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Abstract

Tree tensor networks (TTNs) provide a compact and structured representation of
high-dimensional data, making them valuable in various areas of computational
mathematics and physics. In this paper, we present a rigorous mathematical
framework for expressing high-order derivatives of functional TTNs, both with
or without constraints. Our framework decomposes the total derivative of a given
TTN into a summation of TTNs, each corresponding to the partial derivatives
of the original TTN. Using this decomposition, we derive the Taylor expansion
of vector-valued functions subject to ordinary differential equation constraints
or algebraic constraints imposed by Runge–Kutta (RK) methods. As a concrete
application, we employ this framework to construct order conditions for RK
methods. Due to the intrinsic tensor properties of partial derivatives and the
separable tensor structure in RK methods, the Taylor expansion of numerical
solutions can be obtained in a manner analogous to that of exact solutions using
tensor operators. This enables the order conditions of RK methods to be estab-
lished by directly comparing the Taylor expansions of the exact and numerical
solutions, eliminating the need for mathematical induction. For a given function
f , we derive sharper order conditions that go beyond the classical ones, enabling
the identification of situations where a standard RK scheme of order p achieves
unexpectedly higher convergence order for the particular function. These results
establish new connections between tensor network theory and classical numerical
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methods, potentially opening new avenues for both analytical exploration and
practical computation.

Keywords: Tree tensor networks, High-order derivatives, Runge–Kutta methods,
Order condition

1 Introduction

Tensor-valued functions provide a natural generalization of scalar and vector func-
tions, mapping between tensor spaces in both their domain and range. As fundamental
elements in modern computational mathematics, they enable tractable computa-
tion in high-dimensional spaces through their inherent structural properties. Their
ability of tensor functions to efficiently represent and manipulate complex multi-
dimensional data has established them as indispensable mathematical tools with
wide-ranging applications, such as machine learning [40, 49, 50, 76], numerical analy-
sis [5, 30, 31], and scientific computing [36, 42, 73]. Furthermore, tensor functions have
demonstrated remarkable efficacy in modeling complex physical phenomena where tra-
ditional methods face limitations, particularly in quantum many-body systems [54, 64],
computational fluid dynamics [28, 29], and multidimensional signal processing [1].

To address the challenges of high-dimensional tensor representation, various low
rank tensor decomposition methods have been developed over recent decades, includ-
ing CANDECOMP/PARAFAC (CP) [44], Tucker [81], tensor-train (TT) [66] and
other tensor networks [75]. While originally developed for discrete settings, these
decomposition techniques admit natural extensions to continuous function spaces
[43]. The CP decomposition factorizes a tensor into a sum of rank-one components,
providing a compact representation through separable terms. Tucker decomposition
represents tensors via a core tensor and factor matrices, offering effective dimensional-
ity reduction capabilities [19]. TT decomposition parameterizes multilinear operations
through sequential low rank matrix products [66], significantly reducing memory
requirements and enabling efficient computations [21]. Meanwhile, tensor networks,
inspired by quantum many-body physics [65, 75], employ interconnected tensor cores
in structured network topologies to capture complex, high-order interactions. The
remarkable efficiency of low-rank tensor representations has inspired extensive research
into their integration with neural network architectures for deep learning applica-
tions [84]. Notable examples include CP-CNN [47], Tucker-CNN [67], TT-CNN [63],
TT-RNN [85], Conv-TT-LSTM [77], BTT-Transformer [53], PMO-Transformer [51],
TGNNS [38], etc. These tensor-based architectures leverage the inherent compressibil-
ity of tensor decompositions to achieve parameter efficiency while preserving model
expressiveness. This paradigm has demonstrated success across diverse applications,
including neural network compression, multimodal information fusion, and quantum
circuit simulation.

Low rank tensor functions have emerged as powerful tools across diverse appli-
cations, typically represented as sums of lower-order tensor functions. However,
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computing their derivatives, particularly for higher orders, presents significant com-
putational challenges. This difficulty is particularly pronounced when dealing with
constrained vector-valued functions, such as those governed by ordinary differen-
tial equation (ODE) constraints or algebraic constraints imposed by Runge–Kutta
(RK) methods. The representation of high-order derivatives for vector-valued func-
tions proves crucial in establishing order conditions for RK methods. The evolution of
RK methods has been closely tied to the derivation of these conditions, which provide
necessary and sufficient criteria for guaranteeing numerical accuracy. Carl Runge [72]
and Martin Kutta [46] laid the groundwork for iterative integration processes, but it
was the formalization of order conditions that enabled these methods to achieve reli-
able accuracy in solving ODEs. In the 1960s, Butcher introduced algebraic structures,
such as Butcher trees, to systematically derive and analyze order conditions for both
explicit and implicit RK methods [10, 11]. These developments facilitated the devel-
opment of high-order schemes, implicit schemes for stiff problems, and embedded RK
pairs for adaptive time stepping, solidifying RK methods as indispensable tools for
numerically solving ODEs.

Building upon Butcher’s tree-based framework, researchers proposed several alter-
native approaches for deriving order conditions. The B-series formalism emerged as a
powerful analytical tool, enabling systematic comparisons between the Taylor expan-
sions of exact ODE solutions and their numerical approximations [10, 12, 16, 35].
This foundational work has been extended and adapted for analyzing partitioned
RK methods [32, 61], exponential integrators [7], stochastic RK methods [9], etc.
Lie-Butcher theory introduced another alternative perspective, constructing order
conditions through vector field commutators [57, 58]. This approach has proven par-
ticularly valuable in structure-preserving geometric integration [8, 56] and high-order
symplectic algorithms [59]. Most recently, innovations in nonlinearly partitioned RK
methods [14, 80] have motivated the search for simpler and more universal ways to
establish order conditions.

In this work, we propose a novel framework based on tree tensor networks (TTNs)
[6] to efficiently compute and represent high-order derivatives of constrained vector-
valued functions. This framework enables the systematic derivation of order conditions
for RK methods through the following key innovations:

1. Recursive derivative decomposition: The kth-order total derivative of con-
strained vector-valued functions is decomposed into a sum of kth-order partial
derivatives, each computed by differentiating the corresponding tensor cores of
the (k − 1)th-order partial derivative.

2. Diagrammatic representation and tensor calculus: The resulting partial
derivatives admit a natural representation as TTN diagrams, which share topo-
logical similarities to Butcher trees but differ fundamentally in their mathematical
nature. Unlike Butcher’s abstract tree structures, our TTN framework operates
on concrete partial derivatives with well-defined tensor operations.

3. Tree-derivative correspondence: The framework establishes a fundamental
connection between derivative operations and tree growth patterns. We present
two distinct but equivalent perspectives:
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(i) Layer-wise growth from the root, where derivatives are taken as freely as
possible before substituting constraints into the leaves.
(ii) Leaf-wise expansion, where derivative is taken one at a time, immediately

incorporating constraints into the new leaf.
4. Direct proof of order conditions: Leveraging the tensor structure of TTNs,

we achieve a constructive proof of order conditions without relying on math-
ematical induction. The terms in the Taylor expansion of numerical solutions
decomposes naturally into: a) a contraction of method-dependent TTNs, deter-
mined by the RK tableau; and b) a universal component identical to terms in
the exact solution’s expansion. This decomposition enables direct comparison of
exact and numerical expansions, deriving order conditions through explicit tensor
matching rather than inductive reasoning.

5. Super convergence of an RK scheme for a given f : The classical order
conditions γ(T )φ(T ) = 1, ∀|T | ≤ p are necessary for an RK scheme to achieve
uniform order p (i.e., convergence of order p for all admissible f). However, for a
specific choice of f , these conditions may not be necessary. By utilizing the TTN-
based framework, we derive a refined set of order conditions tailored to each f , as
presented in Theorem 13. These conditions enable us to identify situations where
a standard RK scheme of order p may exhibit a higher (superior) convergence
order for that particular function.

A detailed comparison between our TTN-based method and Butcher’s tree-based
method is provided in subsection 5.3.

The remainder of the article is organized as follows. Section 2 introduces (func-
tional) tensor networks, including fundamental tensor notations and operations, and
presents our framework for computing derivatives of TTNs, both with and without
constraints. Utilizing our TTNs derivative framework, the Taylor expansion of vector-
valued functions subject to ODE constraints and satisfying constraints imposed by
RK method, are explored in Section 3 and Section 4, respectively. Section 5 applies the
proposed framework to derive order conditions for RK methods. Section 6 concludes
the article with a summary of key findings.

2 Functional tree tensor networks and its derivatives

In this section, we present a framework for computing the derivatives of functional
TTNs. We begin by a brief review of (functional) TTNs, and then propose a framework
to compute its derivatives either without or with constraints. The functional TTNs and
its derivatives are utilized to construct order conditions of RK methods in Section 5.

2.1 Preliminary operations on tensors

We primarily introduce Kronecker products, tensor contractions, and symmetry of
tensors, which are used throughout this paper. For additional tensor operations, we
refer the reader to [48].
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2.1.1 Kronecker products

For A = (aij) ∈ Rm×n and B = (bij) ∈ Rp×q, the Kronecker product of A and B

results a matrix C := A⊗B ∈ Rmp×nq, which can be written as

C =






a11B · · · a1nB
...

...
am1B · · · amnB




 .

In order to extend the Kronecker product to higher order tensors, we first introduce
some necessary notations. The (i1, . . . , iN )th element of a tensor A with size I1 ×
· · · × IN is denoted as A[i1, . . . , iN ]. The multi-index i1i2 . . . iN is defined as iN +
(iN−1−1)IN +(iN−2−1)ININ−1+ · · ·+(i1−1)ININ−1 · · · I2, where in = 1, 2, . . . , In
for each n = 1, 2, . . . , N . Then, the Kronecker product of tensors A ∈ R

I1×I2×···×IN

and B ∈ R
J1×J2×···×JN is defined as C = A⊗B with the (i1j1, . . . , iNjN )th element

given by

C[i1j1, . . . , iNjN ] := (A⊗B)[i1j1, . . . , iNjN ] = A[i1, . . . , iN ]B[j1, . . . , jN ].

2.1.2 Contraction

Contraction, or contracted product on tensors, is a natural extension of the matrix
product. Unless otherwise specified, the contracted product usually refers to the prod-
uct of the last mode of the first tensor and the first mode of the second tensor. This
is mathematically expressed by the following definition.

