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Abstract

We introduce Large Language Model-Assisted Preference Prediction (LAPP), a novel frame-
work for robot learning that enables efficient, customizable, and expressive behavior acqui-
sition with minimum human effort. Unlike prior approaches that rely heavily on reward en-
gineering, human demonstrations, motion capture, or expensive pairwise preference labels,
LAPP leverages large language models (LLMs) to automatically generate preference labels
from raw state-action trajectories collected during reinforcement learning (RL). These labels
are used to train an online preference predictor, which in turn guides the policy optimiza-
tion process toward satisfying high-level behavioral specifications provided by humans. Our
key technical contribution is the integration of LLMs into the RL feedback loop through
trajectory-level preference prediction, enabling robots to acquire complex skills including
subtle control over gait patterns and rhythmic timing. We evaluate LAPP on a diverse
set of quadruped locomotion and dexterous manipulation tasks and show that it achieves
efficient learning, higher final performance, faster adaptation, and precise control of high-
level behaviors. Notably, LAPP enables robots to master highly dynamic and expressive
tasks such as quadruped backflips, which remain out of reach for standard LLM-generated
or handcrafted rewards. Our results highlight LAPP as a promising direction for scalable
preference-driven robot learning.

Figure 1: Large Language Model-Assisted Preference Prediction (LAPP) takes in language behavior
instructions and generates preference feedback to guide reinforcement learning training from raw state-action
robot trajectories.

1 Introduction

Designing effective reward functions remains a fundamental challenge in training robots with reinforcement
learning (RL) (Ratner et al., 2018; Dang et al., 2023; Eschmann, 2021; Sorg et al., 2010; Evans et al., 2021;
Ng et al., 1999; Grzes & Kudenko, 2008; Devlin & Kudenko, 2012). Reward functions define the objectives
and constraints of the learning process, but are often hand-crafted through trial and error, a process that is
labor-intensive, error-prone, and difficult to scale. Poorly designed rewards can lead to suboptimal or unsafe
behaviors, making robust and expressive policy learning especially difficult in real-world robotic systems.
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Several alternatives have been proposed to reduce this burden. Inverse RL infers reward functions from
expert demonstrations (Arora & Doshi, 2021; Ng et al., 2000; Abbeel & Ng, 2004; Zhou & Small, 2021),
but requires significant human effort and data collection. More recently, large language models (LLMs) and
vision-language models (VLMs) have been used to automate aspects of reward design (Ma et al., 2023; Yu
et al., 2023; Xie et al., 2024; Yu et al., 2024; Wang et al., 2024). These methods typically refine reward
functions by analyzing task descriptions or environment code. While promising, they often fail to capture
nuanced and high-level behavioral qualities, such as rhythmic locomotion or expressive timing, which are
hard to specify with explicit reward terms.

Another line of work bypasses explicit reward engineering by learning from human or AI preferences over
trajectory pairs (Christiano et al., 2017; Early et al., 2022; Kim et al., 2023; Wang et al., 2024; Venkataraman
et al., 2024). By querying which of two behaviors is preferable, these methods convert preferences into
supervision for training reward models. However, preference queries can be costly and cognitively demanding
for humans, and recent VLM-based methods remain limited to relatively simple tasks with low-dimensional
action spaces. These approaches also typically assume a Markovian decision process, which may not hold
for long-horizon and high-dimensional control tasks.

In this work, we propose LLM-Assisted Preference Prediction (LAPP) (Fig. 1), a novel framework that
enables robots to learn efficient, customizable, and expressive behaviors from human language specifications.
The core idea of LAPP is to leverage LLMs to generate preference labels on full state-action trajectories,
which are then used to train an online transformer-based reward predictor. This predictor produces dense,
trajectory-informed reward estimates that guide policy optimization and are continually updated with new
policy training and rollouts. Unlike prior approaches, LAPP integrates the LLM-generated feedback directly
into the RL loop, enabling closed-loop refinement of learned behaviors.

We evaluate LAPP across a suite of challenging control tasks, including quadruped locomotion and dexterous
manipulation with up to 52-dimensional action spaces. LAPP not only accelerates training and improves final
performance compared to state-of-the-art baselines, but also enables nuanced control over high-level behavior
attributes, such as gait symmetry, timing, and cadence, through simple languag inputs. LAPP also enables
faster adaptation to unseen environmental conditions. Notably, LAPP successfully solves exploration-heavy
tasks such as quadruped backflips, which were previously infeasible with human-designed, LLM-generated,
or VLM-derived reward functions.

We summarize our key contributions as follows:

1. A novel learning framework (LAPP) that uses LLM-generated preference feedback over state-action
trajectories to guide reinforcement learning with language behavior instructions.

2. A transformer-based online preference predictor that models trajectory-level feedback and integrates
it as dense supervision into the RL policy learning loop through iterative policy & reward model
improvements.

3. Empirical results showing the LAPP outperforms baselines in training speed, final performance,
adaptation efficiency, and controllability of high-level behaviors across complex robotic tasks.

4. Ablation studies dissecting architectural and algorithm design choices to reveal how trajectory-level
modeling and online reward model updates contribute to LAPP’s success.

2 Related Work

Foundation Models for Robotics. Recent advances in foundation models have spurred applications in
robotic action generation (Octo Model Team et al., 2024; Szot et al., 2023; Zitkovich et al., 2023; Tang et al.,
2023), simulation (Authors, 2024), task planning (Lin et al., 2023; Ahn et al., 2022; Singh et al., 2023; Huang
et al., 2024; Zhang et al., 2023; Hao et al., 2023; Liu et al., 2023; Ha et al., 2023; Wang et al., 2023e;a; Ding
et al., 2023; Silver et al., 2024; Xie, 2020; Huang et al., 2023; Liang et al., 2023), and sim-to-real transfer (Ma
et al., 2024). A growing line of work focuses on using language or vision-language models to automate aspects
of reward engineering (Ma et al., 2023; Yu et al., 2023; Xie et al., 2024; Yu et al., 2024) or generate training
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environments (Liang et al., 2024; Wang et al., 2023b;d; Faldor et al., 2024; Wang et al., 2023c). However,
these approaches remain limited in specifying high-level behaviors, handling hard exploration challenges,
and scaling to high-dimensional action spaces.

Reward Signal Design for Challenging Robotic Tasks. Reward design is a crucial component of RL
(Ratner et al., 2018; Dang et al., 2023; Eschmann, 2021; Sorg et al., 2010; Evans et al., 2021; Xia et al.,
2024). To address sparse reward issues, prior works explore reward shaping (Grzes & Kudenko, 2008; Devlin
& Kudenko, 2012; Devidze et al., 2022; Marom & Rosman, 2018; Hu et al., 2020; Gupta et al., 2022; Grześ,
2017; Zou et al., 2019; Goyal et al., 2019; Memarian et al., 2021; Hussein et al., 2017; Ng et al., 1999).
However, complex agile motions, such as rapid locomotion (Margolis et al., 2024) and backflips (Tang et al.,
2021; Kim et al., 2024a), remain difficult to learn with a single reward function.

Reward design remains a bottleneck for complex RL tasks, especially when rewards are sparse, brittle, or
difficult to engineer. Prior efforts explore reward shaping (Grzes & Kudenko, 2008; Devlin & Kudenko, 2012;
Devidze et al., 2022; Marom & Rosman, 2018; Hu et al., 2020; Gupta et al., 2022; Grześ, 2017; Zou et al.,
2019; Goyal et al., 2019; Memarian et al., 2021; Hussein et al., 2017; Ng et al., 1999), curriculum learning
(Tang et al., 2021; Margolis et al., 2024; Ryu et al., 2024), and multi-objective optimization (Kim et al.,
2024a; Kyriakis & Deshmukh, 2022; Van Moffaert et al., 2013; Basaklar et al., 2022; Xu et al., 2020; Cai
et al., 2024; Abdolmaleki et al., 2020; Yang et al., 2019; Hayes et al., 2022; Huang et al., 2022). Inverse RL
methods aim to infer reward signals from demonstrations (Arora & Doshi, 2021; Ng et al., 2000; Hadfield-
Menell et al., 2016; Zakka et al., 2022; Brown et al., 2018; Kumar et al., 2023; Das et al., 2021; Abbeel &
Ng, 2004; Zhou & Small, 2021), but require curated expert data.

While recent works attempt to automate reward or curriculum generation using LLMs (Ma et al., 2023; Liang
et al., 2024), they still depend on explicit reward decompositions or low-level state supervision which can be
difficult to obtain for complex tasks and high-level behavior specifications. Our method complements these
advances by using LLMs to generate implicit preference feedback. As our experiments show, our method
achieves the best performance when combined with previous state-of-the-art reward designs.

Human-Guided Machine Learning. Integrating human guidance into machine learning has been widely
explored to improve training efficiency and model performance (Amershi et al., 2014; Gil et al., 2019; Wu
et al., 2022; Zhang et al., 2019). Various methods incorporate human demonstrations (Pomerleau, 1988;
Schaal, 1996), instructions (Zhou & Small, 2021; Saran et al., 2021), and corrections (Chai & Li, 2020; Ji
et al., 2024) to enhance imitation learning (Pomerleau, 1988; Schaal, 1996; Saran et al., 2021) or inverse RL
(Abbeel & Ng, 2004; Zhou & Small, 2021). Other works model human feedback as reward functions (Knox
& Stone, 2008; Warnell et al., 2018) or advantage functions (MacGlashan et al., 2016; Arumugam et al.,
2019) to guide RL. Recent advancements extend these algorithms to continuous action spaces (Sheidlower
et al., 2022), multi-agent scenarios (Ji et al., 2024), and real-time human feedback (Zhang et al., 2024a;b).

The most relevant works to ours are those that learn from human preferences (Wirth et al., 2017; Akrour
et al., 2011; Daniel et al., 2015; Fürnkranz et al., 2012; Ibarz et al., 2018; Wilson et al., 2012; Wirth et al.,
2016; Kim et al., 2024b; Dong et al., 2023; Liu et al., 2024; Aroca-Ouellette et al., 2024; Akrour et al., 2012;
Liu et al., 2020; Lee et al., 2021b; Knox et al., 2022; Ouyang et al., 2022; Park et al., 2022; Verma & Metcalf,
2022; Christiano et al., 2017), with applications in LLM fine-tuning (Brown et al., 2020), summarization (Wu
et al., 2021), browser-assisted question answering (Nakano et al., 2021), robotic manipulation (Hejna III &
Sadigh, 2023), and locomotion (Yuan et al., 2024). Yu et al. (2024) uses human preference to select the
reward functions generated by a LLM, while the human preference is not directly predicted as a preference
reward to guide the policy optimization.

Our work builds on reinforcement learning from human feedback (RLHF) (Christiano et al., 2017), where
human preferences are used to train MLP-based preference predictors for Markovian rewards. Later works ex-
tend this to non-Markovian settings with LSTMs (Early et al., 2022) and importance-weighted rewards using
Preference Transformers (Kim et al., 2023). However, RLHF methods require extensive human annotation,
with human annotators evaluating thousands of trajectory pairs. Recent research proposes Reinforcement
Learning from AI Feedback (RLAIF) (Bai et al., 2022; Lee et al., 2024; Wang et al., 2024; Venkatara-
man et al., 2024), replacing human annotators with AI models. However, these approaches are limited to
Markovian rewards and have only been tested in low-dimensional robotic tasks. Our work not only reduces
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Figure 2: LAPP generates preference feedback from an LLM based on rollout trajectories pairs of raw state
and actions as well as a high-level behavior instruction. A transformer-based reward predictor is trained using
these preferences while simultaneously optimizing a robot policy to maximize a weighted sum of environment
rewards and predicted preference rewards.

annotation cost but allows for preference-driven RL in more complex task domains than those explored in
existing RLHF or RLAIF frameworks.

Preference Feedback for Robot Learning. Learning from human or AI preferences has emerged as an
alternative to explicit reward design (Christiano et al., 2017; Early et al., 2022; Kim et al., 2023; Yuan et al.,
2024). These methods train reward models using preference labels over trajectory pairs, typically annotated
by humans. While effective, annotation costs remain high.

More recent works adopt AI-generated feedback in place of human raters, such as RL-VLM-F (Wang et al.,
2024; Venkataraman et al., 2024), which uses vision-language models to rank state images. However, such
models operate under a fixed preference criterion throughout the entire policy learning process and assume
Markovian rewards, limiting them to relatively simple low-DoF tasks like CartPole or tabletop manipulation.

LAPP offers advancements in this direction in several key aspects. First, LAPP is the first work to operate
on raw state-action trajectories to provide effective preference feedback from LLMs. This method avoids
reliance on vision-based snapshots to query VLMs, which currently come with much higher costs than LLMs
and still do not yet demonstrate strong reasoning capabilities, hence limiting the task complexity they can
solve. Second, LAPP models both Markovian and non-Markovian preference rewards using transformer
architectures to allow reasoning over long temporal sequences.

Moreover, LAPP enables dynamic preference shaping by prompting LLMs to evolve their evaluation criteria
as training progresses, while prior works (Wang et al., 2024; Venkataraman et al., 2024) rank the states
with a static standard. To our knowledge, LAPP is the first method to fully automate preference alignment
via LLMs for training policies in complex and high-dimensional tasks, including quadruped backflips and
dexterous hand manipulation.

3 Preliminaries

We consider an agent interacting with an environment over a sequence of discrete timesteps in a RL framework
(Sutton & Barto, 2018). At each timestep t, the agent receives an observation ot of the current state st
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and selects an action at based on its policy π. The environment then provides a reward rt based on the
pre-designed reward functions and transitions the agent to the next state st+1. The goal of RL is to optimize
π to maximize the expected return Rt =

∑∞
k=0 γkrt+k where γ is the discount factor.

However, designing a reward function that precisely captures high-level behavioral objectives or human
preferences remains challenging. To address this, preference-based RL learns a reward model that predicts
human preferences instead of relying on manually defined rewards. In this setting, we consider a pair of
trajectory segments (σ0, σ1) with length H: σ = {(s1, a1), ..., (sH , aH)}. A preference relation σi ≻ σj

indicates that segment σi is preferable over segment σj . Given a pair (σ0, σ1), a human or AI provides a
preference label y ∈ {0, 1, 0.5}:

y =


0 , σ0 ≻ σ1

1 , σ1 ≻ σ0

0.5 , σ0 and σ1 are equally preferable

The preference judgments are recorded in a dataset D of labeled preference triples (σ0, σ1, y).
To obtain a preference-based reward model r̂, prior works (Christiano et al., 2017; Ibarz et al., 2018; Lee
et al., 2021b;a; Hejna III & Sadigh, 2023; Park et al., 2022) adopt the Bradley-Terry model (Bradley &
Terry, 1952), assuming Markovian rewards (i.e. the reward depends only on the current state and action).
The probability of preferring one segment over another is modeled as:

P̂
[
σ1 ≻ σ2]

=
exp

∑
r̂

(
s1

t , a1
t

)
exp

∑
r̂ (s1

t , a1
t ) + exp

∑
r̂ (s2

t , a2
t )

(1)

However, Markovian rewards struggle with long-horizon tasks where preferences depend on past trajectories
rather than only the current state-action pair. To address this, recent works (Kim et al., 2023; Early
et al., 2022) propose non-Markovian rewards, where r̂ considers the full preceding sub-trajectory segment
{(si, ai)}t

i=1:

P̂ [σ1 ≻ σ0] = exp r̂({(s1
i , a1

i )}t
i=1)∑

j∈{0,1} exp r̂({(sj
i , aj

i )}t
i=1)

(2)

The reward predictor r̂ is then trained via supervised learning to fit the dataset D by minimizing the
cross-entropy loss:

LCE(r̂) = −
∑

(σ1,σ2,y)∈D

(1 − y) log P̂
[
σ0 ≻ σ1]

+ y log P̂
[
σ1 ≻ σ0]

(3)

To mitigate the noisy LLM outputs, We assume that the LLM has ϵ = 15% of chance to provide preference
feedback uniformly at random. Therefore, the adjusted preference probability is:

P̂ ′ [
σ0 ≻ σ1]

= (1 − ϵ)P̂
[
σ0 ≻ σ1]

+ ϵ · 0.5, (4)

where ϵ = 0.15 is the error rate. Consequently, We have:

P̂ ′ [
σ1 ≻ σ0]

= 1 − P̂ ′ [
σ0 ≻ σ1]

. (5)

Therefore, the adjusted cross-entropy loss becomes:

LCE
ϵ (r̂) = −

∑
(σ0,σ1,y)∈D

[
(1 − y) log P̂ ′ [

σ0 ≻ σ1]
+ y log P̂ ′ [

σ1 ≻ σ0]]
= −

∑
(σ0,σ1,y)∈D

[
(1 − y) log

(
(1 − ϵ)P̂

[
σ0 ≻ σ1]

+ ϵ · 0.5
)

+ y log
(
1 −

(
(1 − ϵ)P̂

[
σ0 ≻ σ1]

+ ϵ · 0.5
))]

.

