiaxiang Gou, Luping Ji, Pei Liu, and Mao Ye. 2024. Queryable Prototype Multiple
Instance Learning with Vision-Language Models for Incremental Whole Slide
Image Classification. arXiv preprint arXiv:2410.10573 (2024).

[13] Xianchao Guan, Yifeng Wang, Yiyang Lin, Xi Li, and Yongbing Zhang. 2024.
Unsupervised multi-domain progressive stain transfer guided by style encoding
dictionary. IEEE Transactions on Image Processing 33 (2024), 767–779.

[14] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin
Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1:
Incentivizing reasoning capability in llms via reinforcement learning. arXiv
preprint arXiv:2501.12948 (2025).

[15] Zhengrui Guo, Conghao Xiong, Jiabo Ma, Qichen Sun, Lishuang Feng, Jinzhuo
Wang, and Hao Chen. 2024. FOCUS: Knowledge-enhanced Adaptive Visual
Compression for Few-shot Whole Slide Image Classification. arXiv preprint
arXiv:2411.14743 (2024).

[16] Minghao Han, Linhao Qu, Dingkang Yang, Xukun Zhang, Xiaoying Wang, and
Lihua Zhang. 2024. MSCPT: Few-shot Whole Slide Image Classification with
Multi-scale and Context-focused Prompt Tuning. arXiv preprint arXiv:2408.11505
(2024).

[17] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Mo-
mentum contrast for unsupervised visual representation learning. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition. 9729–9738.

[18] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. 2017. Mask r-cnn.
In Proceedings of the IEEE international conference on computer vision. 2961–2969.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[20] Martin J Hetz, Tabea-Clara Bucher, and Titus J Brinker. 2024. Multi-domain stain
normalization for digital pathology: A cycle-consistent adversarial network for
whole slide images. Medical Image Analysis 94 (2024), 103149.

[21] Jonathan Ho, Ajay Jain, and Pieter Abbeel. 2020. Denoising diffusion probabilistic
models. Advances in neural information processing systems 33 (2020), 6840–6851.

[22] Ming-Yang Ho, Che-Ming Wu, Min-Sheng Wu, and Yufeng Jane Tseng. 2024.
Every pixel has its moments: Ultra-high-resolution unpaired image-to-image
translation via dense normalization. In European Conference on Computer Vision.
Springer, 312–328.

[23] Ming-Yang Ho, Min-Sheng Wu, and Che-Ming Wu. 2022. Ultra-high-resolution
unpaired stain transformation via kernelized instance normalization. In European
Conference on Computer Vision. Springer, 490–505.

[24] Shengyi Hua, Fang Yan, Tianle Shen, Lei Ma, and Xiaofan Zhang. 2024. Pathoduet:
Foundation models for pathological slide analysis of H&E and IHC stains. Medical
Image Analysis 97 (2024), 103289.

[25] Zhi Huang, Federico Bianchi, Mert Yuksekgonul, Thomas J Montine, and James
Zou. 2023. A visual–language foundation model for pathology image analysis
using medical twitter. Nature medicine 29, 9 (2023), 2307–2316.

[26] Wisdom Ikezogwo, Saygin Seyfioglu, Fatemeh Ghezloo, Dylan Geva, Fatwir
Sheikh Mohammed, Pavan Kumar Anand, Ranjay Krishna, and Linda Shapiro.
2023. Quilt-1m: One million image-text pairs for histopathology. Advances in
neural information processing systems 36 (2023), 37995–38017.

[27] Maximilian Ilse, Jakub Tomczak, and Max Welling. 2018. Attention-based deep
multiple instance learning. In International conference on machine learning. PMLR,
2127–2136.

[28] Chanyong Jung, Gihyun Kwon, and Jong Chul Ye. 2024. Patch-wise graph con-
trastive learning for image translation. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 38. 13013–13021.

[29] Beomsu Kim, Gihyun Kwon, Kwanyoung Kim, and Jong Chul Ye. [n. d.]. Un-
paired Image-to-Image Translation via Neural Schrödinger Bridge. In The Twelfth
International Conference on Learning Representations.

[30] Junho Kim, Minjae Kim, Hyeonwoo Kang, and Kwang Hee Lee. 2020. U-GAT-IT:
Unsupervised Generative Attentional Networks with Adaptive Layer-Instance
Normalization for Image-to-Image Translation. In International Conference on
Learning Representations.