Definition 1 Assume two tensors A ∈ R
I1×I2×···×IM , B ∈ R

J1×J2×···×JN with IM = J1,
and M, N ≥ 1. The contracted product (or more precisely (M, 1)-contracted product) is
defined by

C := A×1
B ∈ R

I1×···×IM−1×J2×···×JN

with elements

C[i1, . . . , iM−1, j2, . . . , jN ] =

IM
∑

iM=1

A[i1, . . . , iM−1, iM ]B[iM , j2, . . . , jN ].

The matrix product is a special example of contracted product on tensors. For
simplicity, AB will be written instead of A×1 B in the rest of this paper.

A useful property, known as the mixed product property, is presented in [68, 69].
We state this property as the following lemma.

Lemma 1 If A, B, C, and D are tensors which can form contracted products AC and BD,
then

(A⊗B)(C⊗D) = (AC)⊗ (BD).

5



This property transforms the contraction of Kronecker product into the Kronecker
product of contractions, which is useful in computing decomposition and contraction
of tensors in the remainder of our paper.

2.1.3 Symmetry of tensors

A tensor exhibits symmetry when its elements remain invariant under index per-
mutations. A tensor is called cubical if all its modes have the same dimension, i.e.,
A ∈ RI×I×···I . A cubical tensor A of order d is said to be symmetric if its elements
remain unchanged under any permutation of indices [20]. This property is formally
defined as follows.

Definition 2 Suppose A ∈ R
I×I×···×I is a dth order tensor. A is called symmetric if, for

any permutation π of {1, . . . , d},
A[i1, i2, . . . , id] = A[iπ(1), iπ(2), . . . , iπ(d)].

More generally, tensors can exhibit partial symmetry, meaning they remain invari-
ant under permutations of a specific subset of indices. For example, a tensor of order
d can be symmetric in the last (d− 1)th indices but not in all indices.

High-order derivatives of a multivariate function f : Rn → R can be naturally
represented as cubical tensors. Specifically, the dth order derivative of f ∈ Cd(Rn) at a
point x := (x1, . . . , xn)

T is a dth order cubical tensor, denoted as f (d)(x) := Ddf(x),
whose components are given by

f (d)[i1, i2, . . . , id](x) =
∂df(x)

∂xi1∂xi2 · · · ∂xid

, 1 ≤ i1, i2, . . . , id ≤ n.

By the commutativity of mixed partial derivatives, the tensor f (d)(x) is symmetric.
Throughout this article, we frequently consider high-order derivatives of a vector-
valued multivariate function f : Rn → Rm. For f with elements being Cd(Rn)
smoothness, its dth order derivative at x is a (d + 1)th order tensor f (d)(x) with
elements given by

f (d)[i, i1, i2, . . . , id](x) =
∂df [i](x)

∂xi1∂xi2 · · · ∂xid

, 1 ≤ i ≤ m, 1 ≤ i1, i2, . . . , id ≤ n,

which exhibits partial symmetry in the last d indices.
For tensors with symmetry or partial symmetry, contractions over symmetric

indices commute. For example, for a symmetric matrix H ∈ Rn×n, it holds that
x⊤Hy = y⊤Hx for any two vectors x,y ∈ Rn. More generally, for vectors v1, . . . , vd

∈ Rn and any permutation π of {1, . . . , d}, we have

f (d)(x)v1 · · ·vd = f (d)(x)vπ(1) · · ·vπ(d). (1)
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The property (1), which allows us to contract the tensor f (d)(x) with vectors in
any order, will be utilized in section 3. Occasionally, we simplify the notation for
f (d)(x)v1 · · ·vd as follows:

f (d)(x)v1 · · ·vd := f (d)(x)

d∏

i=1

vi. (2)

2.2 Tree tensor networks

TTNs were first used by physicists. They were originally introduced in [83] to con-
struct the multilayer multiconfiguration time-dependent Hartree thoery of chemical
physics. However, it wasn’t until [75] the term “tree tensor network” was formally
coined. Subsequently, it gained significant popularity in quantum systems [60, 62]. In
[5, 31], the low-rank approximations and the corresponding decomposition algorithms
of binary trees, known as hierarchical tensors, were proposed. TTNs are a powerful and
versatile tool for representing the decomposition of multivariate functions (tensors)
into nested summations over contraction indices. We will present the basic concepts
of TTNs following [6] and refer readers to [6, 15, 23, 24] for additional properties of
TTNs.

Denote iµ = 1, 2, . . . , nµ as the physical indices and kν = 1, 2, . . . , rν as the con-
traction indices. For a dth order tensor U, we can define a multilinear parametrization
of U that separates the physical indices as the following form [6]:

U[i1, . . . , id] =

r1∑

k1=1

· · ·

rE∑

kE=1

V∏

α=1

Cα(i1, . . . , id, k1, . . . , kE), (3)

where each component Cα potentially depends on all physical indices i1, . . . , id and
contraction indices k1, . . . , kE . In (3), V is called the number of components. In the
case of low-rank, Cα usually does not depend on all indices. If Cα does or does not
depend on a certain index iµ or kν , then the index is called an active or inactive index.

Definition 3 ([6, Definition 2.2]) A tensor network is defined as a particular type of
multilinear parameterization where:
(i) Each physical index iµ is active in exactly one component Cα;
(ii) Each contraction index kν is active in precisely two components Cα1

and Cα2
.

For a clearer description of contraction, a graph is introduced to present a tensor
network [6]. For example, the tensor network U defined in (3) is represented by a
graph with vertices α = 1, . . . , V , corresponding to components Cα. These vertices
are connected by edges ν = 1, . . . , E. Each edge represents a summation over the
corresponding contraction variable kν . If a physical index iµ, µ = 1, . . . , d is active
in component Cα, an additional open edge is connected to the corresponding vertex.
Thus, the number of open edges in the graph determines the order of tensor U. This
kind of graphical representation is called tensor network diagrams [19, 37, 48]. Similar
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diagrammatic representations, such as Feynman and Goldstone diagrams [26, 55], are
also commonly used in quantum physics to track summations. In Figure 1, some simple
examples of tensor network diagrams are displayed to represent the contraction of
tensors.

x = x x · x =
x

x
Ax =

A

x
y⊤Ax =

y
A

x

B =
B

Bx =
B

x

∈ Rn2×n3 (Bx)(Ax) =
B

A

x

x
∈ Rn3 z⊤(Bx)(Ax) =

z

B

A

x

x

Fig. 1: The tensor network diagram. Here x ∈ Rn1 , y ∈ Rn2 , z ∈ Rn3 , A ∈ Rn2×n1 ,
and B ∈ Rn3×n2×n1 , respectively.

A tensor network is refered to as a tree tensor network if its graph structure is a
tree, meaning it contains no loops or cycles [6]. The widely used tensor networks, i.e.,
the Tucker, hierarchical Tucker, and TT formats all are TTNs. By assigning a root to
the tree, a TTN can be viewed as a multilevel Tucker tensor [15] or tree-based Tucker
tensor [24]. Without loss of generality, we always assign the component C1 as the root
for the TTN defined by (3). For notational convenience, we remove all inactive indices
from the indices of components. Denote the set of active contraction indices and active
physical indices in component Cα as Eα and Eo

α, respectively. Let us denote E = ∪αEα

and Eo = ∪αE
o
α. Using these notations, TTNs can be written in a more compact way.

A TTN of a scalar u dose not include any open active index and can be written as

u =
∑

E

V∏

α=1

Cα[Eα],

where Eα ⊂ E = {k1, . . . , kE}, α = 1, . . . , d, are index sets of the contraction edges

connected with the vertex α. Here,
∑

E

is defined as
∑

E

:=
r1∑

k1=1

· · ·
rE∑

kE=1

with E = |E|.

For a dth order tensor U, the TTN can be denoted as:

U[Eo] =
∑

E

V∏

α=1

Cα[E
o
α, Eα], (4)

where Eo := {i1, . . . , id} with |Eo| = d.
For instance, assume that U ∈ Rn1×n2 is a 2nd-order tensor defined as follows:

U[i1, i2] =
∑

k1,...,k5

C1[i1, k1, k2]C2[i2, k1, k3]C3[k3, k4, k5]C4[k4]C5[k5]C6[k2]
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:=
∑

E

6∏

α=1

Cα[E
o
α, Eα] = U[Eo],

where C1 ∈ Rn1×r1×r2 , C2 ∈ Rn2×r1×r3 , C3 ∈ Rr3×r4×r5 , C4 ∈ Rr4 , C5 ∈ Rr5 , and
C6 ∈ Rr2 , respectively. The configuration of U is given in Figure 2(a) and the TTN
diagram is displayed in Figure 2(b), respectively. In this work, for a TTN diagram,
the edges connected to each vertex are arranged from left to right in increasing order
of contraction indices or physical indices. For clarity and conciseness, as shown in
Figure 2(c), we omit the contraction sizes and physical sizes in the TTN diagrams
when no ambiguity arises.

i1

k2k1

i2k3

k5k4

C1

C6C2

C3

C5C4

(a) Configuration

n1

r2r1

n2r3

r5r4

C1

C6C2

C3

C5C4

(b) TTN diagram

C1

C6C2

C3

C5C4

(c) Simplified TTN diagram

Fig. 2: An example of a 2nd-order tree tensor network.

2.3 The functional tree tensor networks and its derivatives

Similar to TT or other tensor representations [22, 27], the TTN also possesses a
continuous analogue. By replacing Cα with tensor-valued functions fα, we extend a
TTN to a functional tree tensor network. Typically, for xµ ∈ Rmµ with µ = 1, . . . , d,
we denote the functional TTN as

F[Eo](x1, . . . , xd) =
∑

E

V∏

α=1

fα[E
o
α, Eα](x̃α), (5)

where x̃α ∈ Rm̃α is a vector with elements selected from (x1, . . . , xd). In the rest of
this paper, we sometimes simplify F[Eo](x1, . . . , xd) as F or F(x1, · · · , xd). Similar
simplified notations are used for fα[E

o
α, Eα](x̃α). For ease of explanation, assume V =

d, x̃α = xα, and introduce the definition of derivatives for the functional TTN F.
This definition can be extended to more complex cases, but we omit the details due
to page limitations.

