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Abstract. In this work we examine the baryon acoustic oscillations (BAO) in 2D angular
and redshift space {θ,∆z}, with ∆z denoting the redshift difference between two given angu-
lar shells. We thus work in the context of tomographic analyses of the large scale structure
(LSS) where data are sliced in different redshift shells and constraints on Cosmology are
extracted from the auto and cross-angular spectra of two different probes, namely the stan-
dard galaxy angular density fluctuations (ADF, or 2D clustering), and the galaxy angular
redshift fluctuations (ARF). For these two observables we study by first time how the BAO
peak arises in the {θ,∆z} plane. Despite being a weak feature (particularly for ∆z ̸= 0),
a Fisher forecast analysis shows that, a priori, most of the information on cosmological
and galaxy bias parameters is carried by the BAO features in shell auto- and cross-angular
power spectra. The same study shows that a joint probe analysis (ADF+ARF) increases the
Fisher determinant associated to cosmological parameters such as H0 or the Dark Energy
Chevallier-Polarski-Linder (CPL) parameters {w0, wa} by at least an order of magnitude.
We also study how the Fisher information on cosmological and galaxy bias-related param-
eters behaves under different redshift shell configurations: including cross-correlations to
neighbour shells extending up to (∆z)tot ∼ 0.6 ((∆z)tot ∼ 0.4) for ADF (ARF) is required
for Fisher information to converge. At the same time, configurations using narrow shell
widths (σz ≤ 0.02) preserve the cosmological information associated to peculiar velocities
and typically yield Fisher determinants that are about two orders of magnitudes larger than
for wider shell (σz > 0.02) configurations. In the context of upcoming surveys of the LSS
like Euclid, DESI, Roman, J-PAS, LSST or CSST, these Fisher forecasts further motivate
the tomographic use of pure angular anisotropies as an alternative approach to confront the
cosmological predictions with observations, while providing a way to test consistency with
standard 3D approaches to analyse LSS surveys.
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1 Introduction

According to the standard ΛCDM model describing the physics of the early Universe, Baryon
Acoustic Oscillations (BAO) are imprinted in the Large Scale Structure (LSS) as the last
spherical sound waves propagating in the photon-baryon fluid prior to recombination (z >
1, 100), [e.g., 1–3]. The front of such waves formed an overdense spherical shell of about
150 Mpc radius (hereafter denoted as rs) in which large-scale structure tends to form with
higher probability. Such BAO scale was first seen in the angular anisotropy pattern of
the Cosmic Microwave Background radiation (CMB) [4–8] and later detected in the spatial
distribution of galaxies [9, 10].

In this work we focus on an alternative approach to characterise the BAO scale in the
LSS. Since it constitutes a spherical, 3D structure that arises when studying the clustering
of matter probes like galaxies and quasars, such a scale can be measured along the line of
sight and on the plane of the sky. In the former case this measurement is sensitive to the
Hubble parameter H(z), i.e., the expansion rate of the Universe at redshift z, while in the
latter it measures a proxy for the transverse comoving distance to the redshift z where the
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BAO scale is being measured. Provided that, according to General Relativity, distances in
space time evolve as a function of its energetic content, BAO have become, together with
CMB and supernova type Ia (SNIa) observations, a superb probe to characterise the different
energy components in our Universe.

Over the last 20 years, BAO have been an essential tool to measure distance ratios
throughout different cosmological epochs. The first detections by [9, 10] in the Sloan Dig-
ital Sky Survey (SDSS) were improved in subsequent spectroscopic surveys like the SDSS
extension BOSS [11, 12], 6dF [13], or eBOSS [14, 15]. While precise and accurate redshift
measurements are required to measure the radial projection of the BAO scale (so far it has
only been measured in spectroscopic surveys), its transverse projection has been measured in
spectroscopic [16–20] or in photometric surveys with poorer redshift precision [e.g., 21–24].

In the future, surveys like the Legacy Survey of Space and Time (LSST) [25], the
Euclid Wide Survey [26], the Roman Space Telescope [27] and China’s Space Survey Telescope
(CSST) survey [28, 29], will increase the number of objects detected, either by spectroscopic or
photometric redshifts. There exists an hybrid type of surveys, dubbed as spectro-photometric
surveys, which carry a set of multiple (N ∼ 40−60) narrow and medium-width optical filters
that give rise to pseudo-spectrum for each object in the footprint: surveys like Classifying
Objects by Medium-Band Observations (COMBO) [30], Advanced Large Homogeneous Area
Medium Band Redshift Astronomical (ALHAMBRA) [31], Survey for High-z Absorption
Red and Dead Sources (SHARDS) [32], Physics of the Accelerating Universe (PAU) [33],
Javalambre Photometric Local Universe Survey (J-PLUS) [34], or the Javalambre-Physics of
the Accelerated universe Astrophysical Survey (J-PAS) [35] are able to provide high accuracy
photometric redshifts, which, as shown in [36], should keep some degree of sensitivity upon
the radial projection of the BAO scale.

The standard approach to measuring the BAO scale in spectroscopic surveys is via the
computation of the 3D 2-point statistics of the galaxy distribution, namely the 3D spatial
correlation function ξ(s), or the 3D power spectrum P (k). Provided that angular and redshift
coordinates of galaxies are projected into spatial coordinates under the redshift-to-distance
conversion dictated by a fiducial cosmological model, and given that measured galaxy red-
shifts contain a peculiar velocity component (induced by the galaxy’s radial peculiar mo-
tion), the computation of the two-point statistics is conducted in redshift space, and this
motivates their projection on Legendre multipoles (ξℓ(s) ∝

∫
dµ ξ(s)Lℓ(µ = n̂ · ŝ);Pℓ(k) ∝∫

dµP (k)Lℓ(µ = k̂ · n̂), for ℓ = 0, 2, 4)1, whose amplitude for ℓ > 0 depends on the galaxies’
radial peculiar velocity field, but whose shape keeps memory of the BAO scale.

BAO are regarded as a very robust cosmological tool which have, however, undergone
severe scrutiny over the last 10 years due to apparently strong tensions arising in the measure-
ments of key cosmological parameters like the Hubble constant H0: indeed, its measurements
using calibrators in the local universe [37, 38] seem to lie ≳ 4 − 5 σ away from BAO-based
estimations [e.g., 39]. Significant efforts have not yet aligned the two data sets (see [40] for a
recent review on the topic). A possible candidate to solve the tension was presented by [41]
using the J-region asymptotic giant branch (JAGB) from the James Webb Space Telescope
(JWST), although the situation is far from settled. In addition to H0, the cosmological pa-
rameter S8 ≡ σ8

√
Ωm/0.3 also shows 2 − 3 σ discrepancies between LSS survey estimates

and CMB angular anisotropy predictions [23, 42].

1The unitary vector ŝ12 lies along the vector connecting the two galaxies defining the galaxy pair in the
correlation function, while n̂ denotes the line of sight direction on the sky.
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On top of all this, further controversy has just arisen recently since the analysis of CMB
data from the data release 6 of the Atacama Cosmology Telescope (ACT) [43] is in apparent
contradiction to the full shape of the power spectrum and BAO analysis of DESI year 1 data
[44]. While the latter find 2−3 σ evidence for time evolution in the Dark Energy component,
ACT fails to find any significant statistical evidence for it. The just released BAO analyses
from DESI year 3 [45] are still favouring some degree of dynamics for Dark Energy, while
further insight suggests that it is the inferred matter density parameter Ωm which seem to
be in tension between the CMB and the LSS data sets. This is interesting since there exists
also some degree of tension between the Ωm estimates derived from DES BAO and from
DES supernovae (SNe), with a time-dependent Dark Energy component (at least partially)
solving the tension [46].

In this context, finding alternative probes and methods to test the model and constrain
cosmological parameters may result crucial in identifying and isolating systematics and con-
firming or discarding claims based upon standard analyses. As mentioned above, in this
paper we investigate further the sensitivity of angular probes that work on direct observables
like the galaxies’ angular positions and their measured redshifts. On top of the standard
2D clustering (or angular density fluctuations, hereafter ADF), we consider the angular red-
shift fluctuations [47] (hereafter ARF) as a new cosmological probe providing additional
constraining power. The ARF consider the galaxies’ redshift as an extra entry whose angu-
lar anisotropy field is shown to be determined by the underlying matter and radial peculiar
velocity fields [47].

While in [48] a first and simplistic Fisher analysis on the extra sensitivity to cosmo-
logical parameters provided by ARF when combined to ADF was presented, there was no
particularised study of the BAO in angle space. In this work we build upon [48], characteris-
ing the information carried by the BAO in the {θ,∆z} plane involving arbitrary correlations
between shells placed at different redshifts (∆z ̸= 0), and exploring the dependence of the
information content on cosmological and bias-related parameters on varying redshift shell
configurations (in terms of their central redshifts, widths, redshift spacing, and total redshift
increment (∆z)tot sampled when considering cross-correlation to a varying number of distinct
redshift shells).