[31] Murli Krishna. 2013. Role of special stains in diagnostic liver pathology. Clinical
liver disease 2, S1 (2013), S8–S10.



Preprint, 2025 ,
Zizhi Chen, Xinyu Zhang and Minghao Han, et al.

[32] Thomas Lampert, Odyssée Merveille, Jessica Schmitz, Germain Forestier,
Friedrich Feuerhake, and Cédric Wemmert. 2019. Strategies for training stain in-
variant CNNs. In 2019 IEEE 16th International Symposium on Biomedical Imaging
(ISBI 2019). IEEE, 905–909.

[33] Fangda Li, Zhiqiang Hu, Wen Chen, and Avinash Kak. 2023. Adaptive super-
vised patchnce loss for learning h&e-to-ihc stain translation with inconsistent
groundtruth image pairs. In International Conference on Medical Image Computing
and Computer-Assisted Intervention. Springer, 632–641.

[34] Hao Li, Ying Chen, Yifei Chen, Rongshan Yu, Wenxian Yang, Liansheng Wang,
Bowen Ding, and Yuchen Han. 2024. Generalizable whole slide image classifica-
tion with fine-grained visual-semantic interaction. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 11398–11407.

[35] Jiahan Li, Jiuyang Dong, Shenjin Huang, Xi Li, Junjun Jiang, Xiaopeng Fan, and
Yongbing Zhang. 2024. Virtual immunohistochemistry staining for histological
images assisted by weakly-supervised learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 11259–11268.

[36] Jingxiong Li, Sunyi Zheng, Chenglu Zhu, Yuxuan Sun, Pingyi Chen, Zhongyi Shui,
Yunlong Zhang, Honglin Li, and Lin Yang. 2024. PathUp: Patch-wise Timestep
Tracking for Multi-class Large Pathology Image Synthesising Diffusion Model. In
Proceedings of the 32nd ACM International Conference on Multimedia. 3984–3993.

[37] Zhexin Liang, Chongyi Li, Shangchen Zhou, Ruicheng Feng, and Chen Change
Loy. 2023. Iterative prompt learning for unsupervised backlit image enhancement.
In Proceedings of the IEEE/CVF International Conference on Computer Vision. 8094–
8103.

[38] Yiyang Lin, Yifeng Wang, Zijie Fang, Zexin Li, Xianchao Guan, Danling Jiang,
and Yongbing Zhang. 2024. A Multi-Perspective Self-Supervised Generative
Adversarial Network for FS to FFPE Stain Transfer. IEEE Transactions on Medical
Imaging (2024).

[39] Yiyang Lin, Bowei Zeng, Yifeng Wang, Yang Chen, Zijie Fang, Jian Zhang, Xi-
angyang Ji, Haoqian Wang, and Yongbing Zhang. 2022. Unpaired multi-domain
stain transfer for kidney histopathological images. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 36. 1630–1637.

[40] Pei Liu, Luping Ji, Jiaxiang Gou, Bo Fu, and Mao Ye. 2025. Interpretable Vision-
Language Survival Analysis with Ordinal Inductive Bias for Computational
Pathology. In The Thirteenth International Conference on Learning Representations.
https://openreview.net/forum?id=trj2Jq8riA

[41] Shengjie Liu, Chuang Zhu, Feng Xu, Xinyu Jia, Zhongyue Shi, andMulan Jin. 2022.
Bci: Breast cancer immunohistochemical image generation through pyramid
pix2pix. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 1815–1824.

[42] Ying-Chih Lo, I-Fang Chung, Shin-Ning Guo, Mei-Chin Wen, and Chia-Feng
Juang. 2021. Cycle-consistent GAN-based stain translation of renal pathology
images with glomerulus detection application. Applied Soft Computing 98 (2021),
106822.

[43] Wei Lou, Guanbin Li, Xiang Wan, and Haofeng Li. 2024. Multi-modal Denoising
Diffusion Pre-training for Whole-Slide Image Classification. In Proceedings of the
32nd ACM International Conference on Multimedia. 10804–10813.

[44] Ming Y Lu, Bowen Chen, Drew FK Williamson, Richard J Chen, Ivy Liang, Tong
Ding, Guillaume Jaume, Igor Odintsov, Long Phi Le, Georg Gerber, et al. 2024. A
visual-language foundation model for computational pathology. Nature Medicine
30, 3 (2024), 863–874.

