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ABSTRACT

In this contribution, we present a novel consistent dual-stage approach for the automated generation
of hyperelastic constitutive models which only requires experimentally measurable data. To generate
input data for our approach, an experiment with full-field measurement has to be conducted to gather
testing force and corresponding displacement field of the sample. Then, in the first step of the dual-
stage framework, a new finite strain Data-Driven Identification (DDI) formulation is applied. This
method enables to identify tuples consisting of stresses and strains by only prescribing the applied
boundary conditions and the measured displacement field. In the second step, the data set is used to
calibrate a Physics-Augmented Neural Network (PANN), which fulfills all common conditions of
hyperelasticity by construction and is very flexible at the same time. We demonstrate the applicability
of our approach by several descriptive examples. Two-dimensional synthetic data are exemplarily
generated in virtual experiments by using a reference constitutive model. The calibrated PANN is
then applied in 3D Finite Element simulations. In addition, a real experiment including noisy data is
mimicked.

∗Lennart Linden and Karl A. Kalina have contributed equally to this work.
†Corresponding author, email: markus.kaestner@tu-dresden.de.
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1 Introduction

One of the fundamental elements of continuum mechanics are constitutive models which mathematically describe the
behavior of materials. During the last century, considerable efforts have been made to understand the mathematical and
physical requirements that a constitutive model should fulfill [1, 2]. Building on this understanding, plenty of classical
constitutive models have been developed and parameterized using experimental data or simulation data from lower
scales. Alternatives based on machine learning and in particular the use of Neural Networks (NNs) are often more
flexible and can be discovered automatically [3].

1.1 Modeling of elasticity with neural networks

In their groundbreaking work from the early 1990s, Ghaboussi et al. [4] were the first to utilize NNs, specifically
Feedforward Neural Networks (FNNs), to predict hysteresis under both uniaxial and multiaxial stress conditions. After
a brief surge in the 1990s, the use of NNs for constitutive modeling was largely set aside for some time. However,
with the rise of machine learning and rapid advancements in its efficiency and accessibility, numerous NN-based
constitutive models have emerged in recent years within a short period. This resurgence has been primarily driven
by the growing trend of incorporating fundamental physics into NN-based constitutive models and scientific machine
learning frameworks in general. This approach is often referred to as physics-informed [5, 6, 7, 8], mechanics-informed
[9], physics-augmented [10, 11], physics-constrained [12], or thermodynamics-based [13]. Physical constraints can be
integrated in two main ways: strongly, by modifying the network architecture [14, 15], or weakly, through the use of
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problem-specific loss functions during training [16, 17, 18]. As demonstrated in studies such as [11, 13, 19, 20, 21],
these approaches enable the use of sparse training data while significantly enhancing the models’ ability to extrapolate.

Numerous groups have employed NNs to model elasticity in this context. For instance, the early works from the
2000s [22, 23] approximated the elastic potential of isotropic materials using FNNs, where the input consisted of
three deformation-type invariants. These approaches inherently satisfied several requirements, such as thermodynamic
consistency, objectivity, and material symmetry but were trained directly using strain energy density data which is
usually not accessible. In recent years, architectures that output the hyperelastic potential and use invariants as inputs
have become widespread [11, 14, 15, 24, 25, 26, 27, 28, 29, 30, 31]. A key aspect of these approaches is the loss
function, which involves computing the derivative of the energy with respect to the deformation, a method known as
Sobolev training [32, 33, 34, 35].

Moreover, several approaches incorporate polyconvex NNs [25, 28, 29, 36, 37, 38, 39, 40], which are particularly
beneficial for Finite Element (FE) simulations. These models improve extrapolation capabilities [11, 35] and ensure
rank-one convexity and thus ellipticity [41, 42]. A popular approach for achieving this condition is the use of Fully
Input Convex Neural Networks (FICNNs), introduced by Amos et al. [43]. Recently, Linden et al. [11] proposed a
method based on invariants and FICNNs that inherently satisfies all standard conditions for (an)isotropic compressible
hyperelasticity. This concept is denoted as Physics-Augmented Neural Network (PANN). An alternative approach is to
use principal stretches combined with FICNNs as suggested by Vijayakumaran et al. [44].

1.2 Data mining and model identification from full field measurements

To represent the behavior of real materials with a constitutive model, experimental data is required. Thereby, in general,
two primary sources for data mining can be distinguished: (i) common experimental setups as uniaxial or biaxial
tensile tests which result in homogeneous strain states, and (ii) experimental setups involving specimens that lead to
inhomogeneous strain fields under loading, combined with full-field displacement measurements.3 Experiments that
belong to group (i) are less complex to perform, but only allow the recording of a limited range of deformation and
stress states. In contrast, the experiments of group (ii) allow the recording of an extensive database with a single test.
Although this advantage is accompanied by a more complex measurement setup and a more demanding post-evaluation,
group (ii) is advantageous for data mining in the context of data-driven approaches, which often require more data
compared to classical models. In the following, we will give a brief overview on techniques to evaluate full-field
measurements.

In contrast to the methods belonging to (i), the direct determination of stress-strain data is not possible in group (ii).
Although inhomogeneous displacement and strain fields can be determined by means of Digital Image Correlation
(DIC) in the 2D case [45] and by using in-situ Computer Tomography (CT) also in 3D case [46], the direct measurement
of stresses is not possible. There are basically two ways to tackle the problem: (ii.a) the experiment is replicated within
a simulation including a constitutive model and the model parameters are determined by solving the inverse problem,
and (ii.b) the experiment is reproduced in a model-free data-driven approach without choosing a specific constitutive
model and a data set consisting of stresses and strains or time sequences of these quantities is determined instead of
model parameters.

In group (ii.a), there are numerous approaches that have been developed over several decades, see the overviews in
Avril et al. [47], Roux and Hild [48] or Römer et al. [49]. In the works [50, 51], for example, the inverse determination
of the model parameters of a classical model is carried out by iteratively performing FE simulations reproducing the
experiment, whereby the deviation between simulation and experiment is minimized by updating the model parameters.
This technique is often called Finite Element Model Updating (FEMU) method [47, 49]. In addition, numerous
approaches specially adapted for inverse problems have also been developed, e.g., Virtual Fields Method (VFM)
[52] or modified Constitutive Relation Error (mCRE). In recent years, the described techniques have been applied
in a data-driven context or novel data-driven approaches have been developed. For example, the EUCLID (Efficient
Unsupervised Constitutive Law Identification and Discovery) framework is an extension of the VFM. Both parameters
and suitable constitutive models from a model catalog are determined by sparse regression [53, 54]. In NN-EUCLID
[26], the model catalog is replaced with an NN-based constitutive model and weights and biases are determined, see
also [55] for an application to 3D displacement fields obtained in a bulge inflation. In the same line, [56] explores
the integration of Recurrent Neural Network (RNN)-based constitutive models into the VFM. The NN-mCRE (Neural
Network modified Constitutive Relation Error) approach builds up on the mCRE concept and replaces the classical
constitutive model with a PANN [30, 57]. Finally, in [58] PANNs are combined with FEMU and in [59] a constitutive

3A third source of data are lower-scale simulations that enable to determine the homogenized response of a material. However, in
order to apply this technique, knowledge about the material’s microstructure and the constitutive behavior of the components, e.g.,
fibers and matrix, is required.
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model based on splines is formulated and calibrated via FEMU. In the works [6, 60], Physics-Informed Neural Networks
(PINNs) are used to solve inverse problems and thus calibrating constitutive models.

The comparatively new approaches belonging to group (ii.b) enable to generate stress-strain data from experiments
with full-field measurement without selecting a specific constitutive model for solving the inverse problem. The
most widespread method in this group is the Data-Driven Identification (DDI) introduced by Leygue et al. [61, 62]
and Stainier et al. [63]. This method is based on the Data-Driven Computational Mechanics (DDCM) approach
by Kirchdoerfer and Ortiz [64].4 An application of DDI to real experiments of thin perforated disks as well as an
extension to finite deformations is shown in [72]. The robustness against incomplete input data is discussed in [73].
An extension of DDI enabling the consideration of uncertain forces is introduced in [74]. Furthermore, locally convex
reconstruction methods are integrated into DDI in [75], which improves accuracy and efficiency compared to the
original approach. Finally, the modified DDI approach presented in [76] can even be applied to certain classes of
inelastic materials. Another alternative for determining heterogeneous stress fields without a specific constitutive
model are the approaches [77, 78, 79, 80], in which the momentum balance is solved numerically. Like DDI, these
approaches require a displacement field from which strains can be determined, as well as specified stresses at the
boundary. However, the latter methods are limited to isotropic materials.

1.3 Objectives and contributions of this work

As can be seen from the literature review, in the vast majority of cases, the application of many approaches presupposes
that at least the basic material class is known in advance, e.g., elasticity or plasticity. This can be avoided by using
model-free approaches to data generation, e.g., DDI.

We present a consistent data-driven dual-stage approach for the automated constitutive modeling at finite strains,
which only requires experimentally measurable data. As a pre-processing step, a (virtual) experiment with full-field
measurement is required to generate raw input data. Then, in the first step of our dual-stage approach, the recorded
data is used as input for DDI to determine a data set of stress and strain tuples. The original DDI formulation [61] is
extended to a new total Lagrangian finite strain formulation. In the second step of the proposed framework, the data set
generated by the DDI is used to calibrate a hyperelastic PANN model [11]. The calibrated PANN can then be used
in 3D FE simulations. We demonstrate the applicability of our approach by several descriptive examples. Therefore,
two-dimensional synthetic data are exemplarily generated by using a reference constitutive model. The calibrated
PANN is then applied in three-dimensional FE simulations, where the solution is compared to the reference model. In
addition, the behavior of our framework for noisy data is analyzed and the conditions of a real experiment are mimicked.

The organization of the paper is as follows: In Sect. 2, the fundamentals of finite strain continuum mechanics and
basic principles of hyperelasticity are summarized. After this, the dual-stage framework is introduced in Sect. 3. This
is followed by an introduction of the DDI in Sect. 3.2 and the PANN model in Sect. 3.3. The developed approach
is exemplarily applied in Sect. 4 within several examples. After a discussion of the results, the paper is closed by
concluding remarks and an outlook to necessary future work in Sect. 5.

Notation Throughout this work, the space of tensors L𝑛 in the three-dimensional Euclidean vector space R3 is used,
whereN denotes the set of natural numbers without zero. Tensors of rank one and two are given by symbols in bold italics
and upright print respectively, i. e., 𝒂 ∈ L1 or b, c ∈ L2. Transpose and inverse of a second order tensor b are marked by
bT and b−1, respectively. Furthermore, trace, determinant and cofactor are denoted by tr b, det b and cof b := det(b)b-T.
The set of invertible second order tensors with positive determinant is denoted by 𝒢ℒ

+ (3) := {A ∈ L2 | det A > 0},
while the orthogonal group and special orthogonal group in R3 are denoted by 𝒪(3) :=

{
A ∈ L2 |AT · A = 1

}
and

𝒮𝒪(3) :=
{
A ∈ L2 |AT · A = 1, det A = 1

}
, respectively. Here, 1 ∈ L2 denotes the second order identity tensor. The

space of symmetric second order tensors is denoted as 𝒮𝓎𝓂 :=
{
A ∈ L2 |A = AT

}
. Furthermore, the single and double

contraction of two tensors are given by b · c = 𝑏𝑘𝑞𝑐𝑞𝑙𝒆𝑘 ⊗ 𝒆𝑙 and b : c = 𝑏𝑘𝑙𝑐𝑙𝑘 , respectively. Thereby, 𝒆𝑘 ∈ L1 denotes
a Cartesian basis vector and ⊗ is the dyadic product. The Einstein summation convention is used. ∇𝑿 is the nabla
operator with respect to reference configuration B0. Moreover, fourth order tensors are denoted by A ∈ L4 and the
fourth order identy tensor with major and minor symmetry is given by 1 = 1

2 (𝛿𝑘𝑚𝛿𝑙𝑛 + 𝛿𝑘𝑛𝛿𝑙𝑚)𝒆𝑘 ⊗ 𝒆𝑙 ⊗ 𝒆𝑚 ⊗ 𝒆𝑛 ∈ L4.
The inverse of a fourth order tensor A ∈ L4 with major and minor symmetry is defined by satisfying the relation
A : A−1 = 1. For reasons of readability, the arguments of functions are usually omitted within this work. However, to

4DDCM completely avoids to use constitutive equations. Instead, a data set consisting of stress-strain tuples characterizing
the material’s behavior is used. Thus, a data-driven solver seeks to minimize the distance between the searched solution and the
material data set within a proper energy norm, while compatibility and equilibrium have to be satisfied simultaneously [64]. Several
extensions of the DDCM have been proposed, e.g., for inelasticity [65, 66, 67], fracture mechanics [68] or multiscale problems [69].
Comparisons of the DDCM method with NN-based constitutive modeling approaches can be found in the works [70, 71].
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show the dependencies, energy functions are given with their arguments, except when derivatives are written. Also, we
let the symbol of a function be identical to the symbol of the function value itself.

2 Fundamentals of hyperelasticity

In this section, we briefly outline the fundamental kinematic and stress quantities along with general relations of
isotropic hyperelastic constitutive models. For a more comprehensive overview, we refer to textbooks such as those by
Haupt [1] or Holzapfel [2].

2.1 Kinematics and stress measures

We consider a material body K occupying the reference configuration B0 ⊂ R3 at time 𝑡0 ∈ R≥0 and the current
configuration B ⊂ R3 at time 𝑡 ∈ T := {𝜏 ∈ R>0 | 𝜏 ≥ 𝑡0}. The displacement vector 𝒖 ∈ L1 of a material point 𝑃 ∈ K,
relating the reference position 𝑿 ∈ B0 at 𝑡0 and the current position 𝒙 ∈ B at 𝑡, is defined as 𝒖(𝑿, 𝑡) := 𝝋(𝑿, 𝑡) − 𝑿.
Here, 𝝋 : B0 × T → B, (𝑿, 𝑡) ↦→ 𝒙 := 𝝋(𝑿, 𝑡) represents a bijective motion function, continuous in space and time.
The deformation gradient F ∈ 𝒢ℒ+ (3) and the Jacobian determinant 𝐽 ∈ R>0 are defined by

F := (∇𝑿𝝋)T and 𝐽 := det F > 0 , (1)

where ∇𝑿 denotes the nabla operator with respect to the reference configuration B0. Deformation measures independent
of rigid body motions are given by the right Cauchy-Green deformation tensor C := FT · F ∈ 𝒮𝓎𝓂 and the left
Cauchy-Green deformation tensor b := F · FT ∈ 𝒮𝓎𝓂, which are positive definite, i.e., all eigenvalues are positive.
In addition, we introduce the strain measures E := 1

2 (C − 1) and e := 1
2 (1 − b−1) denoted as Green-Lagrange and

Euler-Almansi strain tensor, respectively.

Within nonlinear continuum solid mechanics, various stress measures are defined. The symmetric Cauchy stress
𝝈 ∈ 𝒮𝓎𝓂, also known as true stress, refers to the current configuration B. The Kirchhoff stress 𝝉 ∈ 𝒮𝓎𝓂 and the
1st and 2nd Piola-Kirchhoff stress tensors P ∈ L2 and T ∈ 𝒮𝓎𝓂 are obtained through pull-back operations: 𝝉 := 𝐽𝝈,
P := 𝐽𝝈 · F−𝑇 and T := 𝐽F−1 · 𝝈 · F−T. The stress tensors are related to the corresponding stress vectors 𝒕, 𝒑,𝑻 ∈ L1
via Cauchy’s theorem, i.e., 𝒕 = 𝝈 · 𝒏, 𝐽 𝒕 = 𝝉 · 𝒏, 𝒑 = P · 𝑵 and 𝑻 = T · 𝑵, where 𝒏 ∈ L1 and 𝑵 ∈ L1 are unit normal
vectors referred to B and B0, respectively.