Due to the separable representation of F, the partial derivative of F with respect to
xα0

is equivalent to differentiate on the αth
0 component function fα0

, and then adding
an additional open mode to the resulting component f ′α0

. This corresponds to adding
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a physical index to Eo
α0
. The new set of physical indices of component f ′α0

and ∂α0
F

is denoted as Ẽo
α0

= E
o
α0

∪ {i|Eo|+1} and Ẽ
o = E

o ∪ {i|Eo|+1}, respectively. With these
notations, we can express the partial derivative of F with respect to xα0

as:

(∂α0
F)[Ẽo](x1, . . . , xd) =

∑

E




f

′
α0
[Ẽo

α0
, Eα0

](xα0
)

d∏

α=1
α6=α0

fα[E
o
α, Eα](xα)




 . (6)

It is important to note that we can obtain the tensor ∂α0
F by only adjusting the αth

0

component of F as defined in (6).
The partial derivative of a TTN can be easily understood and implemented using

the TTN diagram. Let us take a second-order tensor-valued function F as an example.
The TTN diagram of F is displayed in Figure 3(a). By taking the derivative of the
variable at the 6th core, the resulting ∂6F is a third-order tensor-valued function,
represented by the TTN diagram in Figure 3(b). The dimension of the new physical
mode is the same as the dimension of the variable we are differentiating on.

n1

r2r1

n2r3

r5r4

f1

f6f2

f3

f5f4

(a) F

n1

r2

m6

r1

n2r3

r5r4

f1

f ′6f2

f3

f5f4

(b) ∂6F

n1

r2

m6

r1

n2r3

r5r4

f1

f ′6

y′

f2

f3

f5f4

(c) (∂6F)y
′

Fig. 3: An example of the partial derivative of functional TTNs.

2.3.1 The differential of functional tree tensor networks

With the definition of the partial derivative of functional TTNs, we can extend the con-
cept of differential from scalar-valued or vector-valued functions to functional TTNs.
For a functional TTN F as defined in (5), the differential of F at (x1, . . . xd), denoted
by dF, can be defined as follows

dF := dF(x1, . . . xd) =
∑

α

∂αFdxα. (7)

For each α, ∂αF includes a new physical mode with dimension mα and dxα is a
differential that is a vector of dimension mα. Therefore, the contraction of the TTN
∂αF and dxα results a TTN, with the same order and a similar TTN diagram as
F. Next, using the definition of differential, we establish the relationship between the
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total derivatives and partial derivatives of functional TTNs. By assuming xα = y,
∀α = 1, . . . , d, we can rewrite the |Eo|th order tensor F given in (5) to

F[Eo](y) =
∑

E

d∏

α=1

fα[E
o
α, Eα](y). (8)

The total derivative of F with respect to y is defined as

F′(y) :=
dF

dy
=

d∑

α=1

(∂αF)[E
o ∪ {i|Eo|+1}](y), (9)

which is a (|Eo| + 1)th order tensor with a new physical mode of dimension Rm1 as
compared to F. The αth term in the summation can be represented as a TTN diagram
with a new open edge extended from the vertex α. Note that the total derivative F′(y)
is a (|Eo|+ 1)th order tensor, which can be expressed as a sum of d TTNs using (9).
However, the resulting tensor F′(y) may not necessarily retain the TTN structure.

By recursion, we can define higher-order total derivatives of F with respect to y as:

F(k)(y) :=
dk

dyk
(F[Eo](y)) =

dk−1

dyk−1

∑

α1

(∂α1
F)[Eo ∪ {i|Eo|+1}](y)

= · · · =
∑

α1, ..., αk

(∂αk
· · · ∂α1

F)[Eo ∪ {i|Eo|+1, . . . , i|Eo|+k}](y),
(10)

where the summation is over αj ∈ {1, . . . , d}, j = 1, . . . , k. So the summation on the
right hand side contains dk terms. The sequence of α1, . . . , αk determines the sequence
of differentiation. For different sequences of α’s, the resulting partial derivatives may
be the same. We do not distinguish between them or calculate their multiplicities here.
This issue will be addressed in Section 3. Throughout the derivation process in (10),
the active contraction indices of each term in the right hand side remain unchanged.
As a result, the TTN diagrams of functional TTNs in the summation retain the same
structure as that of F, except the open edges.

Finally, let us consider a functional TTN, whose components are composite func-
tions. The simplest case is to substitute y with y(t) in (8). We then compute the total
derivative of F with respect to the scale variable t. This derivation process can be
extended to more general situations, where y is a vector-valued function of a vector
variable. By application of chain rule, we obtain the first order total derivative of F

11



with respect to t as follows:

d

dt
(F(y(t))) :=

d

dt
(F[Eo](y(t)))

=

d∑

α=1

(
(∂αF)[E

o ∪ {id+1}](y(t))
)
y′[id+1](t)

=:

d∑

α=1

F̃α[E
o](y(t)).

(11)

where F̃α[E
o](y(t)) =

(
(∂αF)[E

o ∪ {id+1}](y(t))
)
y′[id+1](t) is a TTN with one more

contraction index than F, and y′ can be denoted as the (d+1)th component of F̃α. In
this case, taking the derivative of a TTN is equivalent to contracting the new physical
mode of ∂αF with y′, forming a new contraction index. An example illustrating this
process is provided in Figure 3(c). High order derivatives of F with respect to t can
be obtained by recursive application of this process.

3 The derivative of tree tensor networks with ODE

constraints

Based on the representation of TTNs and their derivatives, we compute the high
order derivatives and the Taylor expansion of vector-valued functions satisfying ODE
constraints in this section. Consider the following ODEs system:

y′(t) = f(y(t)), (12)

where y : R → R
d is the unknown function and f : Rd → R

d is a given functional. This
type of ODEs has widely applications in fluid dynamics [18, 78], nonlinear dynamics
and chaos [52, 71], nonlinear optics [2, 3], quantum systems [74, 79], plasma physics
[17], condensed matter physics [25], etc. The aim of this subsection is to compute high-
order derivatives of y with respect to t, and represent it in terms of the derivatives of
f with respect to y.

3.1 Differentiation following leaf-wise growth of trees

As mentioned in Section 2.3, when a partial derivative is taken at a vertex in the given
TTN, a new edge is introduced and connected from the upper right. If the partial
derivative is applied to a composite function, a new vertex is subsequently introduced.
The new edge and new vertex are labelled immediately after the respective current
largest labels. The kth order derivative of f respect to t can be recursively written out
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as follows:

dk

dtk
(f(y)) =

dk−1

dtk−1
((∂1f(y))f(y))

=
dk−2

dtk−2
[∂1((∂1f(y))f(y)) + ∂2((∂1f(y))f(y))]

= · · · ,

(13)

which is ultimately decomposed into a summation of k! TTNs. This process describes
how a TTN grows from the root, adding one leaf at a time, to eventually form a TTN
with k + 1 components.

To write down this process clearly, let us define F1[E1] = (∂1f(y))f(y) and

Fαk, ..., α1
[Ek] = ∂αk

(Fαk−1, ..., α1
[Ek−1]), for k > 1, (14)

where the subscript αi denotes the path of differentiation, and the contraction index
set is defined as Ej = {k1, . . . , kj}. The subscripts αk, . . . , α1 with αi ≤ i are called
a differentiation path, which determines how a tree grows from the root by adding one
leaf at a time. Using this notation, (13) can be expressed as follows:

dk

dtk
(f(y)) =

dk−1

dtk−1
(F1[E1]) =

dk−2

dtk−2
[∂1(F1[E1]) + ∂2(F1[E1])]

=
dk−2

dtk−2
(F1,1[E2] + F2,1[E2])

= · · · =
∑

α1≤1, ..., αk≤k

Fαk, ..., α1
[Ek].

(15)

For each TTN appearing on the right hand side of (15), the corresponding TTN
configuration can be derived from an unlabelled tree by assigning a contraction
index kj to each corresponding edge. When k = 8, the configurations of the TTN
F1,5,5,3,1,2,1,1 and F1,5,5,3,1,1,2,1 are displayed in Figure 4(a) and Figure 4(b), while
the corresponding unlabelled tree is shown in Figure 4(c). To simplify the notation
Fαk, ..., α1

[Ek], as shown in Figure 5, for a given unlabelled tree T defined in [11, Chap-
ter 3], we define a corresponding TTN T (f), whose TTN diagram closely resembles
the graph of T . The TTN T (f) ∈ Rd has a single open edge connected to the root, and
each vertex is assigned a component f (i)(y), where i denotes the number of edges con-
nected to the vertex from above. The TTN T (f) is mathematically defined as follows,
which is similar to ‘elementary differential’ in [6].

Definition 4 ([6, Theorem 310A]) For a function f ∈ R
d, analytic in a neighbourhood of y,

the TTN T (f) ∈ R
d is defined by:

T (f) = f(y) ∈ R
d
, if T = [1],

T (f) = f
(l)(y)T1(f) · · ·Tl(f) ∈ R

d
, if T = [T1 . . . Tl].

(16)
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i1

k8

k4

k7k6

k2

k5

k1

k3

(a) TTN F1,5,5,3,1,2,1,1.

i1

k8

k4

k7k6

k3

k5

k1

k2

(b) TTN F1,5,5,3,1,1,2,1. (c) Unlabelled tree T .

Fig. 4: TTNs and corresponding unlabelled tree of order 9.

For a given unlabelled tree T (as shown in Figure 5(a)), the TTN diagram of
T (f) is shown in Figure 5(b), where component indices and contraction sizes are
omitted. As illustrated in Figure 5(c), removing the open edge in the TTN diagram
of T ((f)) results in an operator diagram for the ‘elementary differential’ [11, Chapter
3, Definition 310A]. Next, we study the relationship between TTN T (f) and TTNs
Fαk, ..., α1

[Ek] in (15). Due to the partial symmetry of f (i)(y) as stated in (1), we
obtain symmetry property of TTN T (f) in Lemma 2.

(a) Unlabelled tree T .

f ′′
f ′
f

f

(b) TTN diagram of T (f).

f ′′
f ′
f

f

(c) Operator diagram of ele-
mentary differential T (f).

Fig. 5: Relationship between T and T (f).

Lemma 2 For an unlabelled tree T = [T1, . . . , Tl] and any permutation π of {1, . . . , l}, the
corresponding TTN T (f) satisfies:

T (f) = f
(l)(y)T1(f) · · ·Tl(f) = f

(l)(y)Tπ(1)(f) · · · Tπ(l)(f). (17)

The proof of Lemma 2 follows directly from (1).

Lemma 3 For any TTN Fαk, ..., α1
[Ek] corresponding to an unlabelled tree T of order k+1,

the following relationship holds:

Fαk, ..., α1
[Ek] = T (f). (18)

Proof We prove this statement by mathematical induction. For k = 1, the conclusion follows
directly. Now, assume that the statement holds for any unlabelled tree with order less than
k+1. For a tree T with |T | = k+1, we express it as T = [T1, . . . , Tl], where Ti for i = 1, . . . , l
are subtrees of T of order less than k + 1. We contract Fαk, ..., α1

[Ek] from top to bottom.