[45] Ming Y Lu, Drew FKWilliamson, Tiffany Y Chen, Richard J Chen, Matteo Barbieri,
and Faisal Mahmood. 2021. Data-efficient and weakly supervised computational
pathology on whole-slide images. Nature Biomedical Engineering 5, 6 (2021),
555–570.

[46] Ziwei Luo, Fredrik K Gustafsson, Zheng Zhao, Jens Sjölund, and Thomas B Schön.
2023. Controlling Vision-Language Models for Universal Image Restoration.
arXiv preprint arXiv:2310.01018 (2023).

[47] Jeffrey H Miner. 2012. The glomerular basement membrane. Experimental cell
research 318, 9 (2012), 973–978.

[48] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or. 2023.
Null-text inversion for editing real images using guided diffusion models. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
6038–6047.

[49] Taesung Park, Alexei A Efros, Richard Zhang, and Jun-Yan Zhu. 2020. Contrastive
learning for unpaired image-to-image translation. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IX
16. Springer, 319–345.

[50] Qiong Peng, Weiping Lin, Yihuang Hu, Ailisi Bao, Chenyu Lian, Weiwei Wei,
Meng Yue, Jingxin Liu, Lequan Yu, and Liansheng Wang. 2024. Advancing H&E-
to-IHC Virtual Staining with Task-Specific Domain Knowledge for HER2 Scoring.
In International Conference on Medical Image Computing and Computer-Assisted
Intervention. Springer, 3–13.

[51] Linhao Qu, Kexue Fu, Manning Wang, Zhijian Song, et al. 2023. The rise of ai
language pathologists: Exploring two-level prompt learning for few-shot weakly-
supervised whole slide image classification. Advances in Neural Information
Processing Systems 36 (2023), 67551–67564.

[52] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh,
Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from natural language supervision.
In International conference on machine learning. PmLR, 8748–8763.

[53] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-net: Convolu-
tional networks for biomedical image segmentation. In Medical image computing
and computer-assisted intervention–MICCAI 2015: 18th international conference,
Munich, Germany, October 5-9, 2015, proceedings, part III 18. Springer, 234–241.

[54] Jiangbo Shi, Chen Li, Tieliang Gong, Chunbao Wang, and Huazhu Fu. 2024. CoD-
MIL: Chain-of-Diagnosis Prompting Multiple Instance Learning for Whole Slide
Image Classification. IEEE Transactions on Medical Imaging (2024).

[55] Jiangbo Shi, Chen Li, Tieliang Gong, Yefeng Zheng, and Huazhu Fu. 2024. ViLa-
MIL: Dual-scale Vision-Language Multiple Instance Learning for Whole Slide
Image Classification. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 11248–11258.

[56] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Ste-
fano Ermon, and Ben Poole. [n. d.]. Score-Based Generative Modeling through
Stochastic Differential Equations. In International Conference on Learning Repre-
sentations.

[57] Yuxuan Sun, Yixuan Si, Chenglu Zhu, Xuan Gong, Kai Zhang, Pingyi Chen, Ye
Zhang, Zhongyi Shui, Tao Lin, and Lin Yang. 2024. CPath-Omni: A Unified
Multimodal Foundation Model for Patch and Whole Slide Image Analysis in
Computational Pathology. arXiv preprint arXiv:2412.12077 (2024).

[58] Yuxuan Sun, Yunlong Zhang, Yixuan Si, Chenglu Zhu, Kai Zhang, Zhongyi Shui,
Jingxiong Li, Xuan Gong, XINHENG LYU, Tao Lin, et al. [n. d.]. PathGen-1.6 M:
1.6 Million Pathology Image-text Pairs Generation through Multi-agent Collabo-
ration. In The Thirteenth International Conference on Learning Representations.

[59] Yuxuan Sun, Chenglu Zhu, Sunyi Zheng, Kai Zhang, Lin Sun, Zhongyi Shui,
Yunlong Zhang, Honglin Li, and Lin Yang. 2024. Pathasst: A generative foundation
ai assistant towards artificial general intelligence of pathology. In Proceedings of
the AAAI Conference on Artificial Intelligence, Vol. 38. 5034–5042.

[60] Cheng-Chang Tsai, Yuan-Chih Chen, and Chun-Shien Lu. 2024. Test-Time Stain
Adaptation with Diffusion Models for Histopathology Image Classification. In
European Conference on Computer Vision. Springer, 257–275.