This work is structured as follows. In Sect. 2 we introduce a generic description of
(projected) cosmological observables defined in the 2D celestial sphere, that is particularised
for ADF and ARF. In Sect. 3 we describe the two models adopted for spectroscopic LSS
surveys (one similar to the Euclid spectroscopic survey, another close to DESI), that sample
complementary redshift ranges. In Sect. 4 we characterise the BAO in angle and redshift
space {θ,∆z} as seen by the ADF and ARF, while in Sect. 5 we introduce the Fisher matrix
methodology used to describe the information content under different observational configu-
rations. In Sect. 6 we present our results, which are discussed in Sect. 7. This section also
contains our conclusions.

Throughout this work we adopt a flat ΛCDM cosmology compliant with Planck 2018
observations [49], for which Ωm = 0.321, ΩΛ = 0.679, Ωb = 0.047 are the critical density
parameters for total matter, Λ, and baryons, respectively, and with h = 0.67, nS = 0.965,
and As = 2 × 10−9 for the reduced Hubble parameter, and the index and amplitude of the
scalar power spectrum, respectively.
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2 Observables

Any cosmological observable living on the 2D celestial sphere can be written as a line of sight
(LOS) integral of some sources S(z, n̂) weighted under a given window function W (z):

O(n̂) =

∫
dzW (z)S(z, n̂), (2.1)

where in this case we have preferred writing the LOS integral in terms of observed redshift
z. We shall handle observables like the galaxy angular number density that are intensive,
i.e., are defined in units of inverse solid angle. One can instead write this integral in terms
of the comoving radial distance r,

O(n̂) =

∫
drW (r)S(r, n̂), (2.2)

where, in general, the source function S(r, n̂) may depend on the radial peculiar velocity of
tracers v(r, n̂) · n̂, since our observable is a function of the tracers’ observed redshift and,
to leading order, the observed redshift contains the radial peculiar velocity of the sources,
z + 1 = (1 + zH)(1 + v · n̂/c), with zH the cosmological redshift due to the Hubble drift.

In linear cosmological perturbation theory, one can write the source function in terms of
the linear perturbations of density, velocities, gravitational potentials, etc, which, in Fourier
space, can all be made proportional to the linear matter density contrast at some fixed time
δmk :

O(n̂) =

∫
drW (r)

∫
dk

(2π)3
exp

(
−ik · (rn̂)

)
S(k, r, k̂ · n̂) δmk . (2.3)

The leading physical processes in the source term coupling the density contrast field
δmk with the observables can be written, in 3D Fourier space, as a function of k and k̂ · n̂2.
In this equation, we have kept the r dependence in the Fourier version of S since in this
case this variable carries the “time dependence” of this function (which is equivalent to a
look-back time and to the comoving distance r to the source). According to most inflationary
models of the early universe, primordial fluctuations are Gaussian distributed, and so are the
emerging observable cosmological anisotropies at their earlier stages. Under this assumption,
the observables are perfectly determined by their statistical second-order momentum, namely
the angular correlation function or its harmonic transform, the angular power spectrum:

⟨OA(n̂1)OB(n̂2)⟩ =
∑
ℓ

2ℓ+ 1

4π
CA,B
ℓ Pℓ(n̂1 · n̂2). (2.4)

In this equation, Pℓ(x) denotes the ℓ-th order Legendre polynomial. The isotropy and
statistical homogeneity imposed by the Cosmological Principle is reflected in the angular
correlation function above via its exclusive dependence on the angle separating the two lines
of sight, n̂1, n̂2. The angular power spectrum for the two observables, CA,B

ℓ , can be written
in terms of the linear matter power spectrum Pm(k) that relates to the 3D Fourier modes of
the linear matter density contrast via ⟨δmk (δmq )⋆⟩ = (2π)3Pm(k)δD(k− q), with δD the Dirac
delta:

2Radial peculiar velocities contribute to the sources with a k̂ · n̂ dependence in Fourier space.
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CA,B
ℓ =

2

π

∫
dk k2 Pm(k)∆A

ℓ (k)∆
B
ℓ (k), (2.5)

where ∆A,B
ℓ (k) are the transfer functions associated to each observable. If the source functions

do not depend upon the line of sight (LOS) n̂, then a transfer function can be expressed as
a simple projection of the density modes:

∆ℓ(k) =

∫ rfar

0
drW (r)S(k, r)jℓ(kr), (2.6)

with jℓ(x) the spherical Bessel function of order ℓ3.

If A = B in Eq. (2.4) then it yields the autocorrelation function (in terms of the auto
power spectrum CA,A

ℓ or CB,B
ℓ of the A (or B) observables), while if A ̸= B then Eq. (2.4)

provides the cross angular correlation function in terms of the cross angular power spectrum
CA,B
ℓ .

We next briefly outline the source functions for the two observables under study in
this work: the 2D-clustering or angular density fluctuations (ADF), and the angular redshift
fluctuations (ARF), first introduced in [47]. Eventually we shall also consider the combination
of both observables, ADF+ARF.

2.1 ADF

The density contrast expresses the deviation of a given field with respect to its average. For
a galaxy survey containing full information on the spatial position of each galaxy (for which
its redshift is understood as its radial coordinate), the 3D density contrast is computed as

δ3Dg (z, n̂) =
ng(z, n̂)− n̄g(z)

n̄g(z)
, (2.7)

where n̄g(z) is the average number density of galaxies at redshift z.
If instead we are looking at the number density of galaxies projected under a given

redshift window W i(z, σz)
4, the 2D density contrast reads as

δig(n̂) =
1

N i
g

∫ ∞

z=0
dz

dVΩ

dz
n̄g(z)δ

3D
g (z, n̂)Wi(z;σz), (2.8)

where Wi is the Gaussian window function for the i-th redshift shell with width σz, n̂ is
a unitary vector pointing to any given direction to the sky, and δ3Dg (z, n̂) is the 3D galaxy
density contrast. The latter quantity can be (approximately) written in terms of the matter
3D density contrast δm and a redshift dependent linear bias bg(z), δ

3D
g (z, n̂) = bg(z)δm(z, n̂).

Finally, dVΩ expresses the volume element per unit of solid angle, and N i
g is the average

number of galaxies in that same volume element,

N i
g =

∫ ∞

z=0
dz

dVΩ

dz
n̄g(z)Wi(z;σz). (2.9)

N i
g provides the number of galaxies per unit solid angle.

3If instead S = S(k, r, k̂ · n̂) such that the dependence on k̂ · n̂ is linear, then the transfer functions are

expressed in terms of derivatives of the spherical Bessel functions j
′
ℓ(x), and such derivatives can be rewritten

as a linear combination of spherical Bessel functions of order ℓ ± 1. This yields to expressions similar to
Eq. (2.6) with a set of re-defined source functions S(k, r).

4For simplicity here we assume redshift windows are Gaussian functions determined by their centre and
width σz
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2.2 ARF

Angular Redshift Fluctuations (ARF) describe the deviations of the galaxies’ redshifts with
respect to an angular average zc after selecting galaxies under a given redshift shell W (z).
From any given galaxy survey, the ARF may be obtained under the i-th redshift window Wi

via

δ̂z
i
(n̂) ≡

∑
j∈n̂(zj − zc)Wi(zj ;σz)

⟨
∑

j∈n̂Wi(zj ;σz)⟩n̂
. (2.10)

In this equation, zj denotes the observed redshift for the j-th galaxy belonging to a
pixel along the sky direction n̂, and zc is the average redshift under the entire redshift shell
Wi given by,

zc =

∑
j zjWi(zj ;σz)∑
j Wi(zj ;σz)

, (2.11)

where in this case the j-index runs over all galaxies in the footprint. The ensemble average in
the denominator of Eq. (2.10) is effectively computed over the survey’s footprint. Following
the definition for the ADF given in the previous section, the model for the ARF under the
i-th redshift shell can now be introduced as

δiz(n̂) =
1

N i
g

∫ ∞

z=0
dz

dVΩ

dz
(z − zc) n̄g(z)

[
1 + bg(z)δ

3D
m (z, n̂)

]
Wi(z;σz). (2.12)

The average redshift zc under the shell can be then written as

zc =
1

N i
g

∫ ∞

z=0
dz

dVΩ

dz
z n̄g(z)Wi(z;σz). (2.13)

We revisit now the subtleties quoted above that relate to the definition of redshift used in
Eqs. 2.12 and 2.8. The integral runs over the observed redshift z, which is related to the
Hubble drift redshift zH via

z = zH + zpec + zΦ, (2.14)

where zpec denotes the peculiar redshift induced by the emitters’ radial peculiar velocities
v · n̂,

zpec = v · n̂ /c (1 + zH) +O[(v · n̂ /c)2], (2.15)

with c is the speed of light, and zΦ relativistic and gravitational redshifts corrections described
in [50]. Thus the observed redshift z in a point of space-time depends not only on its
radial distance to the emitter, but also on the emitter’s local radial peculiar velocity and
gravitational fields (although the latter will be ignored hereafter since they are much smaller
in amplitude). In practice, this means that the source term of Eq. 2.6 for both ADF and
ARF contains a term that is proportional to the radial peculiar velocity, so both ADF and
ARF will be sensitive to the matter density contrast and radial peculiar velocity field under
the corresponding redshift window Wi(z, σz). We refer to [47] for further details, and simply
highlight here the fact that source term corresponding to the radial velocity term usually
dominates over the term sensitive to the matter density contrast for narrow shells, i.e., for
low values of σz (σz ≲ 0.02), in the relatively low ℓ domain (ℓ ≲ 50).

