
Nonreciprocal wave-mediated interactions power a classical time crystal

Mia C. Morrell*, Leela Elliott*, and David G. Grier
Department of Physics and Center for Soft Matter Research,

New York University, New York, NY, 10003, USA
(Dated: April 23, 2025)

An acoustic standing wave acts as a lattice of evenly spaced potential energy wells for sub-
wavelength-scale objects. Trapped particles interact with each other by exchanging waves that
they scatter from the standing wave. Unless the particles have identical scattering properties,
their wave-mediated interactions are nonreciprocal. Pairs of particles can use this nonreciprocity
to harvest energy from the wave to sustain steady-state oscillations despite viscous drag and the
absence of periodic driving. We show in theory and experiment that a minimal system composed
of two acoustically levitated particles can access five distinct dynamical states, two of which are
emergently active steady states. Under some circumstances, these emergently active steady states
break spatiotemporal symmetry and therefore constitute a classical time crystal.

Waves exert forces on scatterers. Scattered waves
coalesce collections of independent scatterers into self-
organizing dynamical systems by mediating interparticle
interactions [1–7]. Wave-mediated pair interactions are
not constrained by Newton’s third law because the scat-
terers are not a closed system: scattered waves can carry
away momentum, causing pairs of interacting particles
to recoil [8–11]. The nonreciprocity of wave-mediated in-
teractions allows scatterers to capture energy from the
wave and to transduce it into collective motion, thereby
endowing an otherwise passive system with the defining
characteristics of active matter [12–15]. This form of ac-
tivity is distinctive because it is not an inherent property
of the individual particles, but instead is an emergent
property of the particles’ state of organization [11].

Here we demonstrate that emergent activity can take
the form of sustained oscillations in an acoustically lev-
itated array of particles. Nonreciprocal wave-mediated
interactions transfer energy from the levitator’s stand-
ing wave into the lattice’s normal modes without peri-
odic driving. We show both in theory and through ex-
periments that a minimal array of two particles can use
this mechanism to access a variety of dynamical states,
including an active steady state [16–18], that sponta-
neously breaks spatiotemporal symmetry and therefore
constitutes a classical time crystal [10, 19, 20]. Fig-
ure 1(a) shows such a time crystal in action.

The levitator used for this study is based on the pop-
ular TinyLev2 design [21], which operates at 40 kHz in
air and creates a linear array of pressure nodes with a
lattice constant of 4.3mm. Each node acts as a three-
dimensional potential energy well for a millimeter-scale
bead [22, 23] and exerts a nearly Hookean restoring
force whose stiffness depends on the bead’s properties.
Trapped beads interact by exchanging scattered waves,
as depicted schematically in Fig. 1(b).

The standing pressure wave along the levitator’s axis,

p(z, t) = p0 sin(kz) cos(ωt), (1)

is characterized by its amplitude, p0, its frequency, ω,

and its wave number, k = ω/c0, in a medium of sound
speed c0. Objects scattering this wave experience time-
averaged forces that organize them into a periodic lattice
along the wave’s axis, ẑ, even if they have different wave-
scattering characteristics. Heterogeneity in the trapped
particles’ properties constitutes quenched disorder in the
levitated array and creates a context for nonreciprocal
dynamics [11] that have not been addressed previously.
A sphere labeled j and located at zj within the stand-

ing wave experiences a time-averaged force originally for-
mulated by Gor’kov [24–26],

F j(kzj) = −π

3
F0 Ajx

3
j sin(2kzj) ẑ, (2a)

whose scale,

F0 =
p20

ρ0ω2
, (2b)

is proportional to the acoustic energy density in a
medium of mass density ρ0. Our levitator’s calibrated
[23] force scale is F0 = (24.7 ± 0.5) µN. The Gor’kov
force on a sphere also depends on the sphere’s radius, aj ,
relative to the wavelength of sound,

xj = kaj , (2c)

as well its density, ρj , and the ratio of its isentropic com-
pressibility, κj , to that of the medium, κ0. These ma-
terial properties contribute to a dimensionless coupling
constant [11],