(6)

Once trained, the reward predictor r̂ can be used to guide policy optimization, where an RL algorithm
maximizes the expected return from the learned preference rewards.
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4 LLMs-Assisted Preference Prediction

LAPP is a novel framework that enables preference-driven RL by integrating LLM-generated feedback into
the policy training loop. It consists of three main components: 1) Behavior Instruction: a prompting
strategy to elicit trajectory preferences from LLMs given language description of task objectives and preferred
behaviors; 2) Preference Predictor Training: an ensemble of transformer-based models that learn to
predict preference rewards; and 3) Preference-Driven Reinforcement Learning: a robot policy is
optimized using both environment rewards and predicted preference rewards. An overview of LAPP is
shown in Fig. 2.

4.1 Behavior Instruction: Generating Preference Labels from State-Action Trajectories

Conventional RLHF frameworks rely on human annotators to label trajectory preferences. However, this
process is labor intensive. To reduce this burden, LAPP replaces human annotators with LLMs by prompting
them to generate preference labels for pairs of trajectory segments σ0 and σ1.

Figure 3: Behavior Instruction Prompt Exam-
ple. The LLM prompt consists of three sections: (1)
defining the LLM’s role and the robotic task (blue
box), (2) specifying the state variables and some evalu-
ation criteria of preference (green box), and (3) estab-
lishing rules and semantics for generating preference
labels (purple box).

Fig. 3 illustrates an example of a behavior instruc-
tion prompt. The first part defines the LLM’s role
the robot’s goal and desired behavior (e.g., “walk
forward with a bounding gait”). The second part
provides numerical values and their descriptions of
each trajectory (e.g., base velocity, orientation, foot
contacts). The third part defines how preferences
should be evaluated and formatted.

Unlike prior work that uses video clips (Christiano
et al., 2017; Kim et al., 2023) for human anno-
tation, we feed LLMs structured numerical state-
action logs, since the current multimodal foundation
models such as GPT-4o lacks fine-grained video un-
derstanding with high costs and slow responses.

Notably, to enhance learning efficiency, we encour-
age the LLM to refer to our provided evaluation
criteria and generate adaptive evaluation criteria,
allowing the LLM to dynamically adjust its pref-
erences as training progresses. For instance, in
quadruped locomotion, early-stage training should
prioritize learning to stand, followed by developing
stable movement, and ultimately refining gait pat-
terns and command adherence. Instead of providing
these stages explicitly by humans, our prompts ask
the LLM to actively decide the important factors for
different training stages by itself.

LAPP supports batched labeling of five trajectory
pairs per prompt which can significantly reduce API
latency and token costs. the output consists of pref-
erence labels in 0, 1, 2, 3, indicating whether trajec-
tory σ0 is better, worse, equally preferable, or in-
comparable. To promote clear supervision, we encourage the LLM to avoid ambiguous labels. All labels are
stored as triples (σ0, σ1, y) in a growing preference dataset D. Details of all state-action variables used for
all tasks and full prompts can be found in Appendix A.1.
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Algorithm 1: LAPP - Preference Predictor Training
1 Require: Ensemble of preference predictors {r̂i}, preference

predictor training dataset Dp

2 Hyperparameters: Minimum iteration Nmin, Maximum
iteration Nmax, pool of predictors number M , selected predictors
number C, overfitting scale α, LLM feedback error rate ϵ.

3 //Split into training and validation sets
4 Dtrain

p , Dval
p ← split(Dp)

5 val_loss_list← [ ]
6 for M predictors do
7 Randomly initialize r̂i

8 for m← 0 to Nmax − 1 epochs do
9 // Sample from Dtrain

p

10 (strain
t , atrain

t ) ∼ Dtrain
p

11 // Predict preference reward
12 rtrain

t = r̂i(strain
t , atrain

t )
13 // Train the preference predictor
14 Calculate loss LCE

train(rtrain
t ) with Equation 6

15 r̂i ← Adam
(

r̂i,∇r̂i
LCE

train(rtrain
t )

)
16 // Sample from Dval

p

17 (sval
t , aval

t ) ∼ Dval
p

18 // Predict preference reward
19 rval

t = r̂i(sval
t , aval

t )
20 Calculate loss LCE

val (rval
t ) with Equation 6

21 if LCE
val (rval

t ) > α · LCE
train(rtrain

t ) and n > Nmin then
22 val_loss_list.append (LCE

val (rval
t ))

23 continue;
24 if m == Nmax − 1 then
25 val_loss_list.append (LCE

val (rval
t ))

26 // Select the C predictors with smallest validation losses
27 r̂i1 , r̂i2 , ..., r̂iC

← arg minC
r̂i∈{r̂1,...,r̂M } val_loss_list[i]

28 // Use the mean value of the selected predictors as the final
predictor

29 r̂ = mean (r̂i1 , r̂i2 , ..., r̂iC
)

30 return r̂

4.2 Preference Predictor Training: Modeling LLM Feedback

LAPP models LLM-generated preferences using either Markovian or non-Markovian reward functions, de-
pending on task complexity. For tasks like flat-ground locomotion, a Markovian reward model following the
Bradley-Terry formulation (Eq. 1) suffices. However, for more challenging tasks such as quadruped backflips
or gait cadence control, a non-Markovian reward function (Eq. 2) is necessary to capture long-term depen-
dencies in behavior. Training the predictor for non-Markovian rewards requires additional computational
resources, as it must process historical states to infer the reward at a given timestep. LAPP adopts the
appropriate reward model based on task requirements to balance the preference prediction accuracy and the
predictor training efficiency.

The preference dataset Dp = {(σ0, σ1, y)} is split into training (Dtrain
p ) and validation (Dval

p ) sets at a 9 : 1
ratio. We maintain an ensemble of M preference predictor networks, each trained to minimize the cross-
entropy loss (Eq. 3). To prevent overfitting, training stops early if the validation loss exceeds α times the
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training loss and the training has gone through a minimum number of iterations Nmin. If no early stopping
is triggered, the training will finish after Nmax iterations. After training all M predictors, we select the
top C models with the lowest validation losses and compute the final preference reward as their ensemble
average. In practice, we set M = 9, C = 3, Nmin = 30, Nmax = 90, and α = 1.3. The full training procedure
is detailed in Algorithm 1. This ensemble approach can help increase robustness to LLM label noise.

4.3 Preference-Driven Reinforcement Learning

Algorithm 2: LAPP
1 Require: Robot behavior prompt prompt, preference generator

LLM LLM , environment E, policy π, preference predictor r̂,
preference predictor training dataset Dp, preference data buffer
Bp

2 Hyperparameters: Policy optimization epoch number N ,
preference predictors update interval epoch number M , per
epoch trajectories pairs collection number K, per epoch rollouts
number S, steps in each epoch T , preference reward scale β

3 Initialization: Randomly initialize π, r̂.
Dp ← {zeros triplei}

|Dp|
i=1 , Bp ← {zeros triplei}M∗K

i=1 .
4 // Collect initial preference dataset
5 Rollout π and sample |Dp| trajectories pairs {(σ0

i , σ1
i )}|Dp|

i=1 .
6 {yi}

|Dp|
i=1 ∼ LLM

(
{σ0

i , σ1
i }

|Dp|
i=1 , prompt

)
7 Dp ← {(σ0

i , σ1
i , yi)}

|Dp|
i=1

8 Update r̂ with Algorithm 1.
9 obs ∼ E.reset() // reset E, get initial observation

10 for i← 0 to N − 1 epochs do
11 //rollout π in E
12 for T steps do
13 a ∼ π(obs) // sample action from policy
14 rE ∼ E(obs) // get environment reward rE

15 rp ∼ r̂(obs) // predict preference reward rp

16 r = β · rp + rE // calculate weighted sum
17 Update π with PPO algorithm (Schulman et al., 2017)
18 // Sample K pairs from S rollouts
19 {(σ0

k, σ1
k)}K

k=1 ∼ {σs}S
s=1

20 // Push into the preference data buffer
21 Push {(σ0

k, σ1
k, None)}K

k=1 into Bp

22 // Update the preference dataset
23 if (i+1) % M == 0 then
24 // Generate preference labels
25 {yk}M∗K

k=1 ∼ LLM
(
{(σ0

k, σ1
k)}M∗K

k=1 , prompt
)

26 // Place preference labels into the buffer
27 Bp ← {(σ0

k, σ1
k, yi)}M∗K

k=1
28 // Update preference dataset
29 Dp ← {triplek|triplek ∈ Dp}

|Dp|
k=M∗K+1 ∪Bp

30 // Update preference predictor
31 Update r̂ with Algorithm 1.
32 Bp ← {}

33 return π
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LAPP continuously aligns robot behaviors with high-level task specifications throughout RL training by
iteratively updating both the preference predictor and the policy network. Unlike previous RLHF approaches
(Christiano et al., 2017; Kim et al., 2023) that train static preference models, LAPP dynamically refines
preferences during training.

Initially, the policy generates rollout trajectory pairs {σ0
i , σ1

i }, which are evaluated by the LLM to generate
preference labels {yi}. To mitigate noisy outputs which could pose potential risks to training stability, we
sample 15 preference labels for each trajectory pair and calculate the mode of them as the final selected
preference labels {yi}. The labeled data is stored in an initial preference dataset Dp = {(σ0

i , σ1
i , yi)}

|Dp|
i=1 ,

which is used to train the initial preference predictor via Algorithm 1.
During RL training, the reward at each timestep is computed as a weighted sum of the predicted preference
reward rp and the environment reward rE defined by built-in explicit reward functions in our evaluation
suites:

r = βrp + rE (7)

where β balances their contributions. We set the β to be 1.0 in all the tasks except the Backflip. The
Backflip task has some reward items with large scales, so the β is set to 50.0 to ensure the effective influence
of the preference rewards. We encode the key objectives from the environment rewards into LLM prompts
as human languages to have LLM understand the key objectives of the task, such as following the speed
commands for locomotion. Additionally, LAPP prompts LLMs to provide effective feedback on high-level
behavior specifications that are difficult or impossible to ground into environment reward functions, such
as“having a natural trotting gait”. The policy is optimized using PPO (Schulman et al., 2017), while new
trajectory pairs are continuously collected. Every M epochs, newly collected trajectories are evaluated by
the LLM, added to Dp, and used to retrain the preference predictor. LAPP only uses the latest labeled
trajectories to retrain the preference predictor. As shown in our ablation studies, this design provides higher
performance than including all past trajectories. LAPP’s online preference learning allows the policy to
progressively align with LLM preferences based on its dynamic evaluation criteria according to different
learning stages. The full RL procedure is detailed in Algorithm 2, and the environment rewards rE of all
the tasks can be found in Appendix A.2.

4.4 Network Architectures

The preference predictor is a transformer network (Waswani et al., 2017) based on the GPT architecture
(Radford, 2018) with 6 masked self-attention layers. Inputs are embedded into a 128-dimensional space with
sinusoidal positional encodings and processed by 8-headed attention layers. Each block includes a 2-layer
MLP with GELU activations (Hendrycks & Gimpel, 2016) and layer normalization (Ba, 2016) to the output
tensor from the last self-attention block. A final decoder outputs a scalar reward.

For Markovian rewards, the input sequence length is 1 and the casual mask in the self-attention layer is
removed. For non-Markovian rewards, the input sequence length is 8, with zero-padding applied for shorter
trajectories.

For quadruped tasks, the policy is an MLP with layers [512, 256, 128] and ELU activations (Clevert, 2015),
outputting 12 target joint angles. A PD controller computes the torque commands. For dexterous manipu-
lation, we use the same MLP architecture. The output is a 52-dimensional joint displacement vector for two
26-DoF Shadow Hands (ShadowRobot, 2005).

5 Experiments

We evaluate LAPP on a diverse set of quadruped locomotion and dexterous manipulation tasks to assess its
ability to:

1. improve both training efficiency and task performance,

2. enable high-level behavior control via language instructions, and
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3. solve highly challenging tasks that are very difficult or even infeasible with traditional reward engi-
neering.

Figure 4: Simulation Tasks. (a) Quadruped locomotion. The robot learns to walk forward across various
terrains following given velocity commands. The terrains include the flat plane, stairs pyramids, discrete
obstacles, slope pyramids, and wave-pattern hills. (b) Dexterous manipulation. Each dexterous hand has
26 degrees of freedoms. Kettle requires the robot to pick up the kettle with one hand, and the cup with
another hand, and then pour water into the kettle. Hand Over requires one hand to pass a ball to another
hand. Swing Cup requires two hands to hold the cup and rotate it for 180◦. (c) Quadruped backflip. The
robot jumps in the air and rotate backwards for 360◦, and then land on the ground.

Additionally, we conduct ablation studies to analyze key design choices in LAPP, identifying the factors
contributing to its performance gains. Finally, we deploy the trained policies on a physical quadruped robot
across various terrains and tasks to demonstrate LAPP’s real-world applicability.

We use GPT-4o mini (Achiam et al., 2023) (gpt-4o-mini-2024-07-18 variant) as the LLM backbone for
LAPP. A full training run for each policy (5000 epochs) costs approximately $2.5 to $3, which is significantly
lower than the $40 to $50 required for the larger GPT-4o variant, while still achieving satisfactory results.
Since LAPP involves frequent online LLM queries, its ability to succeed with a smaller and cheaper LLM
is crucial for broader practical adoption. For the Eureka baseline, we use GPT-4o (gpt-4o-2024-08-06
variant) to ensure a faithful reproduction of its full capabilities from the original work. Each evolutionary
reward search with Eureka costs approximately $3.

5.1 Baselines

PPO. This baseline uses a well-tuned Proximal Policy Optimization (PPO) implementation (Rudin et al.,
2022; Schulman et al., 2017). In each task, PPO is trained with the same environment reward functions
as LAPP. These reward functions are directly adopted from state-of-the-art policies designed by expert
robot learning researchers, representing the current best outcomes from human reward engineering. For a
fair comparison, PPO shares all hyperparameters with LAPP. The only difference is that PPO does not
incorporate preference rewards, allowing us to isolate and analyze the effect of LAPP’s preference-guided
learning design.

Eureka. Evolution-driven Universal Reward Kit for Agents (Eureka) (Ma et al., 2023) is a recent LLM-
based approach for automated reward function design. It prompts an LLM with reward design guidelines
and environment source code to generate executable Python reward functions. Eureka then performs an
evolutionary search to refine the reward function over multiple iterations based on observed training per-
formance. By following the original implementation, we conduct 5 evolutionary search iterations with 16
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Figure 5: Training Efficiency. Training with LAPP converges faster in the Plane, Stairs, Obstacles, Hand
Over, Swing Cup and Kettle tasks, while also exhibiting more stable performance post-convergence in Swing
Cup. In the Slope and Wave tasks, LAPP performs similarly to baselines as these tasks are relatively easier
for exploration, converging quickly for all algorithms.

reward samples per iteration. Out of the 80 = 16× 5 reward functions, the best-discovered reward function
is then used to train the policy with PPO using the same hyperparameters as the PPO baseline.

5.2 Simulation Experiments

Tasks: We evaluate LAPP on five quadruped locomotion tasks, three dexterous manipulation tasks, and one
quadruped backflip task, as shown in Fig. 4. The Unitree Go2 robot (Robotics, 2023) is used for quadruped
experiments, while the Shadow Dexterous Hand (ShadowRobot, 2005; Andrychowicz et al., 2020) is used for
dexterous manipulation. The locomotion and manipulation tasks are established RL benchmarks from prior
works (Ma et al., 2023; 2024; Rudin et al., 2022). The quadruped backflip task is an extremely challenging
control problem, previously studied in multi-objective RL (Kim et al., 2024a). While some RLHF studies
have explored backflips, they have primarily used the Hopper model in Gym-Mujoco (Christiano et al., 2017;
Kim et al., 2023), which is significantly easier due to its lower degrees of freedom (3 DoFs) with no real-world
physical counterpart.

The quadruped locomotion tasks are derived from massively parallel RL experiments in Rudin et al. (2022)’s
prior work. As shown in Fig. 4(a), we evaluate LAPP on five terrain types including a flat plane, stairs
pyramids, discrete obstacles, slope pyramids, and a periodic wave terrain (with periodic wave-pattern hills).

The dexterous manipulation tasks are from the Bidexterous Manipulation (Dexterity) benchmark (Chen
et al., 2022) and are also evaluated in Eureka (Ma et al., 2023). As shown in Fig. 4 (b), we evaluate LAPP
on the Kettle, Hand Over, and Swing Cup tasks. Kettle requires one hand to hold a kettle and pour water
into a cup held in the other hand. Hand Over requires to hand over a ball from one hand to another hand.
Swing Cup requires the two hands to collaborate to turn a cup for 180◦.

Finally, the quadruped backflip task (Fig. 4 (c)) requires the Unitree Go2 robot to perform a 360◦ backward
rotation mid-air and land successfully. Unlike Hopper-based backflip tasks in prior RLHF studies (Christiano
et al., 2017; Kim et al., 2023), which focus on low DoFs and lightweight dynamics, our setup utilizes the
Go2’s official simulator (Robotics, 2023), incorporating realistic physical parameters, which makes the task
significantly more challenging for RL.
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Lapp improves training efficiency. Fig. 5 shows the learning curves of LAPP, Eureka, and PPO across
five locomotion tasks and three dexterous manipulation tasks. Locomotion tasks are evaluated with a fixed
velocity command of 1.0 m/s (Stairs) or 1.5 m/s (other terrains). For manipulation tasks, we report success
rate progression throughout training.