– 6 –



In this work we shall be using the ARFCAMB code5 [50]. This code is a modification
of the CAMB code [51] that incorporates ARF as an additional cosmological observable and
computes all possible auto- and cross-correlations with the other set of observables, namely
intensity and E and B polarization modes of the CMB, its lensing convergence, and the ADF
and weak lensing maps corresponding to set of redshift shells that constitutes the code user’s
input.

3 Survey configuration and fiducial model

For the Fisher matrix analysis we choose parametrizations close to the spectroscopic Euclid
[52] and the DESI samples. The Euclid -like survey is based on the Hα slitless spectroscopic
survey from Euclid, covering the redshift range z ∈ [0.9, 1.8] with 1,950 gal deg−2, while the
DESI-like survey redshift distribution is motivated by the Luminous Red Galaxies (LRG)
sample from the Year 1 dataset [53]. The shape of the source number density versus redshift
N(z) follows DESI measurements on the Northern Galactic Cap, after applying a smoothing
function on the original redshift distribution, and yielding an average galaxy angular density
of ∼ 2,000 gal deg−2. In Table 1, we display the specifications for the two survey models.
They have different redshift ranges and shapes, as can be seen in Fig. 1.

Euclid DESI LRG

fsky 36% 34%
z range 0.9 < z < 1.8 0.4 < z < 1.2

σz 0.038 0.038
∆z 0.038 0.038
N(z) ∼ 80× 106(z/0.6)−0.5 (as in [48]) Smoothed from [53]

Table 1. Configuration of the two survey models.

0.75 1.00 1.25 1.50 1.75 2.00
zcentral

0.0

0.2

0.4

0.6

0.8

N(
z)

Euclid-like

0.25 0.50 0.75 1.00 1.25
zcentral

0.0

0.2

0.4

0.6

0.8

1.0

N(
z)

DESI-like

Figure 1. Redshift distributions adopted for the two models implemented (DESI-like model on the
left panel, Euclid -like model on the right one).

5Code accessible upon request at https://github.com/chmATiac/ARFCAMB
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Our data vector will consist in a set of angular power spectra {Cℓ} corresponding to a
set of redshift shells and observables (ADF, ARF, or ADF+ARF). We may consider (auto-)
angular power spectra involving only the same redshift shell or we may consider instead the
(cross-) angular power spectra involving different redshift shells. Likewise, we may also build
the Cℓ vector upon the same observables (ADF×ADF, ARF×ARF), or we may consider both
observables (ADF×ADF and ARF×ARF) for our redshift shells. For i and j denoting redshift
shells, the covariance matrix of the corresponding angular power spectrum is modelled via a
Gaussian approximation as

CovMi,j ≡ ⟨Ci,j
ℓ Ci,j

ℓ′ ⟩ − ⟨Ci,j
ℓ ⟩⟨Ci,j

ℓ′ ⟩ = δKℓ,ℓ′
Ci,i
ℓ Cj,j

ℓ + (Ci,j
ℓ )2

(2ℓ+ 1)fsky
, (3.1)

where δKℓ,ℓ′ is the Kronecker delta (equal to unity if ℓ = ℓ′ and zero otherwise), and fsky
is the fraction of the sky covered by the survey.

In Fig. 2 we display correlation matrices6 for the different shells under configuration,
under the simplest case when no cross-correlation to neighbouring shells are included in
the same data vector. Panels (a), (b), and (c) display the ADF, ARF, and ADF+ARF
cases. Panel (c) shows practically null ADF×ARF cross correlation in the diagonal of the
off-diagonal panels, with some degree of anti-correlation in the nearest neighbour shells.

We adopt a fiducial model based on Planck TT, TE, EE + lowE 2018 results [49]. The
fiducial values for the cosmological parameters of relevance, together with the differentiation
step adopted in the Fisher analysis below are given in Table 2. We employ the Chevallier-
Polarski-Linder (CPL) framework for parametrizing the Dark Energy equation of state, which
is characterised by the parameters w0 and wa that quantify the time evolution of the Dark
Energy equation of state as w(a) = w0 + (1 − a)wa, and this allows for an examination of
the evolution of Dark Energy properties over cosmological timescales [54, 55].

Finally, regarding the galaxy bias, we chose a redshift-dependent bias b(z) following a
two-parameter model, τ and ϕ:

b(z) = τ(1 + z)ϕ. (3.2)

The fiducial values for the two parameters are set to τ = 1 and ϕ = 0.5.

Parameter Fiducial choice Differentiation step

H0(km s−1 Mpc−1) 67.27 0.67
Ωbh

2 0.02236 0.0002
Ωch

2 0.1202 0.001
w0 -1 0.01
wa 0 0.01
ns 0.9649 -
As 2.092×10−9 -

τ 1 0.01
ϕ 0.5 0.005

Table 2. Left column: Fiducial cosmological parameters adopted from Planck 2018 [49] and our bias
model. Right column: Corresponding differentiation steps for those parameters included in the Fisher
analysis.

6Correlation matrix is defined here as the covariance matrix of Eq. 3.1 divided by the product of the square
root of the corresponding diagonal elements, i.e., CorrMi,j = CovMi,j/

√
CovMi,iCovMj,j .
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(a) ADF
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(b) ARF

0 5 10 15 20
0

5

10

15

20

ARF

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(c) ADF+ARF
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Figure 2. Correlation matrix between shells from (a) ADF, (b) ARF, and (c) ADF+ARF at ℓ = 20
from Eq. (5.1). Blue indicates positive correlation, white indicates no correlation, and red negative
correlation.

4 BAOs seen in angular and redshift space

As already described in the Introduction, the so-called “BAO scale” corresponds to the sound
horizon at the epoch of recombination (zrec ∼ 1, 100 [1]). Up to that epoch, Thomson’s optical
depth was high enough to keep radiation and baryons dynamically coupled. This coupling
acted as a forced oscillator generating sound waves. As electrons recombined protons to form
neutral hydrogen, this coupling vanished and CMB photons could propagate freely. The
largest wave-front of the oscillations was frozen in the LSS with a radius that corresponds to
the comoving sound horizon at that epoch, given by

rs =

∫ t=trec

0
dt′

cs(t
′)

a(t′)
, (4.1)
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where trec is the time at z = zrec and cs(t) is the time-dependent sound speed given by [2, 56]

cs =
c√

3(1 + 4ρb
3ργ

)
. (4.2)

In this equations, c denotes the speed of light, and ρb and ργ correspond to the (time-
dependent) baryon and radiation cosmic energy densities (the latter being exquisitely mea-
sured via CMB observations, [49, 57]). The rs scale is also known as the BAO scale and
can be expressed on the grounds of relatively simple physics driving the process of hydrogen
recombination. From the observational point of view, the angular on sky projection of rs at
z = zrec (dubbed as θ⋆) has been measured extremely accurately by the Planck Collaboration
[49]: 100 θ⋆ = 1.0411±0.0003, and after marginalization over other cosmological parameters,
such constraint results into a measurement of rs = 147.09± 0.26 Mpc.

The BAO scale thus marks the position of a spherical overdensity centred upon any
other, initial overdensity. It shows up as a secondary peak at r = rs in the spatial correlation
function of the galaxy field, defined as

ξ(r) ≡ ⟨δg(x+ r)δg(x)⟩x =
1

(2π)3

∫
dkPg,g(k) exp [−ik · r], (4.3)

where the ensemble average takes place over all space x and Pg,g(k) denotes the galaxy
3D power spectrum. This supposedly well-known scale (or “standard ruler”) rs has been
extensively used in the last 20 years by LSS surveys to pin down properties of dark energy [10,
44, 45, 58, to quote just a few]. These surveys convert (via a fiducial model) the angular and
redshift information of galaxies into 3D comoving spatial coordinates. By imposing sphericity
(or isotropy) of the BAO scale it is possible to constrain Ωm without any assumption on the
actual value of rs [59], correct its fiducial value [60], while it is also possible to set further
constraints on Ωb/Ωc and H0 [61, 62].