Based on the induction hypothesis, for the ith subtree, we obtain Ti(f) ∈ R
d. Suppose the

14



contraction order in Fαk, ..., α1
[Ek] at the root vertex is given by a permutation π, then we

have

Fαk, ..., α1
[Ek] = f

(l)(y)Tπ(1)(f) · · ·Tπ(l)(f) = f
(l)(y)T1(f) · · ·Tl(f) = T (f), (19)

which completes the proof of the lemma. �

The Lemma 3 describes the ‘commutativity’ of tensor partial derivatives. For
example, F1,5,5,3,1,2,1,1 = F1,5,5,3,1,1,2,1 indicates that the second and third partial
derivatives can be interchanged. In [11, Chapter 3], a ‘forest’ is defined as a collection
of trees, potentially with repetitions, such as T1T2 . . . Tl. In tensor notation, a forest
is represented as the product of T1(f), . . . , Tl(f) ∈ Rd, which is subsequently con-
tracted with a symmetric tensor of order greater than or equal to l, as exemplified
in (17). For T = [T1, . . . , Tl], the Butcher product of trees T and Tl+1, defined as
T̃ = T ◦ Tl+1 := [T1, . . . , Tl, Tl+1], can be expressed in terms of TTNs as follows:

T̃ (f) := T (f) ◦ Tl+1(f) = f (l+1)(y)T1(f) · · ·Tl(f)Tl+1(f). (20)

If trees are denoted by TTNs Fαk, ..., α1
and Fα̃l, ..., α̃1

, the Butcher product can be
represented as:

Fαk, ..., α1
◦ Fα̃l, ..., α̃1

= Fα̃l+k+1, ..., α̃1+k+1, 1, αk, ..., α1
. (21)

Next, let us introduce several definitions and functions about unlabelled tree T .

Definition 5 ([6, Theorem 304A and 305A]) For a unlabelled tree T = [Tm1

1 Tm2

2 · · ·Tmk

k
],

where T1, T2, . . . , Tk are distinct trees. Then we define

|T | = 1 +

k
∑

i=1

mi|Ti|,

σ(T ) =
k
∏

i=1

mi!σ(Ti)
mi ,

γ(T ) = T ! = |T |
k
∏

i=1

(Ti!)
mi ,

α(T ) =
|T |!

σ(T )T !
.

(22)

According to Lemma 3, different differentiation paths result in distinct TTN con-
figurations, yet they may correspond to the same unlabelled tree. Motivated by this
observation, we introduce the concept of a labelled tree to simplify TTN configu-
rations and systematically analyze differentiation paths. In a labelled tree, the root
vertex is assigned the value 1, and each vertex connected from below by an edge with
index kj is assigned by the value j + 1. An example of such a labelled tree is pro-
vided in Figure 7(a). Since the labelled trees are simplified representations of TTN
configurations generated by differentiation, they must satisfy the following property:
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(1) Each vertex receives one and only one label from {1, 2, . . . , |T |}.
(2) The vertices connected to a given vertex from above are assigned labels in

increasing order from left to right.
(3) If (i, j) is a labelled edge then i < j.
Labelled trees satisfying these three properties are called valid labelled trees. The

definition of valid labelled trees here is closely related to the labelled trees defined in
[11, Chapter 3]. In [11], the second property is replaced by: equivalent labellings under
the symmetry group are counted only once. In this work, we select a specific labelled

tree from the symmetry group using criterion (2). For example,
1

32 is chosen

from the symmetry group

{

1

32 ,
1

23
}

.

Theorem 4 The number of distinct ways of labelling the given tree T under these conditions
(1)-(3) is α(T ).

Proof By removing the condition (2), we obtain all labelled trees satisfying (1) and (3) within
the symmetry group A(T ). For a labelled tree in A(T ) with l subtrees denoted as T1, . . . , Tl,
assume the root of Ti is assigned a value ai. There exists a permutation π such that aπ(i) is
in increasing order. Then the tree T = [Tπ(1) . . . Tπ(l)] belongs to A(T ) and satisfies condition

(2) at the first layer. By repeating this process, we eventually obtain a labelled tree T̂ that
satisfies conditions (1)-(3) in A(T ). To prove the uniqueness, assume there exist two distinct
labelled trees T̂1 and T̂2 satisfying (1)-(3). Since the root of both T̂1 and T̂2 is assigned the
value 1, and both trees belong to A(T ), the sets of labelled values in the first layer of T̂1 and
T̂2 must be identical. Furthermore, by condition (2), we find that the topologies of T̂1 and
T̂2 in the first layer are also identical. By induction, each subsequent layer of T̂1 and T̂2 must
also be identical, implying T̂1 = T̂2. Thus, the conditions (1)-(3) are equivalent to those used
in [11]. By [11, Theorem 305A], the number of distinct ways of labelling the given tree T is
given by α(T ). �

Theorem 5 There exists a bijection between valid labelled trees with order k + 1 and
differentiation paths αk, . . . , α1, where αi ≤ i.

Proof For a labelled tree T , let E denote the set of all edges (i, j), ordered such that i < j.
For any j ∈ {1, 2, . . . , k}, if (i, j + 1) ∈ E, let us define ϕT (j) = i. Due to j + 1 > i,
we have ϕT (j) ≤ j. Since each j ∈ {1, 2, . . . , k} corresponds to a unique parent vertex i

(connected from below to the vertex labelled j+1), and because T follows an upward-growing
representation, the function ϕT (j) is well-defined and satisfies ϕT (j) ≤ j. Moreover, distinct
labelled trees T1 6= T2 yield distinct functions ϕT1

6= ϕT2
.

Define a mapping φ that assigns each valid labelled tree T of order k+1 to the sequence
ϕT (k), . . . , ϕT (1). It is easy to verify that the mapping φ is well-defined. Since ϕT (j) ≤ j,
the sequence ϕT (k), . . . , ϕT (1) represents a valid differentiation path. The injectivity of φ
follows directly from the fact that ϕT is distinct for different trees T . We now prove that φ

is surjective by induction. For the base case, when k = 1, the differentiation path α1 = 1
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clearly corresponds to a valid labelled tree of order 2. Next, let us construct a preimage T for
any given differentiation path αk−1, . . . , α1. Assume as the induction hypothesis that there
exists a labelled tree T̃ of order k being preimage of the differentiation path αk−1, . . . , α1.
Let ϕ

T̃
: {1, 2, . . . , k − 1} → {1, 2, . . . , k − 1} be the associated mapping. To construct a

tree T of order k + 1 corresponding to the extended differentiation path αk, αk−1, . . . , α1,

we attach a new leaf with label k + 1 to the (αk)
th vertex of T̃ . The resulting mapping ϕT

is well-defined as

ϕT (j) =

{

ϕ
T̃
(j), j < k,

αk, j = k.

Thus, the labelled tree T is the preimage of the differentiation path αk, αk−1, . . . , α1, and
φ is a surjective. Since φ is both injective and surjective, it is a bijection, completing the
proof. �

Corollary 6 As there are k! distinct different differentiation paths, and ak+1 counts valid
labelled trees of order k + 1 (satisfying conditions (1)-(3)), the bijection implies:

ak+1 =
∑

|T |=k+1

α(T ) = k!.

According to Lemma 3, two differentiation paths are equivalent if there correspond-
ing to the same unlabelled tree. It is also interesting to obtain this equivalence from the
‘commutativity’ between tensor partial derivatives or ‘commutativity’ in the sequence
of differentiation path. To investigate this, we define a modified Butcher product of
trees as

[T1]◦̂[T2] = [T1T2] = [T1]◦T2,

which means that the root of [T2] is removed, and the subtree T2 is attached to the
root of [T1]. Similarly, we have

[T ]◦̂[T̃1T̃2 . . . T̃l] = [T T̃1 . . . T̃l] = [T ]◦̂[T̃1]◦̂[T̃2] . . . ◦̂[T̃l].

When the trees are represented as TTNs Fαk, ..., α1
and Fα̃l, ..., α̃1

, the modified Butcher
product can be represented as:

Fαk, ..., α1
◦̂Fα̃l, ..., α̃1

= Fα̂l, ..., α̂1, αk, ..., α1
, (23)

where α̂i =

{

1, if α̃i = 1,

α̃i + k, else if α̃i > 1.

For i0 ∈ [1, k], the modified Butcher product ◦̂i0 can be represented as:

Fαk, ..., α1
◦̂i0 Fα̃l, ..., α̃1

= Fα̂l, ..., α̂1, αk, ..., α1
, (24)

where α̂i =

{

i0, if α̃i = 1,

α̃i + k, else if α̃i > 1.
The modified Butcher product ◦̂i0 means that

we remove the root of the second TTN and connect all sub-TTNs to the ith0 leaf of
the first one. It is clear that ◦̂ = ◦̂1.
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Lemma 7 For any tree T = [T1 . . . Tl], we have

T = [T1] ◦ T2 ◦ · · · ◦ Tl = [T1]◦̂[T2]◦̂ · · · ◦̂[Tl], (25)

and
T (f) =

(

f
′(y)T1(f)

)

◦ T2(f) ◦ · · · ◦ Tl(f). (26)

Furthermore, assuming that the TTNs for trees T , T1, . . . , Tl, are F, and F1, . . . , Fl, we get

F = F̂◦F1◦ · · · ◦Fl
, (27)

where F̂ corresponds to unlabelled tree •.

The proof of this lemma follows directly from the definition of the Butcher product
of trees. We then utilize the (modified) Butcher product to establish the equivalence of
differentiation paths, thereby avoiding the need to explicitly construct the underlying
unlabelled tree. For a given TTN Fαk, ..., α1

, let us move all indices with the largest
value to the left. In this procedure, since we only adjust the labels of vertices not
involved in differentiation, the topology of the corresponding unlabelled tree remains
unchanged. Denote β = maxki=1 αi, and suppose there are s indices αi equal to β. We
can write down this procedure using modified Butcher product as:

Fαk, ..., α1
= Fα̃k−s, ..., α̃1

◦̂β−1F11...1,

where F11...1 corresponds to an s + 1 order unlabelled tree and the subscripts β − 1
indicate that the root of F11...1 is generated by taking the (β − 1)th partial deriva-
tive ∂α̃β−1

in the differentiation path α̃k−s, . . . , α̃1. Here, the sequence α̃k−s, . . . , α̃1

is obtained by removing all entries αi = β from the sequence αk, . . . , α1. By apply-
ing this process recursively, we obtain the decomposition given in (27). Let us use
F1,5,5,3,1,1,2,1 as an example to illustrate this process.