Figure 6: Convergence Success Rate. LAPP
achieves higher success rates in Kettle, Hand Over,
and Swing Cup after the training converges. It shows
that the preference rewards can continuously refine the
robot motions to improve the performance beyond the
reach of explicit reward shaping.

LAPP demonstrates faster convergence in flat-plane,
stairs, and discrete obstacle locomotion, as well as
all manipulation tasks, achieving higher final success
rates. These tasks pose non-trivial exploration chal-
lenges, where LAPP accelerates learning by dynam-
ically adjusting preference rewards. This flexibil-
ity prioritizes different behaviors at different train-
ing stages, so that policy exploration can be guided
more effectively. In contrast, Eureka struggles with
reward balancing, as it relies on a static reward func-
tion throughout the training process. While this
ensures a well-calibrated reward function, it often
results in inferior performance compared to LAPP.

Interestingly, in the Hand Over task, Eureka con-
verges slower than PPO with human-designed re-
wards. This occurs because Eureka’s evolutionary
search optimizes for final performance as the fitness
score rather than training efficiency. Therefore, this
method can help improve the policy performance, but it may not help with training efficiency.

For relatively easier tasks like Slope and Wave, LAPP exhibits similar performance to baselines. This is
because randomized robot initialization on smooth slopes can naturally lead to sliding motions to facilitate
early exploration of velocity tracking rewards. As a result, all methods converge within 300 epochs in these
tasks, suggesting no significant advantage for LAPP in environments where task exploration is inherently
easier.

Lapp achieves higher convergence performance. Although well-designed reward functions from human
experts or LLMs can effectively train quadruped robots to follow velocity commands across various terrains,
they often fail to reach optimal performance in more complex dexterous manipulation tasks such as Kettle,
Hand Over, and Swing Cup. As shown in Fig. 6, LAPP significantly improves success rates over PPO desipte
sharing the same environment reward functions, increasing from 92% to 99% in Kettle, 91% to 97% in Hand
Over, and 96% to 99% in Swing Cup. These gains stem from the continuous motion refinement enabled by
LAPP’s dynamically updated preference predictor.

Compared to Eureka, LAPP achieves a 6% higher success rate in Kettle and a 5% improvement in Hand
Over. In the Swing Cup task, both LAPP and Eureka reach near-optimal 99% success rates, but LAPP
converges faster and maintains more stable performance over extended training epochs as in Fig. 5.

LAPP enables behavior control via instruction. Traditional RL can train robots to complete tasks
but cannot typically control how they perform them in a way that aligns with high-level human preferences.
Can LAPP guide robot behaviors using high-level specifications in the behavior instruction prompt? To
investigate this question, we design two experiments: 1) enforcing a bounding gait in quadruped forward
locomotion, and 2) controlling gait cadence to be either higher or lower in quadruped forward locomotion.

A bounding gait requires the quadruped’s front and rear feet to make simultaneous ground contact in pairs.
To quantify how closely a robot’s gait adheres to this pattern, we adopt a synchronization error definition
as in Eq. 8:

sync_error = 1
N

N∑
t=1

(|FLt − FRt|+ |RLt − RRt|) , (8)
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Figure 7: Bounding Gait Pattern Control. (a) Feet synchronization error calculated with Eq. 8. LAPP
achieves the lowest synchronization error, indicating its closest adherence to a bounding gait. (b) Step
trajectories of the robots. LAPP synchronizes both front and rear feet, while Eureka aligns only the rear
feet, and PPO fails to produce a bounding gait. (c) Motion frames of the robots.

where FLt, FRt, RLt, and RRt represent front left feet, front right feet, rear left feet, rear right feet contacts
at time t. These are binary values: 1 if the foot is in contact with the ground and 0 if it is in the air. A
lower synchronization error indicates a gait pattern closer to bounding.

As shown in Fig. 7 (a), LAPP trains the robot to achieve a bounding gait with the lowest synchronization
error. While Eureka also encourages a bounding gait through reward shaping, its synchronization error
remains higher than LAPP. PPO fails to enforce a bounding gait effectively.

Figure 8: Gait Cadence Control. (a) Step trajectories under different cadence instructions. LAPP
effectively modulates step frequency based on the high-level prompts by following faster and slower gaits.
Eureka can adjust the cadence slightly, but it is less effective.(b) Step cadence comparison. LAPP provides
precise control over cadence, while Eureka has limited effect. (c) Motion frames illustrating cadence variation.
Robots with high cadence take quick and shallow steps, while those with low cadence take larger and higher
steps.
To further illustrate gait patterns, Fig. 7 (b) presents the step trajectories of all methods, where each
dot represents a foot contacting the ground. LAPP successfully trains the robot to synchronize its front
and rear feet, ensuring that both front feet land simultaneously, followed by both rear feet. In contrast,
Eureka achieves partial synchronization, aligning only the rear feet. PPO fails to learn a bounding gait with
unsynchronized foot contacts.

Fig. 7 (c) provides motion frames of the robots trained with LAPP and the baselines. These visualizations
complement the trajectory plots, clearly demonstrating that LAPP exhibits stronger behavior control through
effective implicit reward shaping to follow the high-level gait patterns.

We also evaluate LAPP’s ability to control step cadence through high-level instructions. In this experiment,
the behavior instruction prompt specifies a preference for either faster or slower stepping frequency. We
compare the effectiveness of LAPP and Eureka in enforcing these behaviors. Eureka is also prompted to
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Figure 9: Quadruped Robot Backflip. LAPP successfully trains the Unitree Go2 robot to acomplish the
backflip task. No baseline including PPO, curriculum learning, or Eureka is able to solve this task.

generate reward functions that encourage the desired cadence. During testing, all robots follow a velocity
command of 1.5 m/s. As shown in Fig. 8 (a), with a high-cadence instruction, LAPP achieves 4.54 steps/sec,
significantly exceeding Eureka (3.06 steps/sec) and PPO (2.78 steps/sec). Similarly, with a low-cadence
instruction, LAPP produces 1.67 steps/sec, notably lower than Eureka (2.38 steps/sec) and PPO (2.78
steps/sec). While Eureka can influence cadence through reward shaping, its effect is far weaker than LAPP’s.

The step trajectories in Fig. 8 (b) further highlight LAPP’s superior cadence control. Compared to all other
methods, LAPP produces the densest step trajectory under a high-cadence instruction and the sparsest
trajectory under a low-cadence instruction. Qualitatively, Fig. 8 (c) presents motion frames illustrating the
impact of cadence control. With fast cadence, LAPP trains the robot to take small and rapid steps with
minimal foot lift. Conversely, with slow cadence, the robot takes larger strides, keeping its feet in the air for
extended periods.

Notably, this experiment uses the non-Markovian reward model from Eq. 2. We set the transformer preference
predictor’s input sequence length to 8. To control the step cadence, the preference predictor needs to consider
the history states of the feet contacts to determine the latent reward value of the current state.

LAPP solves challenging tasks. Quadruped backflips have long been considered a challenging RL prob-
lem due to the need for precise whole-body coordination, complex dynamics, and controlled landing. Some
previous RLHF works have trained a Hopper model to perform a backflip in the Gym-Mujoco simulator
(Arumugam et al., 2019), but the Hopper has only three joints, is lightweight, and lacks a real-world coun-
terpart.

Figure 10: Backflip rotate angle. LAPP
successfully enables the quadruped robot to
complete backflips with full 360◦ rotation.
In contrast, PPO and Eureka fail to gen-
erate sufficient rotation, highlighting the
advantage of preference-driven learning in
solving highly complex and dynamic tasks.

A recent multi-objective RL (MORL) approach solves the
quadruped backflip by dividing the motion into five stages, de-
signing a separate handcrafted reward function for each stage
(Kim et al., 2024a). However, this method requires significant
expert knowledge, as practitioners must manually define stage
transitions and fine-tune rewards for each specific robot.

In contrast, LAPP solves the backflip without intensive human
labor for preference feedback or manual reward tuning. We
train a Unitree Go2 robot using a weighted combination of a
human-designed environment reward and a predicted prefer-
ence reward. Our process still requires an initial warm-up to
encourage the exploration, but we limit our process with simple
reward designs for each step. Specifically, we first pre-train the
robot to jump vertically. We then randomly initialize the robot
in the air. We also reduce the robot’s weight during training
but restore its real-world weight for testing.

As shown in Fig. 9 and Fig. 10, LAPP successfully trains the
robot to jump, rotate backward 360◦, and land safely. We also
evaluate PPO and Eureka on the same task, using identical
exploration strategies (i.e., pre-training to jump, random air
initialization, and reduced training weight). PPO follows the same human-designed backflip reward as
LAPP but lacks a preference reward, while Eureka generates its own reward function via GPT-4o. Neither
PPO nor Eureka succeeds in training the robot for a full backflip. Instead, PPO learns to jump and oscillate
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the robot’s torso up and down but struggles to flip for over 180◦ with an average maximum rotation of
49.0◦. Despite the iterative reward search mechanism of Eureka, it produces similar behavior to PPO with
an average maximum rotation of 52.8◦. These results demonstrate that explicit reward engineering struggles
to capture the complex dynamics of a backflip, while LAPP’s preference-driven learning and the adaptive
online predictor updates enable successful learning of this highly dynamic capability. We believe that LAPP
can shed light on automatically solving many difficult tasks in the near future that are previously unsolvable
by conventional RL.

Figure 11: Transfer Learning. For the Plane loco-
motion task, the robot is transferred to a new environ-
ment with different friction and restitution. The solid
curves show that LAPP enables the robot to adapt
to the new environment faster. Compared with the
dashed curves, transfer learning is generally faster than
training from scratch.

LAPP enables faster transfer learning. We
evaluate the transfer learning performance of LAPP.
For the Plane task with a forward speed command
of 1.5 m/s, the Go2 robot is first trained on a flat
ground with static friction of 1.0, dynamic friction
of 1.0, and a restitution of 0.0. Then, it is trans-
ferred to a different flat ground with static friction
of 0.01, dynamic friction of 0.01, and a restitution
of 0.9. We fine-tune the policy from the source envi-
ronment in the target environment with LAPP and
other baselines. As shown in Fig. 11, the robot
speed drops to about 0.9 m/s due to the more slip-
pery ground surface, and LAPP trains the robot to
adapt to this new environment faster than the other
two baselines. The dashed curves show the learning
processes of the robots trained in the target environ-
ment from scratch. The results show that transfer
learning with a pre-trained policy in a different en-
vironment is much faster than training from scratch, and LAPP trains the robot to adapt faster than other
baselines.

5.3 Ablation Study

We carry out the ablation study to analyze the contributions of two key design decisions of LAPP: 1)
updating the preference predictor with the latest rollout trajectories instead of trajectories sampled from the
full RL process, and 2) adopting a transformer architecture for the reward predictor network instead of a
simple MLP.

To investigate the first design choice, we introduce LAPP (full process), which stores all rollout trajectories in
a pool and samples from the entire RL process rather than only the latest epochs (set to 500 epochs in LAPP).
The dataset size remains identical between LAPP and LAPP (full process), ensuring a controlled comparison.
However, unlike LAPP, this variant may use trajectory data from early training, which potentially introduces
biases to suboptimal policy rollouts. Note that we do not use the full trajectory pool for predictor training,
as its continuous expansion would slow down online updates.

For the second ablation, LAPP (MLP) replaces the transformer-based predictor with an MLP, limiting it
to Markovian preference rewards (Eq. 1). In contrast, LAPP supports both Markovian and non-Markovian
rewards (Eq. 2), which are essential for modeling tasks like step cadence control and backflips.

We compare the performance of LAPP and its two ablations in the simulation tasks in Sec. 5.2. Fig. 12
(a) shows that replacing the transformer with an MLP reduces training speed across most locomotion tasks
except for the Slope and Wave tasks, which are relatively simple and lead to similar performance of LAPP
and its ablations. Moreover, sampling preference data from the full RL process does not affect speed in
Stairs, Slope, and Wave, but slows down the training in other locomotion tasks. In Kettle, both ablations
initially improve performance but then drop to 20%, suggesting that biased preference data or a predictor
network that does not capture long-term dependencies in past states can introduce misleading preference
rewards, which ultimately destabilize the policy training.
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Figure 12: Ablation Study. We evaluate two key design choices of LAPP: (1) updating the preference
predictor with the latest rollout trajectories (LAPP vs. LAPP (full process)), and (2) using a transformer-
based reward predictor (LAPP vs. LAPP (MLP)). (a) Training Speed: LAPP generally converges faster,
except in the Stairs task, where LAPP (full process) achieves similar speed, and in the Slope and Wave
tasks, where both tasks are simple enough for LAPP and its ablations to have similar performance. In
the Kettle task, both ablations fail at different stages, suggesting that a suboptimal training method for the
preference predictor can disrupt policy learning. (b) Behavior Control: Only LAPP successfully controls gait
pattern and cadence, while both ablations fail. (c) Challenging Task: LAPP enables successful backflips,
achieving a full 360◦ rotation. In contrast, LAPP (MLP) and LAPP (full process) reach only 57.2◦ and
39.6◦, respectively, and fail to complete the task.

Fig. 12 (b) evaluates the ability to control gait pattern and step cadence in quadruped locomotion. Only
LAPP succeeds, while both ablations fail. This supports the hypothesis that preference rewards must evolve
dynamically with training. LAPP (full process) struggles because sampling from the full trajectory pool
prevents the predictor from adapting to the current learning stage. LAPP (MLP) fails because MLPs
lack the capacity to model non-Markovian rewards, which are essential for cadence control. Specifically,
bounding gait requires analyzing foot synchronization from step history, and cadence control depends on
tracking past states to predict step timing rewards. However, MLPs cannot effectively capture these temporal
dependencies, leading to failure in high-level behavior control.

Fig. 12 (c) evaluates the quadruped backflip task. Neither ablation succeeds. LAPP (full process) reaches
39.6◦ degrees of backward rotation, while LAPP (MLP) improves slightly to 57.2◦. LAPP completes the
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full 360◦ backflip, demonstrating the importance of both preference data sampling and transformer-based
prediction for capturing complex dynamics.

5.4 Real World Experiments

To evaluate the feasibility of deploying LAPP-trained policies on real robots, we conduct experiments with
the Unitree Go2 quadruped. The policy is first trained in the IsaacGym simulator (Makoviychuk et al.,
2021) and then directly deployed in the real world. To mitigate the sim-to-real gap, we apply domain
randomization, varying ground friction, robot mass, observation noise, and external disturbances during
training.

Figure 13: Gait Pattern Control. We can directly
deploy the policy trained by LAPP on trotting and
bounding gait control, specified via high-level language
instructions in the behavior prompts.

We first test gait pattern control. By specifying a
preferred gait pattern in the behavior instruction
prompt, LAPP successfully trains the robot to walk
forward using either a trotting or bounding gait as
shown in Fig. 13.

We then evaluate stair climbing. In Sec. 5.2, Fig. 5
has shown that LAPP accelerates stair-climbing
training in simulation. Here, we deploy the trained
policy at epoch 2200 onto a real 17 cm-high stair-
case. As shown in Fig. 14, LAPP-trained robot suc-
cessfully climbs both up and down stairs. In con-
trast, policies trained with PPO or Eureka under
the same number of epochs often fail to maintain
stability, stumble, and fall while navigating stairs.
These results demonstrate LAPP’s robustness in real-world deployment, effectively translating simulation-
trained behaviors to real hardware while reducing manual reward engineering efforts.

6 Conclusion

Figure 14: Stairs Climbing. LAPP-trained policies
enable the Unitree Go2 robot to climb up and down
stairs in a real-world deployment. The stairs are ap-
proximately 17 cm in height.

We introduced LAPP, a novel framework that lever-
ages LLM for preference feedback from raw state-
action trajectories to guide reinforcement learning.
Given only high-level behavior specifications in nat-
ural language, LAPP automatically learns a pref-
erence reward predictor using LLM-generated feed-
back and continuously refines robot motions to align
with the specified behavior through the adaptive re-
ward predictor.

Compared to conventional RL approaches that rely
on explicitly shaped reward functions, our experi-
ments in both simulation and real-world deployment
demonstrate that LAPP achieves faster training convergence while maintaining superior performance. More-
over, LAPP enables customizable high-level behavior controls. Finally, LAPP generalizes to complex and
non-Markovian preference rewards, surpassing traditional reward engineering methods and LLM-generated
reward functions. Notably, LAPP successfully solves the quadruped backflip task for the first time under a
basic RL setting, aided only by simple exploration warm-up steps. In contrast, all other baselines fail under
the same conditions.

These results showcase LAPP’s potential to push the boundaries of RL for robot learning, expanding robot
capabilities through foundation model-driven behavior guidance.
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7 Limitations

We note several areas for future improvements of LAPP:

Frequent LLM queries. Despite our batch query process, LAPP still queries LLM very frequently due
to its online adaptive training scheme for the preference predictor. Future work could explore more efficient
data utilization to maintain or improve performance without biasing the predictor training while reducing
LLM query frequency.