Following Haupt [1], the pairs (e, 𝝉) and (E,T) build sets of conjugated or dual variables, which is important for the
introduced finite strain DDI formulations given in Sect. 3.2.

2.2 Hyperelasticity

The constitutive behavior of the considered solids is restricted to hyperelasticity within this work. Accordingly, a
hyperelastic potential that is equal to the Helmholtz free energy density function 𝜓 : 𝒢ℒ+ (3) → R≥0, F ↦→ 𝜓(F) exists.
Thus, the thermodynamic consistency of any hyperelastic model is fulfilled a priori by using the relation

P =
𝜕𝜓

𝜕F , (2)

which follows from the evaluation of the Clausius-Duhem inequality [2]. In addition, there are several further
requirements on 𝜓(F) that ensure a physically reasonable constitutive behavior [2, 11]:

• Energy normalization condition: The free energy density function must satisfy 𝜓(1) = 0, meaning that the
free energy vanishes in the undeformed state.

• Non-negativity condition: The free energy should be non-negative for all admissible deformations F ∈ 𝒢ℒ+ (3),
expressed as 𝜓(F) ≥ 0.

• Stress normalization condition: The undeformed state F = 1 should be stress-free, i.e., P = 0.

• Volumetric growth condition: This condition necessitates that an infinite amount of energy is required to
infinitely expand the volume or compress it to zero, i.e., 𝜓(F) → ∞ must hold as 𝐽 →∞ or 𝐽 → 0+.

• Material objectivity: The free energy must be invariant with respect to superimposed rigid body motions,
expressed as 𝜓(F) = 𝜓(Q · F) for all special orthogonal tensors Q ∈ 𝒮𝒪(3). Note that in hyperelasticity the
fulfilment of objectivity automatically implies the required symmetry in 𝝈 ∈ 𝒮𝓎𝓂 and T ∈ 𝒮𝓎𝓂 and thus the
compatibility to the balance of angular momentum, cf. Šilhavý [81, Prop. 8.3.2].
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• Material symmetry: The constitutive equations should also reflect the material’s underlying (an)isotropy which
is expressed as material symmetry and formulated as 𝜓(F · QT) = 𝜓(F) ∀F ∈ 𝒢ℒ+ (3), Q ∈ 𝒢 ⊆ 𝒪(3),
where 𝒢 denotes the symmetry group of the material under consideration.

• Polyconvexity: Another condition that, unlike the other conditions, is not absolutely required is that the energy
function 𝜓(F) fulfills polyconvexity, meaning it exists a representation 𝜓(F) = P(F, cof F, det F), where
P(F, cof F, det F) is convex w.r.t. its arguments. This condition implies Legendre-Hadamard ellipticity, which
ensures material stability, as detailed in Ebbing [41]. However, polyconvexity is a relatively strong requirement
on the free energy, see [35].

To satisfy material objectivity, which implies compatibility with the balance of angular momentum [81], and material
symmetry condition automatically, the strain energy function is typically expressed in terms of invariants of the right
Cauchy-Green deformation tensor and structural tensors capturing the underlying anisotropy [82, 83]. Thus, for isotropic
materials with 𝒢 = 𝒪(3), the strain energy function is expressed in terms of invariants of the right Cauchy-Green
deformation tensor C which are equal to the invariants of the left Caucy-Green deformation tensor b, i.e., it holds
𝜓 = 𝜓(𝐼1, 𝐼2, 𝐼3), with 𝐼1 = tr C = tr b, 𝐼2 = tr (cof C) = tr (cof b) and 𝐼3 = det C = det b. By using the chain rule and
the pull-back/push-forward operations for the introduced stress measures, we find the following relations from Eq. (2):

T = 2
3∑︁
𝛾=1

𝜕𝜓

𝜕𝐼𝛾

𝜕𝐼𝛾

𝜕C and 𝝈 =
2
𝐽

3∑︁
𝛾=1

𝜕𝜓

𝜕𝐼𝛾

𝜕𝐼𝛾

𝜕b · b . (3)

3 Dual-stage framework for automated data-driven constitutive modeling

3.1 Framework

Based on the summarized continuum theory, the following section introduces the proposed data-driven dual-stage
framework enabling an automated data-driven modeling. The framework requires input data that have to be generated
within a data mining step beforehand. More specifically, a (virtual) experiment with full-field displacement measurement
is needed. The general procedure of our dual-stage framework is basically subdivided into two steps referred as

1 applying Data-Driven Identification (DDI) to generate a material dataset D∗ consisting of material states, i.e.,
stress-strain tuples T ∗𝑧 = (e∗𝑧 ,𝝈∗𝑧) or T ∗𝑧 = (E∗𝑧 ,T∗𝑧) with 𝑧 ∈ {1, . . . , 𝑁∗} and

2 training of a Physics-Augmented Neural Network (PANN) model based on the dataset D∗ with |D∗ | = 𝑁∗.

A schematic representation of the dual-stage framework and the necessary pre-processing steps for mining the raw data
and the subsequent application of the generated constitutive model in an FE simulation can be seen in Fig. 1. In the
absence of a real experiment, we generate input data for the framework by using a virtual experiment within this work.
The two main ingredients of the dual-stage framework, i.e., DDI and PANNs, are described in detail in Sect. 3.2 and
Sect. 3.3, respectively.

Data mining as a pre-processing step To apply, the dual-stage approach, input data for the DDI has to be captured
within a (virtual) experiment with full-field measurement, i.e., stress or traction vector 𝒕𝒇 (𝑿, 𝑡) on the domain boundary
𝜕B 𝒇 and the displacement field 𝒖(𝑿, 𝑡) within the complete domain B corresponding to the loading situation, cf. Fig. 1.
Flat specimens, leading to plane stress states in a good approximation [14], with ellipsoidal holes are used to cover
a wide range of deformation states [14, 53]. The displacement field, or more precisely the displacements at a finite
number of control points, can be determined using DIC, cf. [45, 59, 72]. The domain B does not include the entire
sample but merely represents a suitably selected section, cf. Fig. 1, (virtual) experiment.

Remark 1. Note that for the consideration of compressible materials the determination of the in-plane displacements
is not sufficient because the complete 3D deformation state is not accessible. The change in thickness must also be
determined, i.e., the 3D displacement field must be measured from both sides of the specimen. This is due to the fact
that the full deformation state and the corresponding stress tensor is needed for the training of the PANN in step 2 of
the dual-stage approach. Assuming plane stress and homogeneous deformations through the thickness, the following
holds for deformation gradient and 1st Piola-Kirchhoff stress tensor:

[F] =
[
𝐹11 𝐹12 0
𝐹21 𝐹22 0
0 0 𝜆3

]
and [P] =

[
𝑃11 𝑃12 0
𝑃21 𝑃22 0
0 0 0

]
, (4)
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Figure 1: Dual-stage framework: 1 Using DDI in order to generate material database D∗ of stress-strain states based only on
measurable full-field data 𝒖(𝑿, 𝑡) and global testing force 𝑭(𝑡) from a (virtual) experiment as well as boundary conditions. 2
PANN serves as constitutive model trained on determined material database and can be used for prediction of unseen data.

equivalently for the strain measures e and E as well as the stress tensors 𝝈 and T. Thereby, the stretch field in thickness
direction can be determined via 𝜆3 (𝑋1, 𝑋2, 𝑡) = [𝑢+3 (𝑋1, 𝑋2, 𝑡) −𝑢−3 (𝑋1, 𝑋2, 𝑡) + ℎ0]/ℎ0 ∈ R>0, where 𝑢+3 (𝑋1, 𝑋2, 𝑡) ∈ R
and 𝑢−3 (𝑋1, 𝑋2, 𝑡) ∈ R are displacements on opposite sites and ℎ0 ∈ R>0 is the sample’s thickness in the undeformed
state, respectively. Thus, in addition to the in-plane displacement field, the out-off-plane stretching field is also
transferred as input for the dual-stage approach, i.e., step 1 , the DDI.

In contrast to the displacement field, the traction vector 𝒕 is not directly measurable in experimental setups. Only the
global testing force 𝑭(𝑡) ∈ L1 is accessible from the testing machine’s loading cell. If the considered cross section
is sufficiently far from local disturbances such as holes or clamping effects, the stress state can be assumed to be
homogeneous.5 This justifies the approximation 𝒕𝒇 (𝑡) = 𝑭(𝑡)/𝐴 ∈ L1, where 𝐴 ∈ R>0 is the actual cross sectional area.
Such a situation is depicted in Fig. 1 for a cross section partly coinciding with the domain boundary 𝜕B 𝒇 . For the upper
boundary this assumption is not valid. Here, we can only state that

𝑭(𝑡) =
∫
𝜕B𝜻

𝒕𝜻 (𝑿, 𝑡) d𝐴 . (5)

For free boundaries, the traction vector is identical to zero.

Data-driven identification Step 1 of the dual-stage approach is the DDI [61], in which a material database
D∗ := {T ∗1,T ∗2, . . . ,T ∗𝑁 ∗ } consisting of 𝑁∗ material states, i.e., tuples T ∗𝑧 := (e∗𝑧 ,𝝈∗𝑧) or T ∗𝑧 := (E∗𝑧 ,T∗𝑧) of
strains and stresses, is generated as the output only from the variables measurable in the experiment, i.e., displacement
field 𝒖(𝑿, 𝑡) in B and global testing force 𝑭(𝑡), or variables derived from them, i.e., the traction vector 𝒕𝒇 (𝑡) and the
stretch in thickness direction 𝜆3 (𝑋1, 𝑋2, 𝑡).

5For anisotropic materials, the assumption of a homogeneous stress state may not hold due to directional dependencies in
the material properties, which can result in non-uniform stress distributions even at distances far from geometric or loading
discontinuities.

7
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Figure 2: Starting point of DDI: (a) continuous specimen B under loading conditions with known stress vector 𝒕𝒇 (𝑡) and unknown
stress vector 𝒕𝜻 (𝑡), known displacement field 𝒖 without rigid body translation and unknown material data base consisting of material
states (𝑒∗𝑧

𝑘𝑙
, 𝜎∗𝑧
𝑘𝑙
), which are associated to the material points 𝑿 at time 𝑡 by the continuous mapping 𝑠(𝑿, 𝑡) as well as (b) specimen

discretized into subdomains 𝜏Ω𝑒 under loading conditions with known nodal forces 𝜏𝒇 𝛼 and unknown nodal forces 𝜏𝜻𝛽 at snapshot
𝜏 and unknown material data base consisting of material states (𝑒∗𝑧

𝑘𝑙
, 𝜎∗𝑧
𝑘𝑙
), which are associated to the quadrature point 𝑔 of linear

element 𝑒 at snapshot 𝜏 by the discrete mapping 𝑠(𝑔, 𝜏).

The special characteristic of the DDI is that no specific constitutive model is required to determine the database D∗.
Only elasticity is assumed. To this end, a sophisticated optimization problem is formulated, whereby compatibility
and equilibrium are required as constraints. The former is achieved explicitly via the element-wise determination of
the strains from the interpolation with the shape functions. In contrast, the equilibrium requirement is incorporated
using the Lagrange parameter method [61]. Formulations of the DDI based on different stress and strain measures are
possible, cf. Sect. 3.2.

Training of constitutive model Within the final step 2 , the data D∗ is used to train a PANN which serves as a
constitutive model automatically accounting for all common conditions of finite strain hyperelasticity. Although only
plane stress data is used for calibrating the model, stresses for complex 3D deformation states can be predicted with
high accuracy, which is due to the invariant-based fromulation of the PANN model, cf. Sect. 3.3. This allows the
application of the trained model in 3D FE simulations [11, 14], cf. Fig. 1, application of the model.

3.2 Data-Driven Identification

The method of Data-Driven Identification (DDI), introduced by Leygue et al. [61, 62] and Stainier et al. [63], allows a
set of admissible material states to be calculated without any assumption about the underlying constitutive behaviour,
with the exception of elasticity. The motivation arises from a formulation based on continuous field quantities, as
illustrated in Fig. 2(a) and detailed in A.1, which provides the transition to the discrete formulation. We will present
three different finite strain DDI formulations in the following: An updated Lagrangian DDI formulation based on the
conjugated pair (e, 𝝉) and two total Lagrangian DDI formulations both based on the conjugated pair (E,T).

8
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3.2.1 Updated Lagrangian formulation

The discrete loss term in the updated Lagrangian DDI formulation, as derived from the theoretical background in A.1.2,
is given by

𝐿UL :=
1
2

∑︁
𝜏

∑︁
𝑔

𝑤𝑔𝜏𝐽
𝑔
△
𝜏ℎ𝑔

[(
𝜏𝑒
𝑔
𝑘𝑙 − 𝑒

∗𝑠 (𝑔,𝜏 )
𝑘𝑙

)
𝑐𝑘𝑙𝑚𝑛

(
𝜏𝑒
𝑔
𝑚𝑛 − 𝑒∗𝑠 (𝑔,𝜏 )𝑚𝑛

)

+
(
𝜏𝜎
𝑔
𝑎𝑏 − 𝜎

∗𝑠 (𝑔,𝜏 )
𝑎𝑏

)
𝑐−1
𝑎𝑏𝑐𝑑

(
𝜏𝜎
𝑔
𝑐𝑑 − 𝜎

∗𝑠 (𝑔,𝜏 )
𝑐𝑑

)]

+
∑︁
𝜏

∑︁
𝛼

𝜋 (𝛼)=1

𝜏𝜂𝛼𝑐

(
𝜏𝑓 𝛼𝑐 −

∑︁
𝑔

𝑤𝑔𝜏𝐽
𝑔
△
𝜏ℎ𝑔𝜏𝑏

𝛼𝑔
𝑎𝑏𝑐

𝜏𝜎
𝑔
𝑎𝑏

)

+
∑︁
𝜏

∑︁
𝛽

𝜋 (𝛽)=0

𝜏𝜇
𝛽
𝑐

(
𝜏𝜁
𝛽
𝑐 −

∑︁
𝑔

𝑤𝑔𝜏𝐽
𝑔
△
𝜏ℎ𝑔𝜏𝑏

𝛽𝑔
𝑎𝑏𝑐

𝜏𝜎
𝑔
𝑎𝑏

)
,

(6)

where the function 𝜋 : {1, . . . , 𝑁node} → {0, 1} is defined as

𝜋(𝛼) :=
{
1, 𝜏𝑓 𝛼𝑎 is prescribed for all 𝜏 ∈ {1, . . . , 𝑁snap} in each direction 𝑎 ∈ {1, 2}
0, else

(7)

and serves as an indicator function. The pseudo stiffness tensor is chosen to c = 𝐶1 with 𝐶 ∈ R>0 [62]. The following
notation is applied: Indices of the beginning of the Latin alphabet run from 1 to 2, e.g. 𝑎, 𝑏, 𝑐, 𝑑 ∈ {1, 2}. Indices
from the middle of the Latin alphabet run from 1 to 3, e.g. 𝑘, 𝑙, 𝑚, 𝑛 ∈ {1, 2, 3}. Einstein’s summation convention
is used for both types of indices. Small Greek superscript indices label the global node number and run from 1 to
𝑁node, e.g., 𝛼 ∈ {1, . . . , 𝑁node}. The top left superscript 𝜏 ∈ {1, . . . , 𝑁snap} denotes the snapshot and the top right
superscript 𝑔 ∈ {1, . . . , 𝑁quad} denotes the quadrature point number. No Einstein summation convention is applied for
all these three types of indices. Due to the plane stress assumption, all out-of-plane stress components are zero, i.e.,
𝜏𝜎
𝑔
𝑘𝑙 = 𝜎∗𝑧𝑘𝑙 = 0, if 𝑘 = 3 or 𝑙 = 3, respectively. For the strains, the out-of-plane shear components are also zero whereas

𝜏𝑒
𝑔
33 ≠ 0 and 𝑒∗𝑧33 ≠ 0. Thereby, 𝑧 runs from 1 to 𝑁∗, i.e., 𝑧 ∈ {1, . . . , 𝑁∗}.