In this work we opt to investigate a different approach. We stick to observed quantities
(galaxies’ angular and redshift coordinates) to produce 2D, celestial maps of ADF and ARF
computed under redshift shells centred upon different, successive redshifts, in order to conduct
BAO tomography in angle and redshift space. We thus present here a work more focused on
BAO than in [Legrand et al., 48], where a generic study on the extra information provided
by the ARF on top of the ADF was presented for fixed Euclid- and DESI-like configurations.
Here we explore in detail the BAO feature in the {θ, z} plane for both ADF and ARF,
together with the dependence of the BAO information content on the shell widths, central
redshifts, redshift spacing, and extent of cross-correlations to other shells.

4.1 The BAO scale along the redshift axis (radial direction)

The BAO scale corresponds to the extent of a spherical sound wave that can be inferred
statistically from LSS surveys. In a flat Friedmann–Lemâıtre–Robertson–Walker (FLRW)
metric, for an observer placed at redshift z̃, a comoving radial distance rs corresponds to a
redshift increment (∆z)BAO in

rs = cH−1
0

∫ z̃+(∆z)BAO

z̃

dz′

E(z′)
, (4.4)

with E(z) ≡
√
Ωm(1 + z)3 +ΩDE(z), where Ωm = ρm(z)/ρcrit(z) is the matter criti-

cal density parameter, and ΩDE is the corresponding dark energy density parameter given
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by ρDE(z)/ρcrit(z). The Dark Energy density ρDE(z) can be expressed using the formula
ρDE,0 (1 + z)3(1+w(z)), where ρDE,0 denotes its present-day value and w(z) its redshift or
time dependent equation of state parameter. The critical density of the universe ρcrit is ex-
pressed in terms of Newton’s gravitational constant G and the Hubble parameter H(z) as
ρcrit(z) = 3H2(z)/8πG. The Dark Energy equation of state parameter w(z) is modelled by
CPL as w(z) = w0 + wa[1− 1/(1 + z)]. This is just one popular parametrization describing
the cosmological evolution of w(z) with its present day value, w0, and one extra parameter,
wa, accounting for its time dependence.

At z̃ = 0 we find that (∆z)BAO ≃ 0.034 for rs ≃ 100 Mpc h−1, with an increasing
trend for higher values of z̃. In order to be sensitive to the purely radial projection of rs, the
redshift separation between two different redshift shells must thus be below (∆z)BAO(z̃).

The width of the Gaussian shells under consideration (σz) plays also some role when
comparing it to (∆z)BAO(z̃): obviously σz ≪ (∆z)BAO(z̃) must hold if one attempts to
unveil rs by cross-correlating different redshift shells. In this scenario, as it will be shown
below, the BAO feature for ARF will not show up in the auto power spectrum/correlation
function, contrary to ADF, for which BAO will show up even if σz ≪ (∆z)BAO(z̃). Instead,
if σz is comparable to (∆z)BAO(z̃), the BAO scale will show up in the auto power spectrum
or auto correlation function for both ADF and ARF. As σz grows larger than (∆z)BAO(z̃)
the sensitivity to rs slowly declines. However, BAO do leave some signature at zero-lag in
angle (θ = 0) when computing the cross-correlation function between two different, narrow
enough redshift shells that lie at a redshift difference close to (∆z)BAO(z̃). We describe all
these dependencies more formally in what follows below.

In passing it is worth noting that the redshift scale imposed by (∆z)BAO(z̃) connects
to the error limit adopted by the so-called spectro-photometric surveys targetting the radial
BAO feature [35, 63], typically set at the level of ∆z/(1 + z) = 0.003. In our work, the
preliminary computation of (∆z)BAO(z̃) above motivates the choice for the redshift shell
widths and separation shown in Fig. 1 and given in Table 1.

4.2 The BAO scale along the angle axis (transversal direction)

When looking at one particular redshift shell, the BAO scale will be projected along the trans-
verse direction, i.e., along the direction perpendicular to the line of sight. If one computes
the ADF angular correlation function in such shell,

wg,g(θ) = ⟨δg(n̂)δg(m̂)⟩m̂·n̂=cos θ, (4.5)

it should be equivalent to a projection of the 3D galaxy-galaxy correlation function ξ(r) in
Eq. (4.3) under that given redshift shell. Following the definition of the angular correlation
function introduced in Sect. 2, Eq. (2.4), we can write the angular correlation function for
either ADF or ARF in terms of the corresponding angular power spectrum Cℓ:

w(θ) =
∑
ℓ

(2ℓ+ 1)

4π
CℓPℓ(cos θ), (4.6)

where Pℓ is the Legendre polynomial of order ℓ.
In Fig. 3, we show the angular auto-correlation function obtained from the two observ-

ables, ARF (left panel) and ADF (right panel) for shell widths of σz = 0.038, after re-scaling
by a θ1.5 factor that enhances the BAO feature at θBAO ∼ 1.5− 2.5 deg. The colours repre-
sent the central redshift of the shell from lower z (red) to higher z (blue). ADF is a factor of
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Figure 3. w(θ) for ARF (left panel) and ADF (right panel) for an Euclid -like survey. The colours
from red to blue increase with zc, ∆z = σz = 0.038.

∼ 103 larger than ARF, as expected from the (z − zc) kernel present in the ARF definition.
Both observables display the BAO feature close to the expected position according to the
equation:

θBAO =
rs

(1 + zc)DA(zc)
, (4.7)

where DA is the angular diameter distance. It can also be clearly seen that θBAO decreases
with redshift.

We next study how the relative height of the BAO peak w.r.t. the zero-lag peak (θ = 0)
of the angular correlation depends upon the width σz of the redshift shell. Intuitively one
would expect that wider shells involve larger line-of-sight damping of scales smaller than the
shell width. Those small scales typically contribute more to the primary (zero lag, θ = 0) peak
of the correlation function than to the BAO peak (since the latter is built on scales around
rs). Thus it is expected that under narrower shells small-scale anisotropy contributes more
to the zero-lag peak than to the BAO peak, and the ratio of the latter over the former should
decrease for thinner shells. For ARF, instead, one has to account for the extra factor (z− zc)
present in the kernel of Eq. (2.12). This factor effectively applies a radial/redshift gradient,
such that if the density field is largely constant under the redshift shell, the amplitude of
the ARF will be heavily suppressed. For the particular case of the BAO feature, if the shell
width is much smaller than (∆z)BAO in Eq. (4.4), then the BAO feature will not vary under
the shell, and its projection under the ARF kernel will be small.

This is precisely the behaviour that we recover numerically, shown in Fig. 4. At small
values of σz, the ratio of the heights of the BAO peak versus the zero-lag peak decreases
notably for ARF (red lines). For ADF this suppression is not so steep (blue lines), since
according to our interpretation it is only the zero-lag peak that increases its amplitude for
low σzs, while the BAO peak, in this case, remains at similar amplitudes. This behaviour
remains roughly the same for shell mean redshifts zc = 0.61 (left panel) and zc = 0.91 (right
panel).
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Figure 4. Comparing the relative height of the BAO peak over the zero-lag (θ = 0) peak in the
auto-correlation function of shells centred at zc = 0.61 (left panel) and zc = 0.91 (right panel).
In both cases, the ratio for the ARF cases (red lines) show a dramatic drop for σz ≪ (∆z)BAO

((∆z)BAO ∼ 0.045− 0.055 at those redshifts).

4.3 BAO in the angle and redshift space {θ,∆z}

Our next step consists of combining shells at different (but nearby) redshifts in order to
sample the BAO scale along both redshift and angle axes. For that purpose we compute
the angular cross-correlation function between shell pairs (i, i′), given in terms of the cross

angular power spectrum Ci,i′

ℓ via the standard formula

w(∆z, θ) =
∑
ℓ

2ℓ+ 1

4π
Ci,i′

ℓ Pℓ(cos θ). (4.8)

This cross-correlation function can be obtained for either ADF or ARF and for shells lying at
different redshift offsets ∆z. The BAO scale should show as a distinct feature whose location
should be at (θ = θBAO,∆z = 0) and (θ = 0,∆z = (∆z)BAO) as limiting cases.

Intuitively one would expect some level of similarity between the 2D angular correlation
function w(∆z, θ) and the 3D spatial correlation function ξ(r), whose dependence in r can
be further broken into two variables, namely ξ(r∥, r⊥). Due to the redshift space distortions
(RSD), the BAO rs scale does not appear completely spherical in ξ(r∥, r⊥), but slightly dis-
torted due to the radial peculiar velocities that make the BAO sphere to flatten along the
radial directions. Interestingly, the impact of radial peculiar velocities in w(∆z, θ) correlation
function manifests in a very different way. As shown in, e.g., [47], radial peculiar velocities
contribute to the (auto-)angular power spectrum with a higher amplitude for narrower red-
shift shells. Since redshift shells are necessarily narrow if we aim to resolve the BAO feature
(see discussion in the previous section), the impact of peculiar velocities will be relevant for
all shell combinations, and particularly more relevant for lower values of σz. The contribution
to the Cℓs from peculiar radial velocities extents to angular scales that are comparable to
θBAO, and thus they add on top of the BAO signature.