Aj = f
(j)
0 + f

(j)
1 , (2d)

that combines the spheres’ monopole (pressure) and
dipole (velocity) polarizabilities,

f
(j)
0 = 1− κj

κ0
and (3a)

f
(j)
1 =

ρj − ρ0
2ρj + ρ0

, (3b)
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FIG. 1. (a) Experimental realization of a steady-state time crystal composed of two millimeter-scale spheres of expanded
polystyrene levitated in air by an acoustic standing wave at 40 kHz. Images captured at 170 frames/s reveal sustained oscillations
without periodic driving and despite dissipation due to viscous drag. Similar oscillations also arise spontaneously in larger arrays
of spheres with differing diameters. Curly braces identify beats between the particles’ symmetric mode and the traps’ natural
frequencies. (b) Model for the forces acting on spheres localized at the nodes of an acoustic standing wave, including restoring
forces, F j , and interparticle forces, F ij , mediated by exchange of scattered waves.

respectively. Rigid spheres (κj ≪ κ0) that are denser
than the medium (ρj > ρ0) tend to be stably trapped
at nodes of the pressure field, located at kzj = jπ. This
is the case for the expanded polystyrene (EPS) beads
depicted in Fig. 1(a) that are sufficiently incompressible

relative to air that we set f
(j)
0 ≈ 1. The beads’ mass

density is ρj = (30.5 ± 0.2) kg/m3 [23, 27], from which

we obtain f
(j)
1 = 0.456± 0.001.

The wave-mediated interaction force was originally for-
mulated by König in 1893 [28] for the special case of
identical spheres in a common nodal plane. This result
recently has been generalized to accommodate dissimilar
spheres at arbitrary positions within the wave [11]. The
leading-order generalized König force on sphere j due to
the wave scattered by sphere i,

FK
ji(krji) = −2πF0 f

(i)
1 f

(j)
1 x3

jx
3
i Φ(krji) r̂ji, (4a)

depends on the spheres’ separation, rji = rj−ri, through
the dimensionless geometric factor, Φ(kr). For spheres
trapped along the axis of a standing wave,

Φ(kr) =
cos(kz) + kz sin(kz)

(kz)2
. (4b)

Whereas the transverse König interaction falls off as r−4

[11, 22, 28, 29], the axial König force falls off as r−2 and
thus is longer-ranged. The expression in Eq. (4) for the
axial pair interaction does not appear to have been re-
ported previously, although its qualitative features have
been noted [30]. Equation (4) is strictly valid only in
the Rayleigh regime, which pertains to scatterers that
are smaller than the wavelength of sound, xj < 1. Com-
parison with numerical studies [31], however, shows that
Eq. (4) captures qualitative features of the inter-particle
force for larger spheres in the range 1 ≤ xj < 3.

While Equation (4) is reciprocal under exchange of the
indices i and j [30, 32], incorporating quadrupolar and
octupolar scattering at leading order in xj [11] yields
corrections, χji, to the pair interaction,

F ji(kz) = FK
ji(kz) (1− χji), (5a)

that are nonreciprocal unless spheres i and j are identi-
cal. For spheres made of the same material, these higher-
order corrections reduce to two contributions:

χji =
2

5
σ
(2)
ji +

1

10
∆

(2)
ji , (5b)

that depend on the spheres’ sizes through

σ
(n)
ji = xn

j + xn
i and (5c)

∆
(n)
ji = xn

j − xn
i . (5d)

The latter of these factors changes sign under exchange
of indices and therefore describes a nonreciprocal contri-
bution to the pair interaction. More generally, Eq. (5d)
establishes that spheres of different sizes interact nonre-
ciprocally, as depicted schematically in Fig. 1(b).
Combining the Gor’kov force from Eq. (2) with the

generalized axial König interaction from Eq. (5) yields
the equations of motion for an array of acoustically lev-
itated spheres trapped at the nodes of a standing wave.
The dimensionless displacement of the j-th sphere from
its trap, ζj(τ) = kzj(t) − jπ, evolves in time according
to the system of coupled equations,

νj ≡ ζ̇j (6a)

ν̇j = −1

2
sin(2ζj) +

∑
i ̸=j

Bji Φ(kzji)− Γj νj . (6b)

Dots in Eq. (6) represent derivatives with respect to the
dimensionless time, τ = Ω0t, which is scaled by the nat-
ural oscillation frequency,

Ω0 =

√
F0Ajk4

2ρj
. (7)

For the EPS beads in our system, Ω0 = (415 ± 2) rad/s
or (66.1± 0.3)Hz. The interparticle coupling,