F1,5,5,3,1,2,1,1 = F1,3,1,2,1,1◦̂4F11

= F1,1,2,1,1◦̂2F1◦̂4F11 = F1,1,1,1◦̂1F1◦̂2F1◦̂3F11

= F1 ◦ F1 ◦ F1 ◦ F11.

During this procedure, the subscript of ◦̂ should be updated according to the updated
number of leaves.

Theorem 5 implies that valid labelled trees uniquely determine the differentiation
path. By combining Lemma 3, Theorem 4, and Theorem 5, we conclude that there
exist exactly α(T ) differentiation paths to obtain the TTN T (f). Finally, we compute
high-order derivatives of y in the following theorem.

Theorem 8 Assume that y is a solution of ODEs system (12). Then, the (k + 1)th order
derivative of y has the following expression

y
(k+1) =

∑

|T |=k+1

α(T )T (f). (28)
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Proof Using (15), we have

y
(k+1) =

∑

α1≤1, ..., αk≤k

Fαk, ..., α1
[Ek], (29)

which represents y(k+1) as a summation of k! TTNs. According to Lemma 3, Theorem 5,
and the multiplicity of T (f), we simplify y(k+1) as:

y
(k+1) =

∑

|T |=k+1

α(T )T (f), (30)

which completes the proof. �

With the definition of T (f) and the TTN’s derivatives introduced in Section 2.3,
we can express any high order derivative of y as the summation of TTNs T (f). This
result is formally stated in Theorem 8, which is identical to Theorem 311C in [11,
Chapter 3]. In that context, T (f) corresponds to the ‘elementary differential’ as defined
in Definition 310A of [11, Chapter 3]. However, it is important to note that while our
final result aligns with that of [11], our proof methodology follows a different approach.

3.2 Differentiation following layer-wise growth of trees

In this subsection, we utilize TTN derivatives to introduce a layer-wise growth concept
and provide an alternative proof for Theorem 8 based on this insight. Similar to (11),
taking the kth order derivative with respect to t on both sides of (12) and using the
chain rule, the (k + 1)th order derivative of y has the following expression:

y(k+1) = (f(y))(k) =
∑

f (l)(y) y(j1) · · ·y(jl), (31)

where l ≤ k, j1 + · · · + jl = k with ji ≥ 1. Here the summation runs over all TTNs
generated recursively using (11). For k = 0, 1, 2, 3, 4, the total number of TTNs in
this summation is 1, 1, 2, 5, and 15, respectively. The structures of these TTNs are
determined by the multiple indices j1, . . . , jl and some may share the same index
combinations. For a given k, these TTNs can be visualized using TTN diagrams, as
shown in Figure 6. Due to the partial symmetric property (1), the ordering of indices
j1, . . . , jl does not affect the final contraction result. Consequently, different feasible
index choices for j1, . . . , jl, such as f (6)(y) y′y′′y(3) and f (6)(y) y′y(3)y′′, may lead
to identical TTNs. We do not explicitly account for the two types of multiplicity of
these TTNs at this stage; instead, we incorporate it after substituting the constraint
y′ = f(y) in (31).

By recursively substituting the lower order derivatives of y into (31), we can finally
represent y(k+1) as a summation of TTNs T (f). This recursive process is equivalent
to the growth of a tree, layer by layer, from its root. Using the notation T (f), we
further expand (31) as

y(k+1) = (f(y))(k) =
∑

|T |=k+1

α̃(T )T (f), (32)
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f(y)

(a)

→
f ′(y)

y′

(b)

→
f ′′(y)

y′y′

(c)

f ′(y)

y′′

(d)

→

. . .

f(l)

y(jl)y(jl−1)y(j2)y(j1)

(e)

Fig. 6: The TTN diagrams of TTNs in the summation of yk+1. (a) k = 0; (b) k = 1;
(c-d) k = 2; (e) k > 2.

where the TTN T (f) ∈ Rd and the scale α̃(T ) represents the multiplicity of T (f).
This procedure offers an insight into the layer-wise growth of trees. By replacing α̃(T )
with α(T ), we can complete the proof of Theorem 8. Next, we introduce an alternative
method to determine it, based on the layer-wise growth insight of the tree.

To identify the multiplicity α̃(T ), we employ the symmetry property (1) and reor-
ganize the terms y(ji) in ascending order of their indices j1, . . . , jl. This ordering
procedure transforms (31) into the canonical form:

(f(y))(k) =
∑

m∈∪k
l=1

Sk,l

η(m)f (l)(y)(y′)m1(y′′)m2 · · · (y(k))mk , (33)

where η(m) ∈ R is the combinatorial multiplicity factor to be determined and the
index sets are defined as:

Sk,l =

{

m = (m1, . . . , mk) ∈ N
k
0

∣
∣
∣

k∑

i=1

mi = l,
k∑

i=1

imi = k

}

. (34)

Here mi represents the multiplicity of y(i) in each term of the summation of (31),
with mi = 0 indicating the absence of y(i) in that term. In (33) and throughout the
remainder of this proof, we employ the compact notation defined in (2) to represent
contractions between tensors and vectors.

To determine η(m), we observe that its values remain unchanged for both scalar-
valued and vector-valued functions y. To derive its explicit form, we consider the scalar
case with the Taylor expansion:

y(t) ≡
k∑

i=1

y(i)(0)ti/i!.
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For the monomial function f(y) = yl0 , where f (l)(y)|t=0 = δl0,ll!, we compute:

dk

dtk
(f(y))

∣
∣
t=0

=
dk

dtk





(
k∑

i=1

y(i)(0)
ti

i!

)l0




∣
∣
∣
∣
∣
t=0

=
∑

m∈Sk,l0

k!

(
l0
m

)(
y′(0)

1!

)m1
(
y′′(0)

2!

)m2

· · ·

(
y(k)(0)

k!

)mk

=
∑

m∈∪k
l=1

Sk,l

δl0,lk!

(
l

m

)(
y′(0)

1!

)m1
(
y′′(0)

2!

)m2

· · ·

(
y(k)(0)

k!

)mk

=
∑

m∈∪k
l=1

Sk,l

(
l
m

)
k!

(1!)m1(2!)m2 · · · (k!)mk

f (l)(y)
∣
∣
t=0

l!
(y′(0))m1 · · · (y(k)(0))mk ,

(35)

where δ denotes the Kronecker delta. Due to the arbitrariness of y(i)(0), by comparing
(33) and (35), we obtain

η(m) =
η̃(m)

η̂(m)
for m ∈ Sk,l0 , (36)

where

η̃(m) =
k!

(1!)m1(2!)m2 · · · (k!)mk
,

η̂(m) = m1!m2! · · ·mk!.

(37)

Changing l0 ∈ {1, 2, . . .}, we confirm that (36) holds for all m ∈ Sk,l, which
coincides exactly with the Faà di Bruno’s formula [70, pages 35-37]. The function η,
given by (36), represents the contribution of taking derivatives at the root layer to the
multiplicity α(T ).

We proceed by induction to complete the proof for Theorem 8. Assume that (28)
holds for y(j) for j < k + 1. According to (33), we have

y(k+1) =
∑

m∈∪k
l=1

Sk,l

η(m)f (l)(y)

k∏

i=1




∑

|T̃ |=i

α(T̃ )T̃ (f)





mi

, (38)

where T̃ (f) ∈ Rd. Assume that all distinct subtrees of T have different orders, i.e.,
|Ti| 6= |Tj | for i 6= j, |Ti| > 0, and |Tj | > 0. In this case, we can express T as
T = [Tm1

1 Tm2

2 · · ·Tmk

k ], which leads to

T (f) = f (l)(y)(T1(f))
m1 (T2(f))

m2 · · · (Tk(f))
mk . (39)
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By comparing (38), (39), and (32), we obtain

α̃(T ) = η(m)

k∏

i=1

(α(Ti))
mi

=
|T |!

|T |
∏k

i=1(i!)
mi

∏k
i=1(|Ti|!)

mi

∏k
i=1(Ti!)mi

1

η̂(m)
∏k

i=1 σ(Ti)mi

=
|T |!

T !

1

σ(T )
= α(T ).

(40)

Now, suppose that some distinct subtrees of T share the same order, i.e., |Ti| = |Tj | > 0
for i 6= j. In this case, we denote the tree T as

T = [T
m1,1

1,1 . . . T
m1,n1

1,n1
T

m2,1

2,1 . . . T
m2,n2

2,n2
· · · T

mk,1

k,1 . . . T
mk,nk

k,nk
],

and express its TTN representation as

T (f) = f (l)(y)

n1∏

j=1

(T1,j(f))
m1,j

n2∏

j=1

(T2,j(f))
m2,j · · ·

nk∏

j=1

(Tk,j(f))
mk,j , (41)

where
∑ni

j=1 mi,j = mi and |Ti,j| = |Ti,j′ | = i hold for i = 1, 2, . . . , k and j 6= j′. Let

us denote mi = (mi,1, . . . , mi,ni
). For any symmetric tensor B ∈ Rd×···×d of order

greater than mi, we have

B(y(i))mi = B




∑

|T̃i|=i

α(T̃i)T̃i(f)





mi

=

(
mi

mi

)




ni∏

j=1

(α(Ti,j))
mi,j



B

ni∏

j=1

(Ti,j(f))
mi,j + · · · .

(42)

Therefore, α̃(T ) is computed as

α̃(T ) = η(m)

k∏

i=1

(
mi

mi

)




ni∏

j=1

(α(Ti,j))
mi,j





=
|T |!

|T |
∏k

i=1(i!)
mi

∏k
i=1

∏ni

j=1(|Ti,j |!)
mi,j

∏k
i=1

∏ni

j=1(Ti,j !)mi,jσ(Ti,j)mi,j

∏k
i=1

(
mi

mi

)

η̂(m)

=
|T |!

|T |
∏k

i=1(i!)
mi

∏k
i=1(i!)

mi

∏k
i=1

∏ni

j=1(Ti,j !)mi,j

1
∏k

i=1

∏ni

j=1 mi,j!σ(Ti,j)mi,j

=
|T |!

T !