Fig. 2(b) shows the basic idea of DDI in the discrete form: A loaded specimen meshed with triangles is analyzed
within several snapshots 𝜏 for known nodal displacements 𝜏𝒖𝛼 and nodal forces 𝜏 𝒇 𝛼 to determine an unknown material
database.6 The task at hand requires a customized staggered solution strategy, which was originally presented by
Leygue et al. [61] and is similar to the strategy developed for DDCM by Kirchdoerfer and Ortiz [64]. Below we present
this scheme in a version tailored to our problem.

Solution strategy Within the DDI problem given by the loss term (6), the following quantities are assumed to be
known, i.e., as described in Sect. 3.1, measured within an experiment or determined from the measured quantities:

• reference nodal coordinates (𝑋𝛼1 , 𝑋𝛼2 ) of a triangulated 2D domain,
• in-plane nodal displacements 𝜏𝑢𝛼𝑎 for all snapshots and nodes,
• deformed thickness 𝜏ℎ𝑔 for all snapshots and quadrature points,
• external nodal forces 𝜏 𝑓 𝛼𝑎 for all nodes with (𝑋𝛼1 , 𝑋𝛼2 ) ∉ 𝜕Ω𝜻

0 and for all snapshots, as well as
• strains 𝜏𝑒𝑔𝑘𝑙 belonging to the mechanical states for all snapshots and quadrature points.

In addition, the number of material states 𝑁∗ and the pseudo stiffness tensor c have to be prescribed. Conversely, the
following variables are unknown and must be calculated:

• stresses 𝜏𝜎𝑔𝑎𝑏 belonging to the mechanical states for all snapshots and quadrature points,
• material states 𝑒∗𝑧𝑘𝑙 and 𝜎∗𝑧𝑎𝑏,
• discrete mapping 𝑠(𝑔, 𝜏) for all quadrature points and snapshots,
• Lagrange multipliers 𝜏𝜂𝛼𝑎 for all nodes with (𝑋𝛼1 , 𝑋𝛼2 ) ∉ 𝜕Ω𝜻

0 ,
• Lagrange multipliers 𝜏𝜇𝛼𝑎 for all nodes with (𝑋𝛼1 , 𝑋𝛼2 ) ∈ 𝜕Ω

𝜻
0 , as well as

6In the anisotropic case, it may be necessary to impose the additional condition that the global testing force equals the sum of
nonzero nodal forces on the boundary, if the assumption of a homogeneous stress state does not hold, cf. Footnote 5. In this case, the
optimization problem must be adjusted accordingly, as described in [72].
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• external nodal forces 𝜏𝜁 𝛼𝑎 for all nodes with (𝑋𝛼1 , 𝑋𝛼2 ) ∈ 𝜕Ω
𝜻
0 .

The goal is now to minimize the specified loss term 𝐿UL. Thereby, the difficulty lies in the discrete mapping
𝑠(𝑔, 𝜏) ∈ {1, . . . , 𝑁∗}, which excludes the use of typical gradient-based optimizers. We derive a staggered solution
scheme according to [61]. To this end, we assume that the mapping 𝑠(𝑔, 𝜏) is known for now and obtain the necessary
conditions for stationarity:

𝜕𝐿UL/𝜕𝜏𝜂𝛼𝑐 = 0 : 𝜏𝑓 𝛼𝑐 −
∑︁
𝑔

𝑤𝑔𝜏𝐽
𝑔
△
𝜏ℎ𝑔𝜏𝑏

𝛼𝑔
𝑎𝑏𝑐

𝜏𝜎
𝑔
𝑎𝑏 = 0 , (8)

𝜕𝐿UL/𝜕𝜏𝜇𝛽𝑐 = 0 : 𝜏𝜁
𝛽
𝑐 −

∑︁
𝑔

𝑤𝑔𝜏𝐽
𝑔
△
𝜏ℎ𝑔𝜏𝑏

𝛽𝑔
𝑎𝑏𝑐

𝜏𝜎
𝑔
𝑎𝑏 = 0 , (9)

𝜕𝐿UL/𝜕𝜏𝜁 𝛽𝑐 = 0 : 𝜏𝜇
𝛽
𝑐 = 0 , (10)

𝜕𝐿UL/𝜕𝜏𝜎𝑔𝑎𝑏 = 0 : 𝑤𝑔𝜏𝐽
𝑔
△
𝜏ℎ𝑔𝑐−1

𝑎𝑏𝑐𝑑

(
𝜏𝜎
𝑔
𝑐𝑑 − 𝜎

∗𝑠 (𝑔,𝜏 )
𝑐𝑑

)

− 𝑤𝑔𝜏𝐽
𝑔
△
𝜏ℎ𝑔

(∑︁
𝛼

𝜋 (𝛼)=1

𝜏𝑏
𝛼𝑔
𝑎𝑏𝑐

𝜏𝜂𝛼𝑐 +
∑︁
𝛽

𝜋 (𝛽)=0

𝜏𝑏
𝛽𝑔
𝑎𝑏𝑐

𝜏𝜇
𝛽
𝑐

)
= 0 ,

(11)

𝜕𝐿UL/𝜕𝑒∗𝑧𝑘𝑙 = 0 : −
∑︁
𝜏

∑︁
𝑔

𝑤𝑔𝜏𝐽
𝑔
△
𝜏ℎ𝑔𝑐𝑘𝑙𝑚𝑛

(
𝜏𝑒
𝑔
𝑚𝑛 − 𝑒∗𝑠 (𝑔,𝜏 )𝑚𝑛

)
𝛿𝑠 (𝑔,𝜏 )𝑧 = 0 , (12)

𝜕𝐿UL/𝜕𝜎∗𝑧𝑎𝑏 = 0 : −
∑︁
𝜏

∑︁
𝑔

𝑤𝑔𝜏𝐽
𝑔
△
𝜏ℎ𝑔𝑐−1

𝑎𝑏𝑐𝑑

(
𝜏𝜎
𝑔
𝑐𝑑 − 𝜎

∗𝑠 (𝑔,𝜏 )
𝑐𝑑

)
𝛿𝑠 (𝑔,𝜏 )𝑧 = 0 . (13)

We directly find the condition 𝜏𝜇
𝛽
𝑐 = 0 for all global node numbers 𝛽 with 𝜋(𝛽) = 0. By using this, we can rearrange

the condition 𝜕𝐿UL/𝜕𝜏𝜎𝑔𝑎𝑏 = 0 to

(11) : 𝜏𝜎
𝑔
𝑎𝑏 = 𝜎

∗𝑠 (𝑔,𝜏 )
𝑎𝑏 +

∑︁
𝛼

𝜋 (𝛼)=1

𝑐𝑎𝑏𝑐𝑑
𝜏𝑏
𝛼𝑔
𝑐𝑑𝑒

𝜏𝜂𝛼𝑒 . (14)

By rearranging 𝜕𝐿UL/𝜕𝑒∗𝑧𝑘𝑙 = 0 we get

(12) : 𝑒∗𝑧𝑘𝑙 =
1∑

𝜏

∑
𝑔
𝑤𝑔𝜏𝐽

𝑔
△
𝜏ℎ𝑔𝛿𝑠 (𝑔,𝜏 )𝑧

∑︁
𝜏

∑︁
𝑔

𝑤𝑔𝜏𝐽
𝑔
△
𝜏ℎ𝑔𝜏𝑒

𝑔
𝑘𝑙𝛿𝑠 (𝑔,𝜏 )𝑧 . (15)

By inserting into each other and rearranging, we also obtain

(11) in (13) : −
∑︁
𝜏

∑︁
𝛼

𝜋 (𝛼)=1

∑︁
𝑔

𝑤𝑔𝜏𝐽
𝑔
△
𝜏ℎ𝑔𝜏𝑏

𝛼𝑔
𝑎𝑏𝑐

𝜏𝜂𝛼𝑐 𝛿𝑠 (𝑔,𝜏 )𝑧 = 0 and (16)

(14) in (8) :
∑︁
𝛽

𝜋 (𝛽)=1

∑︁
𝑔

𝑤𝑔𝜏𝐽
𝑔
△
𝜏ℎ𝑔𝜏𝑏

𝛼𝑔
𝑎𝑏𝑐𝑐𝑎𝑏𝑑𝑒

𝜏𝑏
𝛽𝑔
𝑑𝑒𝑓

𝜏𝜂
𝛽
𝑓 +

∑︁
𝑔

𝑤𝑔𝜏𝐽
𝑔
△
𝜏ℎ𝑔𝜏𝑏

𝛼𝑔
𝑎𝑏𝑐𝜎

∗𝑠 (𝑔,𝜏 )
𝑎𝑏 = 𝜏𝑓 𝛼𝑐 . (17)

To solve the set of equations (9) and (14)–(17) for 𝜏𝜁 𝛽𝑎 , 𝜏𝜎𝑔𝑎𝑏, 𝑒∗𝑧𝑘𝑙 , 𝜎
∗𝑧
𝑎𝑏 and 𝜏𝜂𝛼𝑎 and to determine the discrete mapping

𝑠(𝑔, 𝜏), we apply a decoupled algorithm in an adapted version of [61], cf. Alg. 1. For further details on the decoupled
algorithm, the reader is referred to Remark 5. In the case of anisotropic materials, the updated Lagrangian DDI
formulation based on (e,𝝈) requires interpolation-based postprocessing, which then allows the generated material
database to be used for training a PANN formulated with structure tensors and invariants, cf. Remark 4.

3.2.2 Total Lagrangian formulations

As an alternative to the updated Lagrangian DDI formulation, we introduce two total Lagrangian DDI formulations,
one called original and one called adapted. To start with, we could use either the conjugate pair (F,P) or (E,T). Since
a formulation with the 2nd Piola-Kirchhoff tensor allows the angular momentum balance to be fulfilled by construction,
the second formulation is to be preferred.

Compared to the updated Lagrangian DDI formulation based on (e,𝝈), this formulation based on (E,T) offers the
advantage that the material database to be generated can be directly used for training a PANN for anisotropic materials
formulated using structure tensors and invariants, cf. Remark 4.

10
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Figure 3: Uniaxial tensile test of compressible neo-Hooke material with 𝐸 := 1 MPa, 𝜈 := 0.3: (a) homogenous specimen under
loading conditions and 11-component of (b) Euler-Almansi and Green-Lagrange as well as (c) 2nd Piola-Kirchhoff and Cauchy
stress tensor.

Original total Lagrangian DDI formulation The discrete loss term for the original total Lagrangian DDI formulation
can be derived in a similar way as described in A.1.2. In contrast to the updated Lagrangian DDI formulation, the
integration domain is here B0. Thus, the loss term follows to

𝐿TL :=
1
2

∑︁
𝜏

∑︁
𝑔

𝑤𝑔𝐽
𝑔
0,△ℎ

𝑔
0,△

[(
𝜏𝐸
𝑔
𝐾𝐿 − 𝐸

∗𝑠 (𝑔,𝜏 )
𝐾𝐿

)
𝐶𝐾𝐿𝑀𝑁

(
𝜏𝐸
𝑔
𝑀𝑁 − 𝐸

∗𝑠 (𝑔,𝜏 )
𝑀𝑁

)

+
(
𝜏𝑇
𝑔
𝐴𝐵 − 𝑇

∗𝑠 (𝑔,𝜏 )
𝐴𝐵

)
𝐶−1
𝐴𝐵𝐶𝐷

(
𝜏𝑇
𝑔
𝐶𝐷 − 𝑇

∗𝑠 (𝑔,𝜏 )
𝐶𝐷

)]

+
∑︁
𝜏

∑︁
𝛼

𝜋 (𝛼)=1

𝜏𝜂𝛼𝑐

(
𝜏𝑓 𝛼𝑐 −

∑︁
𝑔

𝑤𝑔𝐽
𝑔
0,△ℎ

𝑔
0,△

𝜏𝐵
𝛼𝑔
𝐴𝐵𝑐

𝜏𝑇
𝑔
𝐴𝐵

)

+
∑︁
𝜏

∑︁
𝛽

𝜋 (𝛽)=0

𝜏𝜇
𝛽
𝑐

(
𝜏𝜁
𝛽
𝑐 −

∑︁
𝑔

𝑤𝑔𝐽
𝑔
0,△ℎ

𝑔
0,△

𝜏𝐵
𝛽𝑔
𝐴𝐵𝑐

𝜏𝑇
𝑔
𝐴𝐵

)
, (18)

where the pseudo stiffness tensor is given by C = 𝐶1 with 𝐶 ∈ R>0. Since we integrate over the elements with reference
domain Ω𝑒0 , cf. Eq. (37), the determinant of the Jacobian matrix 𝐽

𝑔
0,△ in the undeformed state is used. The solution

strategy is completely analogous to the updated Lagrangian DDI formulation.

Adapted total Lagrangian DDI formulation In addition to the formulation given by the loss term (18), we introduce
an adapted total Lagrangian DDI formulation in the following. The idea here is to no longer assume that the pseudo
stiffness is constant in space and time. Instead, it is defined via the pull-back of the pseudo stiffness tensor c = 𝐶1,
which corresponds to 𝝈 in the incremental relation

◦
𝝈 = c : d with

◦
𝝈 the Truesdell rate and d = sym( ¤F · F−1), i.e.,

Cada := pb(𝐶1,F) = 𝐶

2
(𝛿𝑘𝑚𝛿𝑙𝑛 + 𝛿𝑘𝑛𝛿𝑙𝑚)𝐽𝐹−1

𝐾𝑘𝐹
−1
𝐿𝑙 𝐹

−1
𝑀𝑚𝐹

−1
𝑁𝑛𝒆𝐾 ⊗ 𝒆𝐿 ⊗ 𝒆𝑀 ⊗ 𝒆𝑁 (19)

=
𝐶𝐽

2

(
𝐶−1
𝐾𝑀𝐶−1

𝐿𝑁 + 𝐶−1
𝐾𝑁𝐶

−1
𝐿𝑀

)
𝒆𝐾 ⊗ 𝒆𝐿 ⊗ 𝒆𝑀 ⊗ 𝒆𝑁 (20)

with 𝐶 ∈ R>0. This idea stems from the fact that the stress-strain curves for the 2nd Piola-Kirchhoff stress tensor T are
significantly more nonlinear as a result of the pull-back operation from 𝝈 to T and therefore the true or ground truth
stiffness Cgt (F) of the material also changes significantly as a result of deformation, cf. Fig. 3. This fact is taken into
account by using the adapted pseudo-stiffness according to Eq. (20). The only change in Eq. (18) that needs to be made
is therefore to replace 𝐶𝐾𝐿𝑀𝑁 with 𝜏𝐶

ada,𝑔
𝐾𝐿𝑀𝑁 which is a function of the deformation gradient 𝜏𝐹𝑔𝑘𝐾 at snapshot 𝜏 and

the quadrature point 𝑔.