Bji = 3
f
(j)
1

2

Aj
x3
i (1− χji) r̂ji · ẑ, (8)
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FIG. 2. Power spectral density [33] of the symmetric (blue)
and antisymmetric (red) modes of two EPS beads actively os-
cillating in an acoustic levitator. (a) Small particles (ka1 =
0.85 and ka2 = 1.08) oscillate in the symmetric mode at the
predicted common-mode frequency, Ω0. (b) Larger particles
(ka1 = 1.2 and ka2 = 1.3) break spatiotemporal symmetry
with antisymmetric oscillations at a lower frequency. Dashed
lines are predictions of Eq. (11) for the normal-mode frequen-
cies. The power spectrum of a single-particle trajectory (gray)
represents the measurement’s noise threshold.

is nonreciprocal if the spheres differ in size.
For simplicity, we model dissipation by Stokes drag

acting on the individual spheres indepependently in a
medium of viscosity η0. Its influence is characterized by
a dimensionless damping rate, Γj = 2ϵ x−2

j , that is scaled
by the natural frequency through

ϵ =
9

4

k2η0
ρj Ω0

. (9)

Taking the viscosity of air to be η0 = 1.825 × 10−5 Pa s
[34] yields ϵ = (1.74 ± 0.01) × 10−3 for our system. The
expression for Γj can be modified to account for iner-
tial effects in the fluid medium [23, 29, 35, 36] without
affecting the functional form of Eq. (6).

The normal modes of a pair of acoustically levitated
spheres, labeled 1 and 2, are obtained from the Jacobian
of the equations of motion, J(ζ1, ζ2; ν1, ν2), by solving
the characteristic equation,

|J(0, 0; ν1, ν2)− λI| = 0, (10)

for the eigenvalues, λ, at the fixed point for the Gor’kov
force, ζ1 = ζ2 = 0. The full analytic solutions for λ are
unwieldy, even in the two-particle case. For clarity, we
treat drag as a perturbation in the limit of small viscosity

(ϵ < 1) [37] and obtain two pairs of eigenvalues, λ
(s)
± and

λ
(a)
± , the former being associated with symmetric modes,

λ
(s)
±
Ω0

= ±i − ϵ
Λ(1)

Λ(3)
+O

{
ϵ2
}
, (11a)

and the latter with antisymmetric modes,

λ
(a)
±
Ω0

= ±i
√

1 + gΛ(3)− ϵ

x2
1x

2
2

Λ(5)

Λ(3)
+O

{
ϵ2
}
. (11b)

The particles’ sizes determine the nature of these solu-
tions through stability functions,

Λ(n) =

(
1− 2

5
σ
(2)
12

)
σ
(n)
12 +

1

10
∆

(2)
12 ∆

(n)
12 , (11c)

that establish bounds between the system’s different dy-
namical states. The frequency of the antisymmetric
mode depends on particle size through a factor,

g = 3
π2 − 2

π3

f
(j)
1

2

Aj
, (11d)

that depends on the spheres’ composition. The normal

mode frequencies, f
(s,a)
± = 1

2π Im
{
λ
(s,a)
±

}
, are not influ-

enced by drag to leading order in ϵ.
Figure 2 presents the power spectral density, S(f),

of the common and relative motions of pairs of parti-
cles suspended in the acoustic levitator [33] for compar-
atively small spheres (Fig. 2(a)) that are predicted to be
in the symmetric oscillator state and for larger spheres
(Fig. 2(b)) whose stronger nonreciprocal interactions are
predicted to select a time crystal. Equation (11a) sug-
gests that the frequency of the symmetric common mode,

f
(s)
± = Ω0, should be independent of size. This is consis-
tent with the strong spectral peaks at Ω0 for both sys-
tems. The frequency of the antisymmetric mode is pre-

dicted to be higher than the natural frequency, f
(a)
± > Ω0,

for the smaller spheres in Fig. 2(a), and no spectral fea-
ture is observed at that frequency. The larger spheres are
predicted to have a lower antisymmetric-mode frequency,

f
(a)
± < Ω0, and indeed a small spectral peak is observed
at the predicted frequency in Fig. 2(b). This is consistent
with expectations for a classical time crystal.
The five distinct dynamical states of the weakly-

damped two-particle system are delineated by the condi-
tions Λ(1) = 0, Λ(3) = 0, Λ(5) = 0 and Λ(3) = −g−1,
which are plotted on the state diagram in Fig. 3(a).
These are superimposed on the full analytic solutions for

the eigenvalues, λ
(s,a)
+ , as a function of particle size. The

stability functions are positive and small (0 < Λ(n) < 1)
in the Rayleigh regime (xj < 1) which means that small
particles undergo damped harmonic oscillations in super-
positions of normal-mode frequencies.
Larger particles behave qualitatively differently, espe-