Manual selection of state variables. Our trajectory state representation is curated for LLM queries
to include appropriate amount of the information. Including too many variables results in long prompts
leads to higher costs, and potential confusion in LLM’s responses, while too few variables may not provide
sufficient context for accurate reasoning. Future research could develop automated methods for state variable
selection, optimizing the balance between prompt length, cost, and label accuracy. One possible method is
to warm up the training with different variable selections and choose the best set based on the warm-up
performance.

Absence of visual inputs. LAPP currently does not consider the tasks that requires visual inputs to
the policy networks such as reactive motion planning in locomotion tasks, and its feasibility to handle state
trajectories with images remains unexplored. With the reasoning capability of VLMs continuously improving,
future work can explore the similar idea for tasks with visual trajectories. This could enhance preference
prediction accuracy and enable richer robot capabilities.
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A Appendix

A.1 Full Prompts

In this section,we provide all the prompts for training with LAPP.

Prompt for Flat Plane

You are a robotics engineer trying to compare pairs of quadruped robot locomotion trajectories and
decide which one is better in each pair.
Your feedback of the comparisons will be used as a reward signal (for reinforcement learning) to train
a quadruped robot (Unitree Go2) to walk forward at some speed given by the commands, and the
velocity range of the speed command is [0.0, 2.2] m/s.
The training method is similar to that in the paper "Deep Reinforcement Learning from Human
Preferences", where humans provide preference of trajectories in different pairs of comparisons,
but now you will take the role of the humans to provide feedback on which one trajectory is better
in a pair of trajectories.
Each trajectory will contain 24 time steps of states of the robot moving on a flat ground.
The state includes:
1) "commands": the linear velocity command along x axis that the robot needs to follow. its length is
24, standing for the 24 steps of a trajectory. its value range at each step is [0.0, 2.2] m/s. Sometimes
all the steps in one trajectory have the same velocity commands, while sometimes the commands vary
within one trajectory.
2) "base linear velocity": the x, y, z positional velocities (m/s) of the robot base torso. The data
shape is (24, 3), standing for 24 steps, and x, y, z 3 dimensional velocities.
3) "base angular velocity": the raw, pitch, yaw angular velocities (rad/s) of the robot base torso. The
data shape is (24, 3), standing for 24 steps, and raw, pitch, yaw 3 angular velocities around the x, y,
z axes.
4) "base height": the z position (height) of the robot base torso. The data shape is (24, ), standing
for the 24 steps of a trajectory.
5) "base roll pitch yaw": the raw, pitch, yaw radian angles of the robot base torso. The data shape
is (24, 3), standing for 24 steps, and raw, pitch, yaw 3 rotation angles around the x, y, z axes.
6) "feet contacts": the contact boolean values of the four feet on the ground. 1 means touching the
ground while 0 means in the air. The data shape is (24, 4), standing for 24 steps, and the 4 feet in
the order of [front left, front right, rear left, rear right].
To decide which trajectory is better in a pair, here are some criteria:
1) The robot should follow the forward velocity command as close as possible. The first digit of the
3D "base linear velocity" can measure the forward velocity in the body frame.
2) The robot should have 0 velocities in the y and z directions of the body frame. The second and
third digits of the "base linear velocity" can measure them.
3) The robot should keep its body torso near the height of 0.34 meter. The "base height" value can
measure the robot torso height.
4) The robot should not have angular velocities in all the 3 roll, pitch, yaw directions when walking
forward. The 3 values of the "base angular velocity" should be close to 0.
5) The robot should not have roll or pitch angles when walking forward. Since the linear and angular
velocities of the robot are randomly initialized at each episode, the robot might has some yaw angle
from start, but this yaw angle should not change when the robot is waling forward.
6) The robot is encouraged to take longer steps instead of small steps. In addition, periodic gait
pattern is better than random steps on the ground. The "feet contacts" can be used to analyze the
gait pattern of the robot.
The user will provide 5 pairs of trajectories (each pair has index 0 and 1) in a batch and you should
provide 1 preference value for each pair (5 values in total).
1) If the trajectory 0 is better, the preference value should be 0.
2) If the trajectory 1 is better, the preference value should be 1.
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3) If the two trajectories are equally preferable, the preference value should be 2.
4) If the two trajectories are incomparable, the preference value should be 3.
Please give response with only one list of 5 preference values, e.g., [0, 0, 1, 2, 3].
Do not provide any other text such as your comments or thoughts. The preference value number can
only be 0, 1, 2, or 3.
Please provide preference values 0 and 1 as many as possible, which clearly indication which one is
better in a pair.
Please be careful about providing equally preferable value 2. If each trajectory has its pros and cons,
instead of saying they are equally preferable, you can decide which criteria are more important at
this stage of training, and then decide which trajectory is more preferable.
Please be very careful about providing incomparable value 3! Do not provide incomparable value 3
unless you have very solid reason that this pair of trajectories are incomparable!

Prompt for Stairs

You are a robotics engineer trying to compare pairs of quadruped robot locomotion trajectories and
decide which one is better in each pair.
Your feedback on the comparisons will be used as a reward signal for reinforcement learning. This
will train a Unitree Go2 quadruped robot to walk forward on a stairs pyramid terrain, which includes
stairs going up, stairs going down, and flat surfaces, at a commanded velocity in the range [0.0, 2.2]
m/s.
The training method is similar to that in the paper "Deep Reinforcement Learning from Human
Preferences", where humans provide preference of trajectories in different pairs of comparisons,
but now you will take the role of the humans to provide feedback on which one trajectory is better
in a pair of trajectories.
Each trajectory will contain 24 time steps of states of the robot moving on a flat ground.
The state includes:
1) "commands": the linear velocity command along x axis that the robot needs to follow. its length is
24, standing for the 24 steps of a trajectory. its value range at each step is [0.0, 2.2] m/s. Sometimes
all the steps in one trajectory have the same velocity commands, while sometimes the commands vary
within one trajectory.
2) "base linear velocity": the x, y, z positional velocities (m/s) of the robot base torso. The data
shape is (24, 3), standing for 24 steps, and x, y, z 3 dimensional velocities.
3) "base angular velocity": the raw, pitch, yaw angular velocities (rad/s) of the robot base torso. The
data shape is (24, 3), standing for 24 steps, and raw, pitch, yaw 3 angular velocities around the x, y,
z axes.
4) "base roll pitch yaw": the raw, pitch, yaw radian angles of the robot base torso. The data shape
is (24, 3), standing for 24 steps, and raw, pitch, yaw 3 rotation angles around the x, y, z axes.
5) "base height": the z position (height) of the robot base torso. The data shape is (24, ), standing
for the 24 steps of a trajectory.
6) "ground height": the z position (height) of the terrain ground right beneath the center of the robot
base torso. The data shape is (24, ), standing for the 24 steps of a trajectory.
7) "feet heights": the four height values of the four feet. The data shape is (24, 4), standing for 24
steps, and the 4 feet in the order of [front left, front right, rear left, rear right].
8) "feet contacts": the contact boolean values of the four feet on the ground. 1 means touching the
ground while 0 means in the air. The data shape is (24, 4), standing for 24 steps, and the 4 feet in
the order of [front left, front right, rear left, rear right].
To decide which trajectory is better in a pair, here are some criteria:
1) The robot should follow the forward velocity command as close as possible. The first digit of the
3D "base linear velocity" can measure the forward velocity in the body frame.
2) The robot should have 0 velocities in the y direction of the body frame. The second digit of the
"base linear velocity" can measure them.
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3) The robot should not have angular velocities in the roll and yaw directions when walking forward.
The first and third values of the "base angular velocity" should be close to 0.
4) The robot should keep its base height about 0.34 meter above the ground height, but the base to
ground height is allowed to oscillate in a small range due to the discontinuous height change of stairs.
Compare the "base height" and "ground height" values to measure this.
5) The robot should lift its feet higher in the air in each step to avoid potential collision to the stairs.
Compare the "feet height" and "ground height" values to approximately measure this. When the robot
is climbing upstairs or downstairs, some feet heights can be lower than the ground height beneath
the robot center due to the body pitch angle.
6) The robot should use all four feet to walk in this terrain instead of always hanging one foot in the
air. In addition, periodic trotting gait pattern with longer steps is better. The "feet contacts" can be
used to analyze the gait pattern of the robot.
7) The robot should have 0 roll angle when walking forward. Pitch angle is allowed for climbing
upstairs and downstairs. Since the linear and angular velocities of the robot are randomly initialized
at each episode, the robot might has some yaw angle from start, but this yaw angle should not change
when the robot is waling forward.
The user will provide 5 pairs of trajectories (each pair has index 0 and 1) in a batch and you should
provide 1 preference value for each pair (5 values in total).
1) If the trajectory 0 is better, the preference value should be 0.
2) If the trajectory 1 is better, the preference value should be 1.
3) If the two trajectories are equally preferable, the preference value should be 2.
4) If the two trajectories are incomparable, the preference value should be 3.
PLease note that the robot should should use all four feet to walk. It is highly preferable that all the
four feet have contacts to the ground when going downstairs. It is very undesirable if one foot never
touch the ground when going downstairs!
Please give response with only one list of 5 preference values, e.g., [0, 0, 1, 2, 3]. Do not provide any
other text such as your comments or thoughts. The preference value number can only be 0, 1, 2, or
3.
Please provide preference values 0 and 1 as many as possible, which clearly indication which one is
better in a pair.
Please be careful about providing equally preferable value 2. If each trajectory has its pros and cons,
instead of saying they are equally preferable, you can decide which criteria are more important at
this stage of training, and then decide which trajectory is more preferable.
Please be very careful about providing incomparable value 3! Do not provide incomparable value 3
unless you have very solid reason that this pair of trajectories are incomparable!

Prompt for Obstacles

You are a robotics engineer trying to compare pairs of quadruped robot locomotion trajectories. Your
task is to provide feedback on which trajectory is better in given pair of trajectories.
Your feedback of the comparisons will be used as reward signal to train a quadruped robot to walk
forward at some speed given by the commands, with speed range of [0.0, 2.2] m/s.
Each trajectory will contain 24 timesteps of states of the robot moving on a discrete obstacles terrain.
To be specific, the terrain features unevenly distributed rectangular platforms with varying heights
and smooth edges, creating a stepped, block-like appearance.
The state includes:
1) "commands": the linear velocity command along x axis that the robot needs to follow. its length is
24, standing for the 24 steps of a trajectory. its value range at each step is [0.0, 2.2] m/s. Sometimes
all the steps in one trajectory have the same velocity commands, while sometimes the commands vary
within one trajectory.
2) "base linear velocity": the x, y, z positional velocities (m/s) of the robot base torso. The data
shape is (24, 3), standing for 24 steps, and x, y, z 3 dimensional velocities.
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3) "base angular velocity": the raw, pitch, yaw angular velocities (rad/s) of the robot base torso. The
data shape is (24, 3), standing for 24 steps, and raw, pitch, yaw 3 angular velocities around the x, y,
z axes.
4) "base height": the z position (height) of the robot base torso ABOVE the terrain. The data shape
is (24, ), standing for the 24 steps of a trajectory.
5) "base angular orientation": the raw, pitch, yaw radian angles of the robot base torso. The data
shape is (24, 3), standing for 24 steps, and raw, pitch, yaw 3 rotation angles around the x, y, z axes.
6) "feet contacts": the contact boolean values of the four feet on the ground. 1 means touching the
ground while 0 means in the air. The data shape is (24, 4), standing for 24 steps, and the 4 feet in
the order of [front left, front right, rear left, rear right].
To decide which trajectory is better in a pair, here are some criteria:
1) The robot should follow the forward velocity command as close as possible. The first digit of the
3D "base linear velocity" can measure the forward velocity in the body frame.
2) The robot should have no velocity in y axis of the base torso. The second digit of "base linear
velocity" can measure.
3) The robot should keep its body torso near the height of 0.34 meter. "base height" can measure.
4) The robot should not have angular velocities in the roll and yaw directions when moving forward.
The first and third values of the "base angular velocity" should be close to 0. The pitch angular
velocity may be variable during climbing the obstacles but should return zero quite soon.
5) The robot should not have roll angle when moving forward. The robot might has some yaw angle
due to randomization from start, but this yaw angle should not change when the robot is walking
forward. Small pitch orientation is acceptable so as to adapt to the terrain.
6) The robot is encouraged to take a **trotting** gait to move forward. The trotting gait features
a diagonal contact pattern where opposing diagonal legs (e.g., front left and rear right) touch the
ground simultaneously, alternating in rhythm. The "feet contacts" can be used to analyze the gait
pattern of the robot.
7) The robot is encouraged to take farther steps. "feet contacts" can help measure.
The user will provide 5 pairs of trajectories (each pair has index 0 and 1) in a batch and you should
provide 1 preference value for each pair (5 values in total).
1) If the trajectory 0 is better, the preference value should be 0.
2) If the trajectory 1 is better, the preference value should be 1.
3) If the two trajectories are equally preferable, the preference value should be 2.
4) If the two trajectories are incomparable, the preference value should be 3.
Examples for preference:
1) If both can move forward, the one with greater velocity in x axis is better.
2) If both have close-to-command velocity in x axis, the one with lower velocity in y axis is better.
3) If both cannot move forward, the one that maintain body height close to 0.34 meter is better.
4) If both robots can walk forward, the one whose gait is more similar to a trotting gait is better.
This means in the "feet contacts" tensor, the first and fourth values are encouraged to always be the
same, as are the second and third values.
5) The robot that uses four legs evenly are better than robot that rely on only two or three of its
legs.
This means a period of non-zero values in all positions of "feet contacts" tensor, and the periods
should be similar.
6) The robot that takes longer steps are better. This means longer period is preferable.
Please give response with only one list of 5 preference values, e.g., [0, 0, 1, 2, 3]. Do not provide any
other text such as your comments or thoughts. The preference value number can only be 0, 1, 2, or
3.
Please provide preference values 0 and 1 as many as possible, which clearly indication which one is
better in a pair.
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Please be careful about providing equally preferable value 2. If each trajectory has its pros and cons,
instead of saying they are equally preferable, you can decide which criteria are more important at
this stage of training, and then decide which trajectory is more preferable.
For example, if the two trajectories both show that the robots are moving forward at some given
command speed, the robot whose gait pattern is more similar to a trotting pattern is more preferable.
Please be very careful about providing incomparable value 3! Do not provide incomparable value 3
unless you have very solid reason that this pair of trajectories are incomparable!

Prompt for Obstacles

You are a robotics engineer trying to compare pairs of quadruped robot locomotion trajectories. Your
task is to provide feedback on which trajectory is better in given pair of trajectories.
Your feedback of the comparisons will be used as reward signal to train a quadruped robot to walk
forward at some speed given by the commands, with speed range of [0.0, 2.2] m/s.
Each trajectory will contain 24 timesteps of states of the robot moving on a pyramid slope terrain.
To be specific, the terrain features evenly spaced, volcano-like formations with smooth slope and
platform on top, and the height of each "volcano" is consistent.
The state includes:
1) "commands": the linear velocity command along x axis that the robot needs to follow. its length is
24, standing for the 24 steps of a trajectory. its value range at each step is [0.0, 2.2] m/s. Sometimes
all the steps in one trajectory have the same velocity commands, while sometimes the commands vary
within one trajectory.
2) "base linear velocity": the x, y, z positional velocities (m/s) of the robot base torso. The data
shape is (24, 3), standing for 24 steps, and x, y, z 3 dimensional velocities.
3) "base angular velocity": the raw, pitch, yaw angular velocities (rad/s) of the robot base torso. The
data shape is (24, 3), standing for 24 steps, and raw, pitch, yaw 3 angular velocities around the x, y,
z axes.
4) "base height": the z position (height) of the robot base torso ABOVE the terrain. The data shape
is (24, ), standing for the 24 steps of a trajectory.
5) "base angular orientation": the raw, pitch, yaw radian angles of the robot base torso. The data
shape is (24, 3), standing for 24 steps, and raw, pitch, yaw 3 rotation angles around the x, y, z axes.
6) "feet contacts": the contact boolean values of the four feet on the ground. 1 means touching the
ground while 0 means in the air. The data shape is (24, 4), standing for 24 steps, and the 4 feet in
the order of [front left, front right, rear left, rear right].
To decide which trajectory is better in a pair, here are some criteria:
1) The robot should follow the forward velocity command as close as possible. The first digit of the
3D "base linear velocity" can measure the forward velocity in the body frame.
2) The robot should have no velocity in y axis of the base torso. The second digit of "base linear
velocity" can measure.
3) The robot should keep its body torso near the height of 0.34 meter. "base height" can measure.
4) The robot should not have angular velocities in the roll and yaw directions when moving forward.
The first and third values of the "base angular velocity" should be close to 0. The pitch angular
velocity may be variable during adjustments from descending to ascending (or vice versa), but should
be zero when on platform.
5) The robot should not have roll angle when moving forward. The robot might has some yaw angle
due to randomization from start, but this yaw angle should not change when the robot is walking
forward. Small pitch orientation is acceptable so as to adapt to the terrain.
6) The robot is encouraged to take a **trotting** gait to move forward. The trotting gait features
a diagonal contact pattern where opposing diagonal legs (e.g., front left and rear right) touch the
ground simultaneously, alternating in rhythm. The "feet contacts" can be used to analyze the gait
pattern of the robot.
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7) The robot is encouraged to take farther steps. "feet contacts" can help measure.
The user will provide 5 pairs of trajectories (each pair has index 0 and 1) in a batch and you should
provide 1 preference value for each pair (5 values in total).
1) If the trajectory 0 is better, the preference value should be 0.
2) If the trajectory 1 is better, the preference value should be 1.
3) If the two trajectories are equally preferable, the preference value should be 2.
4) If the two trajectories are incomparable, the preference value should be 3.
Examples for preference:
1) If both can move forward, the one with greater velocity in x axis is better.
2) If both have close-to-command velocity in x axis, the one with lower velocity in y axis is better.
3) If both cannot move forward, the one that maintain body height close to 0.34 meter is better.
4) If both robots can walk forward, the one whose gait is more similar to a trotting gait is better.
This means in the "feet contacts" tensor, the first and fourth values are encouraged to always be the
same, as are the second and third values.
5) The robot that uses four legs evenly are better than robot that rely on only two or three of its
legs.
This means a period of non-zero values in all positions of "feet contacts" tensor, and the periods
should be similar.
6) The robot that takes longer steps are better. This means longer period is preferable.
Please give response with only one list of 5 preference values, e.g., [0, 0, 1, 2, 3]. Do not provide any
other text such as your comments or thoughts. The preference value number can only be 0, 1, 2, or
3.
Please provide preference values 0 and 1 as many as possible, which clearly indication which one is
better in a pair.
Please be careful about providing equally preferable value 2. If each trajectory has its pros and cons,
instead of saying they are equally preferable, you can decide which criteria are more important at
this stage of training, and then decide which trajectory is more preferable.
For example, if the two trajectories both show that the robots are moving forward at some given
command speed, the robot whose gait pattern is more similar to a trotting pattern is more preferable.
Please be very careful about providing incomparable value 3! Do not provide incomparable value 3
unless you have very solid reason that this pair of trajectories are incomparable!