11
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Due to the fact that the pseudo stiffness is not assumed to be a constant anymore, the step for calculating the material
states E∗𝑧 has to be modified according to

𝐸∗𝑧𝐾𝐿 =

(∑︁
𝜏

∑︁
𝑔

𝑤𝑔𝐽
𝑔
0,△ℎ

𝑔
0,△

𝜏𝐶
𝑔
𝐾𝐿𝑀𝑁 𝛿𝑠 (𝑔,𝜏 )𝑧

)−1 ∑︁
𝜏

∑︁
𝑔

𝑤𝑔𝐽
𝑔
0,△ℎ

𝑔
0,△

𝜏𝐶
𝑔
𝑀𝑁𝑃𝑄

𝜏𝐸
𝑔
𝑃𝑄𝛿𝑠 (𝑔,𝜏 )𝑧 . (21)

The remaining solution algorithm stays untouched, cf. Alg. 2.

3.3 Physics-augmented neural networks

In this section, we present a polyconvex PANN for modeling the constitutive behavior of isotropic elastic solids, as
originally developed in Linden et al. [11].

3.3.1 Model formulation for isotropic elasticity

The isotropic hyperelastic material behavior can be described by the complete and irreducible set of invariants
I := (𝐼1, 𝐼2, 𝐼3), cf. Sect. 2. However, it may be convenient to incorporate the additional invariant 𝐼∗1 := −2𝐽 into the
argument list of the predicted potential, e.g., to improve the approximation quality of the predictions [11, 25]. By
utilizing the extended set of invariants I

∗ := (𝐼1, 𝐼2, 𝐼3, 𝐼∗1) as inputs to an FICNN with only one hidden layer including
𝑁NN neurons and a scalar-valued output

𝜓NN (I∗) :=
𝑁NN∑︁
𝛼=1

𝑊𝛼𝒮𝒫
©­«

3∑︁
𝛽=1

𝑤𝛼𝛽 𝐼𝛽 + 𝑤∗𝛼1𝐼
∗
1 + 𝑏𝛼

ª®¬
, (22)

which is then interpreted as a hyperelastic potential, the flexibility of the resulting model significantly surpasses that of
classical model formulations. Here, the Softplus activation function 𝒮𝒫(𝑥) := log(1 + exp(𝑥)) ∈ C∞ is applied, which
is convex and non-decreasing. The weights 𝑊𝛼, 𝑤𝛼𝛽 ∈ R≥0, 𝑤

∗
𝛼1 ∈ R and bias values 𝑏𝛼 ∈ R together form the set of

parameters P ∈ R𝑃 , with 𝑃 ∈ N denoting the total number of parameters, to be optimized in the calibration process to
fit a given dataset, cf. Section 3.3.2. Due to the chosen activation function and the weight restrictions, the model is
polyconvex by construction [11, 25].

Following [11], the isotropic PANN model is introduced by the potential

𝜓PANN (I∗) := 𝜓NN + 𝜓en + 𝜓gr (𝐽) + 𝜓str (𝐽) (23)

with the correction terms

𝜓en := −𝜓NN (I∗)
��
F=1 , 𝜓gr (𝐽) := 𝜆gr

(
𝐽 + 1

𝐽
− 2

)2
, 𝜓str (𝐽) := −𝔫(𝐽 − 1) , (24)

�1

b

Input Layer Hidden Layer

Output Layer

Isotropic PANN Model

2

�2

kNN +ken +kgr +kstr =: kPANN

�3

�∗1

m

mb

Figure 4: Illustration of the PANN for modeling the constitutive behavior of isotropic elastic solids. Note that the hidden layer of the
ICNN may be multilayered.
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guaranteeing energy- and stress normalization as well as volumetric growth condition, and the isotropic stress normal-
ization constant

𝔫 = 2
(
𝜕𝜓NN

𝜕𝐼1
+ 2

𝜕𝜓NN

𝜕𝐼2
+ 𝜕𝜓NN

𝜕𝐼3
+ 𝜕𝜓NN

𝜕𝐼∗1

𝜕𝐼∗1
𝜕𝐼3

)�����
F=1
∈ R . (25)

In Eq. (24), the parameter 𝜆gr ∈ R>0 has to be chosen such that the energy grows fast enough during compression.
Following [35], a value between 1 · 10−2 and 1 · 10−3 the material’s initial stiffness has proven to be suitable. Then, the
model defined in Eq. (23) fulfills all mentioned requirements from Sect. 2.2 by construction except for the non-negativity
of the energy function. A schematic representation of the PANN model is given in Fig. 4. The stress tensors T or 𝝈
following from the overall potential 𝜓PANN (I∗) can be obtained using Eq. (3).

3.3.2 Calibration of the PANN model

In order to calibrate the proposed model for a specific material, datasets of strain-stress pairs either in terms of the
right Cauchy-Green deformation tensor C and the second Piola-Kirchhoff stress tensor T or the left Cauchy-Green
deformation tensor b and the Cauchy stress tensor 𝝈 are used. Then, the dataset D is split into a calibration set Dc and
a test set Dt, such that D = Dc ∪ Dt and Dc ∩ Dt = ∅ hold. Finally, model generalization is evaluated on Dt after
calibration on Dc. Only if predictions for unseen data are accurate, the model can be assumed to generalize well.

The model architecture, including hyperparameters like the number of layers and nodes, must be chosen sufficiently
large to capture the material behavior. Overfitting, a common challenge for neural networks, is mitigated in the proposed
PANN model due to its inherent mathematical structure, cf. Section 3.3.1. Model parameters P consisting of weights
and biases are optimized via the SLSQP optimizer by minimizing the loss function defined as the mean squared error:

ℳ𝒮ℰ
UL (P) = 1

|Dc |
|Dc |∑︁
𝑖=1




𝑖𝝈 − 𝝈PANN (𝑖b; P)



2

or ℳ𝒮ℰ
TL (P) = 1

|Dc |
|Dc |∑︁
𝑖=1




𝑖T − TPANN (𝑖C; P)



2

, (26)

where ∥ · ∥ denotes the Frobenius norm. Sobolev training is applied, meaning the hyperelastic potential 𝜓PANN is only
calibrated based on the derivative, i.e., stress values, rather than functional values. The implementation leverages
Python, TensorFlow, and SciPy.

4 Numerical examples

Within this section, we demonstrate the ability of the developed data-driven dual-stage approach for the automated
generation of constitutive models. In the absence of real experiments, the input data for the DDI is initially generated
via virtual experiments using FE simulations within this work. We look at two different examples: One in which all
required quantities for the DDI, i.e., displacement field and external nodal forces, are known and noise-free and one in
which the situation of a real experiment is mimicked. In the first example, only the DDI step is considered and the three
formulations are benchmarked, while in the second example the entire dual-stage framework is tested.

4.1 Ground truth constitutive model

To mimic a real experiment with an FE simulation, a constitutive model has to be chosen. This model serves as the
ground truth for the DDI as well as for the trained PANN including 3D FE simulations. Herein, to describe the behavior
of a compressible elastic material, we choose a two-parametric neo-Hookean model

𝜓nh (𝐼1, 𝐼3) = 1
2

(
𝜇 (𝐼1 − ln 𝐼3 − 3) + 𝜆

2
(𝐼3 − ln 𝐼3 − 1)

)
, 𝜇 =

𝐸

2(1 + 𝜈) , 𝜆 =
𝐸𝜈

(1 + 𝜈) (1 − 2𝜈) (27)

according to Ciarlet [84], with the material parameters (𝐸, 𝜈) corresponding to the initial Young’s modulus and Poisson’s
ratio. This model fulfills all mentioned requirements from Sect. 2.2 and from this potential, the 2nd Piola-Kirchhoff
stress and the Cauchy stress can be derived via Eq. (3) as

Tnh = 𝜇1 +
(
𝜆

2
− 2𝜇 + 𝜆

2𝐼3

)
cof C and 𝝈nh =

𝜇

𝐽
b +

(
𝜆𝐽

2
− 2𝜇 + 𝜆

2𝐽

)
1 , (28)

respectively. The material parameters are chosen to 𝐸 := 1 MPa and 𝜈 := 0.3 within all numerical examples presented
in the following. Stress-stretch curves are shown for a uniaxial compression/tension test within Fig. 3, where also the
strain measures E and e are depicted.
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Figure 5: Benchmark test: (a) boundary conditions with 𝑢max
2 = 50 mm for uniaxial tensile test of specimen with reference thickness

ℎ0 = 5 mm to be investigated as well as (b) domain of interest, given by 100 mm × 100 mm × 5 mm, for DDI, which contains the
interior Ω0 with the two ellipsoidal holes as well as the boundaries of prescribed and unknown nodal forces.

4.2 Benchmarking the DDI formulations with ideal data

In this first example, we compare the three developed DDI formulations, i.e., the updated Lagrangian formulation, the
total Lagrangian formulation and the adapted total Lagrangian formulation, in a benchmark test with respect to their
accuracy. To evaluate the accuracy for both, the mechanical states (𝜏e𝑔, 𝜏𝝈𝑔) or (𝜏E𝑔, 𝜏T𝑔) and the material states
(e∗𝑧 ,𝝈∗𝑧) or (E∗𝑧 ,T∗𝑧), the neo-Hookean ground truth model (27) is used. We consider the strain in the tuples to be
fixed and calculate the associated stress with Eq. (28), i.e.,

𝜏𝝈𝑔,nh = 𝝈nh (𝜏b𝑔) and 𝜏T𝑔,nh = Tnh (𝜏C𝑔) , (29)

where the left Cauchy-Green deformation and the right Cauchy-Green deformation are calculated by 𝜏b𝑔 = (1 − 2𝜏e𝑔)−1

and 𝜏C𝑔 = 2𝜏E𝑔 + 1, respectively. The same procedure is applied to the material states, e.g., 𝝈∗𝑧,nh = 𝝈nh (b∗𝑧) as well
as T∗𝑧,nh = Tnh (E∗𝑧).
The generated data of this benchmark will be made freely available in the final version of the article.

4.2.1 Setup

We consider a thin plate with two ellipsoidal holes, loaded with displacement boundary conditions (BCs), see Fig. 5.
The mesh consist of 𝑁nodes = 4403 nodes and 𝑁quad = 8444 quadrature points. Within the benchmark test, we use
ideal, non-noisy field quantities from a 2D plane stress FE simulation with 𝑁snap = 10 increments and provide all
required input data for the DDI, i.e., the exact in-plane nodal displacements 𝜏𝑢𝛼1 , 𝜏𝑢𝛼2 and the external forces 𝜏𝒇 𝛼 at the
nodes 𝛼 ∈ {1, 2, . . . 𝑁node} of the mesh are available for each snapshot 𝜏 ∈ {1, . . . , 𝑁snap}. We also take the thickness
𝜏ℎ𝑔 ∈ R>0 at the quadrature points 𝑔 ∈ {1, . . . , 𝑁quad} of the deformed elements and the reference thickness ℎ0 = 1 mm
as given. Note that this quantity is needed if a compressible material is investigated, cf. Remark 1. Thus, for now,
we will ignore the fact that in real experiments only the global testing force would be known and the corresponding
external nodal forces can only be calculated under certain conditions. The lower boundary of the domain B0 is part of
𝜕B 𝒇

0 , i.e., the external nodal forces 𝜏𝒇 𝛼 are given, and the upper boundary is set to 𝜕B𝜻
0 , i.e., the external nodal forces

labeled 𝜏𝜻 𝛼 are not given and can be calculated as part of the DDI, if requested.

4.2.2 Results

Fixed hyperparameters First, we start with the following hyperparameters: The number of material states is chosen
to 𝑁∗ := ⌈0.01 · 𝑁quad · 𝑁snap⌉ = 845 and the pseudo stiffness tensors c := 1 MPa1 or C := 1 MPa1.

A comparison of the mechanical and material states generated with the updated Lagrangian DDI formulation is provided
in Fig. 6(a), where the stress 𝜏𝝈𝑔,nh as defined in Eq. (29)1 is used for evaluation. Acceptable accuracy can already be
seen in the mechanical states. However, these states are not used as a material database for training the PANN, but only
the material states, cf. Sect. 3. For the material states, the deviation from the ground truth model is then only slight and
a very good 𝑅2 value of 0.999 is achieved. In Fig. 7(a), surface plots of the true stress field 10𝜎

𝑔,nh
22 , the mechanical
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Figure 6: Quantitative comparison of Neo-Hooke reference model and DDI results obtained with (a) Updated-Lagrange-, (b)
Total-Lagrange- and (c) Adapted-Total-Lagrange formulation: mechanical states and material states based on ideal data from
perforated disc discretized with 𝑁quad = 8444 linear elements under loading in each snapshot 𝜏 ∈ {1, . . . , 𝑁snap} with 𝑁snap = 10
as well as 𝑁∗ := ⌈0.01 · 𝑁quad · 𝑁snap⌉ = 845 as prescribed number of material states of and the given pseudo stiffness tensor
C := 1 MPa1.

states 10𝜎
𝑔,nh
22 and the assigned material states 𝜎∗𝑠 (𝑔,10)

22 as well as the true strain field 10𝑒
𝑔,nh
22 and the assigned material

states 𝑒∗𝑠 (𝑔,10)
22 are shown for the last snapshot 𝜏 = 10. Here, too, it can be seen that a very high level of accuracy can be

achieved.

In Fig. 6(b), the results for the total Lagrangian DDI formulation are shown, where the stress 𝜏T𝑔,nh as defined in
Eq. (29)2 is used here. Compared to the updated Lagrangian formulation, there is a significant decrease in accuracy.
This is particularly noticeable for large compressive and tensile stresses. We assume that this is due to the fact that the
pull-back operation T = 𝐽F−1 · 𝝈 · F−𝑇 results in a much more pronounced non-linear stress-deformation behavior, see
Fig. 3(c). As shown in [14], a similar behavior can also be observed for a more complex Ogden model. This can also be
seen in the surface plots given in Fig. 7(b). These are scaled according to the reference solution and areas with values
outside the scale are colored yellow. It can be seen that areas with overestimated stresses occur at the edges of the holes
for the mechanical states 10𝜎

𝑔,nh
22 and the assigned material states 𝜎∗𝑠 (𝑔,10)

22 .

Finally, Fig. 6(c) shows the results obtained with the adapted total Lagrangian DDI formulation. As described in
Sect. 3.2.2, the idea of this formulation is to set the pseudo stiffness c = const. and to use an adapted pseudo stiffness
Cada defined via the pull-back transformation of c to Cada (c,F) given in Eq. (19), i.e., the pseudo stiffness Cada related
to T is therefore not assumed to be constant but a function of the deformation gradient 𝜏F𝑔 varying at each quadrature
point 𝑔 and each snapshot 𝜏. Thus, the pseudo stiffness is adapted to the strongly non-linear course of the stress-stretch
relationship for T depending on the deformation state, which results in a significant improvement of the generated
database. In particular, the deviations of the original total Lagrangian DDI formulation at high compressive and tensile
stresses are noticeably corrected. As a result, the yellow-colored areas with overestimated stresses 10𝜎

𝑔,nh
22 and 𝜎

∗𝑠 (𝑔,10)
22

no longer appear in the surface plots in Fig. 7(c).
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Figure 7: Qualitative comparison of Neo-Hooke reference model and DDI field data obtained with (a) Updated-Lagrange-, (b) Total-
Lagrange- and (c) Adapted-Total-Lagrange formulation: mechanical states and material states based on ideal data from perforated disc
discretized with 𝑁quad = 8444 linear elements under loading in the last snapshot 𝜏 = 10 as well as 𝑁∗ := ⌈0.01 ·𝑁quad ·𝑁snap⌉ = 845
as prescribed number of material states of and the given pseudo stiffness tensor C := 1 MPa1.
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Figure 8: Parameter study of DDI with coefficient of determination 𝑅2 for mechanical and material states depending on (a) the
ratio of 𝑁∗ and number of quadrature points 𝑁quad times the number of snapshots 𝑁snap with prescribed pseudo stiffness tensor
C := 1 MPa1 as well as (b) the pseudo stiffness 𝐶 with number 𝑁∗ := ⌈0.01 · 𝑁quad · 𝑁snap⌉ of material states.