This is shown in Fig. 5, where we are displaying a normalised, 2D angular correlation
function defined as

ξ(∆z, θ) ≡ w(∆z, θ)

w(∆z = 0, θ = 0)
, (4.9)
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where the normalised function ξ(∆z, θ) is computed for both ADF (left panel) and ARF (right
panel). The darkest colours forming a circular pattern, where the peak at ∆z ≃ 0.06, θ = 0
matches the expected BAO peak position for a zc = 1.0 according to Eq. (4.4). While the
ADF seem to show a weaker BAO signature for distant redshift bins, this can be improved
for narrower shells (see Fig. 18 in the Appendix A). We see here that, for ARF, narrow shells
lose their sensitivity to the BAO peak for the auto-angular spectra, but retain it for cross-
angular spectra. Extremely narrow shell configurations, however, are seen problematic even
for relatively dense spectroscopic surveys like DESI or Euclid, since they would be populated
with few sources. It also turns out that non-linear effects, neglected throughout this work,
are foreseen to be more important for narrower shells as well, [see, e.g., the comparison of
ADF and ARF linear theory prediction to COLA mocks in 47].

Figure 5 displays in reality a weighted version of Eq. 4.9, namely (∆z)1.5 × ξ(∆z, θ).
This plot corresponds to the Euclid-like configuration in which we cross-correlate a redshift
shell centred upon zc = 1 with other shells separated by multiples of ∆z = 0.007, with
σz = 0.004 all the way up to z = 1.1. In this particular plot the relatively narrow choice of
∆z = 0.007 is motivated by the BAO constraint with BOSS data by [64]. The BAO scale
in the {∆z, θ} space seems to show a complementary pattern for ADF and ARF: for the
former, it can be more clearly seen at low values of ∆z, while for ARF it seems stronger
than for ADF at θ ≈ 0. We thus expect that the combination of both observables should
improve the sensitivity to the BAO feature. However, its amplitude (given in the colour bars)
is relatively weak in both cases. For ADF the BAO peak shows up like a positive peak in a
negative background, while for ARF the background is close to zero.

This approach of conducting multiple shell angular cross-correlations is different from
that in [65], where the angular auto-correlation function of several redshift shells was rescaled
according to an expectation of the angular diameter distance (DA(z)), and binned altogether
to increase the signal-to-noise ratio of the BAO feature. That work followed an implemen-
tation very similar to that provided in [66]. Our study generalizes the work presented in
[64, 67], where narrow shells were combined to isolate the BAO feature along the redshift
axis, but no systematic neighbour shell cross-correlation were considered.

In the top panel of Fig. 6, we show the BAO feature in the weighted correlation function
along the redshift shift axis (∆z) for different values of central redshifts zc, and for ADF
(dotted lines) and ARF (solid lines). It follows the expected trend predicted by Eq. (4.4),
where the peak position (∆z)BAO increases as zc increases. However, the location of the
BAO maxima do not exactly coincide with Eq. (4.4): the bottom panel of this figure shows
that, although the ARF seem to agree better with the BAO position from Eq. (4.4) than
ADF, both show some difference at the ∼ 12% level. This mismatch was already pointed out
at the level of linear theory by [68], who noted that the BAO scale did not exactly coincide
with the position of the BAO peak as predicted by Boltzmann codes like CAMB [69], CMBFAST
[70], or EH98[71]. This is not an issue as long as our models capture these shifts properly.

5 Fisher formalism

In this section, we implement a Fisher formalism to quantify the amount of new information
brought by ARF on top of ADF. We shall consider three different cases, ADF alone, ARF
alone, and the combination of both, just as in [48], although in this case we shall quantify
the amount of information added by the cross-correlation to a number of neighbouring shells.
We will also try to isolate the information associated to the BAO feature by comparing to
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Figure 5. Comparison of two-dimension correlation functions ξ(∆z, θ)×∆z1.5 in (θ,∆z) space, for
ARF (left panel) and ADF (right panel).

models with very low Ωb (and thus very weak BAO features). In this case of very low baryon
content, the amount of dark matter is increased so that the total matter density is identical
to our fiducial model. Finally, we will study how the Fisher information depends upon the
shell configuration (number of shells versus their intrinsic width σz for a fixed redshift range).

We apply this Fisher formalism in both the Euclid-like and the DESI-like configurations.
We work under the assumption that different multipole ℓs are independent of each other, and
that Fisher matrices for each ℓ can be added. For each ℓ we consider any shell of index c that
corresponds to a triplet c ≡ {o, β, ν}, with o referring to the observable (ADF or ARF), β to
the redshift bin, and ν to the neighbour index (ν = 0 denotes auto-power spectrum, ν ̸= 0
denotes a cross-correlation with a neighbour shell of index β+ ν). If c′ ≡ {o′, β′, ν ′}, then we
rewrite Eq. 3.1 as

CovM[Cc,d
ℓ , Cc′,d′

ℓ ] =
Cc,c′

ℓ Cd,d′

ℓ + Cc,d′

ℓ Cd,c′

ℓ

fsky(2ℓ+ 1)
. (5.1)
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As in Eq. 3.1 above, the factor fsky refers to the effective fraction of the sky covered by
the survey’s footprint. The covariance matrix presents as many blocks as observables are
considered. Each block is almost diagonal, with most of the correlation structure along the
diagonal and nearby shells.

The data vector for each multipole ℓ constitutes the sequence of all angular power
spectra considering all observables, redshift shells, and neighbour shells per redshift shell
without repetition (running on indexes c and d):

Dℓ = {Cc,d
ℓ }c,d. (5.2)

Finally, the Fisher matrix is written as follows:

Fαγ =
∑
ℓ

(
∂Dℓ

∂α

)
(CovD)−1

(
∂Dℓ

∂γ

)
, (5.3)

where derivatives are computed with a finite difference approach (whose steps are given in
Table 1) and CovD refers to the covariance tensor for the data vector Dℓ.

One must note, however, that there are numerical stability issues in the computation of
the Fisher matrix, particularly when dealing with the two different observables and multiple
neighbours. The fact that the power spectra of the different observables, namely ADF and
ARF, have significant magnitude differences, leads to instabilities in the covariance matrix,

– 16 –



resulting in negative or null determinants when inverting the matrix. These instabilities are
exacerbated by the increasing matrix dimensions if more parameters enter the definition of
the Fisher matrix. To address this, two measures are taken. First we renormalize the ARF
power spectra by re-scaling the ARF definition by the inverse of σz (with σz the width of
the Gaussian shells under consideration). This renormalisation should leave the ARF at a
similar amplitude level as the ADF. Next we identify and eliminate eigenvalues/eigenvectors
in the covariance matrix that are associated with numerical instabilities, by either showing
negative or very low signal-to-noise ratio eigenvalues. The final Fisher matrix is constructed
using valid eigenvalues, and stability is assessed using the Figure of Merit (FoM), which
is computed as the determinant of the Fisher matrix of the parameters under study. The
results show a clear stability hierarchy across different configurations, with the least noisy
being ADF auto-spectra, and the noisiest being the two observable combination (ADF+ARF)
with neighbouring shells. We provide further details on the computation of the total Fisher
matrix in the Appendix B.

5.1 Shot-noise

The two surveys of choice have different redshift distributions and associated (finite) galaxy
number densities, which translate into different shot noise levels, and these must be accounted
for in our forecasts for the auto power spectra (we neglect shot noise contributions for all
cross-power spectra). We follow [48] at implementing the expressions for the shot-noise. For
the ADF auto angular power spectra, the shot noise contribution is the usual inverse of the
number density of galaxies under any given redshift shell i (see Eq. 2.9):

NADF
i =

1

N i
g

. (5.4)

For ARF the expression is slightly different:

NARF
i =

1

(N i
g)

2

∫
dz

dVΩ

dz
n̄g[W

i(z;σz)]× (z − zc)
2. (5.5)

Contrary to what is done in [72], we neglect the small non-zero shot noise contribution arising
in ADF × ARF cross-correlations since our redshift shells are narrow and that contribution
typically appears for wide shells.