Prompt for Slope

You are a robotics engineer trying to compare pairs of quadruped robot locomotion trajectories. Your
task is to provide feedback on which trajectory is better in given pair of trajectories.
Your feedback of the comparisons will be used as reward signal to train a quadruped robot to walk
forward at some speed given by the commands, with speed range of [0.0, 2.2] m/s.
Each trajectory will contain 24 timesteps of states of the robot moving on a pyramid slope terrain.
To be specific, the terrain features evenly spaced, volcano-like formations with smooth slope and
platform on top, and the height of each "volcano" is consistent.
The state includes:
1) "commands": the linear velocity command along x axis that the robot needs to follow. its length is
24, standing for the 24 steps of a trajectory. its value range at each step is [0.0, 2.2] m/s. Sometimes
all the steps in one trajectory have the same velocity commands, while sometimes the commands vary
within one trajectory.
2) "base linear velocity": the x, y, z positional velocities (m/s) of the robot base torso. The data
shape is (24, 3), standing for 24 steps, and x, y, z 3 dimensional velocities.
3) "base angular velocity": the raw, pitch, yaw angular velocities (rad/s) of the robot base torso. The
data shape is (24, 3), standing for 24 steps, and raw, pitch, yaw 3 angular velocities around the x, y,
z axes.
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4) "base height": the z position (height) of the robot base torso ABOVE the terrain. The data shape
is (24, ), standing for the 24 steps of a trajectory.
5) "base angular orientation": the raw, pitch, yaw radian angles of the robot base torso. The data
shape is (24, 3), standing for 24 steps, and raw, pitch, yaw 3 rotation angles around the x, y, z axes.
6) "feet contacts": the contact boolean values of the four feet on the ground. 1 means touching the
ground while 0 means in the air. The data shape is (24, 4), standing for 24 steps, and the 4 feet in
the order of [front left, front right, rear left, rear right].
To decide which trajectory is better in a pair, here are some criteria:
1) The robot should follow the forward velocity command as close as possible. The first digit of the
3D "base linear velocity" can measure the forward velocity in the body frame.
2) The robot should have no velocity in y axis of the base torso. The second digit of "base linear
velocity" can measure.
3) The robot should keep its body torso near the height of 0.34 meter. "base height" can measure.
4) The robot should not have angular velocities in the roll and yaw directions when moving forward.
The first and third values of the "base angular velocity" should be close to 0. The pitch angular
velocity may be variable during adjustments from descending to ascending (or vice versa), but should
be zero when on platform.
5) The robot should not have roll angle when moving forward. The robot might has some yaw angle
due to randomization from start, but this yaw angle should not change when the robot is walking
forward. Small pitch orientation is acceptable so as to adapt to the terrain.
6) The robot is encouraged to take a **trotting** gait to move forward. The trotting gait features
a diagonal contact pattern where opposing diagonal legs (e.g., front left and rear right) touch the
ground simultaneously, alternating in rhythm. The "feet contacts" can be used to analyze the gait
pattern of the robot.
7) The robot is encouraged to take farther steps. "feet contacts" can help measure.
The user will provide 5 pairs of trajectories (each pair has index 0 and 1) in a batch and you should
provide 1 preference value for each pair (5 values in total).
1) If the trajectory 0 is better, the preference value should be 0.
2) If the trajectory 1 is better, the preference value should be 1.
3) If the two trajectories are equally preferable, the preference value should be 2.
4) If the two trajectories are incomparable, the preference value should be 3.
Examples for preference:
1) If both can move forward, the one with greater velocity in x axis is better.
2) If both have close-to-command velocity in x axis, the one with lower velocity in y axis is better.
3) If both cannot move forward, the one that maintain body height close to 0.34 meter is better.
4) If both robots can walk forward, the one whose gait is more similar to a trotting gait is better.
This means in the "feet contacts" tensor, the first and fourth values are encouraged to always be the
same, as are the second and third values.
5) The robot that uses four legs evenly are better than robot that rely on only two or three of its
legs.
This means a period of non-zero values in all positions of "feet contacts" tensor, and the periods
should be similar.
6) The robot that takes longer steps are better. This means longer period is preferable.
Please give response with only one list of 5 preference values, e.g., [0, 0, 1, 2, 3]. Do not provide any
other text such as your comments or thoughts. The preference value number can only be 0, 1, 2, or
3.
Please provide preference values 0 and 1 as many as possible, which clearly indication which one is
better in a pair.
Please be careful about providing equally preferable value 2. If each trajectory has its pros and cons,
instead of saying they are equally preferable, you can decide which criteria are more important at
this stage of training, and then decide which trajectory is more preferable.
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For example, if the two trajectories both show that the robots are moving forward at some given
command speed, the robot whose gait pattern is more similar to a trotting pattern is more preferable.
Please be very careful about providing incomparable value 3! Do not provide incomparable value 3
unless you have very solid reason that this pair of trajectories are incomparable!

Prompt for Wave

You are a robotics engineer trying to compare pairs of quadruped robot locomotion trajectories. Your
task is to provide feedback on which trajectory is better in given pair of trajectories.
Your feedback of the comparisons will be used as reward signal to train a quadruped robot to walk
forward at some speed given by the commands, with speed range of [0.0, 2.2] m/s.
Each trajectory will contain 24 timesteps of states of the robot moving on a wave terrain. To be
specific, the terrain features evenly spaced, sinusoidal wave-like formations with smooth peaks and
troughs, and the height of the waves is consistent.
The state includes:
1) "commands": the linear velocity command along x axis that the robot needs to follow. its length is
24, standing for the 24 steps of a trajectory. its value range at each step is [0.0, 2.2] m/s. Sometimes
all the steps in one trajectory have the same velocity commands, while sometimes the commands vary
within one trajectory.
2) "base linear velocity": the x, y, z positional velocities (m/s) of the robot base torso. The data
shape is (24, 3), standing for 24 steps, and x, y, z 3 dimensional velocities.
3) "base angular velocity": the raw, pitch, yaw angular velocities (rad/s) of the robot base torso. The
data shape is (24, 3), standing for 24 steps, and raw, pitch, yaw 3 angular velocities around the x, y,
z axes.
4) "base height": the z position (height) of the robot base torso ABOVE the terrain. The data shape
is (24, ), standing for the 24 steps of a trajectory.
5) "base angular orientation": the raw, pitch, yaw radian angles of the robot base torso. The data
shape is (24, 3), standing for 24 steps, and raw, pitch, yaw 3 rotation angles around the x, y, z axes.
6) "feet contacts": the contact boolean values of the four feet on the ground. 1 means touching the
ground while 0 means in the air. The data shape is (24, 4), standing for 24 steps, and the 4 feet in
the order of [front left, front right, rear left, rear right].
To decide which trajectory is better in a pair, here are some criteria:
1) The robot should follow the forward velocity command as close as possible. The first digit of the
3D "base linear velocity" can measure the forward velocity in the body frame.
2) The robot should have no velocity in y axis of the base torso. The second digit of "base linear
velocity" can measure.
3) The robot should keep its body torso near the height of 0.34 meter. "base height" can measure.
4) The robot should not have angular velocities in the roll and yaw directions when moving forward.
The first and third values of the "base angular velocity" should be close to 0. The pitch angular
velocity may be variable during adjustments from descending to ascending (or vice versa), it should
be smooth.
5) The robot should not have roll angle when moving forward. The robot might has some yaw angle
due to randomization from start, but this yaw angle should not change when the robot is walking
forward. Small pitch orientation is acceptable so as to adapt to the terrain.
6) The robot is encouraged to take a **trotting** gait to move forward. The trotting gait features
a diagonal contact pattern where opposing diagonal legs (e.g., front left and rear right) touch the
ground simultaneously, alternating in rhythm. The "feet contacts" can be used to analyze the gait
pattern of the robot.
7) The robot is encouraged to take farther steps. "feet contacts" can help measure.
The user will provide 5 pairs of trajectories (each pair has index 0 and 1) in a batch and you should
provide 1 preference value for each pair (5 values in total).
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1) If the trajectory 0 is better, the preference value should be 0.
2) If the trajectory 1 is better, the preference value should be 1.
3) If the two trajectories are equally preferable, the preference value should be 2.
4) If the two trajectories are incomparable, the preference value should be 3.
Examples for preference:
1) If both can move forward, the one with greater velocity in x axis is better.
2) If both have close-to-command velocity in x axis, the one with lower velocity in y axis is better.
3) If both cannot move forward, the one that maintain body height close to 0.34 meter is better.
4) If both robots can walk forward, the one whose gait is more similar to a trotting gait is better.
This means in the "feet contacts" tensor, the first and fourth values are encouraged to always be the
same, as are the second and third values.
5) The robot that uses four legs evenly are better than robot that rely on only two or three of its
legs.
This means a period of non-zero values in all positions of "feet contacts" tensor, and the periods
should be similar.
6) The robot that takes longer steps are better. This means longer period is preferable.
Please give response with only one list of 5 preference values, e.g., [0, 0, 1, 2, 3]. Do not provide any
other text such as your comments or thoughts. The preference value number can only be 0, 1, 2, or
3.
Please provide preference values 0 and 1 as many as possible, which clearly indication which one is
better in a pair.
Please be careful about providing equally preferable value 2. If each trajectory has its pros and cons,
instead of saying they are equally preferable, you can decide which criteria are more important at
this stage of training, and then decide which trajectory is more preferable.
For example, if the two trajectories both show that the robots are moving forward at some given
command speed, the robot whose gait pattern is more similar to a trotting pattern is more preferable.
Please be very careful about providing incomparable value 3! Do not provide incomparable value 3
unless you have very solid reason that this pair of trajectories are incomparable!

Prompt for Bounding Gait

You are a robotics engineer trying to compare pairs of quadruped robot locomotion trajectories and
decide which one is better in each pair.
Your feedback of the comparisons will be used as a reward signal (for reinforcement learning) to train
a quadruped robot (Unitree Go2) to move forward with a bounding gait at some speed given by the
commands, and the velocity range of the speed command is [0.0, 2.2] m/s.
The training method is similar to that in the paper "Deep Reinforcement Learning from Human
Preferences", where humans provide preference of trajectories in different pairs of comparisons,
but now you will take the role of the humans to provide feedback on which one trajectory is better
in a pair of trajectories.
Each trajectory will contain 24 time steps of states of the robot moving on a flat ground.
The state includes:
1) "commands": the linear velocity command along x axis that the robot needs to follow. its length is
24, standing for the 24 steps of a trajectory. its value range at each step is [0.0, 2.2] m/s. Sometimes
all the steps in one trajectory have the same velocity commands, while sometimes the commands vary
within one trajectory.
2) "base linear velocity": the x, y, z positional velocities (m/s) of the robot base torso. The data
shape is (24, 3), standing for 24 steps, and x, y, z 3 dimensional velocities.
3) "base angular velocity": the raw, pitch, yaw angular velocities (rad/s) of the robot base torso. The
data shape is (24, 3), standing for 24 steps, and raw, pitch, yaw 3 angular velocities around the x, y,
z axes.
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4) "base height": the z position (height) of the robot base torso. The data shape is (24, ), standing
for the 24 steps of a trajectory.
5) "base roll pitch yaw": the raw, pitch, yaw radian angles of the robot base torso. The data shape
is (24, 3), standing for 24 steps, and raw, pitch, yaw 3 rotation angles around the x, y, z axes.
6) "feet contacts": the contact boolean values of the four feet on the ground. 1 means touching the
ground while 0 means in the air. The data shape is (24, 4), standing for 24 steps, and the 4 feet in
the order of [front left, front right, rear left, rear right].
To decide which trajectory is better in a pair, here are some criteria:
1) The robot should follow the forward velocity command as close as possible. The first digit of the
3D "base linear velocity" can measure the forward velocity in the body frame.
2) The robot should have 0 velocities in the y and z directions of the body frame. The second and
third digits of the "base linear velocity" can measure them.
3) The robot should keep its body torso within a range around the height of 0.34 meter, but its torso
height is allowed to rise and fall within a small range when the robot is bounding forward. The "base
height" value can measure the robot torso height.
4) The robot should not have angular velocities in the roll and yaw directions when bounding forward.
The first and third values of the "base angular velocity" should be close to 0. The robot is allowed to
have some pitch angular velocity (the second value of the "base angular velocity") changing between
positive and negative when bounding forward.
5) The robot should not have roll angle when bounding forward, but the rise and fall of its pitch angle
is allowed within a small range for bounding. Since the linear and angular velocities of the robot are
randomly initialized at each episode, the robot might has some yaw angle from start, but this yaw
angle should not change when the robot is waling forward.
6) The robot is encouraged to take a bounding gait to move forward. The "feet contacts" can be used
to analyze the gait pattern of the robot. We encourage the two front feet to touch the ground or
be in the air simultaneously, so as the two back feet. I.e., in the "feet contacts" tensor, the first two
values are encouraged to always be the same, so as the last two values.
The user will provide 5 pairs of trajectories (each pair has index 0 and 1) in a batch and you should
provide 1 preference value for each pair (5 values in total).
1) If the trajectory 0 is better, the preference value should be 0.
2) If the trajectory 1 is better, the preference value should be 1.
3) If the two trajectories are equally preferable, the preference value should be 2.
4) If the two trajectories are incomparable, the preference value should be 3.
Please give response with only one list of 5 preference values, e.g., [0, 0, 1, 2, 3]. Do not provide any
other text such as your comments or thoughts. The preference value number can only be 0, 1, 2, or
3.
Please provide preference values 0 and 1 as many as possible, which clearly indication which one is
better in a pair.
Please be careful about providing equally preferable value 2. If each trajectory has its pros and cons,
instead of saying they are equally preferable, you can decide which criteria are more important at
this stage of training, and then decide which trajectory is more preferable.
For example, if the two trajectories both show that the robots are moving forward at some given
command speed, the robot whose gait pattern is more similar to a bounding pattern is more preferable.
Please be very careful about providing incomparable value 3! Do not provide incomparable value 3
unless you have very solid reason that this pair of trajectories are incomparable!