Hyperparameter study After considering fixed hyperparameters, we carry out a parameter variation to investigate
the influence on the three finite strain DDI formulations.

First, we fix the pseudo stiffness to 𝐶 = 103 kPa and vary the ratio 𝑁∗/(𝑁quad ·𝑁snap) ∈ {1·10−3, 5·10−3, 1·10−2, . . . , 5·
10−2}, i.e., the number of material states with respect to number of quadrature points times snapshots. From Fig. 8(a),
it can be seen that in the mechanical states, all three formulations result in an increase in accuracy for a larger ratio
𝑁∗/(𝑁quad · 𝑁snap). This can be explained by the fact that if the number of 𝑁∗ is too small, an inhomogeneous stress
field, which is approximated by the mechanical states 𝜏𝝈𝑔 or 𝜏T𝑔, can no longer be represented with sufficient accuracy,
as the material states are then very far away from the real stress field, within this example 𝜏𝝈𝑔,nh or 𝜏T𝑔,nh. Nevertheless,
a very accurate material database can be generated even for a low ratio 𝑁∗/(𝑁quad · 𝑁snap), i.e., the 𝑅2 value for the
material states is close to 1. However, it can be observed that a too high number of material states 𝑁∗ can lead to a
drop in accuracy, at least for the updated Lagrangian and the total Lagrangian DDI formulation. This is due to the fact
that it can lead to an insufficient regularization. This occurs because, with a higher number of material states, many
states will be assigned to only a few quadrature points, which prevents the behavior from being adequately averaged.
As a result, the mapping 𝑠(𝑔, 𝜏) is approaching injectivity, and the system fails to average over the different mechanical
states sufficiently, introducing significant error. It is therefore crucial to select a value for 𝑁∗ that lies between these
extremes. These findings are in agreement with those presented in [61, 73].

Secondly, we fix the number of material states to 𝑁∗ := ⌈0.01 · 𝑁quad · 𝑁snap⌉ and vary the pseudo stiffness tensors
c = 𝐶1 or C = 𝐶1 according to 𝐶 ∈ {

1 · 101, 5 · 101, 1 · 102, . . . , 1 · 105} kPa. The resulting 𝑅2 values depending
on 𝐶 are shown in Fig. 8(b). Here, again, the stress tensors according to Eq. (29) are used as a reference. As can
be seen, the influence of the pseudo stiffness on the accuracy is nearly negligible for the updated Lagrangian DDI
formulation. In contrast, a noticeable dependency on C or Cada appears for both the total Lagrangian DDI formulation
and the adapted total Lagrangian DDI formulation. However, from a pseudo-stiffness of 𝐶 = 5 · 103 kPa, there is no
longer any significant influence. As with the fixed hyperparameters, the best results can be achieved with the updated
Lagrangian DDI formulation and there is a clear drop in accuracy for all calculations with the total Lagrangian DDI
formulation. In contrast, with the adapted total Lagrangian DDI formulation, the loss of accuracy in the material states
for a pseudo stiffness of 𝐶 = 5 · 103 kPa and above is very low. Furthermore, the pseudo stiffness plays a crucial role
in the convergence of the method, i.e., increasing 𝐶 up to a certain limit leads to a reduction in error. By selecting a
larger value of 𝐶, the correspondence between the material and mechanical states based on strain values is prioritized,
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Figure 9: Realistic setup for uniaxial tensile test of specimen with reference thickness ℎ0 = 5 mm to be investigated in virtual
experiment with clamping and displacement BCs with 𝑢max

2 = 210 mm. The domain of interest, approximately 100 mm × 219 mm,
for DDI contains the interior B0 with the two ellipsoidal holes as well as the boundaries of prescribed and unknown nodal forces.

which is advantageous since the strains are directly measured and, therefore, more reliable compared to stresses that
evolve throughout the algorithm’s convergence. Finally, 𝑁∗ has a greater impact than 𝐶, i.e., an inappropriate choice of
𝑁∗ cannot be rectified by a favorable choice of 𝐶. These observations regarding the impact of the pseudo stiffness are
consistent with those reported in [73].

4.2.3 Assessment of the three DDI formulations and guide values for the hyperparameters

Basically, it can be stated that the highest accuracy in the generated data base can be achieved with the updated
Lagrangian DDI formulation. However, as stated in Remark 4, this formulation can only be used to generate a material
data base for training a PANN if an isotropic material is considered. The original total Lagrangian DDI formulation
should not be used, as there are noticeable reductions in accuracy of the data. If an anisotropic material is considered,
the adapted total Lagrangian DDI formulation should be used. This enables a similarly high accuracy as with the
updated Lagrangian DDI formulation and at the same time the calibration of an anisotropic PANN model with the
generated database.

Based on our study, we can recommend a ratio of 𝑁∗/(𝑁quad · 𝑁snap) = 1 %. Other authors give similar guideline values
[61, 62, 73, 74]. For the pseudo-stiffness c or C, an increase in the estimated stiffness of the tested material by a factor
of 10 is recommended.

4.3 Application of the dual-stage framework in a realistic setup with noisy data

Within this numerical example, we mimic the situation of a realistic experiment for data mining, i.e., only the global
force and the displacement field are accessible. Both quantities are subject to noise. These data are used as input for
the dual-stage approach, i.e., DDI is applied and the generated material data base is used to train a PANN. Finally, the
calibrated PANN model is applied in a 3D FE simulation.

4.3.1 Imitation of a realistic experiment for data mining

To mimic the situation of a real experiment and prepare the data for the dual-stage approach, we perform three steps,
which are described below.

FE simulation First, we do a virtual experiment with a 2D plane stress FE simulation and consider the sample and
the applied BCs shown in Fig. 9, i.e., the clamping is considered by applying displacement BCs at the two ends of the
sample. Linear triangular elements are used. Note that only the sample’s inner part denoted as B0 will be considered
later within the DDI. Thus, since it is advantageous to have a domain boundary 𝜕B 𝒇

0 at which the nodal forces 𝜏𝒇 𝛼 can
be specified, cf. Sect. 3.2, the sample is designed such that this cross section is far from the left shoulder and the holes
within B0.

As described in Sect. 3, it is only the global testing force 𝜏𝑭 = 𝜏𝐹𝒆2 from the load cell of the testing machine that is
accessible within each snapshot. Thus, to imitate the situation at a testing machine within our numerical experiment,
the global testing force is calculated by summing up the nodal forces from the FE simulation at the left clamping.

To mimic a DIC system, we grab the nodal displacements from the FE simulation. For the in-plane components 𝜏𝑢𝛼1 ,
𝜏𝑢𝛼2 this is directly possible.7 As described in Remark 1, 𝜏ℎ𝛼 at the nodes can be calculated from the difference in the
out-of-plane displacements from top and bottom sides of the sample if we assume to have two DIC systems. In order to

7We do not take into account here that the displacement at hole edges may not be recorded. For more details on this additional
difficulty we refer to [73].
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Figure 10: Quantitative influence of projecting the thickness from the quadrature points to the nodes and back as well as the noise on
DDI field quantities: (a) – (c) thickness 𝜏ℎ𝑔 as well as (d) – (e) strain component 𝜏𝑒𝑔22 for updated Lagrangian DDI formulation.
Both the projection and the noise have a strong influence on the field data resulting in a change in the ranges of these values.

simulate this situation, we project the current thickness that is present in the FE calculation at the quadrature points
onto the nodes via a weighted average.8

Adding noise In a real experiment, both force measurement and the determination of displacements using DIC are
subject to measurement errors. To imitate this, we add artificial noise to both variables, where quantities with noise are
marked with a tilde in the following, i.e., ˜(·).
For the global testing force, artificial noise is added for each snapshot by a multiplier based on a continuous uniform
distribution, i.e.,

𝜏𝐹̃ = 𝜏𝑛𝑭
𝜏𝐹 with 𝜏𝑛𝑭 ∼ U[1 − 𝜔, 1 + 𝜔] . (30)

This gives us a signal that is noisy over time, where the noise level is relative to the force magnitude. We choose
𝜔 = 1 · 10−4 which corresponds to a load cell with a high accuracy class.

For the displacements, following Flaschel et al. [53], we assume the same absolute noise level at all nodes and snapshots,
independently of the corresponding magnitude of displacement. Therefore, we add artificial noise to the in-plane
components and the current thickness, which must be calculated from the displacement difference between the top and
bottom of the sample (Remark 1). However, in the case of displacement data obtained using DIC, it can be assumed
that DIC software such as ARAMIS smoothes the noisy data so that the noise is not uncorrelated, at least locally in the
neighborhood. For this reason, a Gaussian Random Field (GRF) is used to generate noise within the displacement field
instead of random numbers from a normal distribution:

𝜏𝑢̃𝛼𝑎 = 𝜏𝑢𝛼𝑎 + 𝜏𝑢𝛼,noise
𝑎 with 𝜏𝑢𝛼,noise

𝑎 = 𝜏 𝑓𝑎 (𝑥(𝜏𝑥𝛼1 ), 𝑦(𝜏𝑥𝛼2 ))𝜂Δ𝑥 and (31)
𝜏ℎ̃𝛼 = 𝜏ℎ𝛼 + 𝜏ℎ𝛼,noise with 𝜏ℎ𝛼,noise = 2𝜏 𝑓 (𝑥(𝜏𝑥𝛼1 ), 𝑦(𝜏𝑥𝛼2 ))𝜂Δ𝑥 . (32)

In the equations above, 𝑓𝑎 (𝑥, 𝑦), 𝑓 (𝑥, 𝑦) ∈ [−1, 1] are normalized noise functions on a regular grid (𝑥, 𝑦). To investigate
the robustness of the dual-stage approach, the noise factor is varied according to 𝜂 ∈ {1 · 10−3, 5 · 10−4, 1 · 10−4, 5 ·
10−5, 1 · 10−5}. The geometry dimension is given by Δ𝑥 = 100 mm. Details on the GRF are given in B. Note that a
factor of two is added to the thickness noise in Eq. (32), as both the DIC measurement on the top and bottom of the
sample will be subject to noise.

8 The projection of the thickness from the quadrature points to the nodes is done by

𝜏ℎ𝛼 =
1
𝑆𝛼

∑︁
𝑒∈E (𝛼)

𝜏ℎ𝑒𝑆𝑒 with 𝑆𝛼 :=
∑︁

𝑒∈E (𝛼)
𝑆𝑒 ,

with E(𝛼) being the function mapping the node number 𝛼 to a set containing all element numbers attached to the node, i.e., similar
to an inverse coincidence matrix. Note that, since linear triangular elements were used, each element has only one quadrature point,
and the quadrature point number 𝑔 is equal to the element number 𝑒. Thereby, the area 𝑆𝑒 is chosen to be 𝜏𝐽𝑔△ or 𝐽𝑔0,△ depending on
the DDI formulation, respectively.
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Figure 11: Results of the different DDI formulations evaluated with coefficient of determination 𝑅2 for mechanical and material
states depending on the noise 𝜂 with 𝑁∗/(𝑁quad · 𝑁snap) = 1 % and prescribed pseudo stiffness tensor C := 8.3 MPa1.

Remark 2. We would like to point out that the projection and the noise have a particularly strong effect on the thickness
as we use absolute noise. The maximum relative error w.r.t. ideal thickness is already 2.3 % regarding only the
projection as well as 2.5 % including a moderate noise level of 𝜂 = 5 · 10−4, cf. Fig. 10. This is because the thickness
change is very small compared to the in-plane displacements. A plane-strain DDI implementation would therefore
be significantly less sensitive but also more complex to realize in experiments. However, the projection leads to a
smoothing of the noisy thickness values in comparison to the strain component. Actually, the maximum relative error of
the noisy strain component 𝜏𝑒𝑔22 w.r.t. the noiseless strain component 𝜏𝑒𝑔22 is 17.1 %.
Remark 3. Note that it would also be possible to denoise the displacement and force data, e.g., via a suitable filter, as
in [53], just as one would do with data from a real experiment. However, we intentionally do not do this here in order to
investigate the robustness of our framework.

Pre-processing the raw data for DDI For the DDI, the nodal forces 𝜏𝒇 𝛼 on the boundary 𝜕Ω 𝒇
0 are needed and not the

global testing force 𝜏𝑭. Since perturbations from the holes in the domain and from the clamping are far enough away
from the considered cross section, a homogeneous traction 𝜏𝒑𝒇 =

𝜏𝑝𝒆2 with 𝜏𝑝 = 𝜏𝐹/𝐴0 can be assumed at 𝑋𝛼2 = 𝑋min
2 ,

cf. Fig. 9 as well as Footnote 6, and we get

𝜏 𝑓 𝛼2 =
∑︁

𝑒∈E (𝛼)

∫
𝜕Ω 𝒇 ,𝑒

0

𝑁𝛼 (𝑋1, 𝑋2 = 𝑋min
2 )𝜏𝑝ℎ0 d𝑆 and 𝜏 𝑓 𝛼1 = 0 ∀𝛼 with 𝑋𝛼2 = 𝑋min

2 , (33)

with E(𝛼) being introduced in Footnote 8. For the geometry depicted in Fig. 9, the error in 𝜏 𝒑̄ due to the homogeneous
traction assumption is less than 1 %. At all other nodes in the domain that do not lie on boundary 𝜕Ω𝜻

0 , 𝜏 𝒇 𝛼 = 0 is
specified.

In addition, the out-of-plane stretch 𝜏𝜆
𝑔
3 = 𝜏ℎ𝑔/ℎ0 for determining the 𝜏𝑒𝑔33 or 𝜏𝐸𝑔33 component of the mechanical states

is required at the quadrature points. Thus, a projection of the current thickness from the nodes to the quadrature point of
each linear triangular element is done via

𝜏ℎ𝑔 =
1
3

∑︁
𝛼∈N(𝑔)

𝜏ℎ𝛼 , (34)

where the set N(𝑔) contains all global node numbers 𝛼 ∈ {1, . . . , 𝑁node} belonging to element 𝑒, i.e., similar to a
coincidence matrix. Note that even without the noise there is an error due to the projection of the current thickness.
However, this would also be unavoidable in a real setup and is therefore deliberately implemented here, cf. Fig. 10.