When comparing the BAO with the no-BAO cases, we choose to ignore the shot-noise
contribution to the covariance matrix. The reason for this is that, in such case, we try to un-
derstand how errors in cosmological parameters compare when considering/neglecting BAOs.
It turns out that the presence/absence of BAOs change the amplitude of the ADF/ARF an-
gular power spectra, and that errors in parameters are only independent of the Cℓ amplitude
if the shot-noise part in the covariance matrix is neglected (since in that case the relative
error of the Cℓs is independent of the actual Cℓ amplitude). For instance, for an auto-ADF
covariance matrix, we have that:

⟨(Ci,i
ℓ )2⟩ − ⟨Ci,i

ℓ ⟩2 = δKℓ,ℓ′
2(Ci,i

ℓ + 1
N i

g
)2

(2ℓ+ 1)fsky
, (5.6)

where the term 1/N i
g corresponds to the shot noise term. If this term is neglected, the

relative error of the Cℓs (and thus the error of the cosmological parameters) are independent
of the Cℓ amplitude, enabling a fair comparison of the BAO/no-BAO cases).
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6 Results

6.1 The error contours

We next study the outcome of our Fisher matrix analyses on both Euclid-like and DESI like
surveys. The shell configuration is the default described above, with redshift separation of
∆z = 0.038, and equal width of σz = 0.038. We first show the error ellipses, first for the
Euclid-like survey (Fig. 7) and for the DESI-like (Fig. 8). As the legend shows, blue, red,
and purple colours refer to ADF, ARF, and ADF+ARF combined, respectively. Dashed lines
refer to the case where we do not consider in our data vector any cross-correlation between
different shells. On the contrary, solid lines display the case when the cross-correlation to one
(the closest) shell is included in the data vector, either for ADF, ARF, or both at the same
time. For the sake of simplicity, we do not include in our data vectors cross-angular power
spectra involving neighbours with different probes, i.e., the cross-angular power spectra of
ADF in one shell and ARF in any of its neighbours.

The default redshift shell configuration in this work differs from the one used in [48] in
the choice of σz (σz = 0.038 in this case, σz = 0.01 in that work), since here we attempt to
maximise the ARF sensitivity to the BAO features. As a consequence, the relative scaling
of error contours between ADF and ARF will not exactly follow that one found in [48]. In
particular, here we find that ARF are more sensitive than ADF to bias-related parameters,
while ADF seem to provide slightly more information on the other cosmological parameters
given in Table 2. Nevertheless, and most importantly, the combination of both observables
(ADF+ARF) yields significantly more precision to the analysis, in agreement in the findings
of [48].

This is quantified in the error ellipses provided in Figs. 7 and 8 for the Euclid- and DESI-
like configurations, respectively. We find that the orientation of the ADF (blue) and ARF
(orange) error ellipses are in practically all cases different enough so that the combination
of both probes (magenta) yields a notable improvement. Interestingly, adding the cross-
correlation to four neighbour shells (solid lines) shrinks by a factor of a few the area of the
error ellipses with respect to the case of no cross-correlation to neighbour shells (dashed lines).
This latter result prompts the question on how many neighbour shells should be included in
the data vector for Fisher information to converge. This issue is addressed in Sect 6.3.

We study more in detail the behaviour of the predicted Fisher errors on the parameters
in Fig. 9: the left panel observes only auto power spectra, i.e., no cross-correlation to any
neighbour redshift shell, while the right panel refers to the case where cross-correlation to the
two most nearby shells are included in the data vector. For the particular modelisation of the
Euclid-like and DESI-like galaxy surveys, we find that the latter provide smaller uncertainties
in all cosmological parameters, and this is presumably due to the higher number density and
the lower redshift range sampled by this survey (during which dark energy is more dominant
over matter). But overall we can see that the uncertainties in cosmological parameters are
comparable from either ADF or ARF, and that those are systematically improved under
the ADF+ARF probe combination. This improvement is more dramatic in the bias-related
parameters τ and ϕ, but relevant in all parameters under consideration. Given the ideal
character of Fisher forecasts, further, more realistic work using simulated galaxy mocks will
be required to quantify the improvement in the precision on all those cosmological parameters,
and in particular those related to physical matter densities and the Dark Energy equation of
state.
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Figure 7. Constraints for a Euclid -like survey with shell separation of ∆z = 0.038 and shell width
of σz = 0.038. The dashed lines consider only auto-power spectra in the data vector, while solid lines
include the first neighbour of each shell. Red colour displays ARF constraints, blue is used for ADF
constraints, and purple for the combination of both observables (ADF+ARF).

6.2 The information encoded in the BAO

This work focuses on the study of the BAO from the ADF and ARF perspectives. Since the
Fisher analysis above is generic in the sense it does not particularise on the BAO features,
we next try to isolate the amount of information encoded in the BAO wiggles. For that, we
consider another cosmological model with identical energy content to our fiducial model so far,
but with almost no baryons. We adopt in this case Ωbh

2 = 0.001, but maintaining the initial
value of Ωm = 0.321. The resulting angular power spectra in this model will effectively show
no BAO features, and thus the information obtained from them can be assigned to the shape
of the smooth Cℓs. For this analysis, we shall exclude Ωbh

2 and Ωch
2 from the parameter set

under study since their fiducial values vary considerably in the BAO/no-BAO scenarios.
The panels in Fig. 10 display the comparison of the FoMs in the two (BAO/no-BAO)
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Figure 8. Constraints for a DESI-like survey with shell separation of ∆z = 0.038 and shell width
of σz = 0.038. The dashed lines contain only the auto-power spectra information, while solid lines
represent the constraints when the covariance matrix includes the first neighbour of each shell. Orange-
red for ARF constraints, blue for ADF constraints, and purple for the Cross-power spectra between
observables.

scenarios of the auto power spectra. The solid (dashed) lines correspond BAO (no-BAO)
scenarios, for the Euclid- (left panel) and DESI-like (right panel) surveys. The behaviour
is quite uniform in all cases: ADF and ARF provide similar constraints on the different
parameter pairs, but the probe combination of ADF+ARF improve by about an order of
magnitude the FoMs for practically all parameter pairs.

Quite remarkably, the addition of BAO also boosts the FoM in all cases considered, such
that the BAO seem to dominate the information content for both experimental configurations
and all parameter combinations. This leads to what we interpret as one of the main results
of this work: the BAO information from ARF, added on top of that from ADF, should
improve by about one order of magnitude the FoM of all the possible parameter combinations,
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Figure 10. FoM results for some parameter spaces with (solid line) and without (dashed-line) the
BAO feature. The colour scheme is the same as in previous plots.

including those involving the equation of state of Dark Energy or the Hubble constant.

6.3 Exploring the dependence on neighbour shells ν and shell width (σz)

So far we have provided forecasts for ADF, ARF, and ADF+ARF for a fixed shell configura-
tion that targets the sensitivity to the BAO features. In this subsection, instead, we explore
the dependence of the Fisher forecasts on different shell configurations, namely on the num-
ber of neighbouring shells, and the shell width σz adopted. In what follows, we consider
always an even number of neighbour shells per “central” shell, i.e., one at lower and one at
higher redshift7.

7Obviously, for the extreme shell centred upon the lowest and highest redshift considered only one neighbour
will be possible, but yet the total number of neighbours will be even.
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While naively one would expect that a handful number of neighbour shells would be
required to capture the correlation lying between different shells, we actually find a rather
different behaviour for ADF and for ARF. Figure 11 displays the FoM for the H0 − w0

parameters with respect to the number of neighbours (ν), while in Fig. 12 refers the case for
w0 − wa. These are rather representative cases for all other parameter configurations. We
see that while the FoM from ARF saturate at around ν ∼ 10 neighbour shells, the ADF FoM
instead tends to require more neighbour shells (typically ν ∼ 15 to converge. This translates
into a higher FoM for ADF, although the FoM due to the combination of ADF and ARF
(magenta lines) is always more than an order of magnitude higher than either the ADF-only
or the ARF-only cases.

This different behaviour is not surprising for the relatively wide shells of this config-
uration (σz = 0.038). The velocity term in the source terms for both ADF and ARF is
significantly smaller than the density term for such choice of σz [47], and while the kernel
for the density term in ADF allows for large inter-shell correlations, the ARF kernel car-
ries instead the (z − zc) factor. In practice, this (z − zc) factor acts as a redshift/radial
gradient operator under the redshift shell, making the ARF sensitive to the galaxy density
redshift evolution under each shell, unlike the ADF, which are sensitive to its average den-
sity. Thus the redshift correlation structure for the ARF is based on how radial/redshift
gradients correlate from shell to shell, whereas for ADF such correlation is simply built upon
the matter/galaxy correlation on large scales.

The ADF FoM relative contribution to the ADF+ARF FoM results remarkably higher
for the DESI-like than for the Euclid-like configuration, and this seems to be related to the
larger growth of the ADF FoM for ν ∈ [5, 10] in the former case. The only obvious difference
between the two experimental configurations is the redshift range they are sampling. The
DESI-like is sampling lower redshifts where the transition from matter to dark energy dom-
ination is more evident than for the Euclid-like case. This intrinsic redshift evolution seems
to be giving more weight to the cross-correlation with different redshift shell than for the
higher redshift range probed by Euclid.