Prompt for High Cadence

You are a robotics engineer trying to compare pairs of quadruped robot locomotion trajectories and
decide which one is better in each pair.
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Your feedback of the comparisons will be used as a reward signal (for reinforcement learning) to train
a quadruped robot (Unitree Go2) to walk forward at some speed given by the commands. In addition,
the robot is preferred to have a higher gait cadence when walking forward.
The training method is similar to that in the paper "Deep Reinforcement Learning from Human
Preferences", where humans provide preference of trajectories in different pairs of comparisons,
but now you will take the role of the humans to provide feedback on which one trajectory is better
in a pair of trajectories.
Each trajectory will contain 24 time steps of states of the robot moving on a flat ground.
The state includes:
1) "commands": the linear velocity command along x axis that the robot needs to follow. its length is
24, standing for the 24 steps of a trajectory. its value range at each step is [0.0, 2.2] m/s. Sometimes
all the steps in one trajectory have the same velocity commands, while sometimes the commands vary
within one trajectory.
2) "base linear velocity": the x, y, z positional velocities (m/s) of the robot base torso. The data
shape is (24, 3), standing for 24 steps, and x, y, z 3 dimensional velocities.
3) "base angular velocity": the raw, pitch, yaw angular velocities (rad/s) of the robot base torso. The
data shape is (24, 3), standing for 24 steps, and raw, pitch, yaw 3 angular velocities around the x, y,
z axes.
4) "base height": the z position (height) of the robot base torso. The data shape is (24, ), standing
for the 24 steps of a trajectory.
5) "base roll pitch yaw": the raw, pitch, yaw radian angles of the robot base torso. The data shape
is (24, 3), standing for 24 steps, and raw, pitch, yaw 3 rotation angles around the x, y, z axes.
6) "feet contacts": the contact boolean values of the four feet on the ground. 1 means touching the
ground while 0 means in the air. The data shape is (24, 4), standing for 24 steps, and the 4 feet in
the order of [front left, front right, rear left, rear right].
To decide which trajectory is better in a pair, here are some criteria:
1) The robot should follow the forward velocity command as close as possible. The first digit of the
3D "base linear velocity" can measure the forward velocity in the body frame.
2) The robot should have 0 velocities in the y and z directions of the body frame. The second and
third digits of the "base linear velocity" can measure them.
3) The robot should keep its body torso near the height of 0.34 meter. The "base height" value can
measure the robot torso height.
4) The robot should not have angular velocities in all the 3 roll, pitch, yaw directions when walking
forward. The 3 values of the "base angular velocity" should be close to 0.
5) The robot should not have roll or pitch angles when walking forward. Since the linear and angular
velocities of the robot are randomly initialized at each episode, the robot might has some yaw angle
from start, but this yaw angle should not change when the robot is waling forward.
6) The robot is encouraged to take more frequent steps with higher gait cadence. The "feet contacts"
can be used to analyze the gait pattern of the robot. Each feature dimension (standing for each foot)
of the "feet contacts" tensor is encouraged to change between 0 and 1 more frequently in a trajectory.
The user will provide 5 pairs of trajectories (each pair has index 0 and 1) in a batch and you should
provide 1 preference value for each pair (5 values in total).
1) If the trajectory 0 is better, the preference value should be 0.
2) If the trajectory 1 is better, the preference value should be 1.
3) If the two trajectories are equally preferable, the preference value should be 2.
4) If the two trajectories are incomparable, the preference value should be 3.
Please remember that you should provide preference labels that encourage the robot to walk with
higher gait cadence. More frequent steps (more frequent change in "feet contacts" tensor) is more
preferable.
Please give response with only one list of 5 preference values, e.g., [0, 0, 1, 2, 3]. Do not provide any
other text such as your comments or thoughts. The preference value number can only be 0, 1, 2, or
3.
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Please provide preference values 0 and 1 as many as possible, which clearly indication which one is
better in a pair.
Please be careful about providing equally preferable value 2. If each trajectory has its pros and cons,
instead of saying they are equally preferable, you can decide which criteria are more important at
this stage of training, and then decide which trajectory is more preferable.
Please be very careful about providing incomparable value 3! Do not provide incomparable value 3
unless you have very solid reason that this pair of trajectories are incomparable!

Prompt for Low Cadence

You are a robotics engineer trying to compare pairs of quadruped robot locomotion trajectories and
decide which one is better in each pair.
Your feedback of the comparisons will be used as a reward signal (for reinforcement learning) to train
a quadruped robot (Unitree Go2) to walk forward at some speed given by the commands. In addition,
the robot is preferred to have a lower gait cadence when walking forward.
The training method is similar to that in the paper "Deep Reinforcement Learning from Human
Preferences", where humans provide preference of trajectories in different pairs of comparisons,
but now you will take the role of the humans to provide feedback on which one trajectory is better
in a pair of trajectories.
Each trajectory will contain 24 time steps of states of the robot moving on a flat ground.
The state includes:
1) "commands": the linear velocity command along x axis that the robot needs to follow. its length is
24, standing for the 24 steps of a trajectory. its value range at each step is [0.0, 2.2] m/s. Sometimes
all the steps in one trajectory have the same velocity commands, while sometimes the commands vary
within one trajectory.
2) "base linear velocity": the x, y, z positional velocities (m/s) of the robot base torso. The data
shape is (24, 3), standing for 24 steps, and x, y, z 3 dimensional velocities.
3) "base angular velocity": the raw, pitch, yaw angular velocities (rad/s) of the robot base torso. The
data shape is (24, 3), standing for 24 steps, and raw, pitch, yaw 3 angular velocities around the x, y,
z axes.
4) "base height": the z position (height) of the robot base torso. The data shape is (24, ), standing
for the 24 steps of a trajectory.
5) "base roll pitch yaw": the raw, pitch, yaw radian angles of the robot base torso. The data shape
is (24, 3), standing for 24 steps, and raw, pitch, yaw 3 rotation angles around the x, y, z axes.
6) "feet contacts": the contact boolean values of the four feet on the ground. 1 means touching the
ground while 0 means in the air. The data shape is (24, 4), standing for 24 steps, and the 4 feet in
the order of [front left, front right, rear left, rear right].
To decide which trajectory is better in a pair, here are some criteria:
1) The robot should follow the forward velocity command as close as possible. The first digit of the
3D "base linear velocity" can measure the forward velocity in the body frame.
2) The robot should have 0 velocities in the y and z directions of the body frame. The second and
third digits of the "base linear velocity" can measure them.
3) The robot should keep its body torso near the height of 0.34 meter. The "base height" value can
measure the robot torso height.
4) The robot should not have angular velocities in all the 3 roll, pitch, yaw directions when walking
forward. The 3 values of the "base angular velocity" should be close to 0.
5) The robot should not have roll or pitch angles when walking forward. Since the linear and angular
velocities of the robot are randomly initialized at each episode, the robot might has some yaw angle
from start, but this yaw angle should not change when the robot is waling forward.
6) The robot is encouraged to take less frequent (longer) steps with lower gait cadence. The "feet
contacts" can be used to analyze the gait pattern of the robot. Each feature dimension (standing for
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each foot) of the "feet contacts" tensor is encouraged to change between 0 and 1 less frequently in a
trajectory.
The user will provide 5 pairs of trajectories (each pair has index 0 and 1) in a batch and you should
provide 1 preference value for each pair (5 values in total).
1) If the trajectory 0 is better, the preference value should be 0.
2) If the trajectory 1 is better, the preference value should be 1.
3) If the two trajectories are equally preferable, the preference value should be 2.
4) If the two trajectories are incomparable, the preference value should be 3.
Please remember that you should provide preference labels that encourage the robot to walk with lower
gait cadence. Less frequent steps (less frequent change in "feet contacts" tensor) is more preferable.
Please give response with only one list of 5 preference values, e.g., [0, 0, 1, 2, 3]. Do not provide any
other text such as your comments or thoughts. The preference value number can only be 0, 1, 2, or
3.
Please provide preference values 0 and 1 as many as possible, which clearly indication which one is
better in a pair.
Please be careful about providing equally preferable value 2. If each trajectory has its pros and cons,
instead of saying they are equally preferable, you can decide which criteria are more important at
this stage of training, and then decide which trajectory is more preferable.
Please be very careful about providing incomparable value 3! Do not provide incomparable value 3
unless you have very solid reason that this pair of trajectories are incomparable!

Prompt for Backflip

You are a robotics engineer trying to compare pairs of quadruped robot motion trajectories and decide
which one is better in each pair.
Your feedback of the comparisons will be used as a reward signal (for reinforcement learning) to train
a quadruped robot (Unitree Go2) to do backflip.
The training method is similar to that in the paper "Deep Reinforcement Learning from Human
Preferences", where humans provide preference of trajectories in different pairs of comparisons,
but now you will take the role of the humans to provide feedback on which one trajectory is better
in a pair of trajectories.
Each trajectory will contain 24 time steps of states of the robot trying to do backflip. Some trajectories
are initialized on the ground, while some others are initialized in the air at some random height with
some random pitch angle.
The state includes:
1) "base linear velocity": the x, y, z positional velocities (m/s) of the robot base torso. The data
shape is (24, 3), standing for 24 steps, and x, y, z 3 dimensional velocities.
2) "base angular velocity": the raw, pitch, yaw angular velocities (rad/s) of the robot base torso. The
data shape is (24, 3), standing for 24 steps, and raw, pitch, yaw 3 angular velocities around the x, y,
z axes.
4) "base height": the z position (height) of the robot base torso. The data shape is (24, ), standing
for the 24 steps of a trajectory.
5) "base roll pitch yaw": the raw, pitch, yaw radian angles of the robot base torso. The data shape
is (24, 3), standing for 24 steps, and raw, pitch, yaw 3 rotation angles around the x, y, z axes.
6) "feet contacts": the contact boolean values of the four feet on the ground. 1 means touching the
ground while 0 means in the air. The data shape is (24, 4), standing for 24 steps, and the 4 feet in
the order of [front left, front right, rear left, rear right].
To decide which trajectory is better in a pair, here are some criteria:
1) The robot is encouraged to rotated backward to do a backflip, so a negative pitch rate is good,
and a positive pitch rate is bad. The second value of the "base angular velocity" is the pitch rate.
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2) The pitch angle of the robot is encouraged to keep decreasing. Since the range of the pitch angle is
-pi (-3.14) to pi (3.14), when the robot rotates back across the -pi angle, its pitch angle will jump to
positive around pi and then keep decreasing, and this behavior is very preferable. The second value
of the "base roll pitch yaw" is the pitch angle.
3) The robot should jump high to have more time to do backflip. The "base height" value can measure
the robot torso height.
4) The robot should not have angular velocities in the roll and yaw directions. The first and third
values of the "base angular velocity" should be close to 0.
5) The robot should not have roll angle. The first value of the "base roll pitch yaw" should be close
to 0.
6) The robot should have 0 velocity in the y direction of the body frame. The second digit of the
"base linear velocity" can measure them.
The user will provide 5 pairs of trajectories (each pair has index 0 and 1) in a batch and you should
provide 1 preference value for each pair (5 values in total).
1) If the trajectory 0 is better, the preference value should be 0.
2) If the trajectory 1 is better, the preference value should be 1.
3) If the two trajectories are equally preferable, the preference value should be 2.
4) If the two trajectories are incomparable, the preference value should be 3.
Please give response with only one list of 5 preference values, e.g., [1, 0, 1, 2, 3]. Do not provide any
other text such as your comments or thoughts. The preference value number can only be 0, 1, 2, or
3.
Please provide preference values 0 and 1 as many as possible, which clearly indication which one is
better in a pair.
Please be careful about providing equally preferable value 2. If each trajectory has its pros and cons,
instead of saying they are equally preferable, you can decide which criteria are more important at
this stage of training, and then decide which trajectory is more preferable.
Please be very careful about providing incomparable value 3! Do not provide incomparable value 3
unless you have very solid reason that this pair of trajectories are incomparable!

Prompt for Kettle

You are a robotics engineer trying to compare pairs of shadow hands manipulation trajectories. Your
task is to provide feedback on which trajectory is better in given pair of trajectories.
Your feedback of the comparisons will be used as reward signal to train the following task: this
environment involves two hands, a kettle, and a bucket, we need to hold the kettle with one hand
(left hand in current setting) and the bucket with the other hand (right hand), and pour the water
from the kettle into the bucket.
Each trajectory will contain 16 timesteps of states of the shadow hand. To be specific, the state are
as below:
1) "kettle spout position": the x, y, z position of the kettle’s spout. The data shape is (16, 3), standing
for 16 steps, and x, y, z 3 dimensions.
2) "kettle handle position": the x, y, z position of the kettle’s handle. The data shape is (16, 3),
standing for 16 steps, and x, y, z 3 dimensions.
3) "bucket position": the x, y, z position of the bucket. The data shape is (16, 3), standing for 16
steps, and x, y, z 3 dimensions.
4) "left fore finger position": the x, y, z position of the left hand’s fore finger. The data shape is (16,
3), standing for 16 steps, and x, y, z 3 dimensions.
5) "right fore finger position": the x, y, z position of the right hand’s fore finger. The data shape is
(16, 3), standing for 16 steps, and x, y, z 3 dimensions.
6) "success indicator": indicates whether current step completes the task. The length is 16, standing
for 16 steps. 1 stands for True and 0 for False.
To decide which trajectory is better in a pair, here are some criteria (importance by rank):
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1) The trajectory that succeeds is better.
2) The kettle spout position should be as close to bucket position as possible. The distance between
"kettle spout position" and "bucket position" can measure.
3) The right fore finger should be as close to bucket position as possible, so as to hold the bucket.
The distance between "right fore finger position" and "bucket position" can measure.
4) The left fore finger should be as close to kettle handle position as possible, so as to hold the kettle.
The distance between "left fore finger position" and "kettle handle position" can measure.
The user will provide 5 pairs of trajectories (each pair has index 0 and 1) in a batch and you should
provide 1 preference value for each pair (5 values in total).
1) If the trajectory 0 is better, the preference value should be 0.
2) If the trajectory 1 is better, the preference value should be 1.
3) If the two trajectories are equally preferable, the preference value should be 2.
4) If the two trajectories are incomparable, the preference value should be 3.
Examples for preference:
1) If one trajectory has more success indicators, it is better.
2) If neither succeeds, the trajectory where kettle spout is closer to bucket is preferred.
3) If similar distance, the trajectory where left fore finger is closer to bucket is preferred.
4) If still similar, the trajectory where right fore finger is closer to kettle handle is preferred.
Please give response with only one list of 5 preference values, e.g., [0, 0, 1, 2, 3]. Do not provide any
other text such as your comments or thoughts. The preference value number can only be 0, 1, 2, or
3.
Please provide preference values 0 and 1 as many as possible, which clearly indicates which one is
better in a pair.
Please be very careful about providing equally preferable value 2. If each trajectory has its pros and
cons, instead of saying they are equally preferable, you can decide which criteria are more important
at this stage of training, and then decide which trajectory is more preferable.
Please avoid providing incomparable value 3! Do not provide incomparable value 3 unless you have
very solid reason that this pair of trajectories are incomparable!

Prompt for Hand Over

You are a robotics engineer trying to compare pairs of shadow hands manipulation trajectories. Your
task is to provide feedback on which trajectory is better in given pair of trajectories.
Your feedback of the comparisons will be used as reward signal to train tossing an object (a ball in
this case) from hand 0 to hand 1.
For your reference, the palm position of hand 0, the releasing hand, is [0.000, -0.290, 0.490]. And the
palm position of hand 1, the catching hand, is [0.000, -0.640, 0.540].
Most importantly, the target position of the object is palm position of hand 1, [0.000, -0.640, 0.540].
Each trajectory will contain 16 timesteps of states of the shadow hand. To be specific, the state are
as below:
1) "object position": the x, y, z position of the object. The data shape is (16, 3), standing for 16
steps, and x, y, z 3 dimensional position.
2) "object linear velocity": the x, y, z positional velocities (m/s) of the object. The data shape is (16,
3), standing for 16 steps, and x, y, z 3 dimensional velocities.
3) "distance to first hand fingertips": the distance between the object and the five fingertips of hand
0. The data shape is (16, 5), standing for 16 steps, and 5 fingertips.
4) "distance to second hand fingertips": similar to "distance to first hand fingertips", except that it is
describing another hand, hand 1.
5) "success indicator": indicates whether current step completes the task. The length is 16, standing
for 16 steps. 1 stands for True and 0 for False.
To decide which trajectory is better in a pair, here are some criteria:
1) The trajectory that succeeds is better.
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2) The object (ball) should be as close to the target position as possible. The distance between "object
position" and target position can measure. And the second and third digits of "object position" should
matter the most.
3) The object should keep a distance from any fingertips for both hands. Being smaller than *threshold
of 0.03* is highly penalized.
The user will provide 5 pairs of trajectories (each pair has index 0 and 1) in a batch and you should
provide 1 preference value for each pair (5 values in total).
1) If the trajectory 0 is better, the preference value should be 0.
2) If the trajectory 1 is better, the preference value should be 1.
3) If the two trajectories are equally preferable, the preference value should be 2.
4) If the two trajectories are incomparable, the preference value should be 3.
Examples for preference:
1) If one trajectory has more success indicators, it is better.
2) If neither succeeds, the trajectory where object position is closer to target position is preferred.
3) If both succeed, the trajectory with closer distances in y and z axes between object and target is
preferred.
4) If both succeed, and distance between object and target is small, the trajectory where object keeps
greater distance from both hands’ fingertips is preferred.
Please give response with only one list of 5 preference values, e.g., [0, 0, 1, 2, 3]. Do not provide any
other text such as your comments or thoughts. The preference value number can only be 0, 1, 2, or
3.
Please provide preference values 0 and 1 as many as possible, which clearly indicates which one is
better in a pair.
Please be very careful about providing equally preferable value 2. If each trajectory has its pros and
cons, instead of saying they are equally preferable, you can decide which criteria are more important
at this stage of training, and then decide which trajectory is more preferable.
Please avoid providing incomparable value 3! Do not provide incomparable value 3 unless you have
very solid reason that this pair of trajectories are incomparable!