[61] Jelica Vasiljević, Zeeshan Nisar, Friedrich Feuerhake, Cédric Wemmert, and
Thomas Lampert. 2022. CycleGAN for virtual stain transfer: Is seeing really
believing? Artificial Intelligence in Medicine 133 (2022), 102420.

[62] Patrick D Walker, Tito Cavallo, and Stephen M Bonsib. 2004. Practice guidelines
for the renal biopsy. Modern Pathology 17, 12 (2004), 1555–1563.

[63] Yuanbo Wen, Tao Gao, and Ting Chen. 2024. Unpaired Photo-realistic Image
Deraining with Energy-informed Diffusion Model. In Proceedings of the 32nd
ACM International Conference on Multimedia. 360–369.

[64] Jinxi Xiang, Xiyue Wang, Xiaoming Zhang, Yinghua Xi, Feyisope Eweje, Yijiang
Chen, Yuchen Li, Colin Bergstrom, Matthew Gopaulchan, Ted Kim, et al. 2025. A
vision–language foundation model for precision oncology. Nature (2025), 1–10.

[65] Bing Xiong, Yue Peng, RanRan Zhang, Fuqiang Chen, JiaYe He, and Wenjian Qin.
2024. Unpaired Multi-Domain Histopathology Virtual Staining using Dual Path
Prompted Inversion. arXiv preprint arXiv:2412.11106 (2024).

[66] Renao Yan, Qiming He, Yiqing Liu, Peng Ye, Lianghui Zhu, Shanshan Shi, Jizhou
Gou, Yonghong He, Tian Guan, and Guangde Zhou. 2023. Unpaired virtual
histological staining using prior-guided generative adversarial networks. Com-
puterized Medical Imaging and Graphics 105 (2023), 102185.

[67] Wei Zhang, Tik Ho Hui, Pui Ying Tse, Fraser Hill, Condon Lau, and Xinyue Li.
2024. High-Resolution Medical Image Translation via Patch Alignment-Based
Bidirectional Contrastive Learning. In International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer, 178–188.

[68] Yijie Zhang, Kevin de Haan, Yair Rivenson, Jingxi Li, Apostolos Delis, and Aydo-
gan Ozcan. 2020. Digital synthesis of histological stains using micro-structured
and multiplexed virtual staining of label-free tissue. Light: Science & Applications
9, 1 (2020), 78.

[69] Zhanjie Zhang, Quanwei Zhang, Wei Xing, Guangyuan Li, Lei Zhao, Jiakai Sun,
Zehua Lan, Junsheng Luan, Yiling Huang, and Huaizhong Lin. 2024. Artbank:
Artistic style transfer with pre-trained diffusion model and implicit style prompt
bank. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 38.
7396–7404.

[70] Min Zhao, Fan Bao, Chongxuan Li, and Jun Zhu. 2022. Egsde: Unpaired image-to-
image translation via energy-guided stochastic differential equations. Advances
in Neural Information Processing Systems 35 (2022), 3609–3623.

[71] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. 2022. Conditional
prompt learning for vision-language models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. 16816–16825.

[72] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. 2022. Learning
to prompt for vision-language models. International Journal of Computer Vision
130, 9 (2022), 2337–2348.

[73] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. 2017. Unpaired
image-to-image translation using cycle-consistent adversarial networks. In Pro-
ceedings of the IEEE international conference on computer vision. 2223–2232.

https://openreview.net/forum?id=trj2Jq8riA


VLM-based Prompts as the Optimal Assistant for Unpaired Histopathology Virtual Staining
Preprint, 2025 ,

A Dataset Description
Stain Dataset. In the ANHIR dataset [2], there are five sets of
high-resolution tissue slides of the human kidney. Each set has four
successive slides of the same tissue stained with different types
of stain: H&E, MAS, PAS, and PASM. We use four sets (Patient 1,
Patient 2, Patient 3, and Patient 4) as the training set and one set
(Patient 5) as the testing set. Following the settings in UMDST [39]
and DPI [65], H&E stained samples from Patient 1 were excluded
from training due to large color and staining differences in the slices.
Each slide is cropped into a series of 256 × 256 patches with an
overlap of 192, where the background regions (saturation<15) are
discarded, and all remaining patches are used to train and test our
model. There are 40,258 patches in the training set (7,688 for H&E,
12,132 for MAS, 1,1458 for PAS, and 8,980 for PASM), and 8,070
patches in the testing set (1,989 for H&E, 2,062 for MAS, 1,900 for
PAS, and 2,119 for PASM). All methods are trained on the training
set and tested on the test set. This also ensures that the epochs and
iterations are the same, enabling a more fair comparison.
Downstream Tasks Dataset.We tested the performance of our
method on two glomerular detection and segmentation datasets,
GS [13] and KPIs [9], under different levels of images and various
tasks. On the GS dataset, referring to the dataset settings in Gram-
GAN, we divided the dataset into a training set and a test set at
a ratio of 4:1. We randomly extracted patches of different sizes,
ranging from 200×200 to 1,000×1,000, to test the performance of
virtual staining in the object detection task at the ROI level. On
the KPIs dataset, we adhered to the initial settings of the dataset.
We achieved color difference normalization of PAS-stained mouse
slices under four states: 56NX, DN, NEP25, and Normal, to improve
the performance of detection and segmentation.