1

σ(T )
= α(T ),

(43)
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where the fact |Ti,j| = i is used.
By combining (40) and (43), we complete the proof of Theorem 8 via mathematical

induction.

3.3 Labelling trees

In Theorem 4, we established that the number of valid labelled trees corresponding to
a given unlabelled tree T is α(T ), utilizing the enumeration of labelled trees provided
in [11, Theorem 305A]. In this subsection, we present an alternative, independent
approach to counting the number of valid labelled trees.

For any given tree T , the generation of tree can be viewed hierarchically. For
example, suppose that T with labelled values ranging from 1 to 9 is a 9th order tree
(e.g. Figure 7(a)), arising from the computation of y(9). According to (33), the first
laryer of T is generated with the structure shown in Figure 7(b). At the same time,
the smallest label is assigned to the root, and the rest of the labels are partitioned
into disjoint subsets, where the number of elements in each subset is determined by
the order of the corresponding subtree (which is the order of derivatives taken on y).
A possible labelling scheme for T at this stage is illustrated in Figure 7(c).

1

95

87

3

6

2

4

(a) Valid labelled tree for
F1,5,5,3,1,2,1,1: hierarchical
separation of sets.

f (4)

y′y′′′y′′y′′

(b) First layer of T with the

leaf denoted by y(kj).

1

{9}{5, 7, 8}{3, 6}{2, 4}

(c) A labelling scheme for T
at the first stage.

Fig. 7: A labelled tree in the summation of y(9).

In general, when computing y(k+1) with (31), if the underlying tree structure is
T = [T1, . . . , Tl] with |T | = k + 1, the smallest label is assigned to the root, and the
rest k labels are divided into l sets, with size |T1|, . . . , |Tl|, respectively. To count the
number of all valid labelled trees, let us define

K =
[

e1
︷ ︸︸ ︷

k1, . . . , k1,

e2
︷ ︸︸ ︷

k2, . . . , k2, . . . ,

ej
︷ ︸︸ ︷

kj , . . . , kj
]
,

which is a rearrangement of [|T1|, . . . , |Tl|] by grouping identical elements together.
Here 1 ≤ ki ≤ k denotes the order of the derivative of y in (31), and e1, . . . , ej
correspond to a rearrangement of all nonzero elements of m. According to (34), we
have |T | = k1e1 + · · ·+ kjej + 1, l = e1 + · · · ej , and

K! = (k1!)
e1(k2!)

e2 · · · (kj !)
ej .
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Then, the number of ways of partitioning |T |− 1 different labels into l distinguishable
sets, corresponding to l subtrees connected with the root, whose sizes are K, is

η̃(K) =
k!

K!
.

Proceed recursively, the sets of labels in y(k1), y(k2), . . . , y(kj) undergo the above
process respectively. In this sense, trees can be viewed as a hierarchical separation of
sets (Figure 7(a)). During this process, each node of the tree structure receives a label,
which is the smallest number in the current label set. The final result is a tree whose
leaves are labelled. The number of ways of partitioning is

η̃(T ) =
|T |!

T !
.

In this procedure, all sets (subtrees) are temporarily treated as distinguishable at
each stage, even when they are isomorphic. This artificial distinguishability leads to
overcounting, as each tree T is enumerated σ(T ) times (where σ(T ) is the order of its
symmetry group [11, page 154]). After compensating for this overcounting, we obtain
the final count of valid labelled trees α(T ) for a given tree T as

α(T ) =
|T |!

σ(T )T !
.

3.4 Taylor expansion

To derive the Taylor expansion of y(t) satisfying the ODEs system (12), it is equivalent
to computing the derivatives y(k) for k = 1, 2, 3, . . . . Using Theorem 8, we obtain the
Taylor expansion of y(t), stated formally in the following theorem.

Theorem 9 The Taylor expansion of y(t) satisfying the ODEs system (12) at t = t0 is given
by:

y(t) = y(t0) +
∞
∑

k=1

1

k!
(t− t0)

k
∑

|T |=k

α(T ) (T (f)) (y(t0)). (44)

The equality holds for t within a neighborhood of t0 where the Taylor series converges.

4 The derivative of tree tensor networks with

constraints driven by Runge–Kutta method

RK method is a well-known single step method for numerically solving ODEs system
(12) [13, 33, 35, 39, 82]. In each step of an RK method, the stage values and the next
step solution can all be viewed as functions of step size h.
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4.1 The derivative of vector-valued functions with algebraic

constraints

With some abstraction, we consider the following constraint which captures the core
feature of the RK method:

y = y0 + hf(y), (45)

where y = y(h) ∈ R
d is a function of h, and y0 := y(0) or y0 := y(t0) is independent

of h. The kth order derivative of y at h = 0 is given by the following theorem.

Theorem 10 Assume that y is a solution of the algebraic system (45). Then, the kth order
derivative of y at h = 0 is given by

y
(k)|h=0 =

∑

|T |=k

γ(T )α(T )T (f)
∣

∣

h=0
. (46)

Proof Using the Leibniz rule, the high order derivative of y with respect to h is

y
(k) = (hf(y))(k) = k(f(y))(k−1) + h(f(y))(k).

Using (33), the (k − 1)th order derivative of f(y) is

(f(y))(k−1) =
∑

m∈∪k−1

l=1
Sk−1,l

η(m)f(l)(y)(y′)m1(y′′)m2 · · · (y(k−1))mk−1 .

Thus,

y
(k) = k







∑

m∈∪k−1

l=1
Sk−1,l

η(m)f(l)(y)(y′)m1(y′′)m2 · · · (y(k−1))mk−1






+ h(f(y))(k).

Taking the limit h → 0, we have

y
(k)∣

∣

h=0
= k

∑

m∈∪k−1

l=1
Sk−1,l

η(m)
[

f
(l)(y)(y′)m1(y′′)m2 · · · (y(k−1))mk−1

]

h=0
.

Recursively applying the above procedure, one eventually gets

y
(k)|h=0 =

∑

|T |=k

γ(T )α(T )T (f)
∣

∣

h=0
, (47)

where γ(T ) is the multiplicity of α(T )T (f) introduced by the use of Leibniz rule.
�

The value of γ(T ) is computed by contracting a particular TTN, where each vertex
is assigned a value k if the subtree rooted at that vertex has k vertices, as shown in
Figure 9(c).

Remark. The constraint (45) can be transformed into ODE constraints with a similar form
as (12). By differentiating both sides of (45) with respect to h, we obtain

y
′ = f(y) + hf

′(y)y′
.

25



For small enough h, this gives

y
′ =

(

I− hf
′(y)

)−1
f(y).

With the definition Y =

[

y

h

]

, the above equation is equivalent to

Y
′ = F (Y ),

where

F (Y ) :=

[

(

I− hf ′(y)
)−1

f(y)
1

]

.

By employing this transformation, we reformulate (45) as ODE constraints. Following the
procedures outlined in Section 3, we can derive derivatives of Y to any desired order. However,
since the computation of high order derivatives of F with respect to Y is rather complex, we
do not elaborate on this procedure in this paper.

Remark. The findings derived in this subsection can be extended to other general algebraic
constraints, such as,

y
′ = y0 + p(h)f(y), (48)

where y = y(h) is still a vector-valued function of h, and p(h) is some known polynomial of h.
Due to the separation of h and y on the right hand side of (48), the process of computing high
order derivatives of y that satisfying constraints (48) is quite similar to that of y satisfying
constraints (45).

4.2 Taylor expansion with tensor algebraic constraints

We consider algebraic constraints driven by the RK methods and compute the Tay-
lor expansion of a vector-valued function subject to these constraints. This forms a
fundamental component in establishing the order conditions of RK methods.

Let Yi, i = 1, . . . , s, be vector-valued functions of h. Consider

Yi = y0 + h
s∑

j=1

aijf(Yj), i = 1, . . . , s, (49)

where y0 := y(0) or y0 := y(t0) ∈ R
d, Yi : R → R

d, and f : Rd → R
d.

Rewrite the system (49) in the following matrix form






Y1

...
Ys




 =






y0

...
y0




+ h






a11I a12I · · · a1sI
...

...
...

as1I as2I · · · assI











f(Y1)
...

f(Ys)




 ,

or in a more compact notation

Y = Y0 + hÃF (Y ), (50)

where Y : R → Rsd, Y0 ∈ Rsd, Ã = A⊗ I ∈ R(sd)×(sd), and F : Rsd → Rsd.
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By denoting F̃ (Y ) = ÃF (Y ), we represent the constraint (50) as:

Y = Y0 + hF̃ (Y ),

which is the constraint we have discussed in Section 4.1. Using (46), we obtain

Y (k)
∣
∣
h=0

=
∑

|T |=k

γ(T )α(T )T (F̃ )|h=0, (51)

where T (F̃ ) ∈ Rsd.
To simplify notation, let us introduce a TTN denoted as Φ(T ). The TTN Φ(T )

shares the same structure of TTN diagram as that as T . For each vertex in the TTN
diagram of Φ(T ) with l + 1 connected edges, the corresponding component tensor
is AIls, where Ils = diagl(1, . . . , 1) ∈ Rs×···×s is a diagonal tensor with l nonzero
elements, each equal to 1 (as defined in [45]). It is evident that Φ(T ) represents a con-
traction of method-dependent tensors determined by the RK tableau. In Figure 9(b),
a specific TTN T is used to illustrate the definition of Φ(T ). Using this notation, we
derive the Taylor expansion for Y satisfying (50), as stated in the following theorem.

Theorem 11 The Taylor expansion of y(h) satisfying the constraints (49) at h = 0 is given
by:

Y (h) = Y0 +
∞
∑

k=1

hk

k!

∑

|T |=k

α(T )γ(T )Φ(T )⊗ T (f)(y0). (52)

The equality holds for h within a neighborhood of 0 where the Taylor series converges.

Proof Let us use tensor product notations to compute T (F̃ ) as introduced in (51) and reveal
its relationship with T (f). According to F̃ (Y ) = ÃF (Y ), for l = 0, 1, 2, . . . , we obtain

F̃
(l)(Y ) = ÃF

(l)(Y ),

which is the basic component of the TTN T (F̃ ). For each l, the TTN diagram of F̃ (l)(Y )

is displayed in Figure 8. Substituting the basic components ÃF (l) in the TTN T (F̃ ) (e.g.

Figure 9(a)), we get a new TTN with components being Ã and F (l) (see Figure 9(b) for an
example).

Ã

F

(a) l = 0

Ã

F ′

(b) l = 1

Ã

F ′′

(c) l = 2

Ã

F (3)

(d) l = 3

· · ·

. . .