We now generalize the σz = 0.038 shell configuration motivated by the sensitivity to
BAO and explore how the FoM behave under different shell configurations. It was shown in
[47] that redshift shells contain more cosmological information if they are sufficiently narrow
so the term induced by radial peculiar velocities contributes significantly (this term becomes
negligible to widths typically larger than σz ∼ 0.02 − 0.03). We have found in previous
sections that, while for ARF the ratio of the BAO peak is lost for very narrow shells, it is not
the case when cross-correlation between different shells are included in the data vector. So
if the effective sensitivity to BAO remains at low values of σz, we would expect the FoM to
decrease for increasing σz. When testing this, we fix a redshift interval (from z = 1.0 up to
z = 1.2 for the Euclid-like setup, and from z = 0.6 up to z = 0.8 for the DESI-like one), and
change σz while fixing the redshift shell separation at ∆z = 2σz. This results in a varying
(decreasing) number of redshift shells as σz increases. Figure 13 displays the behaviour of
the FoM (built upon all parameters under study) versus σz for ADF, ARF, and both probes
combined, ADF+ARF. The top axis provides the effective number of shells. Different values
of σz may correspond to the same (integer) effective number of redshift shells: in these cases,
there will be a different degree of overlap between shells (higher for wider σz).

Overall we recover the expected trend: the amount of information decreases steeply
when σz grows above a few times 0.01, a change that we expect if the velocity term falls
well below the density term in the source function S(k, r) for both ADF and ARF. For
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the highest values of σz the FoMs enter a plateau that is recovered when we repeat these
analyses for the specific parameter combinations H0 × w0 (Fig. 14) and w0 × wa (Fig. 15).
It is interesting that, in Fig. 13, the amplitude and shape of the plateau are very similar for
the two experimental configurations (Euclid-like and DESI-like), despite their differences in
the redshift ranges sampled by each of them. A similar picture can be seen in Fig. 15 (for
w0 × wa) and in Fig. 16 (for the bias parameters τ × ϕ).

We see in Figs. 14, 15 similar shapes and amplitudes, pointing to similar sensitivities
to these parameter pairs in the z ∈ [0.6, 0.8] and z ∈ [1, 1.2] redshift ranges. They suggest
that the inclusion of velocities (and smaller radial perturbation modes that are resolved by
the redshift shells) contribute with a significant amount of sensitivity to those cosmological
parameters.

Interestingly, the constraints of the bias-related parameters shown in Fig. 16 behave
very differently. Such parameters depend upon the typical halo mass mostly and have no
direct dependence upon cosmology. Contrary to all the three previous examples, the FoM
shows an increasing trend with σz: even for the same number of redshift shells, the FoM is
larger for wider σzs (see for instance σz = 0.05, 0.06, for which the number shells equals 2).
The FoM is higher for σz = 0.06, and this can be due to a higher overlap of the two Gaussian
windows, which translates into a higher number density and lower effective shot noise level.
The interpretation for low σzs is not straightforward either, since both experimental setups
show different behaviours. Given the similarity at high σzs in both panels, differences of the
FoM at low widths can again be associated with differences in the velocity contribution to
the source term in both ADF and ARF. However, in this case, and given the higher number
of redshift shells involved in the FoM computation, we do not discard numerical instabilities
impacting the FoM shapes (we discuss this possibility further in the upcoming section).
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Figure 11. FoM for the H0 − w0 parameter space w.r.t. the number of neighbours (ν).

7 Discussion and conclusions

According to the Fisher analysis presented in this work, BAO carry most of the information in
tomographic analyses of a set of 2D redshift shells extracted from spectroscopic LSS surveys
like Euclid or DESI, either for ADF, ARF, or ADF+ARF combined. We first find that
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Figure 12. FoM for the w0 − wa parameter space w.r.t. the number of neighbours (ν).
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Figure 13. Figure of Merit w.r.t σz for Euclid and DESI.

this is the case when only auto-angular power spectra are considered for each redshift shell
of width σz ∼ 0.034. This is a particular configuration for which the BAO peak is well
visible in the angular auto-correlation function for both ADF and ARF. ARF carry a similar
amount of information as ADF, and the combination of both increases the Fisher matrix
determinant by more than an order of magnitude for practically all cosmological parameter
pairs under study. This reproduces the results of [48], although in that work the redshift
shell configuration observed narrower shells (σz = 0.01), and no particular consideration was
given by the amount of information carried by the BAO.

We build further upon all previous results and generalise the shell configuration, in-
cluding arbitrary widths and cross-correlation to neighbour redshift shells. Overall, the main
results hold under all these new configurations: ARF contribute with a significant amount of
new constraining power on the cosmological parameters, in particular H0 and the Dark En-
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Figure 14. Figure of Merit for H0 × w0 w.r.t. σz for Euclid and DESI.
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Figure 15. Figure of Merit for w0 × wa w.r.t. σz for Euclid and DESI.

ergy CPL ones (w0,wa), and the combination of both probes ADF and ARF is always superior
to either of the probes (ADF or ARF) alone. Including the cross-correlation to a number
of neighbour shells increases the constraining power on the cosmological parameters: while
the FoM from ARF typically converges for ν ≃ 10 neighbour shells (for σz = ∆z = 0.038),
resulting in a total redshift range of (∆z)tot ≃ 0.4), ADF seem to require extending up to a
higher number of neighbours (ν ∼ 15, or (∆z)tot ≃ 0.6) in order to find some evidence of FoM
flattening versus ν. Due to the (z− zc) factor present in the ARF kernel, ARF are known to
measure radial/redshift gradients under each redshift shell, and this would make them less
sensitive than ADF to the structure under different (and distant) redshift shells. This would
also explain why the ADF FoM grows above that of ARF as soon as cross-correlations to
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Figure 16. Figure of Merit for τ × ϕ w.r.t. σz for Euclid and DESI.

neighbour shells are included in the data vector. But even in those cases, the addition of the
ARF significantly increases the FoM, probably due to the inclusion of information arising in
radial modes stemming from redshift shells that the ADF are blind to8.

We further generalize the choice of σz in our tomographic study. By first time, we
recover the BAO peak in the cross-shell angular correlation function in {θ,∆z} space for
both ADF and ARF, and although weak, the contrast of the BAO peak is actually higher
for very narrow shells (σz ∼ 2− 5× 10−3). In this context, we study the constraining power
on cosmological parameters given by the determinant of the Fisher matrix under different
redshift shell widths for a fixed cosmological volume, such that wider shell configurations
correspond to a lower total number of redshift shells. Narrower shells are able to resolve
radial shorter wavelength perturbation modes, and thus should access more cosmological
information. This is indeed the general trend we find, for all probe combination (ADF,
ARF, and ADF+ARF), and for both experimental setups considered (Euclid- and DESI-
like). Among all parameters, only the bias-related ones seem to show a different scaling
with σz, which less clear evolution in the range of σz/number of redshift shells sampled: the
change in the FoM from the narrowest to the widest shell configuration changes less than a
factor of ∼ 2. Unless the other cosmological parameters, the linear bias parameters (τ × ϕ)
are un-sensitive to the Cℓ shape or the BAO feature (which in general depends upon the
shell width σz), but merely measure the amplitude of the Cℓs with respect to the linear
prediction. This result suggests that the loss of information caused by the smearing of the
radial short-wavelength modes under wider redshift shells is roughly compensated for by a
decrease in shot-noise error under such shells.

Our Fisher matrix analyses assume cosmological linear perturbation theory, Gaussian
statistics for the data vectors involved, and lack of correlation between different multipoles of
the angular power spectra under study. These are rather strong (and optimistic) assumptions,
and real parameter uncertainties are bound to be larger in real data analysis. Even when we

8ADF are sensitive to the monopole/average galaxy number density under the redshift shell, and thus
un-sensitive to fluctuations of that number density under it.
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have carefully removed noisy eigenmodes possibly biasing our Fisher metrics (FoMs and error
forecasts), our predictions are likely to change substantially in a realistic setup. The inclusion
of a high number of neighbour redshift shells and derived cross angular power spectra results
in large Fisher matrices whose manipulation and interpretation must be done carefully, even
if the results we have presented here have proved robust versus changes in the definition of
noisy eigenmodes (see Appendix B). The impact of coupling for different harmonics due to a
limited sky coverage, non-linear corrections in both the density and radial peculiar velocity of
the tracers, and non-Poissonian shot noise are all aspects that need to be quantified further.
They constitute the subject of our forthcoming work on this topic.

8 Code availability

The particular software packages used in this work will be accessible at https://github.

com/psilvaf/ARF_supplemental.git at publication. The ARFCAMB Boltzmann code is avail-
able upon request at https://github.com/chmATiac/ARFCAMB.

A Two-dimensional correlation function in redshift space

We show here another example for the {θ,∆z} correlation function of ADF/ARF which
considers yet thinner redshift shells that give rise to a clearer BAO pattern. The zero-lag
case is displayed in Fig. 17, while the full, 2D maps is provided in Fig. 18. In the first case,
the inset panel highlights the BAO feature at the expected ∆z value according to Eq. (4.4),
and in agreement with the findings of [64].