B Baseline Detail
B.1 DeepSeek-R1
Based on comprehensive considerations of performance, cost ef-
ficiency, and other factors, we selected DeepSeek-R1 [14] as the
large language model (LLM) for concept anchoring generation. We
attribute the success of our approach to its several key advantages:

First, it demonstrates exceptional role-playing capabilities, ef-
fectively adopting the professional perspective of a pathologist in
its text outputs. Second, its web search functionality not only ad-
dresses the prevalent hallucination issues in the medical domain
but also enables a more contextually appropriate grasp of data
and task-specific nuances. In fact, medical data, and even clini-
cal scenarios, often exhibit strong regional specificity, shaped by
complex factors such as geographical conditions, climate, and so-
ciocultural environments. The web search feature allows the model
to approximate the localized expertise of physicians. Finally, we
must commend the model’s robust reasoning capabilities, which
empower DeepSeek-R1 to deliver more comprehensive descriptions
of stains or pathologies, encompassing a wealth of nuanced details.

B.2 CycleGAN
The following constraints are satisfied by two mappings, 𝐺𝐴𝐵 :
𝐴 → 𝐵 and 𝐺𝐵𝐴 : 𝐵 → 𝐴, parameterized by neural networks,
which are used by the CycleGAN model [73] to estimate these
conditionals. First, the output of each mapping should match the

empirical distribution of the target domain, whenmarginalized over
the source domain. Then, mapping an element from one domain
to the other, and then back, should produce a sample close to the
original element. The former technique serves as the cornerstone of
all generative adversarial networks (GAN) [11]. Mappings𝐺𝐴𝐵 and
𝐺𝐵𝐴 are given by neural networks trained to fool adversarial dis-
criminators 𝐷𝐵 and 𝐷𝐴 , respectively. Enforcing marginal matching
on target domain 𝐵, marginalized over source domain 𝐴, involves
minimizing an adversarial objective with respect to 𝐺𝐴𝐵 :
L𝐵
𝐺𝐴𝑁 (𝐺𝐴𝐵, 𝐷𝐵 ) = E

𝑏∼𝑝𝑑 (𝑏)
[log𝐷𝐵 (𝑏 ) ]+ E

𝑎∼𝑝𝑑 (𝑎)
[log(1 − 𝐷𝐵 (𝐺𝐴𝐵 (𝑎) ) ) ] ,

(19)
while the discriminator 𝐷𝐵 is trained to maximize it. A similar
adversarial loss L𝐴

𝐺𝐴𝑁
(𝐺𝐵𝐴, 𝐷𝐴) is defined for marginal matching

in the reverse direction.
Cycle-consistency enforces that, when starting from a sample

a from A, the reconstruction 𝑎★ = 𝐺𝐵𝐴 (𝐺𝐴𝐵 (𝑎)) remains close to
the original a. For image domains, closeness between a and 𝑎★ is
typically measured with 𝐿1 or 𝐿2 norms. When using the 𝐿1 norm,
cycle-consistency starting from A can be formulated as:

L𝐴
𝐶𝑌𝐶 (𝐺𝐴𝐵,𝐺𝐵𝐴 ) = E

𝑎∼𝑝𝑑 (𝑎)
∥𝐺𝐵𝐴 (𝐺𝐴𝐵 (𝑎) ) − 𝑎∥1 . (20)

And similarly for cycle-consistency starting from B. The full Cycle-
GAN objective is given by:

L𝐴
𝐺𝐴𝑁 (𝐺𝐵𝐴, 𝐷𝐴 ) + L𝐵

𝐺𝐴𝑁 (𝐺𝐴𝐵, 𝐷𝐵 )+

𝜈L𝐴
𝐶𝑌𝐶 (𝐺𝐴𝐵,𝐺𝐵𝐴 ) + 𝜈L𝐵

𝐶𝑌𝐶 (𝐺𝐴𝐵,𝐺𝐵𝐴 ),
(21)

where 𝜈 is a hyper-parameter that balances between marginal
matching and cycle-consistency.