Prompt for Swing Cup

You are a robotics engineer trying to compare pairs of shadow hands manipulation trajectories. Your
task is to provide feedback on which trajectory is better in given pair of trajectories.
Your feedback of the comparisons will be used as reward signal to train a pair of shadow hands
to swing a cup with two handles positioned on opposite sides. They are pushing the handles in a
coordinated manner to achieve a 180-degree counter-clockwise rotation along the z-axis
Most importantly, the goal rotation of the cup is [ 0.0000, -0.0000, -1.5708].
Each trajectory will contain 16 timesteps of states of the shadow hand. To be specific, the state are
as below:
1) "object linear velocity": the x, y, z positional velocities (m/s) of the object. The data shape is (16,
3), standing for 16 steps, and x, y, z 3 dimensional velocities.
2) "object angular orientation": the roll, pitch, yaw angular orientation of the cup. The data shape
is (16, 3), standing for 16 steps, and rotation around x, y, z 3 axes.
3) "left hand distance to left handle": the distance between the right shadow hand and the right
handle of cup. The length is 16, standing for 16 steps.
4) "right hand distance to right handle": the distance between the right shadow hand and the right
handle of cup. The length is 16, standing for 16 steps.
5) "success indicator": indicates whether current step completes the task. The length is 16, standing
for 16 steps. 1 stands for True and 0 for False.
To decide which trajectory is better in a pair, here are some criteria (importance by rank):
1) The trajectory that succeeds is better.
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2) The object rotation should be as close to target rotation as possible. The "object angular orienta-
tion" can help measure.
3) The "left hand distance to left handle" & "right hand distance to right handle" should be as small
as possible.
4) The object should have as small linear velocity in all axes as possible. The "object linear velocity"
can measure
The user will provide 5 pairs of trajectories (each pair has index 0 and 1) in a batch and you should
provide 1 preference value for each pair (5 values in total).
1) If the trajectory 0 is better, the preference value should be 0.
2) If the trajectory 1 is better, the preference value should be 1.
3) If the two trajectories are equally preferable, the preference value should be 2.
4) If the two trajectories are incomparable, the preference value should be 3.
Examples for preference:
1) If one trajectory has more success indicators, it is better.
2) If neither succeeds, the trajectory where object rotation is closer to target rotation is preferred.
3) If both succeed, the trajectory with smaller distances between left hand & left handle and right
hand & right handle is preferred.
4) If both succeed, and distances between hands and handles are small, the trajectory where object
linear velocity is small in every axis is preferred.
Please give response with only one list of 5 preference values, e.g., [0, 0, 1, 2, 3]. Do not provide any
other text such as your comments or thoughts. The preference value number can only be 0, 1, 2, or
3.
Please provide preference values 0 and 1 as many as possible, which clearly indicates which one is
better in a pair.
Please be very careful about providing equally preferable value 2. If each trajectory has its pros and
cons, instead of saying they are equally preferable, you can decide which criteria are more important
at this stage of training, and then decide which trajectory is more preferable.
Please avoid providing incomparable value 3! Do not provide incomparable value 3 unless you have
very solid reason that this pair of trajectories are incomparable!

A.2 Full Rewards

In this section,we provide all the explicit environment rewards for training with LAPP. LAPP uses the
weighted sum of the explicit environment reward and the implicit preference reward for RL.

Reward for Flat Plane locomotion and bounding control and cadence control

def compute_reward(self):
""" Compute rewards

Compute each reward component first
Then compute the total reward
Return the total reward, and the recording of all reward components

"""
env = self.env # Do not skip this line. Afterwards, use env.{parameter_name}

to access parameters of the environment.↪→

# Tracking of linear velocity commands (xy axes)
lin_vel_error = torch.sum(torch.square(env.commands[:, :2] -

env.base_lin_vel[:, :2]), dim=1)↪→

tracking_lin_vel_reward = 1.0 * torch.exp(-lin_vel_error / 0.25)

# Tracking of angular velocity commands (yaw)
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ang_vel_error = torch.square(env.commands[:, 2] - env.base_ang_vel[:, 2])
tracking_ang_vel_reward = 0.5 * torch.exp(-ang_vel_error / 0.25)

# Penalize z axis base linear velocity
lin_vel_z_reward = -2.0 * torch.square(env.base_lin_vel[:, 2])

# Penalize xy axes base angular velocity
ang_vel_xy_reward = -0.05 * torch.sum(torch.square(env.base_ang_vel[:, :2]),

dim=1)↪→

# Penalize torques
torques_reward = -0.0002 * torch.sum(torch.square(env.torques), dim=1)

# Penalize dof accelerations
dof_acc_reward = -2.5e-7 * torch.sum(torch.square((env.last_dof_vel -

env.dof_vel) / env.dt), dim=1)↪→

# Reward long steps
# Need to filter the contacts because the contact reporting of PhysX is

unreliable on meshes↪→

contact = env.contact_forces[:, env.feet_indices, 2] > 1.
contact_filt = torch.logical_or(contact, env.last_contacts)
env.last_contacts = contact
first_contact = (env.feet_air_time > 0.) * contact_filt
env.feet_air_time += env.dt
rew_airTime = torch.sum((env.feet_air_time - 0.5) * first_contact, dim=1) #

reward only on first contact with the ground↪→

rew_airTime *= torch.norm(env.commands[:, :2], dim=1) > 0.1 # no reward for
zero command↪→

env.feet_air_time *= ~contact_filt
feet_air_time_reward = 1.0 * rew_airTime

# Penalize collisions on selected bodies
collision_reward = -1.0 * torch.sum(1. * (torch.norm(env.contact_forces[:,

env.penalised_contact_indices, :], dim=-1) > 0.1), dim=1)↪→

# Penalize changes in actions
action_rate_reward = -0.01 * torch.sum(torch.square(env.last_actions -

env.actions), dim=1)↪→

# Penalize dof positions too close to the limit
out_of_limits = -(env.dof_pos - env.dof_pos_limits[:, 0]).clip(max=0.) #

lower limit↪→

out_of_limits += (env.dof_pos - env.dof_pos_limits[:, 1]).clip(min=0.)
dof_pos_limits_reward = -10.0 * torch.sum(out_of_limits, dim=1)

# # Penalize base height away from target
# target_height_z = 0.34 # Ideal height of the robot’s torso
# base_height = env.root_states[:, 2]
# height_reward = -0.05 * torch.square(base_height - target_height_z) #

reward to maintain height↪→
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# Height reward component
target_height_z = 0.34 # Ideal height of the robot’s torso
base_height = env.root_states[:, 2]
height_error = torch.abs(base_height - target_height_z)
temperature_height = 5.0 # Temperature parameter for the height reward
height_reward = 1.0 * torch.exp(-temperature_height * height_error) # More

weight to maintain height↪→

# Combine reward components to compute the total reward in this step
total_reward = (tracking_lin_vel_reward + tracking_ang_vel_reward +

lin_vel_z_reward +↪→

ang_vel_xy_reward + torques_reward + dof_acc_reward +
feet_air_time_reward +↪→

collision_reward + action_rate_reward + dof_pos_limits_reward
+ height_reward)↪→

# # Normalizing the total reward to avoid exploding values
# total_reward = total_reward / (1 + torch.abs(total_reward)) # Additional

normalization for stability↪→

# Debug information
reward_components = {"tracking_lin_vel_reward": tracking_lin_vel_reward,

"tracking_ang_vel_reward": tracking_ang_vel_reward,
"lin_vel_z_reward": lin_vel_z_reward,
"ang_vel_xy_reward": ang_vel_xy_reward,
"torques_reward": torques_reward,
"dof_acc_reward": dof_acc_reward,
"feet_air_time_reward": feet_air_time_reward,
"collision_reward": collision_reward,
"action_rate_reward": action_rate_reward,
"dof_pos_limits_reward": dof_pos_limits_reward,
"height_reward": height_reward}

return total_reward, reward_components

Reward for Stairs

def compute_reward(self):
""" Compute improved rewards

Compute each reward component first
Then compute the total reward
Return the total reward, and the recording of all reward components

"""
env = self.env # Do not skip this line. Afterwards, use env.{parameter_name}

to access parameters of the environment.↪→

# Tracking of linear velocity commands (xy axes)
lin_vel_error = torch.sum(torch.square(env.commands[:, :2] -

env.base_lin_vel[:, :2]), dim=1)↪→

tracking_lin_vel_reward = 1.5 * torch.exp(-lin_vel_error / 0.20)

# Tracking of angular velocity commands (yaw)
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ang_vel_error = torch.square(env.commands[:, 2] - env.base_ang_vel[:, 2])
tracking_ang_vel_reward = 0.5 * torch.exp(-ang_vel_error / 0.1)

# # Penalize z axis base linear velocity
lin_vel_z_reward = -0.00001 * torch.square(env.base_lin_vel[:, 2])

# Penalize xy axes base angular velocity
ang_vel_xy_reward = -0.1 * torch.sum(torch.square(env.base_ang_vel[:, :2]),

dim=1)↪→

# Penalize torques
torques_reward = -0.0005 * torch.sum(torch.square(env.torques), dim=1)

# Penalize dof accelerations
dof_acc_reward = -1.0e-7 * torch.sum(torch.square((env.last_dof_vel -

env.dof_vel) / env.dt), dim=1)↪→

# Reward air time
contact = env.contact_forces[:, env.feet_indices, 2] > 1.
contact_filt = torch.logical_or(contact, env.last_contacts)
env.last_contacts = contact
first_contact = (env.feet_air_time > 0.) * contact_filt
env.feet_air_time += env.dt
rew_airTime = torch.sum((env.feet_air_time - 0.5) * first_contact, dim=1)
rew_airTime *= torch.norm(env.commands[:, :2], dim=1) > 0.1
env.feet_air_time *= ~contact_filt
feet_air_time_reward = 0.8 * rew_airTime

# Penalize collisions
collision_reward = -5.0 * torch.sum(1. * (torch.norm(env.contact_forces[:,

env.penalised_contact_indices, :], dim=-1) > 0.1), dim=1)↪→

# Penalize changes in actions
action_rate_reward = -0.008 * torch.sum(torch.square(env.last_actions -

env.actions), dim=1)↪→

# Penalize dofs close to limits
out_of_limits = -(env.dof_pos - env.dof_pos_limits[:, 0]).clip(max=0.)
out_of_limits += (env.dof_pos - env.dof_pos_limits[:, 1]).clip(min=0.)
dof_pos_limits_reward = -7.0 * torch.sum(out_of_limits, dim=1)

# Penalize base height away from target
target_height_z = 0.34
base_height = env.root_states[:, 2]
# get the ground height of the terrain
ground_x = env.root_states[:, 0]
ground_y = env.root_states[:, 1]
ground_z = env._get_stairs_terrain_heights(ground_x, ground_y)
# calculate the base-to-ground height
base2ground_height = base_height - ground_z
height_reward = -0.000002 * torch.square(base2ground_height - target_height_z)
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# stumbling penalty
stumble = (torch.norm(env.contact_forces[:, env.feet_indices, :2], dim=2) >

5.) * (torch.abs(env.contact_forces[:, env.feet_indices, 2]) < 1.)↪→

stumble_reward = -2.0 * torch.sum(stumble, dim=1)

# Combine reward components to compute the total reward in this step
total_reward = (tracking_lin_vel_reward + tracking_ang_vel_reward +

lin_vel_z_reward +↪→

ang_vel_xy_reward + torques_reward + dof_acc_reward +
feet_air_time_reward +↪→

collision_reward + action_rate_reward + dof_pos_limits_reward
+ height_reward + stumble_reward)↪→

# Debug information
reward_components = {"tracking_lin_vel_reward": tracking_lin_vel_reward,

"tracking_ang_vel_reward": tracking_ang_vel_reward,
"lin_vel_z_reward": lin_vel_z_reward,
"ang_vel_xy_reward": ang_vel_xy_reward,
"torques_reward": torques_reward,
"dof_acc_reward": dof_acc_reward,
"feet_air_time_reward": feet_air_time_reward,
"collision_reward": collision_reward,
"action_rate_reward": action_rate_reward,
"dof_pos_limits_reward": dof_pos_limits_reward,
"height_reward": height_reward,
"stumble_reward": stumble_reward}

return total_reward, reward_components

Reward for Obstacles

def compute_reward(self):
""" Compute rewards for wave terrain """
env = self.env

# 1. Linear velocity tracking along x-axis
lin_vel_error = torch.sum(torch.square(env.commands[:, :2] -

env.base_lin_vel[:, :2]), dim=1)↪→

tracking_lin_vel_reward = 2.3 * torch.exp(-lin_vel_error / 0.20)

# 2. Tracking of angular velocity commands (yaw)
ang_vel_error = torch.square(env.commands[:, 2] - env.base_ang_vel[:, 2])
tracking_ang_vel_reward = 0.8 * torch.exp(-ang_vel_error / 0.1)

# 3. Penalize z-axis velocity
# lin_vel_z_reward = -0.001 * torch.square(env.base_lin_vel[:, 2])
ang_vel_x_reward = -0.002 * torch.square(env.base_ang_vel[:, 0])

# 4. Base height tracking (adjusted for wave terrain)
target_height_z = 0.34

47



base_height = env.root_states[:, 2]
ground_x = env.root_states[:, 0]
ground_y = env.root_states[:, 1]
ground_z = env._get_terrain_heights(ground_x, ground_y)
base2ground_height = base_height - ground_z
height_reward = -1.5 * torch.square(base2ground_height - target_height_z)

# 5. Penalize torques
torques_reward = -0.00001 * torch.sum(torch.square(env.torques), dim=1)

# 6. Penalize changes in actions
action_rate_reward = -0.0055 * torch.sum(torch.square(env.last_actions -

env.actions), dim=1)↪→

# 7. Encourage smoother joint motions (penalize excessive joint accelerations)
dof_acc_penalty = -1e-8 * torch.sum(torch.square((env.dof_vel -

env.last_dof_vel) / env.dt), dim=1)↪→

# 8. Air time reward for dynamic gaits
contact = env.contact_forces[:, env.feet_indices, 2] > 1.0
contact_filt = torch.logical_or(contact, env.last_contacts)
env.last_contacts = contact
first_contact = (env.feet_air_time > 0.0) * contact_filt
env.feet_air_time += env.dt
rew_airTime = torch.sum((env.feet_air_time - 0.4) * first_contact, dim=1)
rew_airTime *= torch.norm(env.commands[:, :2], dim=1) > 0.1
env.feet_air_time *= ~contact_filt
air_time_reward = 0.5 * rew_airTime

# 9. Collision penalty (avoid collisions with terrain or robot parts)
collision_penalty = -1. * torch.sum(

1.0 * (torch.norm(env.contact_forces[:, env.penalised_contact_indices, :],
dim=-1) > 0.13),↪→

dim=1
)

# 10. Gait pattern reward (encourage trot gait using phase alignment)
diag_sync = (contact[:, 0] == contact[:, 3]) & (contact[:, 1] == contact[:, 2])
gait_pattern_reward = 0.0001 * torch.sum(diag_sync.float())

# 11. Penalize use only two feet
stumble = (torch.norm(env.contact_forces[:, env.feet_indices, :2], dim=2) >

5.) * (torch.abs(env.contact_forces[:, env.feet_indices, 2]) < 1.)↪→

stumble_penalty = -20.0 * torch.sum(stumble, dim=1)

# Combine all components into the total reward
total_reward = (

tracking_lin_vel_reward +
tracking_ang_vel_reward +
ang_vel_x_reward +
height_reward +
torques_reward +
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action_rate_reward +
dof_acc_penalty +
air_time_reward +
collision_penalty +
gait_pattern_reward +
stumble_penalty

)

# Debug information for reward components
reward_components = {

"tracking_lin_vel_reward": tracking_lin_vel_reward,
"tracking_ang_vel_reward": tracking_ang_vel_reward,
"ang_vel_x_reward": ang_vel_x_reward,
"height_reward": height_reward,
"torques_reward": torques_reward,
"action_rate_reward": action_rate_reward,
"dof_acc_penalty": dof_acc_penalty,
"air_time_reward": air_time_reward,
"collision_penalty": collision_penalty,
"gait_pattern_reward": gait_pattern_reward,
"stumble_penalty": stumble_penalty

}

return total_reward, reward_components

Reward for Wave

def compute_reward(self):
""" Compute rewards for wave terrain """
env = self.env

# 1. Tracking of linear velocity commands (xy axes)
lin_vel_error = torch.sum(torch.square(env.commands[:, :2] -

env.base_lin_vel[:, :2]), dim=1)↪→

tracking_lin_vel_reward = 2.3 * torch.exp(-lin_vel_error / 0.20)

# 2. Tracking of angular velocity commands (yaw)
ang_vel_error = torch.square(env.commands[:, 2] - env.base_ang_vel[:, 2])
tracking_ang_vel_reward = 0.8 * torch.exp(-ang_vel_error / 0.1)