Ã

F (l)

(e) l

Fig. 8: Basic components of TTN T (F̃).
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F̃ ′′
F̃ ′
F̃

F̃

(a) Abstract form of T (F̃ ) ∈ R
sd

Ã

F ′′
Ã

F ′
Ã

F

Ã

F

(b) Explicit representation of T (F̃ ) ∈ R
sd

4

2

1

1

(c) γ(T ) ∈ R

A

I3s

A

I2s

A

1s

A

1s

(d) Φ(T ) ∈ R
s

f ′′
f ′
f

f

(e) T (f) ∈ R
d

Fig. 9: Representation of T (F̃ ).

Since F (Y ) =







f(Y1)
...

f(Ys)






, by taking the limit h → 0, we have

lim
h→0

F (Y ) =







f(y0)
...

f(y0)






= 1s ⊗ f(y0) =: 1s ⊗ f |h=0,

where 1s =







1
...
1






∈ R

s. Similarly,

lim
h→0

F
(l)(Y ) = I

l
s ⊗ f

(l)(y0) =: Ils ⊗ f
(l)|h=0, for l ≥ 1.

Due to Ã = A⊗ I, we have

lim
h→0

ÃF (Y ) = (A⊗ I)(1s ⊗ f |h=0) = (A1s)⊗ (If |h=0) = (A1s)⊗ f |h=0, (53)

and

lim
h→0

ÃF
(l)(Y ) = (A⊗ I)(Ils ⊗ f

(l)|h=0) = (AI
l
s)⊗ (If(l)|h=0) = (AI

l
s)⊗ f

(l)|h=0. (54)

Here, we applied the mixed product property introduced in Lemma 1. Using (53), (54), the
mixed product property and associativity, the TTN T (F̃ ) can be fully decoupled as

lim
h→0

T (F̃ ) = Φ(T )⊗ T (f)|h=0, (55)

where Φ(T ) ∈ R
s is a TTN independent of f . Equation (55) establishes the connection

between T (F̃ ) and T (f), showing that T (F̃ ) is the Kronecker product of a method-dependent
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TTN Φ(T ) and T (f). In Figure 9, a specific TTN T is used to illustrate the connection
between T (F̃ ) and T (f).

Using (51) and (55), the kth order derivative of Y at h = 0 can be computed by

Y
(k)∣

∣

h=0
=

∑

|T |=k

α(T )γ(T )Φ(T )⊗ T (f)(y0).

This decomposition simplify the calculation of Y (k). In summary, the Taylor expansion of Y
at h = 0 can be written as:

Y (h) = Y0 +

∞
∑

k=1

hk

k!

∑

|T |=k

α(T )γ(T )Φ(T )⊗ T (f)(y0).

�

5 Application in constructing order conditions of the

Runge–Kutta methods

The framework for calculating the derivatives of TTNs under specific constraints was
discussed in former sections. As an application, we use this framework in constructing
order conditions of the RK methods.

For the ODEs system (12), a single step of an s-stage RK method is







Yi = y0 + h
s∑

j=1

aijf(Yj), i = 1, . . . , s,

y1 = y0 + h
s∑

i=1

bif(Yi).

(56)

Let us rewrite the above RK scheme into a matrix form








Y1

...
Ys

y1







=








y0

...
y0

y0







+ h








a11I a12I · · · a1sI 0
...

...
...

...
as1I as2I · · · assI 0

b1I b2I · · · bsI 0















f(Y1)
...

f(Ys)
f(y1)







,

or a more compact natation

Ŷ = Ŷ0 + hÂF̂ (Ŷ ),

where Ŷ ∈ R
(s+1)d, Â =

[

Ã 0

b⊤ ⊗ I 0

]

=

[
A⊗ I 0

b⊤ ⊗ I 0

]

∈ R
(s+1)d×(s+1)d, F̂ (Ŷ ) =

[
F (Y )
f(y1)

]

∈ R(s+1)d, and F (Y ) =






f(Y1)
...

f(Ys)




.
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5.1 Order conditions for RK methods

Assume Φ̂(T ) ∈ Rs+1 is a TTN that shares the same structure as Φ(T ) and can be
computed by replacing ÃIls with ÂIls+1. The order conditions for RK methods (56)
are presented in the following theorem, which corresponds to [11, Theorem 315A]. In
contrast to the proof given in [11, Theorem 315A], our approach provides a constructive
derivation of the order conditions, avoiding the use of mathematical induction.

Theorem 12 In the case of the TTNs T (f) are linearly independent, RK methods (56) have
order p if and only if

γ(T )φ(T ) = 1, ∀|T | ≤ p,

where φ(T ) := (0, . . . , 0, 1)Φ̂(T ).

Proof By taking the limit h → 0, we have

lim
h→0

F̂ (Ŷ ) =











f(y0)
...

f(y0)
f(y0)











(s+1)d,1

= 1s+1 ⊗ f(y0).

Similarly,

lim
h→0

F̂
(l)(Ŷ ) = I

l
s+1 ⊗ f

(l)(y0), for l ≥ 1.

Due to Â =

[

A 0

b⊤ 0

]

⊗ I, we have

lim
h→0

ÂF̂(Ŷ ) =

([

A 0

b⊤ 0

]

⊗ I

)

(1s+1 ⊗ f |h=0) =

([

A 0

b⊤ 0

]

1s+1

)

⊗ f |h=0,

and

lim
h→0

ÂF̂
(l)(Ŷ ) =

([

A 0

b⊤ 0

]

⊗ I

)

(

I
l
s+1 ⊗ f

(l)|h=0

)

=

([

A 0

b⊤ 0

]

I
l
s+1

)

⊗ f
(l)|h=0.

Therefore, the kth order derivative of Ŷ at h = 0 can be computed by

Ŷ
(k)∣

∣

h=0
=

∑

|T |=k

α(T )γ(T )Φ̂(T )⊗ T (f)|h=0,

where Φ̂(T ) ∈ R
s+1 is independent of f .

With these results, the kth order derivative of numerical solutions y1 is

y
(k)
1

∣

∣

h=0
= ((0, . . . , 0, 1)⊗ I)Ŷ (k)|h=0

=
∑

|T |=k

α(T )γ(T )
(

(0, . . . , 0, 1)Φ̂(T )
)

⊗ T (f)|h=0

=
∑

|T |=k

α(T )γ(T )φ(T )T (f)|h=0,

(57)

where φ(T ) is a scalar defined as φ(T ) := (0, . . . , 0, 1)Φ̂(T ). By comparing (57) with (28), a
sufficient condition for an s-stage RK scheme to be of order p is immediately obtained:

γ(T )φ(T ) = 1, ∀|T | ≤ p.

It is also a necessary condition, since the TTNs T (f) are linearly independent, which is
consistent with the independence of elementary differentials [35, Sec. II.2, page 155]. �
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5.2 Super convergence of RK methods for a specific function f

In Theorem 12, the proof of the necessary condition relies on the linear independence
of the TTNs T (f). While the linear independence of Butcher trees T (elementary dif-
ferentials) is established in [11, Theorem 314A], the situation differs when considering
TTNs T (f) for a fixed function f . Specifically, two distinct trees T1 6= T2 may pro-
duce linearly dependent TTNs, i.e., T1(f) and T2(f), under certain conditions on f .
For example, if f ′′(y) = 0 and both T1(f) and T2(f) involve the second derivative
f ′′(y), then we have T1(f) = T2(f) = 0, indicating linear dependence.

Let us define the linear space Tp(f) as:

Tp(f) := span {T (f), ∀|T | = p} . (58)

Assume that dimTp(f) = np ≤ Np, where Np represents the number of all distinct
unlabelled trees of order p. Let T1, . . ., TNp

denote all distinct trees of order p, and
let Tp, 1, . . ., Tp, np

be a basis of Tp(f). Then we can write

(T1(f), . . . , TNp
(f)) = (Tp, 1, . . . , Tp, np

)Mp, (59)

where Mp ∈ Rnp×Np
is a real matrix of rank np. Define the row vector:

αp =
(
α(T1), . . . , α(TNp

)
)
∈ R

Np , (60)

and the diagonal matrix

Wp = diag
{
γ(T1)φ(T1), . . . , γ(TNp

)φ(TNp
)
}
∈ R

Np×Np . (61)

With these notations, we present both the sufficient and necessary conditions for
RK methods with a given f , as stated in the following theorem.

Theorem 13 RK methods (56) have order p if and only if

αjM⊤
j = αjWjM⊤

j , ∀j ≤ p.

Proof According to Theorem 9, the Taylor expansion of y(t) satisfying the ODEs system
(12) at t = 0 is given by:

y(t) = y(0) +

∞
∑

k=1

1

k!
t
k

∑

|T |=k

α(T ) (T (f)) (y(0)),

= y(0) +

∞
∑

k=1

1

k!
t
k
〈

αkM⊤
k , (Tk, 1, . . . , Tk, nk

)
〉

k
,

(62)

where 〈·, ·〉k denotes the standard inner product in R
nk .
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On the other hand, from (57), the Taylor expansion of numerical solution y1 generated
by the RK scheme (56) at h = 0 is:

y1(h) = y0 +

∞
∑

k=1

1

k!
h
k

∑

|T |=k

α(T )γ(T )φ(T )T (f)|h=0,

= y0 +

∞
∑

k=1

1

k!
h
k
〈

αkWkM⊤
k , (Tk, 1, . . . , Tk, nk

)
〉

k
.

(63)

By comparing (62) and (63), and using the linear independence of Tk, j , we conclude that
the RK method (56) achieves order p if and only if

αjM⊤
j = αjWjM⊤

j , ∀j ≤ p.

�

It should be noted that the choice of basis does not alter the order conditions
stated in Theorem 13. Assume that three is another basis T ′

j, 1, . . ., T
′
j, nj

such that

(T1(f), . . . , TNj
(f)) = (T ′

j, 1, . . . , T
′
j, nj

)M′
j . (64)

Then the order conditions derived from Theorem 13 are:

αj(M
′
j)

⊤ = αjWj(M
′
j)

⊤, ∀j ≤ p. (65)

Let matrix Gj ∈ R
nj×nj be the transition matrix from T ′

j, 1, . . ., T
′
j, nj

to Tj, 1, . . .,
Tj, nj

. Then we have

(T ′
j, 1, . . . , T

′
j, nj

)M′
j = (Tj, 1, . . . , Tj, nj

)GjM
′
j = (Tj, 1, . . . , Tj, nj

)Mj , (66)

which implies GjM
′
j = Mj . Since the transition matrix Gj is invertible, multiplying

both sides of (65) by G⊤
j , we obtain:

αjM
⊤
j = αjWjM

⊤
j , ∀j ≤ p, (67)

which shows that the order conditions stated in Theorem 13 are invariant under the
choice of basis.