CycleGAN’s success can be attributed to the complementary
roles of marginal matching and cycle-consistency in its objective.
Marginal matching enforces realism per domain.

B.3 DDIM Inversion
DDIM [48] utilizes an implicit non-Markovian process for sample
generation, differing from DDPM [21] which relies on a Markovian
chain. This non-Markovian approach enables accelerated sampling
through step-skipping in the reverse diffusion process. The core
reverse-process equation of DDIM is expressed as:

x𝑡−1 =
√
𝛼𝑡−1

(
x𝑡 −

√
1 − 𝛼𝑡 𝝐𝜃 (x𝑡 , 𝑡 )√

𝛼𝑡

)
+
√
1 − 𝛼𝑡−1𝝐𝜃 (x𝑡 , 𝑡),

(22)

𝝐𝜃 is the network predicting noise at each step.
The inversion process involves running the DDIM sampling

process in reverse, which can be formulated as:

x𝑡+1 =
√
𝛼𝑡+1

(
x𝑡 −

√
1 − 𝛼𝑡 𝝐𝜃 (x𝑡 , 𝑡 )√

𝛼𝑡

)
+
√
1 − 𝛼𝑡+1𝝐𝜃 (x𝑡 , 𝑡) .

(23)

We denote 𝜖∗𝑡 as the groundtruth of prediction.To enhance the
inversion process, consider the following modifications:

x0 = x∗𝑡 +
(
1
𝛼𝑡

− 1
)
𝜎, 𝜎 > 0, (24)

𝝐𝜃 (x𝑡 , 𝑡 ) = 𝜖∗
𝜃
(x𝑡 , 𝑡 ) + 𝜎, 𝜎 > 0. (25)
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In non-conditional DDIM inversion, larger time steps help reduce
error since error decreases as 𝑡 increases. The process works by
iteratively applying the equations to trace the sample back to its
original noise vector.

C Experimental parameter settings
Most parameter settings have already been configured in the code.
Please refer to the code content for details. To ensure fair com-
parison and demonstrate optimal performance, we follow all pa-
rameter settings of the baseline [65, 73]. Some hyperparameters in
our method may have different numerical values depending on the
dataset, as shown in the table 7 below.

Table 7: The hyperparameter values of ourmethod on various
datasets.

hyperparameter setting H&E2MAS H&E2PAS H&E2PASM

𝛼 30 50 30
𝛽 0.1 0.1 0.1
𝛾 0.1 0.1 0.1
𝜇 0.05 0.55 0.8
𝜆 0.001 0.001 0.05

D Limitation and Future Work
D.1 Limitation
Inference Time Burden. Although our inference enhancement
achieves strong performance, DDIM still incurs substantial com-
putational overhead even with just 50 sampling steps, requiring

5–10 minutes to enhance a single 256×256 image. This imposes
a prohibitive time burden for whole-slide image (WSI) staining
enhancement. We experimented with several acceleration methods
for diffusion models, but all led to degraded inference quality.
ResNet CLIP not Specialized for Pathology. Our stain normal-
ization method leverages multi-level MSE based on ResNet101 [19]
CLIP [52], an approach that is difficult to replicate with ViT-based
architectures like CLIP, CONCH [44], or MUSK [64]. We attribute
this advantage to ResNet’s hierarchical structure, which effectively
captures diverse visual features across different scales. However,
a notable limitation is that all current pathology-specific vision-
language model (VLM) adopt ViT architectures. This prevents di-
rect comparison between natural image optimized ResNet CLIP and
pathology specialized ResNet encoders, where the former excels in
color perception while the latter better understands histopathology.

D.2 Future Work
We aim to explore the greater potential of VLMs and Diffusion mod-
els in pathological downstream tasks, extending to more diverse
staining or other tasks, while seeking tighter integration methods
between the two technologies.

On the other hand, we also look forward to implementing more
diverse multimodal data fusion approaches, where images, text,
bulk RNA-seq data, spatial transcriptomics, and other information
can be synergistically integrated to achieve superior results.
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