cially when they differ in size. The first new dynamical
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FIG. 3. (a) Dynamical states predicted by Eq. (11) for two
levitated spheres as a function of a1 and a2. Symmetric oscil-
lator: Λ(3) > 0 (blue); Antisymmetric time crystal: Λ(3) < 0
(red); Unstable: Λ(3) < g−1 (gray). Active oscillations arise
in the (yellow) region bounded by Λ(1) = 0 and Λ(5) = 0.
White circles denote conditions from Fig. 1(a), Fig. 2(a) and
Fig. 2(b). Rayleigh limit: black dashed curve. (b) Fre-
quency and (c) growth rate from Eq. (10) for a1 = 1mm.
Curves represent symmetric (blue) and antisymmetric (red)
modes. Shading indicates dynamical state: oscillator (blue),
time crystal (red), active (yellow) and unstable (gray).

state appears when Λ(1) changes sign. Activity com-
pensates for drag in the symmetric common mode when
Λ(1) = 0, which marks a transition into an active oscil-

latory state with a positive growth rate, Re
{
λ
(s)
±

}
≥ 0.

Higher-order contributions to the damping can stabilize
this mode, which therefore settles into steady-state os-

cillation at the natural frequency, Ω0 [23]. The antisym-
metric mode is damped under these conditions.
The active oscillator transitions abruptly into an active

time crystal when Λ(3) changes sign. At this point, the
antisymmetric mode flips into the active state and the
symmetric common mode becomes maximally damped.
The frequency of the antisymmetric mode simultane-
ously dips below the frequency of the symmetric mode
(Ω < Ω0), which signals breaking of both spatial and
temporal symmetry and is the defining characteristic of
a time crystal [38, 39]. Steady-state oscillations of the
acoustically levitated time crystal are actively sustained
by nonreciprocal interactions and are stabilized by drag.
Activity emerges in the limited range of particle sizes

and size ratios bounded by Λ(1) = 0 and Λ(5) = 0. These
conditions converge when x1 = x2 =

√
5/4, because

identical spheres lack the nonreciprocal interactions that
power emergently active states. Damping surpasses ac-
tivity for spheres that are large enough that Λ(5) < 0, al-
though the system retains its time crystal nature because
the antisymmetric mode is lower-frequency and longer-
lived than the symmetric mode.
Further increasing particle sizes to the point that

Λ(3) ≤ −g−1 destabilizes the system altogether. The
König interaction is repulsive and exceeds the maximum
trapping force for such large spheres. The initial insta-
bility involves the system passing through a bifurcation,
which is reminiscent of the emergence of chiral states in
other systems displaying time crystals [40].
Our model for the two-particle system relies on a form

for the pair interaction from Eq. (5) that is appropriate
for small particles. Numerical evaluation of the eigenval-
ues of the full steady-state Jacobian confirm this model’s
predictions for xj < 3. The data in Fig. 3(b) and (c) are
computed with the full model for a pair of spheres whose
smaller partner has a radius of a1 = 1mm (x1 = 0.72)
and show that a steady-state time crystal occurs at size
ratio a2/a1 = 2.1, which is consistent with the leading-
order small-drag approximation.
As anticipated by Ref. [39], our system does not rely

on thermal activation to break spatiotemporal symmetry
or to maintain a steady state. Its actively sustained anti-
symmetric oscillations therefore embody a true classical
time crystal [38, 39, 41] that is stabilized by damping
[41–43]. Classical time crystals have been demonstrated
in theoretical studies of hydrodynamic flocking [44], in
simulations of active colloids [45] and nonreciprocal Ising
models [46], and in experimental studies of interacting
robots [44]. In all of these studies, the nonreciproc-
ity responsible for time-crystal dynamics is programmed
rather than emergent. Emergently active classical time
crystals have recently been observed in photonic meta-
materials in experiment [20] and simulation [10], but this
study is the first to quantitatively and completely explain
how classical time crystals arise and achieve activity with
both analytical theory and experiment.
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While we have focused on a pair of acoustically levi-
tated particles as a minimal model system, emergent ac-
tivity also arises in larger lattices of acoustically trapped
particles. In long chains, quenched disorder not only cre-
ates the conditions required for sustained oscillations, but
also mediates transitions between propagation and local-
ization. We will address these themes in future studies.
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