For Nk distinct unlabelled trees of order k, if the corresponding TTNs T (f) are
linearly independent, they can be chosen as the basis of Tk. In this case, we have
Mk = INk

and Theorem 13 becomes equivalent to Theorem 12. In general, Theorem 13
potentially imposes fewer restrictions than Theorem 12. This suggests that an RK
scheme may attain the order p for arbitrary functions f , yet exhibit a higher (superior)
convergence order for certain specific choices of f . We illustrate the existence of such
super convergence through an example, which is also discussed in [11].

Example 1 Consider a scalar problem

y
′(t) = f(y(t), t), (68)
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where both y(t) and f(y, t) are scalar-valued functions. The problem (68) can be reformulated
in autonomous form as:

d

dt

[

y(t)
t

]

=

[

f(y(t), t)
1

]

. (69)

Let us denote Y :=

[

y(t)
t

]

and F (Y ) :=

[

f(y(t), t)
1

]

. According to Theorem 13, the bases

of the linear spaces Tj(F ), j = 1, . . . , p, determine the order conditions for applying RK
methods to this equation. While the TTNs T (F ) are linearly independent for p ≤ 4, linear
dependencies begin to appear when p ≥ 5. For example, when p = 5, consider the trees

T1 = , and T2 = . The corresponding TTNs T1(F ) and T2(F ) are identical and can be

written as:

T1(F ) = T2(F ) :=

[

fy(fyyf + fty)(fyf + ft)
0

]

. (70)

If we choose f(y(t), t) such that dimT5(F ) = N5 − 1, then by Theorem 13, the order
conditions for applying RK methods to ODEs system (69) are:

γ(T )φ(T ) = 1, ∀|T | ≤ 5, and T 6= T1, T 6= T2,

and
α(T1)γ(T1)φ(T1) + α(T2)γ(T2)φ(T2) = α(T1) + α(T2).

This order conditions differ from those required for general vector-valued f when p = 5,
which are given by Theorem 12 as:

γ(T )φ(T ) = 1, ∀|T | ≤ 5.

This property can lead to super convergence of RK methods. In [11, page 176], Butcher
present the following RK method which has classical order 4 for general vector-valued func-
tions F , achieves order 5 when applied to the scalar problem (68). The tableau of the given
RK method is:

0

1
2

1
2

1 − 9
4

13
4

1
4

9
64

5
32 − 3

64

7
10

63
625

259
2500

231
2500

252
625

1 − 27
50 − 139

50 − 21
50

56
25

5
2

1
14 0 0 32

81
250
567

5
54

.

For the trees T1 and T2, we have

α(T1) = 4, γ(T1) = 30, and φ(T1) =
1

30
+

3

320
,

α(T2) = 3, γ(T2) = 40, and φ(T2) =
1

40
− 3

320
,

which implies that γ(T )φ(T ) = 1 does not hold for T = T1 or T = T2. Therefore, the RK
scheme described above is of order four for general two-dimensional vector functions F , such
as:

d

dt

[

x

y

]

=





x+y√
x2+y2

x−y√
x2+y2



 . (71)
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However, for the scalar problem (68), the following order condition holds:

α(T1)γ(T1)φ(T1) + α(T2)γ(T2)φ(T2)

= 4× 30×
(

1

30
+

3

320

)

+ 3× 40×
(

1

40
− 3

320

)

= 7 = α(T1) + α(T2),

which indicates that the RK scheme (1) is of fifth order for the scalar problem.

5.3 Comparison of our framework and Butcher’s method.

We enclose this section with a summary of the similarities and differences between our
approach and Butcher’s method [10, 11].

1. Both methods utilize the summation of trees to represent the high order deriva-
tives of a vector valued function y under certain constraints. A key distinction
between our approach and Butcher’s method lies in the treatment of trees.
Butcher’s method introduces trees through graphs and discusses operations, such
as Butcher product, on trees within a “forest”, where the trees are more akin to
abstract algebraic symbols. In our framework, the trees, referred to as TTNs, are
formulated purely in terms of tensor operations and tensor derivatives, which are
treated as tree tensors. As a result, we can compute the products, derivatives,
contractions of trees following the tensor framework. This makes the operations
on tree easier to understand and more intuitive.

2. Both methods introduce decompositions for trees to derive a recursive approach
for computing high order derivatives and the multiplication of high order trees.
This decomposition can be derived from the defined growth process of the
tree. Butcher’s method recursively decomposes a tree into several subtrees. This
decomposition is straightforward to follow and understand when treating the tree
as a graph, but its connection to derivatives acting on the tree is less clear. To
establish a more clear connection between the derivatives and the growth pro-
cesses of trees, we present two perspectives to understand tree growth. The first
perspective is given in subsection 3.1, which uses (13) to grow a tree from the
root, adding one leaf at a time. This one-leaf growth process corresponds to tak-
ing one order of derivative and then immediately substituting the constraint into
the new leaf. Based on (31), the second perspective is provided in subsection 3.2,
where the tree grows layer by layer from the root. This one-layer growth process
corresponds to taking derivatives without constrains as much as possible and then
substituting the constrains into the leaves. These two approaches offer a clear and
systematic way to understand differentiation under algebraic or ODE constraints.

3. Since the decomposition of high order trees differs between the two methods,
the subsequent strategies for computing the multiplication α(T ) of tree T also
diverge. In the first approach, we take one order of derivative and then immedi-
ately substitute the constraint into the new leaf. This introduces a new concept,
namely the differentiation path. We study the differentiation path using the valid
labelled trees. Consequently, the multiplication α(T ) is equal to the number of
valid labelled trees that can be derived from an unlabelled tree T . In the second

34



approach of our framework, as discussed in subsection 3.2, we first take deriva-
tives without constraints as much as possible. The contribution of this process to
the multiplication α(T ) can be easily counted using the method of undetermined
coefficients. Unlike Butcher’s approach, these two approaches offer new insights
into how differentiation operations contribute to the multiplicity α(T ), enriching
the theoretical understanding from a fresh perspective.

4. In the construction of order conditions for the RK methods, Butcher’s classical
approach relies on operations involving rooted trees, while our method utilizes
the algebraic framework of TTNs. This tensor-based formulation provides a sys-
tematic and structured way to handle derivatives arising from the RK methods,
offering the following significant advantages compared with Butcher’s method.
First, tensors are algebraic entities so that plenty of properties of tensors and
operations on tensors can be utilized. In our framework, the contracted product
and the matrix-vector description of the RK method are utilized to provide a
concise Taylor expansion of the numerical solution for the RK methods. Using
the Kronecker product and mixed product property of tensors, we decompose
the TTNs in Taylor expansion of the numerical solution into two parts. The first
part depends solely on the coefficients matrix A in RK method, while the sec-
ond part is identical to T (f). With this decomposition, the Taylor expansion is
continuously simplified in a summation similar to the Taylor expansions of the
exact solution, except for the weights of T (f). Therefore, the second advantage of
our method is that the proof of order conditions is achieved by directly compar-
ing the Taylor expansion of both the exact and numerical solutions, eliminating
the need for mathematical induction. Third, tensor operations provide a struc-
tured approach for representing and manipulating derivatives, making it easier
to generalize to other numerical methods beyond the standard RK framework.

5. Both of our framework and Butcher’s method yield the same uniform order con-
ditions for RK schemes, meaning that the conditions hold for any vector-valued
function f(y), as stated in Theorem 12. However, for certain specific choices of
f , the order conditions proposed in Theorem 12 are not strictly necessary, as
demonstrated by an example in subsection 5.2. This is due to inherent linear
dependencies among the TTNs T (f). To address this, we remove such redundan-
cies by constructing a basis for the corresponding linear space, leading to sharper
order conditions tailored to a given f . By verifying these refined conditions, we
can determine whether a standard RK scheme of order p actually exhibits a higher
(superior) convergence order for a specific f .

In summary, based on the tensor operators and the clear connection between
TTNs and derivatives, our framework can be naturally extended to other RK-type
schemes, such as additive RK methods [41] (e.g. the well-known Implicit-Explicit
methods [4]), partitioned Runge–Kutta [32], and nonlinearly partitioned Runge–Kutta
methods [14, 80]. Similar to the standard RK method, we can also approximate the
numerical solutions of these RK methods using a Tayloy expansion, which is a sum-
mation of TTNs T (f) with different weights depending on the coefficient matrix of
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the corresponding RK method. This flexibility highlights the broad applicability of
our approach, enabling a unified analysis of various RK-type methods.

6 Conclusion

In this work, we have developed an innovative mathematical framework for computing
partial and total derivatives of functional TTNs, establishing new theoretical foun-
dations with broad applicability in computational mathematics. Through rigorous
analysis of constrained vector-valued functions as representative examples, we have
demonstrated both the effectiveness and mathematical rigor of our framework in com-
puting high-order derivatives and Taylor expansions. The tensor-algebraic formulation
of these expansions provides a powerful tool that significantly simplifies the derivation
of order conditions for RK method. Importantly, our framework admits natural exten-
sions to advanced RK variants, including additive RK, partitioned RK, and nonlinear
partitioned RK methods, offering a unified approach to order condition analysis across
these related numerical schemes. In summary, this TTN-based derivatives offers pro-
found theoretical insights into the mathematical structure of tensor networks while
simultaneously providing practical tools for addressing real-world scientific computing
challenges.
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P. Tichavskỳ, V. Glukhov, I. Oseledets, and A. Cichocki, Stable low-
rank tensor decomposition for compression of convolutional neural network, in
Comput. Vision–ECCV 2020 16th Eur. Conf. Glasg. UK August 23–28 2020 Proc.
Part XXIX 16, Springer, 2020, pp. 522–539.

[68] D. S. G. Pollock, On Kronecker products, tensor products and matrix
differential calculus, Int. J. Comput. Math., 90 (2013), pp. 2462–2476.

[69] S. Ragnarsson, Structured Tensor Computations: Blocking, Symmetries and
Kronecker Factorizations, PhD thesis, Cornell University, 2012.

[70] J. Riordan, An Introduction to Combinatorial Analysis, Princeton University
Press, 2014.
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