B Numerical stability

We adopt Eq. 5.3 for the Fisher matrix, although here we particularise for each harmonic ℓ
at a time and simplify its notation as

Fαβ =

(
∂d

∂θα

)t

CovM−1

(
∂d

∂θβ

)
, (B.1)

Here, d represents the data vector encompassing both auto- and cross-angular power spectra
of ADF and/or ARF across any set of redshift shells. The covariance matrix for d is denoted
by CovM. To ensure a stable inversion of this matrix and an accurate calculation of the
Fisher matrix and its determinant, the following procedure is employed:

1. We standardise the amplitude of all components in our data vector d. The vector may
include ADF or ARF angular power spectra, with ARF generally having amplitudes
that are σz times that of ADF. To balance this, we normalise the ARF spectra by
the square of the shell width, (σz)

2. This adjustment equalises component amplitudes,
resulting in the renormalized data vector d̃ and its related covariance matrix CovM̃.

2. We diagonalize CovM̃, decomposing it as

CovM̃ = Rt(ΛI)R, (B.2)

where R is an orthogonal rotation matrix, and (ΛI) is a diagonal matrix whose diagonal
elements are given by λi, with i = 1, N and N the dimension of the data vector d̃. The
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Figure 17. Correlation function in redshift space ξ∥(∆z) after including the leading radial peculiar
velocity term, the so-called redshift term in ARFCAMB. We use a shell separation of ∆z = 0.004 and
a shell width of σz = 0.004 for a central redshift of zc = 1.0 that is cross-correlated to other shells up
to z = 1.1.

columns of the rotation matrix are the eigenvectors ei of the renormalized covariance
matrix. We discard then all eigenvectors for which λi ≤ 0 or |ei ·e⋆i − 1| > ϵ9, with ϵ an
arbitrarily small number to be defined (we adopted ϵ ∈ [10−5, 10−3] in our analyses).
Imaginary parts of the eigenvalues are ignored.

3. Finally, from the remaining pool of eigenvectors, we drop those eigenvectors having a
low signal-to-noise ratio. That is, after rotating the data vector

f = Rd, (B.3)

we further ignore those vectors for which fi/
√
λi < η, with η again an arbitrary small

number.

We make sure that our results are stable with respect to the choices of ϵ and η. Our
final configuration adopts ϵ = 10−5 and η = 10−2: much stricter choices would provide
conservative/pessimistic estimates of the FoM, while relaxing those conditions may incur in
a significant amount of numerical noise.

We evaluate stability for each multipole with the Figure of Merit (FoM):

FoM =
√
|Fαβ| (B.4)

9The symbol ⋆ denotes here “complex-conjugate”.
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Figure 18. Two-dimensional correlation function ξ(∆z, θ) from ARF in {θ,∆z} space for a central
shell on zc = 1.0 of width σz = 0.004 that is cross-correlated to other shells spaced in steps of
∆z = 0.004 up to z = 1.1.

calculated as the square root of the determinant of the Fisher matrix from Eq. (5.3). Fig-
ures 19a and 19b show the FoM versus the corresponding harmonic ℓ for data vectors either
containing only auto- (dashed lines) or also cross-angular power spectra (the latter case in-
volving four neighbouring shells, see solid lines). Including neighbours or combining probes
(ADF+ARF) greatly enhances the information. In the ADF+ARF, four-neighbour configu-
ration (solid magenta lines) shows some evidence for numerical noise, although their pattern
(or smooth shape versus ℓ) mirrors the shape of the respective single probe cases. To gain
further insight on this, Fig. 20 shows the fraction of surviving eigenvectors per ℓ for the ADF,
ARF, and ADF+ARF probe setups in a Euclid-like configuration. Vertical axes represent
neighbour shells included in the data vector, while horizontal axes refer to the ℓ multipole.
The colour bar indicates the average fraction of surviving eigenmodes (according to the se-
lection rules outlined above) relative to the initial number of eigenmodes corresponding to
each cell in these 2D panels. These show that the fraction of surviving eigenvectors decreases
for ARF, and yet further for ADF+ARF, suggesting that information is exhausted as more
neighbours and probes are included in the tomographic analysis.

– 29 –



0 100 200 300 400 500

101

104

107

1010

1013

1016

1019
Fo

M
()

Euclid-like z = 0.038, z = 0.038 with SN

Auto ADF
Auto ARF

4  ADF
4  ARF

Auto ADF+ARF
4  ADF+ARF

(a) Figure of Merit in terms of the harmonic
index (Euclid).

0 100 200 300 400 500

104

107

1010

1013

1016

1019

Fo
M

()

DESI-like z = 0.038, z = 0.038 with SN

Auto ADF
Auto ARF

4  ADF
4  ARF

Auto ADF+ARF
4  ADF+ARF

(b) Figure of Merit in terms of the harmonix
index (DESI).

Figure 19. Comparison of the Figure of Merit versus the harmonic index ℓ for the Euclid-like and
DESI-like setups.
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Figure 20. Valid λs fraction when varying ν and ℓ. The darker blue represents higher fractions and
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et al., J-plus: The javalambre photometric local universe survey, Astronomy & Astrophysics
622 (2019) A176.

[35] N. Benitez, R. Dupke, M. Moles, L. Sodre, J. Cenarro, A. Marin-Franch et al., J-pas: the
javalambre-physics of the accelerated universe astrophysical survey, arXiv preprint
arXiv:1403.5237 (2014) .

[36] J. Chaves-Montero, R.E. Angulo and C. Hernández-Monteagudo, The effect of photometric
redshift uncertainties on galaxy clustering and baryonic acoustic oscillations, Monthly Notices
of the Royal Astronomical Society 477 (2018) 3892.

[37] A.G. Riess and L. Breuval, The local value of h0, Proceedings of the International Astronomical
Union 18 (2022) 15.

[38] W.L. Freedman, B.F. Madore, D. Hatt, T.J. Hoyt, I.S. Jang, R.L. Beaton et al., The
carnegie-chicago hubble program. viii. an independent determination of the hubble constant
based on the tip of the red giant branch, The Astrophysical Journal 882 (2019) 34.
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[59] C. Alcock and B. Paczyński, An evolution free test for non-zero cosmological constant., Nature
281 (1979) .

[60] P. Carter, F. Beutler, W.J. Percival, J. DeRose, R.H. Wechsler and C. Zhao, The impact of the
fiducial cosmology assumption on bao cosmological parameter inference, arXiv preprint
arXiv:1906.03035 (2019) .

[61] A. Krolewski and W.J. Percival, Measuring the baryon fraction using galaxy clustering,
Physical Review D 111 (2025) 063526 [2403.19236].

[62] A. Krolewski, W.J. Percival and A. Woodfinden, New Method to Determine the Hubble
Parameter from Cosmological Energy-Density Measurements, PRL 134 (2025) 101002
[2403.19227].
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[67] E. Sánchez, D. Alonso, F. Sánchez, J. Garćıa-Bellido and I. Sevilla, Precise measurement of the
radial baryon acoustic oscillation scales in galaxy redshift surveys, Monthly Notices of the Royal
Astronomical Society 434 (2013) 2008.

– 35 –

https://doi.org/10.1103/PhysRevD.111.063526
https://arxiv.org/abs/2403.19236
https://doi.org/10.1103/PhysRevLett.134.101002
https://arxiv.org/abs/2403.19227


[68] A.G. Sánchez, C.M. Baugh and R. Angulo, What is the best way to measure baryonic acoustic
oscillations?, Monthly Notices of the Royal Astronomical Society 390 (2008) 1470.

[69] A. Lewis, A. Challinor and A. Lasenby, Efficient computation of cosmic microwave background
anisotropies in closed friedmann-robertson-walker models, The Astrophysical Journal 538
(2000) 473.

[70] U. Seljak and M. Zaldarriaga, A line of sight approach to cosmic microwave background
anisotropies, arXiv preprint astro-ph/9603033 (1996) .

[71] D.J. Eisenstein and W. Hu, Power spectra for cold dark matter and its variants, The
Astrophysical Journal 511 (1999) 5.

[72] W.L. Matthewson, D. Stock and R. Durrer, Redshift weighted galaxy number counts, Journal of
Cosmology and Astroparticle Physics 2022 (2022) 065.

– 36 –


	Introduction
	Observables
	ADF
	ARF

	Survey configuration and fiducial model
	BAOs seen in angular and redshift space
	The BAO scale along the redshift axis (radial direction)
	The BAO scale along the angle axis (transversal direction)
	BAO in the angle and redshift space Lg

	Fisher formalism
	Shot-noise

	Results
	The error contours
	The information encoded in the BAO
	Exploring the dependence on neighbour shells Lg and shell width (Lg)

	Discussion and conclusions
	Code availability
	Two-dimensional correlation function in redshift space
	Numerical stability