4.3.2 Data-driven identification

As we mimic the situation of a real experiment within this example, the material’s stiffness is assumed to be unknown.
We must therefore estimate the pseudo stiffness 𝐶. To this end, we assume an uniaxial stress state with homogeneous
field distribution for the sake of simplicity. Then, the order of magnitude of the stiffness can be estimated in the sense
of 1D linear elasticity for the small strain regime 𝜎 = 𝐶𝜀. Therefore, we consider the first snapshot 𝜏 = 1 to estimate
the material’s stiffness

𝐶 =
𝜎

𝜀

����
𝜏=1

=
𝐹

𝐴0

𝑙0
Δ𝑙

����
𝜏=1
≈ 15.096 N

500 mm2
219.293 mm

8.018 mm
≈ 0.82575 MPa , (35)

20



Dual-stage constitutive modeling framework A PREPRINT

gf
6,nh
01

in kPa

Updated Lagrange

mechanical states material states

Total Lagrange Adapted Total Lagrange

f∗I,nh
01 in kPa

(a) (b) (c)
g f

6 0
1

in
kP

a
f
∗I 0
1

in
kP

a

g
)
6 �
�

in
kP

a
)
∗I �
�

in
kP

a

g
)
6 �
�

in
kP

a
)
∗I �
�

in
kP

a

g)
6,nh
��

in kPa

)∗I,nh
��

in kPa

g)
6,nh
�� in kPa

)∗I,nh
��

in kPa

'2 = 0.9870 '2 = 0.9583 '2 = 0.9654

'2 = 0.9877'2 = 0.9798'2 = 0.9971

Figure 12: Quantitative comparison of Neo-Hooke reference model and DDI results for noise level 𝜂 = 5 · 10−4 obtained with (a)
Updated-Lagrange-, (b) Total-Lagrange- and (c) Adapted-Total-Lagrange formulation: mechanical states and material states based
on noisy data from test specimen discretized with 𝑁quad = 7700 linear elements under loading in each snapshot 𝜏 ∈ {1, . . . , 𝑁snap}
with 𝑁snap = 10 as well as 𝑁∗ := ⌈0.01 · 𝑁quad · 𝑁snap⌉ = 770 as prescribed number of material states of and the given pseudo
stiffness tensor C := 8.3 MPa1.

which is equal to the Young’s modulus. Obviously, the exact stiffness is underestimated if a uniaxial stress state is
assumed for the multiaxial stress state due to the inhomogeneous specimen in this approximation. Following the
guidelines from Sect. 4.2.3, the pseudo stiffness tensor is chosen to C = 10𝐶1 ≈ 8.3 MPa1. For the number of material
states we set 𝑁∗/(𝑁quad · 𝑁snap) = 1 %.

Using the data from the numerical experiment described in Sect. 4.3.1 as input, the problem under consideration was
solved using all three presented finite strain DDI formulations for all noise factors 𝜂. To evaluate the accuracy for all
runs, the 𝑅2

mech and 𝑅2
mat values are shown in Fig. 11 in dependence of 𝜂, where the ground truth reference is calculated

according to Eq. (29) but with the noisy strains, e.g., 𝜏 ẽ𝑔. As can be seen, the noise affects the material states less
than the mechanical states. Although the correlation coefficients 𝑅2

mech and 𝑅2
mat are monotonically decreasing with

respect to the noise factor, the effect of noise for 𝜂 ≤ 10−4 is negligible and also for 𝜂 = 5 · 10−4, the loss of accuracy is
acceptable. Similar as for the benchmarks presented in Sect. 4.2, the updated Lagrangian DDI formulation gives the
highest precision followed by the adapted total Lagrangian DDI formulation and finally the original total Lagrangian
DDI formulation. In Fig. 12, a comparison of all mechanical and material states to the ground truth is shown for
𝜂 = 5 · 10−4. As mentioned before, despite the noise, the results are not significantly worse than for the ideal case shown
in Fig. 6. This is particularly remarkable due to the relatively large error in the thickness and thus the out-of-plane
strain, cf. Remark 2.

4.3.3 Physics-augmented neural network

In the following, we use the generated data bases, i.e., the material states, to train a PANN model according to Sect. 3.3,
whereby we only use the data generated with the updated Lagrangian DDI formulation and the adapted total Lagrangian
DDI formulation. The training is carried out as described in Sect. 3.3.2, whereby we select a ratio of 70 % /30 % for the
division into calibration and test data.
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Figure 13: Results of the trained PANN with respect to reference data evaluated with coefficient of determination 𝑅2 depending on
the noise 𝜂. The noisy mechanical and material strains serve as input for the Neo-Hooke reference model.
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Figure 14: Quantitative comparison of trained PANN with (a) DDI results of updated Lagrangian formulation and (b) Neo-Hooke
reference model for noise level 𝜂 = 5 · 10−4 obtained with Updated-Lagrange- formulation: mechanical states and material
states based on noisy data from test specimen discretized with 𝑁quad = 7700 linear elements under loading in each snapshot
𝜏 ∈ {1, . . . , 𝑁snap} with 𝑁snap = 10 as well as 𝑁∗ := ⌈0.01 · 𝑁quad · 𝑁snap⌉ = 770 as prescribed number of material states of and
the given pseudo stiffness tensor C := 8.3 MPa1.

To evaluate the influence of the noise, the 𝑅2
mech and 𝑅2

mat values are shown in Fig. 13 in dependence of 𝜂, where the
ground truth reference is again calculated according to Eq. (29) but with the noisy strains, e.g., 𝜏 ẽ𝑔. As can be seen,
the effect of the noise is negligible for 𝜂 ≤ 1 · 10−4. A clear influence can be seen for larger values, although this is
somewhat smaller than for the DDI itself. This is because a denoising effect occurs due to the PANN, as the loss must
be minimized for the noisy database consisting of the material states during training. This means that the ground truth
material law is approximated to a good degree by the PANN, even for noisy data, see also [11]. The 𝑅2

mech values of the
mechanical states are now also higher than with the DDI, which is also due to the fact that the PANN approximates the
true material law, which serves as a reference. Even if the strains of the mechanical states are outside the training range,
the PANN enables good predictions as it enables a good extrapolation behavior [11].

To better illustrate the denoising effect, a comparison of the PANN predictions for all strains from the mechanical and
material states to the ground truth is shown for 𝜂 = 5 · 10−4 in Fig. 14.

4.3.4 3D Finite Element simulation

In order to prove the suitability of the developed dual-stage approach, we use the generated PANN models within 3D
FE simulations, where we only consider the noise factor 𝜂 = 5 · 10−4. We consider the torsion of a prismatic sample
[11, 14], cf. Fig. 15(a). Both, the ground truth model (27) and the PANN (23), have been implemented within the FE
toolbox FEniCS [85]. The shear stress field 𝑃nh

31 generated with neo-Hookean reference model is shown in Fig. 15(b).
Surface plots of relative error measures are given in Figs. 15(c) and (d) for the PANN trained with data from the
updated Lagrangian DDI and the total Lagrangian DDI, respectively. The errors are not negligible but remain within
an acceptable range, particularly given the absence of a predefined material law in the DDI framework and the solely

22



Dual-stage constitutive modeling framework A PREPRINT

(a) q̂ (b)

−85 85

%nh
31 /kPa

-3

-1

-2

(c)

0 6.63%

��%nh
31 −%PANN,UL

31
��/max |%nh

31 |

(d)

0 8.21%

��%nh
31 −%PANN,TL

31
��/max |%nh

31 |

Ground Truth Model Updated Lagrange Adapted Total Lagrange

Figure 15: FE-simulation of torsional sample: (a) loading and boundary conditions, (b) macroscopic stress field 𝑃nh
31 on the deformed

configuration B by specifying a distortion of 𝜙 = 30◦, and (c) relative error of the PANN-stress field 𝑃PANN
31 with respect to 𝑃nh

31
trained on the noisy DDI material dataset of the updated Lagrangian formulation as well as (d) of the adapted total Lagrangian
formulation. The NNs trained with inhomogenous plane stress data and 𝑁NN = 8 neurons in only one hidden-layer were implemented
as constitutive equation each.

reliance on noisy data containing only plane stress states for training of the PANN model. It should be noted again that
the maximum relative error of the noisy strain component 𝜏𝑒𝑔22 w.r.t. the noiseless strain component 𝜏𝑒𝑔22 is significantly
higher with 17.1 %, cf. Fig. 10, illustrating the robustness of the framework. The PANN models do not learn the exact
material model due to the presence of noise in the data, leading to errors, observed on the the material database, that are
of the same order of magnitude in comparison to the reference model.

Notably, the errors max |𝑃nh
31 − 𝑃PANN,UL

31 |/max |𝑃nh
31 | ≈ 1.7 % and max |𝑃nh

31 − 𝑃PANN,TL
31 |/max |𝑃nh

31 | ≈ 3.5 % decrease
when reducing the noise factor for the displacement field to 𝜂 = 1 · 10−5, while maintaining the noise factor for the
force field at 𝜔 = 1 · 10−4, as in the previous case. This scenario still incorporates the error arising from the projection
of thickness values from quadrature points to the nodes and back, cf. Sect. 4.3.1.

With respect to the ideal dataset, cf. Sect. 4.2.3, obtained with 𝑁∗/(𝑁quad · 𝑁snap) = 1 % as well as 𝐶 = 1 · 104 kPa,
the errors max |𝑃nh

31 − 𝑃PANN,UL
31 |/max |𝑃nh

31 | ≈ 0.61 % and max |𝑃nh
31 − 𝑃PANN,TL

31 |/max |𝑃nh
31 | ≈ 1.4 % are significantly

reduced when considering 𝜂 = 0 and 𝜔 = 0. Note that no thickness projection from quadrature points to nodes was
made in the idealized case.

Evidently, the noise level has a substantial impact on the quality of the material database, which serves as both training
and test data for the PANN. In practical applications, denoising algorithms are crucial and would typically be employed
to preprocess the input data for the DDI framework. However, in this investigation, the authors deliberately examined
the worst-case scenario by utilizing noisy field data without prior denoising, thereby evaluating the robustness of the
proposed dual-stage framework.

The fact that it is possible to carry out 3D simulations with the PANN model at all is due to the chosen formulation
using invariants. This is because a large range of 3D states can be covered by plane stress states in the invariant space.
The model therefore only has to extrapolate moderately. This has been intensively investigated in [11, 14].

5 Conclusion

In this work, we present a novel data-driven dual-stage approach for the automated constitutive modeling of hyperelas-
ticity, featuring three finite strain versions of the DDI, including two novel total Lagrangian formulations. The overall
framework consists of two steps building the core of the approach, which only requires experimentally measurable data.
Starting from a (virtual) experiment, full-field measurements are conducted to determine the displacement field and
global testing force, with the process referred to as data mining. Then, in the first step of the dual-stage approach, DDI
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[61] is applied to generate a data set consisting of stress and strain tuples. In the third step, the data is used to calibrate a
hyperelastic PANN model [11]. After running the framework, the calibrated PANN can be used in 3D FE simulations.
The ability of our approach is investigated by applying it to several numerical examples, where a realistic experimental
setup is mimicked. Therefore, two-dimensional synthetic data are generated by using a reference constitutive model. To
assess the accuracy of our framework, FE simulations with the calibrated PANN are compared to the reference model.

It turned out that our approach enables to generate accurate constitutive models by only requiring experimentally
measurable data as input, i.e., displacement field and global testing force. Also for noisy input data, the deviations to
the ground truth model are small even in 3D FE simulations. Our work is a further step in the direction of a paradigm
shift in constitutive modeling: from human-based approaches towards fully automated data-driven frameworks. In
summary, the presented data-driven dual-step approach is an efficient methodology to generate hyperelastic models from
experiments with full-field measurement. By applying DDI to generate stress-strain data without making constitutive
assumptions and subsequently using the data to train a flexible PANN enabling extrapolation afterwards, we combine
advantages of two data-driven approaches to build an automated framework.

Various extensions of our approach are planned for the future. For example, the application to anisotropic problems
[27, 82] is planned. In addition, an extension towards inelasticity, i.e., viscoelasticity [20, 28, 86, 87] and plasticity
[19, 34, 88, 89, 90] is possible.
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A Details on DDI

A.1 Formulation of the DDI problem

We start with the DDI formulation, which is based on an updated Lagrangian FE formulation. To motivate the set of
equations, we start by formulating a problem that is continuous in time and space and derive the discrete equations from
it.

A.1.1 Continuous DDI formulation

The primary motivation behind DDI arises from energy considerations in a mechanical system. Based on the elastic
stored energy of a continuum, the method aims to minimize the distance between the mechanical states, i.e., field data
e(𝑿, 𝑡), 𝝉(𝑿, 𝑡), and the corresponding material states of the material database, i.e., e∗𝑧 , 𝝉∗𝑧 with 𝑧 ∈ {1, . . . , 𝑁∗}, under
the condition that the balance of linear momentum is fulfilled in weak form. Thereby, the material states are allocated to
the mechanical states via the mapping 𝑠 : B0 × TDDI → {1, . . . , 𝑁∗}, (𝑿, 𝑡) ↦→ 𝑠(𝑿, 𝑡) with TDDI := [𝑡0, 𝑡end] ⊂ R, cf.
Fig. 2(a) for an illustration of this idea. One of the key aspect of DDI is to use an energetically conjugated pair of strain
and stress, here (e, 𝝉). Thus, for the continuous case, this results in the loss function
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𝐿UL :=
∫
TDDI

∫
B0

1
2

(
e(𝑿, 𝑡) − e∗𝑠 (𝑿 ,𝑡 )

)
: t(𝑿, 𝑡) :

(
e(𝑿, 𝑡) − e∗𝑠 (𝑿 ,𝑡 )

)
d𝑉0 d𝑡

+
∫
TDDI

∫
B0

1
2

(
𝝉(𝑿, 𝑡) − 𝝉∗𝑠 (𝑿 ,𝑡 )

)
: t−1 (𝑿, 𝑡) :

(
𝝉(𝑿, 𝑡) − 𝝉∗𝑠 (𝑿 ,𝑡 )

)
d𝑉0 d𝑡

+ 𝜆(𝑡)
[ ∫
TDDI

∫
𝜕B 𝒇

0

𝐽 (𝑿, 𝑡) |F−𝑇 (𝑿, 𝑡) · 𝑵(𝑿, 𝑡) | 𝒕𝒇 (𝑿, 𝑡) · 𝒘(𝑿, 𝑡) d𝐴0 d𝑡

+
∫
TDDI

∫
𝜕B𝜻

0

𝐽 (𝑿, 𝑡) |F−𝑇 (𝑿, 𝑡) · 𝑵(𝑿, 𝑡) | 𝒕𝜻 (𝑿, 𝑡) · 𝒘(𝑿, 𝑡) d𝐴0 d𝑡

−
∫
TDDI

∫
B0

𝝉(𝑿, 𝑡) : sym(∇𝒘(𝑿, 𝑡)) d𝑉0 d𝑡

]

(36)

for the updated Lagrangian DDI formulation, where 𝒘(𝑿, 𝑡) ∈ L1 is a weighting function, 𝜆(𝑡) ∈ R is a Lagrange
multiplier and t ∈ L4 is a pseudo stiffness. Although the first two integrands of Eq. (36) take the form and units of
an energy density, it does not correspond to any actual energy within the mechanical system, cf. [73]. Instead, the
pseudo stiffness tensor t serves to balance and weight the contributions of strains and stresses. In addition, the last
three summands of Eq. (36) represent the balance of linear momentum in weak form, incorporated via the Lagrange
multiplier. Thereby, 𝜕B 𝒇

0 and 𝜕B𝜻
0 denote boundaries with prescribed traction 𝒕𝒇 (𝑿, 𝑡) ∈ L1 and unknown traction

𝒕𝜻 (𝑿, 𝑡) ∈ L1 on the domain boundary 𝜕B0 = 𝜕B 𝒇
0 ∪ 𝜕B

𝜻
0 , respectively. Thereby, the prescribed traction 𝒕𝒇 (𝑿, 𝑡) ∈ L1

may be zero on parts of the boundary B 𝒇
0 .

A.1.2 Discrete DDI formulation

Of course, the continuous problem given by Eq. (36) cannot be solved in the specified form. Thus it is not possible to
determine a displacement field in an experiment but only displacements at a finite number of control points. Similarly,
the displacement field can only be determined for a finite number of time instants, referred to as snapshots in the
following. To derive the discrete form we take several steps which are described in the following.

First, to arrive at a typical updated Lagrangian formulation, we use the relations 𝝉 = 𝐽𝝈, t = 𝐽c and d𝑉 = 𝐽d𝑉0,
d𝐴 = 𝐽 |F−𝑇 · 𝑵 |d𝐴0, which results in a transformation of the integration domain to the current configuration and to 𝝉
being replaced by 𝝈 as well as t by c.

Then, we replace the time integral with a sum over snapshots 𝜏 ∈ {1, 2, . . . , 𝑁snap} and restrict ourselves to a thin
sample with reference thickness ℎ0 ∈ R>0, which allows the plane stress assumption, and approximate the geometry
with a 2D FE mesh consisting of triangles with domain Ω𝑒0 in the undeformed state and 𝜏Ω𝑒 at snapshot 𝜏, i.e.,

B0 ≈
⋃
𝑒

Ω𝑒0ℎ0 and B ≈
⋃
𝑒

∫
𝜏Ω𝑒

𝜏ℎ(𝜏𝑥1,
𝜏𝑥2)

𝐴𝑒
d𝐴𝜏Ω𝑒 , (37)

where 𝜏ℎ(𝜏𝑥1,
𝜏𝑥2) ∈ R>0 is the location-dependent deformed thickness at snapshot 𝜏 weighted with corresponding

element area 𝐴𝑒. Thereby, 𝜏𝑥1,
𝜏𝑥2 ∈ R are the in-plane coordinates of the position vector 𝒙 = 𝝋(𝑿, 𝜏) = 𝑿 + 𝒖(𝑿, 𝜏) ∈

𝜏Ω𝑒 in element 𝑒 ∈ {1, . . . , 𝑁elem}.
In addition, we approximate the in-plane displacement at snapshot 𝜏 within each element 𝑒 via shapefunctions:

𝜏𝑢𝑎 (𝜏𝑥1,
𝜏𝑥2) ≈

∑︁
𝛼∈N(𝑒)

𝑁𝛼 (𝜏𝑥1,
𝜏𝑥2)𝜏𝑢𝛼𝑎 , (38)

where again the setN(𝑒) contains all global node numbers 𝛼 ∈ {1, 2, . . . , 𝑁node} belonging to element 𝑒 and 𝜏𝑢𝛼𝑎 being
the nodal displacements with the index 𝑎 ∈ {1, 2}. Similarly, we approximate 𝜏𝜆𝜏𝑤𝑎 (𝜏𝑥1,

𝜏𝑥2) at snapshot 𝜏 by

𝜏𝜆𝜏𝑤𝑎 (𝜏𝑥1,
𝜏𝑥2) ≈

∑︁
𝛼

𝜋 (𝛼)=1

𝑁𝛼 (𝜏𝑥1,
𝜏𝑥2)𝜏𝜂𝛼𝑎 +

∑︁
𝛽

𝜋 (𝛽)=0

𝑁𝛽 (𝜏𝑥1,
𝜏𝑥2)𝜏𝜇𝛽𝑎 , (39)
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where the function 𝜋(𝛼) is defined in Eq. (7) and the nodal values 𝜏𝜂𝛼𝑎 as well as 𝜏𝜇𝛼𝑎 take the role of Lagrange
multipliers. This is to distinguish between nodes lying on 𝜕Ω𝜻

0 , i.e., the traction 𝒕𝜻 is not prescribed and thus unknown,
and nodes lying on 𝜕Ω 𝒇

0 , i.e., the traction 𝒕𝒇 is prescribed, or nodes lying in interior Ω0. Thus, we get the external nodal
forces

𝜏𝜁
𝛽
𝑎 =

∑︁
𝑒∈E (𝛽)

∫
𝜕𝜏Ω𝜻 ,𝑒

𝑁𝛽 (𝜏𝑥1,
𝜏𝑥2) 𝑡𝜻𝑎 (𝜏𝑥1,

𝜏𝑥2) 𝜏ℎ(𝜏𝑥1,
𝜏𝑥2) d𝑆 , (40)

𝜏𝑓 𝛼𝑎 =
∑︁

𝑒∈E (𝛼)

∫
𝜕𝜏Ω 𝒇 ,𝑒

𝑁𝛼 (𝜏𝑥1,
𝜏𝑥2) 𝑡 𝒇𝑎 (𝜏𝑥1,

𝜏𝑥2) 𝜏ℎ(𝜏𝑥1,
𝜏𝑥2) d𝑆 , (41)

with E(𝛼) being introduced in Footnote 8, as well as 𝜏𝑓 𝛼𝑎 = 0 for all (𝑋𝛼1 , 𝑋𝛼2 ) ∉ 𝜕Ω𝜻
0 ∪𝜕Ω

𝒇
0 with 𝑋𝛼1 , 𝑋𝛼2 ∈ R denoting

the in-plane nodal coordinates in the undeformed state Ω0. The in-plane components of the expression 𝜏𝜆 sym(∇𝜏𝒘)
are calculated by

sym
(𝜏𝜆𝜏𝑤𝑎,𝑏 (𝜏𝑥1,

𝜏𝑥2)
) ≈ sym

( ∑︁
𝛼

𝜋 (𝛼)=1

𝑁𝛼,𝑏 (𝜏𝑥1,
𝜏𝑥2)𝜏𝜂𝛼𝑎 +

∑︁
𝛽

𝜋 (𝛽)=0

𝑁
𝛽
,𝑏 (𝜏𝑥1,

𝜏𝑥2)𝜏𝜇𝛽𝑎
)
, (42)

where 𝑏 matrices as common in FE codes are used to calculate the symmetric part given in Eq. (42), e.g., we get

sym

( ∑︁
𝛼

𝜋 (𝛼)=1

𝑁𝛼,𝑏 (𝜏𝑥1,
𝜏𝑥2)𝜏𝜂𝛼𝑎

)
=

∑︁
𝛼

𝜋 (𝛼)=1

1
2

(
𝑁𝛼,𝑏𝛿𝑎𝑐 + 𝑁𝛼,𝑎𝛿𝑏𝑐

)
(𝜏𝑥1,

𝜏𝑥2) 𝜏𝜂𝛼𝑐 =
∑︁
𝛼

𝜋 (𝛼)=1

𝑏𝛼𝑎𝑏𝑐 (𝜏𝑥1,
𝜏𝑥2)𝜏𝜂𝛼𝑐 . (43)

To solve the remaining integrals in space, we use the isoparametric concept for the description of the geometry, transform
the integration domain from physical coordinates (𝜏𝑥1,

𝜏𝑥2) to natural coordinates (𝜉1, 𝜉2) and use Gaussian quadrature
with only one quadrature point, e.g., for the integration of a scalar field 𝜏𝑇 (𝜏𝑥1,

𝜏𝑥2) over the element volume it follows∫
𝜏Ω𝑒

𝜏𝑇 (𝜏𝑥1,
𝜏𝑥2)𝜏ℎ(𝜏𝑥1,

𝜏𝑥2) d𝐴 =
∫
Ω△

|𝜏𝐽𝑒△ (𝜉1, 𝜉2) | 𝜏𝑇 (𝜉1, 𝜉2)𝜏ℎ(𝜉1, 𝜉2) d𝐴△ ≈ 𝑤𝑔𝜏𝐽
𝑔
△
𝜏𝑇𝑔ℎ𝑔 , (44)

with 𝜏𝐽
𝑔
△ ∈ R>0 being the determinant of the Jacobian matrix regarding to the coordinate transformation and 𝑤𝑔 ∈ R

the quadrature weight. The superscript index 𝑔 means that a variable is evaluated at the single quadrature point of the
linear element 𝑒, i.e., the quadrature point number 𝑔 is equal to the element number 𝑒, expressed as 𝑔 = 𝑒. Thus, since
the mechanical states only have to be calculated at the quadrature points with in-plane coordinates (𝜏𝑥𝑔1 , 𝜏𝑥

𝑔
2 ) at each

snapshot, we replace the continuous mapping 𝑠(𝑿, 𝑡) by the discrete mapping 𝑠 : {1, . . . , 𝑁quad} × {1, . . . , 𝑁snap} →
{1, . . . , 𝑁∗}, (𝑔, 𝜏) ↦→ 𝑠(𝑔, 𝜏) in order to link the quadrature point 𝑔 ∈ {1, 2, . . . , 𝑁quad} at snapshot 𝜏 to an entry
in the material database. The in-plane components 𝜏𝑒𝑔𝑎𝑏 of the mechanical strain states can be determined from the
in-plane coordinates of the deformation gradient at quadrature point 𝑔, which is calculated from the nodal displacements
via

𝜏𝐹
𝑔
𝑎𝑏 = 𝛿𝑎𝑏 +

∑︁
𝛼∈N(𝑔)

𝑁
𝛼𝑔
,𝑏

𝜏𝑢𝛼𝑎 . (45)

The out-of-plane component 𝜏𝑒𝑔33 can be determined from the stretch 𝜏𝜆
𝑔
3 = 𝜏ℎ𝑔/ℎ0, cf. Remark 1. In summary, the

preceding derivations ultimately lead to the discrete loss function (6), which forms the basis for the decoupled algorithm
introduced in A.2.
Remark 4. Note the following for anisotropic materials. Constitutive models are typically formulated using invariants
of the right Cauchy-Green deformation tensor C and a set of structure tensors, e.g., for transverse isotropy the set is
S := {G} with G ∈ 𝒮𝓎𝓂 [82]. Since the missing information about the orthogonal tensor R∗𝑧 ∈ 𝒮𝒪(3) characterizing
the rigid body rotation regarding the deformations of the material states, it is not possible to calculate b∗𝑧 from C∗𝑧 .
Therefore, either a total Lagrangian DDI formulation yielding T ∗𝑧 = (E∗𝑧 ,T∗𝑧) or an interpolation-based adaptation
for the updated Lagrangian DDI formulation is required. In contrast to the mechanical states, no unique deformation
gradient exists for a given material state. The authors propose assigning the closest admissible deformation gradient
F∗𝑧 ∈ 𝒢ℒ+ (3) to a material state based on those of the mechanical states, assuming that similar strain states correspond
to similar deformation states. This can be achieved by the common Log-Euclidean mean approach. Assume that there
exist e1, . . . , e𝑛 ∈ 𝒮𝓎𝓂 of the mechanical states that lie in the neighborhood of e∗𝑧 with respect to a given norm and
tolerance. For the corresponding F1, . . . ,F𝑛 ∈ 𝒢ℒ+ (3), we can exploit the Lie group structure to define a weighted
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mean Fmean = exp(∑𝑛
𝑖=1 𝑤𝑖 ln(F𝑖)), that preserves the property of having a positive determinant. Thereby, the weights

𝑤𝑖 satisfy
∑𝑛
𝑖=1 𝑤𝑖 = 1, and ln(·) and exp(·) denote the tensor logarithm and exponential, respectively. Since for any

A ∈ L2 it holds that det(exp(A)) = exp(tr(A)) > 0, the resulting Fmean automatically belongs to 𝒢ℒ
+ (3). Note that

this method requires the F𝑖 to be sufficiently close so that the principal branch of the tensor logarithm can be used
reliably. Alternative approaches, such as computing the Karcher mean on the Lie group, are available but typically
involve higher computational complexity.

A.2 Updated Lagrangian DDI algorithm

The algorithm for the updated Lagrangian formulation of the data-driven identification is shown in Alg. 1. The interested
reader is referred to Sect. 3.2.1 for a detailed discussion of the underlying equations and their derivation, which are
essential for the implementation.

Remark 5. Within this remark we give some useful hints for the decoupled algorithm.

First, the discrete mapping 𝑠(𝑔, 𝜏) must be initialized in step (I) of the Alg. 1, whereby the material states are initially
unknown. Thus, a random assignment is possible or a clustering based on the strains of the mechanical states can be
chosen. As a robust approach for this, k-means clustering is selected, where 𝑁∗ clusters are selected based on the strains
of the mechanical states [61]. After the first iteration of the DDI algorithm, the material states – comprising both stresses
and strains – are already available. However, since no constitutive model is used in this framework, it remains unclear
whether a given strain state corresponds to a tensile or compressive stress state. To address this ambiguity, it may be
beneficial to perform a one-time reinitialization of the mapping. The authors therefore suggest that this reinitialization
should rely solely on the stresses of the material states, ensuring that the range of stress values in the material states is
better represented and aligned with the expected physical behavior. This step will lead to appropriate clusters of tensile
and compressive stress states and can also enhance the convergence properties of subsequent iterations.

Then, step (II) of the Alg. 1 requires solving a large linear equation system



1𝒌 1𝒔 (𝑖)

2𝒌 2𝒔 (𝑖)

. . .
...

𝑁 snap
𝒌 𝑁 snap

𝒔 (𝑖)

1𝒔 (𝑖)𝑇 2𝒔 (𝑖)𝑇 . . . 𝑁 snap
𝒔 (𝑖)𝑇 0



·



1𝜼 (𝑖)
2𝜼 (𝑖)

...
𝑁 snap

𝜼 (𝑖)

𝝈∗(𝑖)


=



1f
2f
...

𝑁 snapf
0


, (46)

obtained from Eqs. (16) and (17) with the dimensionalities of the relevant quantities being

𝜏𝒌 ∈ R𝑀×𝑀 , 𝜏𝒔 (𝑖) ∈ R𝑀×3𝑁 ∗ , 𝜏𝜼 (𝑖) ∈ R𝑀 , 𝝈∗(𝑖) ∈ R3𝑁 ∗ , 𝜏f ∈ R𝑀 , (47)

where 𝑀 represents the number of active nodes, defined as 𝑀 := 2
��{𝛼 ∈ {1, . . . , 𝑁node} | 𝜋(𝛼) = 1}

�� ≤ 2𝑁node.
Even for nonlinear material responses, this step requires only the solution of a linear system. Note that the Lagrange
multipliers can be identified as virtual displacements enforcing equilibrium [61]. The diagonal blocks in the equation
system (46) remain constant and the off-diagonal blocks must be updated at each iteration step 𝑖 ∈ N of the DDI
algorithm. The system matrix is ill-conditioned, making the problem challenging to solve directly and necessitating the
use of iterative solvers for practical stability. Due to its sparse structure, iterative methods such as the MINRES method
are particularly suitable, leveraging the symmetry and indefiniteness of the matrix to ensure stability and efficiency.
In addition, please note the rank drop of the stiffness matrices 𝜏𝒌, i.e., rank(𝜏𝒌) = 2𝑁nodes − 3 holds, if and only if
the discrete mapping 𝜋 is not surjective, e.g. 𝜋 ≡ 1. This is due to the fact that in the two-dimensional case exactly
three rigid body motions are not prevented, resulting in three equations in Eq. (8) being trivially satisfied. In this case,
the system of equations must be partitioned or rows and columns must be eliminated in order to fix the drop in rank.
However, this case does not occur if the nodal forces 𝜏𝜻 𝛽 are present at at least two different nodes in all snapshots. In
general, the discrete mapping 𝑠(𝑔, 𝜏) is not injective, since one material state can be assigned to multiple quadrature
points at the same time. But in most cases, the mapping 𝑠(𝑔, 𝜏) is surjective, i.e., each material state is assigned to any
quadrature point at least once. Otherwise, the equation system needs to be modified by row and column elimination for
example, since the off-diagonal blocks show a rank drop. This means that an unassigned material state will either not be
updated or will be completely eliminated from the list of material states, i.e., 𝑁∗mod < 𝑁∗ holds after elimination.

In contrast, steps (III) and (IV) of the Alg. 1 are computationally inexpensive, involving straightforward computations
such as weighted averages and matrix-vector multiplications in order to calculate the mechanical stresses and material
strains.
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In step (V) of the Alg. 1, the discrete mapping 𝑠(𝑔, 𝜏) must be updated by assigning to each quadrature point 𝑔 at
snapshot 𝜏 the material state that is closest in terms of the loss function (6). This process is computationally expensive,
as it requires calculating the distance from each mechanical state to all material states stored in the material database. To
improve the efficiency of this step, high-dimensional extensions of algorithms like quad-trees or neighbor-list methods,
could be considered. The idea is to focus on spatially neighboring points rather than considering all points. This reduces
the computational cost by only evaluating interactions between points that are close in the space of interest, as suggested
by [61].

Finally, the test for convergence can be easily done, in step (VI) of the Alg. 1, by comparing the updated mapping
𝑠(𝑔, 𝜏) with the previous one.

The solution procedure of the DDI depends only on two parameters: the number 𝑁∗ of material states to be identified
and the pseudo stiffness tensor c. Some guide values for those can be found in Sect. 4.2.3 based on a hyperparameter
study. It should be noted that this stiffness does not necessarily have to be the same for all quadrature points and can
therefore be different in each element as well as in each snapshot, cf. Sect. 3.2.2 with the adapted total Lagrangian DDI
formulation. This can increase flexibility, as the individual errors between mechanical and the associated material states
are weighted differently in each element.

In conclusion, the success of the proposed method relies on a key factor as outlined in [61]: the internal richness
of individual data items, characterized by the range of 𝜏e𝑔 for a given snapshot 𝜏. This internal diversity inherently
couples distinct material and mechanical states through the principle of mechanical equilibrium, thereby ensuring that
the material behavior can be identified over a broad range of inhomogeneous9 material strains e∗𝑧 .

A.3 Adapted total Lagrangian DDI algorithm

The algorithm for the adapted total Lagrangian formulation of the data-driven identification is shown in Alg. 2.
Derivations of the corresponding equations are provided in Sect. 3.2.2. The main difference to Alg. 1 lies in the fact
that the pseudo stiffness tensor at each quadrature point is variable, i.e. it depends on the deformation gradient. This
leads, among other things, to a modified update step (55) of the strains of the material states.

9This is also necessary with regard to the use of a PANN model as a constitutive model, particularly if it is to be trained on the
basis of these determined material states, cf. Sect. 3.3.
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Algorithm 1: Plane-stress data-driven identification solver for the updated Lagrangian formulation

Require : • discretized geometry under loading in the snapshots 𝜏 ∈ {1, . . . , 𝑁snap} with numbered nodes
𝛼 ∈ {1, . . . , 𝑁node} and numbered quadrature points 𝑔 ∈ {1, . . . , 𝑁quad} of the linear elements

• connectivity encoded by 𝜏𝑏𝛼𝑔
𝑎𝑏𝑐

• nodal displacements 𝜏𝑢𝛼𝑎 and nodal forces 𝜏𝑓 𝛼𝑎 with 𝜋(𝛼) = 1
• element area 𝜏𝐽𝑔△ and thickness 𝜏ℎ𝑔 in deformed configuration
• number of material states 𝑁∗ and pseudo stiffness 𝑐𝑘𝑙𝑚𝑛

Result : • mechanical stresses 𝜏𝜎𝑔
𝑎𝑏

and Lagrangian parameter 𝜏𝜂𝛼𝑎
• database of material strains 𝑒∗𝑧

𝑘𝑙
and stresses 𝜎∗𝑧

𝑎𝑏
• discrete mapping 𝑠(𝑔, 𝜏) between mechanical and material states
• nodal forces 𝜏𝜁𝛽𝑎 with 𝜋(𝛽) = 0 from equilibrium

(I) 𝑖 = 0. Calculate mechanical strains 𝜏𝑒𝑔
𝑘𝑙

from nodal displacements. Initialize discrete mapping 𝑠(𝑔, 𝜏) (𝑖) .
(II) Solve the linear equation system for all 𝜎∗𝑧

𝑎𝑏 (𝑖)
and 𝜏𝜂𝛼𝑐(𝑖) :

−
∑︁
𝜏

∑︁
𝛼

𝜋 (𝛼)=1

∑︁
𝑔

𝑤𝑔𝜏𝐽
𝑔
△
𝜏ℎ𝑔𝜏𝑏

𝛼𝑔
𝑎𝑏𝑐

𝛿𝑠 (𝑔,𝜏 ) (𝑖)𝑧
𝜏𝜂𝛼𝑐(𝑖) = 0 , (48)

∑︁
𝛽

𝜋 (𝛽)=1

∑︁
𝑔

𝑤𝑔𝜏𝐽
𝑔
△
𝜏ℎ𝑔𝜏𝑏

𝛼𝑔
𝑎𝑏𝑐

𝑐𝑎𝑏𝑑𝑒
𝜏𝑏
𝛽𝑔
𝑑𝑒𝑓

𝜏𝜂
𝛽
𝑓 (𝑖)
+

∑︁
𝑔

𝑤𝑔𝜏𝐽
𝑔
△
𝜏ℎ𝑔𝜏𝑏

𝛼𝑔
𝑎𝑏𝑐

𝛿𝑠 (𝑔,𝜏 ) (𝑖)𝑧 𝜎
∗𝑧
𝑎𝑏 (𝑖)

= 𝜏𝑓 𝛼𝑐 . (49)

(III) Calculate the mechanical stresses.
for 𝜏 = 1, . . . , 𝑁snap and 𝑔 = 1, . . . , 𝑁quad do

𝜏𝜎
𝑔
𝑎𝑏 (𝑖)

= 𝜎
∗𝑠 (𝑔,𝜏 ) (𝑖)
𝑎𝑏 (𝑖)

+
∑︁
𝛼

𝜋 (𝛼)=1

𝑐𝑎𝑏𝑐𝑑
𝜏𝑏
𝛼𝑔
𝑐𝑑𝑒

𝜏𝜂𝛼𝑒(𝑖) (50)

(IV) Calculate the material strains.
for 𝑧 = 1, . . . , 𝑁∗ do

𝑒∗𝑧
𝑘𝑙 (𝑖)

=
1∑

𝜏

∑
𝑔
𝑤𝑔𝜏𝐽

𝑔
△
𝜏ℎ𝑔𝛿𝑠 (𝑔,𝜏 ) (𝑖)𝑧

∑︁
𝜏

∑︁
𝑔

𝑤𝑔𝜏𝐽
𝑔
△
𝜏ℎ𝑔 𝛿𝑠 (𝑔,𝜏 ) (𝑖)𝑧

𝜏𝑒
𝑔
𝑘𝑙

(51)

(V) Update discrete mapping 𝑠(𝑔, 𝜏) (𝑖) .
for 𝜏 = 1, . . . , 𝑁snap and 𝑔 = 1, . . . , 𝑁quad do

Select
(
𝑒∗𝑧
𝑘𝑙 (𝑖+1)

, 𝜎∗𝑧
𝑎𝑏 (𝑖+1)

)
closest to mechanical state

(𝜏𝑒𝑔
𝑘𝑙 (𝑖)

, 𝜏𝜎
𝑔
𝑎𝑏 (𝑖)

)
with respect to loss function 𝐿UL.

(VI) Test for convergence.
if 𝑠(𝑔, 𝜏) (𝑖+1) = 𝑠(𝑔, 𝜏) (𝑖) for all 𝜏 = 1, . . . , 𝑁snap and 𝑔 = 1, . . . , 𝑁quad then

Calculate unknown nodal forces 𝜏𝜁𝛽𝑎 with 𝜋(𝛽) = 0 from equilibrium, if requested.
exit

else
𝑖 ← 𝑖 + 1, goto (II).
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Algorithm 2: Plane-stress data-driven identification solver for the adapted total Lagrangian formulation

Require : • discretized geometry under loading in the snapshots 𝜏 ∈ {1, . . . , 𝑁snap} with numbered nodes
𝛼 ∈ {1, . . . , 𝑁node} and numbered quadrature points 𝑔 ∈ {1, . . . , 𝑁quad} of the linear elements

• connectivity encoded by 𝜏𝐵𝛼𝑔
𝐴𝐵𝑐

• nodal displacements 𝜏𝑢𝛼𝑎 and nodal forces 𝜏𝑓 𝛼𝑎 with 𝜋(𝛼) = 1
• element area 𝐽

𝑔
0,△ and thickness ℎ𝑔0,△ in undeformed configuration

• number of material states 𝑁∗ and pseudo stiffness 𝜏𝐶𝑔𝐾𝐿𝑀𝑁
Result : • mechanical stresses 𝜏𝑇𝑔

𝐴𝐵
and Lagrangian parameter 𝜏𝜂𝛼𝑎

• database of material strains 𝐸∗𝑧𝐾𝐿 and stresses 𝑇∗𝑧
𝐴𝐵

• discrete mapping 𝑠(𝑔, 𝜏) between mechanical and material states
• nodal forces 𝜏𝜁𝛽𝑎 with 𝜋(𝛽) = 0 from equilibrium

(I) 𝑖 = 0. Calculate mechanical strains 𝜏𝐸𝑔𝐾𝐿 from nodal displacements. Initialize discrete mapping 𝑠(𝑔, 𝜏) (𝑖) .
(II) Solve the linear equation system for all 𝑇∗𝑧

𝐴𝐵(𝑖)
and 𝜏𝜂𝛼𝑐(𝑖) :

−
∑︁
𝜏

∑︁
𝛼

𝜋 (𝛼)=1

∑︁
𝑔

𝑤𝑔𝐽
𝑔
0,△ℎ

𝑔
0,△

𝜏𝐵
𝛼𝑔
𝐴𝐵𝑐

𝛿𝑠 (𝑔,𝜏 ) (𝑖)𝑧
𝜏𝜂𝛼𝑐(𝑖) = 0 , (52)

∑︁
𝛽

𝜋 (𝛽)=1

∑︁
𝑔

𝑤𝑔𝐽
𝑔
0,△ℎ

𝑔
0,△

𝜏𝐵
𝛼𝑔
𝐴𝐵𝑐

𝜏𝐶
𝑔
𝐴𝐵𝐷𝐸

𝜏𝐵
𝛽𝑔
𝐷𝐸𝑓

𝜏𝜂
𝛽
𝑓 (𝑖)
+

∑︁
𝑔

𝑤𝑔𝐽
𝑔
0,△ℎ

𝑔
0,△

𝜏𝐵
𝛼𝑔
𝐴𝐵𝑐

𝛿𝑠 (𝑔,𝜏 ) (𝑖)𝑧 𝑇
∗𝑧
𝐴𝐵(𝑖)

= 𝜏𝑓 𝛼𝑐 . (53)

(III) Calculate the mechanical stresses.
for 𝜏 = 1, . . . , 𝑁snap and 𝑔 = 1, . . . , 𝑁quad do

𝜏𝑇
𝑔
𝐴𝐵(𝑖)

= 𝑇
∗𝑠 (𝑔,𝜏 ) (𝑖)
𝐴𝐵(𝑖)

+
∑︁
𝛼

𝜋 (𝛼)=1

𝜏𝐶
𝑔
𝐴𝐵𝐶𝐷

𝜏𝐵
𝛼𝑔
𝐶𝐷𝑎

𝜏𝜂𝛼𝑎(𝑖) (54)

(IV) Calculate the material strains.
for 𝑧 = 1, . . . , 𝑁∗ do

𝐸∗𝑧𝐾𝐿 (𝑖) =
(∑︁
𝜏

∑︁
𝑔

𝑤𝑔𝐽
𝑔
0,△ℎ

𝑔
0,△

𝜏𝐶
𝑔
𝐾𝐿𝑀𝑁 𝛿𝑠 (𝑔,𝜏 ) (𝑖)𝑧

)−1 ∑︁
𝜏

∑︁
𝑔

𝑤𝑔𝐽
𝑔
0,△ℎ

𝑔
0,△

𝜏𝐶
𝑔
𝑀𝑁𝑃𝑄

𝜏𝐸
𝑔
𝑃𝑄

𝛿𝑠 (𝑔,𝜏 ) (𝑖)𝑧 (55)

(V) Update discrete mapping 𝑠(𝑔, 𝜏) (𝑖) .
for 𝜏 = 1, . . . , 𝑁snap and 𝑔 = 1, . . . , 𝑁quad do

Select
(
𝐸∗𝑧𝐾𝐿 (𝑖+1) , 𝑇

∗𝑧
𝐴𝐵(𝑖+1)

)
closest to mechanical state

(𝜏𝐸𝑔𝐾𝐿 (𝑖) , 𝜏𝑇𝑔𝐴𝐵(𝑖) ) with respect to loss function 𝐿TL with adapted
pseudo stiffness.

(VI) Test for convergence.
if 𝑠(𝑔, 𝜏) (𝑖+1) = 𝑠(𝑔, 𝜏) (𝑖) for all 𝜏 = 1, . . . , 𝑁snap and 𝑔 = 1, . . . , 𝑁quad then

Calculate unknown nodal forces 𝜏𝜁𝛽𝑎 with 𝜋(𝛽) = 0 from equilibrium, if requested.
exit

else
𝑖 ← 𝑖 + 1, goto (II).
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(a) (b)
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−1 1

G
H

Figure 16: Normalized GRF noise on regular grid with 𝑁 = 4096 with decay length ℓ = 1/𝑁 projected on deformed specimen with
𝑁𝑥 = 1024 and 𝑁𝑦 = 4096.

B Gaussian random field

When introducing noise into displacement fields for a two-dimensional geometry, it is crucial to account for correlations
between the values at neighboring nodes. Using locally uncorrelated noise, such as Gaussian random variables with no
spatial correlation, risks producing unphysical configurations. Specifically, for very small elements, it is possible for
three nodes of a linear triangular element to align, causing the element’s volume to approach zero. This can lead to
numerical instabilities during simulation.

To mitigate this issue, the noise is modeled as a Gaussian Random Field (GRF). The distinguishing characteristic of a
GRF is that it is completely defined by the two-point correlation function S, whereas higher-order statistics carry no
additional information [91]. In the present work, the Fourier transform of S, also referred to as power spectrum, is
modeled for an exponential decay in physical space as

Ŝ(k) = exp(−ℓ2 |k|2) , (56)

where ˆ(·) indicates Fourier transform, |k|2 denotes the squared magnitude of the wavevectors k ∈ R2 on the regular grid
and ℓ ∈ R>0 stands for the length scale of the spatial correlation. To generate a realization of the random field in real
space, a complex field of uncorrelated random variables 𝜂 is drawn from a normal distribution with zero mean and unit
variance. After convolution with the square root of the power spectrum and the inverse Fourier transform performed,
this is expressed as

𝑓 (𝑥, 𝑦) = F −1
[√︃
Ŝ(k) 𝜂(k)

]
(57)

and subsequent normalized. Finally, the result is interpolated from the regular grid to the FE mesh by a bilinear
interpolation.

In this paper, the authors choose to generate GRFs on a square regular grid with 𝑁 = 4096 pixels each in 𝑥- and
𝑦-direction with decay length ℓ = 1/𝑁 . Afterwards, the regular domain of the GRFs with a rectangular grid 𝑁𝑥 = 1024
by 𝑁𝑦 = 4096 is selected.
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