# 3. Base height tracking (adjusted for wave terrain)
target_height_z = 0.34
base_height = env.root_states[:, 2]
ground_x = env.root_states[:, 0]
ground_y = env.root_states[:, 1]
ground_z = env._get_terrain_heights(ground_x, ground_y)
base2ground_height = base_height - ground_z
height_reward = -1.5 * torch.square(base2ground_height - target_height_z)

# 4. Penalize torques
torques_reward = -0.00001 * torch.sum(torch.square(env.torques), dim=1)

49



# 5. Penalize changes in actions
action_rate_reward = -0.0045 * torch.sum(torch.square(env.last_actions -

env.actions), dim=1)↪→

# 6. Encourage smoother joint motions (penalize excessive joint accelerations)
dof_acc_penalty = -1e-8 * torch.sum(torch.square((env.dof_vel -

env.last_dof_vel) / env.dt), dim=1)↪→

# 7. Air time reward for dynamic gaits
contact = env.contact_forces[:, env.feet_indices, 2] > 1.0
contact_filt = torch.logical_or(contact, env.last_contacts)
env.last_contacts = contact
first_contact = (env.feet_air_time > 0.0) * contact_filt
env.feet_air_time += env.dt
rew_airTime = torch.sum((env.feet_air_time - 0.4) * first_contact, dim=1)
rew_airTime *= torch.norm(env.commands[:, :2], dim=1) > 0.1
env.feet_air_time *= ~contact_filt
air_time_reward = 0.5 * rew_airTime

# 8. Collision penalty (avoid collisions with terrain or robot parts)
collision_penalty = -1. * torch.sum(

1.0 * (torch.norm(env.contact_forces[:, env.penalised_contact_indices, :],
dim=-1) > 0.13),↪→

dim=1
)

# 9. Gait pattern reward (encourage trot gait using phase alignment)
diag_sync = (contact[:, 0] == contact[:, 3]) & (contact[:, 1] == contact[:, 2])
gait_pattern_reward = 0.0001 * torch.sum(diag_sync.float())

# 10. Penalize use only two feet
lack_of_foot_usage = (~contact).float().sum(dim=1)
lack_of_foot_usage_penalty = -0.01 * lack_of_foot_usage

# Combine all components into the total reward
total_reward = (

tracking_lin_vel_reward +
tracking_ang_vel_reward +
height_reward +
torques_reward +
action_rate_reward +
dof_acc_penalty +
air_time_reward +
collision_penalty +
gait_pattern_reward +
lack_of_foot_usage_penalty

)

# Debug information for reward components
reward_components = {

"tracking_lin_vel_reward": tracking_lin_vel_reward,

50



"tracking_ang_vel_reward": tracking_ang_vel_reward,
"height_reward": height_reward,
"torques_reward": torques_reward,
"action_rate_reward": action_rate_reward,
"dof_acc_penalty": dof_acc_penalty,
"air_time_reward": air_time_reward,
"collision_penalty": collision_penalty,
"gait_pattern_reward": gait_pattern_reward,
"lack_of_foot_usage_penalty": lack_of_foot_usage_penalty

}

return total_reward, reward_components

Reward for Slope

def compute_reward(self):
""" Compute improved rewards

Compute each reward component first
Then compute the total reward
Return the total reward, and the recording of all reward components

"""
env = self.env # Do not skip this line. Afterwards, use

env.{parameter_name} to access parameters of the environment.↪→

# Tracking of linear velocity commands (xy axes)
lin_vel_error = torch.sum(torch.square(env.commands[:, :2] -

env.base_lin_vel[:, :2]), dim=1)↪→

tracking_lin_vel_reward = 3.0 * torch.exp(-lin_vel_error / 0.10)

# Tracking of angular velocity commands (yaw)
ang_vel_error = torch.square(env.commands[:, 2] - env.base_ang_vel[:, 2])
tracking_ang_vel_reward = 1.0 * torch.exp(-ang_vel_error / 0.05)

# # Penalize z axis base linear velocity
lin_vel_z_reward = -0.00001 * torch.square(env.base_lin_vel[:, 2])

# Penalize xy axes base angular velocity
ang_vel_xy_reward = -0.1 * torch.sum(torch.square(env.base_ang_vel[:,

:2]), dim=1)↪→

# Penalize torques
torques_reward = -0.0001 * torch.sum(torch.square(env.torques), dim=1)

# Penalize dof accelerations
dof_acc_reward = -5.0e-8 * torch.sum(torch.square((env.last_dof_vel -

env.dof_vel) / env.dt), dim=1)↪→

# Reward air time
contact = env.contact_forces[:, env.feet_indices, 2] > 1.
contact_filt = torch.logical_or(contact, env.last_contacts)
env.last_contacts = contact
first_contact = (env.feet_air_time > 0.) * contact_filt
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env.feet_air_time += env.dt
rew_airTime = torch.sum((env.feet_air_time - 0.5) * first_contact, dim=1)
rew_airTime *= torch.norm(env.commands[:, :2], dim=1) > 0.1
env.feet_air_time *= ~contact_filt
feet_air_time_reward = 0.6 * rew_airTime

# Penalize collisions
collision_reward = -15.0 * torch.sum(1. *

(torch.norm(env.contact_forces[:, env.penalised_contact_indices, :],
dim=-1) > 0.1), dim=1)

↪→

↪→

# Penalize changes in actions
action_rate_reward = -0.015 * torch.sum(torch.square(env.last_actions -

env.actions), dim=1)↪→

# Penalize dofs close to limits
out_of_limits = -(env.dof_pos - env.dof_pos_limits[:, 0]).clip(max=0.)
out_of_limits += (env.dof_pos - env.dof_pos_limits[:, 1]).clip(min=0.)
dof_pos_limits_reward = -6.0 * torch.sum(out_of_limits, dim=1)

# Penalize base height away from target
target_height_z = 0.34
base_height = env.root_states[:, 2]
# get the ground height of the terrain
ground_x = env.root_states[:, 0]
ground_y = env.root_states[:, 1]
ground_z = env._get_terrain_heights(ground_x, ground_y)
# calculate the base-to-ground height
base2ground_height = base_height - ground_z
height_reward = -0.000001 * torch.square(base2ground_height -

target_height_z)↪→

# stumbling penalty
# stumble = (torch.norm(env.contact_forces[:, env.feet_indices, :2],

dim=2) > 5.) * (torch.abs(env.contact_forces[:, env.feet_indices, 2])
< 1.)

↪→

↪→

# stumble_reward = -4.0 * torch.sum(stumble, dim=1)

# Combine reward components to compute the total reward in this step
total_reward = (tracking_lin_vel_reward + tracking_ang_vel_reward +

lin_vel_z_reward +↪→

ang_vel_xy_reward + torques_reward + dof_acc_reward +
feet_air_time_reward +↪→

collision_reward + action_rate_reward +
dof_pos_limits_reward + height_reward)↪→

# + stumble_reward)

# Debug information
reward_components = {"tracking_lin_vel_reward": tracking_lin_vel_reward,

"tracking_ang_vel_reward": tracking_ang_vel_reward,
"lin_vel_z_reward": lin_vel_z_reward,
"ang_vel_xy_reward": ang_vel_xy_reward,
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"torques_reward": torques_reward,
"dof_acc_reward": dof_acc_reward,
"feet_air_time_reward": feet_air_time_reward,
"collision_reward": collision_reward,
"action_rate_reward": action_rate_reward,
"dof_pos_limits_reward": dof_pos_limits_reward,
"height_reward": height_reward,}

return total_reward, reward_components

Reward for Jump high

def compute_reward(self):
""" Compute rewards for the backflip task """
env = self.env # Do not skip this line. Afterwards, use env.{parameter_name}

to access parameters of the environment.↪→

# Penalize angular velocity around x-axis (roll) and z-axis (yaw)
roll_rate = env.root_states[:, 10] # Angular velocity around x-axis (roll)
yaw_rate = env.root_states[:, 12] # Angular velocity around z-axis (yaw)
roll_rate_reward = -0.05 * torch.square(roll_rate) # Penalize deviation in

roll, org -5.0, 0.5↪→

yaw_rate_reward = -0.2 * torch.square(yaw_rate) # Penalize deviation in yaw,
org -5.0, -2.0↪→

# Penalize roll and yaw around x-axis (roll) and z-axis (yaw)
roll = env.rpy[:, 0]
pitch = env.rpy[:, 1]
yaw = env.rpy[:, 2]
roll_reward = -0.2 * torch.square(roll) # Penalize deviation in roll
pitch_reward = -0.2 * torch.square(pitch) # Penalize deviation in pitch
yaw_reward = -1.0 * torch.square(yaw) # Penalize deviation in yaw

# Encourage z axis base linear velocity
lin_vel_z_reward = 0.4 * torch.square(env.root_states[:, 9])

# Penalize x axis base linear velocity forward
lin_vel_x_reward = -0.4 * torch.square(torch.relu(env.root_states[:, 7]))

# Penalize torques
torques_reward = -0.0005 * torch.sum(torch.square(env.torques), dim=1)

# Penalize dof accelerations
dof_acc_reward = -1.0e-7 * torch.sum(torch.square((env.last_dof_vel -

env.dof_vel) / env.dt), dim=1)↪→

# # Penalize dofs close to limits
# out_of_limits = -(env.dof_pos - env.dof_pos_limits[:, 0]).clip(max=0.)
# out_of_limits += (env.dof_pos - env.dof_pos_limits[:, 1]).clip(min=0.)
# dof_pos_limits_reward = -7.0 * torch.sum(out_of_limits, dim=1)

# Penalize base torso hitting the ground
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base_hit_ground = torch.any(torch.norm(env.contact_forces[:,
env.termination_contact_indices, :], dim=-1) > 0.1, dim=1) # >1.0
originally

↪→

↪→

base_hit_ground_reward = -20.0 * base_hit_ground # 10

# Penalize non flat base orientation
gravity_reward = -0.01 * torch.sum(torch.square(env.projected_gravity[:, :2]),

dim=1)↪→

# Reward for highest z position reached in an episode
height_history = env.height_history_buf
height_history_reward = 1.0 * height_history # 0.5

# Combine reward components to compute the total reward in this step
total_reward = (roll_rate_reward + yaw_rate_reward + roll_reward +

pitch_reward + yaw_reward + lin_vel_z_reward + lin_vel_x_reward +↪→

torques_reward + dof_acc_reward+ base_hit_ground_reward +
gravity_reward + height_history_reward)↪→

# Debug information
reward_components = {

"roll_rate_reward": roll_rate_reward,
"yaw_rate_reward": yaw_rate_reward,
"roll_reward": roll_reward,
"pitch_reward": pitch_reward,
"yaw_reward": yaw_reward,
"lin_vel_z_reward": lin_vel_z_reward,
"lin_vel_x_reward": lin_vel_x_reward,
"torques_reward": torques_reward,
"dof_acc_reward": dof_acc_reward,
"base_hit_ground_reward": base_hit_ground_reward,
"gravity_reward": gravity_reward,
"height_history_reward": height_history_reward

}
return total_reward, reward_components

Reward for Backflip

def compute_reward(self):
""" Compute rewards for the backflip task """
env = self.env # Do not skip this line. Afterwards, use env.{parameter_name}

to access parameters of the environment.↪→

# Penalize angular velocity around x-axis (roll) and z-axis (yaw)
roll_rate = env.root_states[:, 10] # Angular velocity around x-axis (roll)
yaw_rate = env.root_states[:, 12] # Angular velocity around z-axis (yaw)
roll_rate_reward = -0.05 * torch.square(roll_rate) # Penalize deviation in

roll, org -5.0, 0.5↪→

yaw_rate_reward = -0.2 * torch.square(yaw_rate) # Penalize deviation in yaw,
org -5.0, -2.0↪→
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# Penalize roll and yaw around x-axis (roll) and z-axis (yaw)
roll = env.rpy[:, 0]
yaw = env.rpy[:, 2]
roll_reward = -0.2 * torch.square(roll) # Penalize deviation in roll
yaw_reward = -1.0 * torch.square(yaw) # Penalize deviation in yaw

# Reward for angular velocity around y-axis (pitch), encourage backflip
rotation↪→

pitch_rate = env.base_ang_vel[:, 1] # Angular velocity around y-axis (pitch)
# Clamp the pitch rate to a minimum of -7 rad/s (maximum negative rotation

speed)↪→

clamped_pitch_rate = torch.clamp(pitch_rate, max=5.0, min=-7.0)
# Compute the backflip reward
pitch_rate_reward = torch.where(

clamped_pitch_rate < 0,
1.0 * (-clamped_pitch_rate), # Positive reward for negative pitch rate
-0.1 * clamped_pitch_rate # Negative penalty for positive pitch rate

)

# pitch_rate_reward = 1.0 * (-clamped_pitch_rate) # Reward negative pitch
rates↪→

# Reward for pitch frontwards for the back flip
pitch = env.rpy[:, 1]
last_pitch = env.last_rpy[:, 1]
delta_pitch = (pitch - last_pitch + torch.pi) % (2 * torch.pi) - torch.pi
delta_pitch_reward = torch.where(delta_pitch > 0, delta_pitch,

torch.zeros_like(delta_pitch))↪→

delta_pitch_reward = 20.0 * delta_pitch_reward

# Encourage z axis base linear velocity
lin_vel_z_reward = 0.2 * torch.square(env.root_states[:, 9])

# Penalize torques
torques_reward = -0.0005 * torch.sum(torch.square(env.torques), dim=1)

# Penalize dof accelerations
dof_acc_reward = -1.0e-7 * torch.sum(torch.square((env.last_dof_vel -

env.dof_vel) / env.dt), dim=1)↪→

# # Penalize dofs close to limits
# out_of_limits = -(env.dof_pos - env.dof_pos_limits[:, 0]).clip(max=0.)
# out_of_limits += (env.dof_pos - env.dof_pos_limits[:, 1]).clip(min=0.)
# dof_pos_limits_reward = -7.0 * torch.sum(out_of_limits, dim=1)

# Penalize base torso hitting the ground
base_hit_ground = torch.any(torch.norm(env.contact_forces[:,

env.termination_contact_indices, :], dim=-1) > 0.1, dim=1) # >1.0
originally

↪→

↪→

base_hit_ground_reward = -20.0 * base_hit_ground # 10

# Penalize projected gravity along y axis
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gravity_reward = -0.01 * torch.square(env.projected_gravity[:, 1])

# Encourage backwards rotation of the projected gravity
delta_gravity_x = env.projected_gravity[:, 0] - env.last_projected_gravity[:,

0]↪→

condition = env.projected_gravity[:, 2] < 0 # Corrected to use the z-axis as
per your description↪→

desired_direction = torch.where(
condition,
-1.0, # Encourage decrease in delta_gravity_x
1.0 # Encourage increase in delta_gravity_x

)

# Compute the alignment between desired and actual change
alignment = desired_direction * delta_gravity_x

# Compute the reward with different scaling factors
rotate_gravity_reward = torch.where(

alignment > 0,
20.0 * torch.abs(delta_gravity_x), # Positive reward
-2.0 * torch.abs(delta_gravity_x) # Negative penalty

)

# Reward for highest z position reached in an episode
height_history = env.height_history_buf
height_history_reward = 0.8 * height_history # 0.5

# Combine reward components to compute the total reward in this step
total_reward = (roll_rate_reward + yaw_rate_reward + roll_reward + yaw_reward

+ pitch_rate_reward +↪→

delta_pitch_reward + lin_vel_z_reward + torques_reward +
dof_acc_reward+↪→

base_hit_ground_reward + gravity_reward +
rotate_gravity_reward + height_history_reward)↪→

# Debug information
reward_components = {

"roll_rate_reward": roll_rate_reward,
"yaw_rate_reward": yaw_rate_reward,
"roll_reward": roll_reward,
"yaw_reward": yaw_reward,
"pitch_rate_reward": pitch_rate_reward,
"delta_pitch_reward": delta_pitch_reward,
"lin_vel_z_reward": lin_vel_z_reward,
"torques_reward": torques_reward,
"dof_acc_reward": dof_acc_reward,
"base_hit_ground_reward": base_hit_ground_reward,
"gravity_reward": gravity_reward,
"rotate_gravity_reward": rotate_gravity_reward,
"height_history_reward": height_history_reward

}
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return total_reward, reward_components

Reward for Kettle

def kettle_compute_reward(kettle_spout_pos: torch.Tensor,
bucket_handle_pos: torch.Tensor,
left_hand_pos: torch.Tensor,
right_hand_pos: torch.Tensor,
left_hand_ff_pos: torch.Tensor,
right_hand_ff_pos: torch.Tensor

) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:

# Redefine proximity reward for less dominance
kettle_to_bucket_distance = torch.norm(kettle_spout_pos - bucket_handle_pos,

dim=1)↪→

temp_proximity = 1.0
proximity_reward = torch.exp(-kettle_to_bucket_distance / temp_proximity)

# Rescale grip rewards and refine detection logic
left_grip_distance = torch.norm(left_hand_ff_pos - kettle_spout_pos, dim=1)
right_grip_distance = torch.norm(right_hand_ff_pos - bucket_handle_pos, dim=1)

temp_grip = 0.5
left_grip_reward = torch.exp(-left_grip_distance / temp_grip)
right_grip_reward = torch.exp(-right_grip_distance / temp_grip)

# Improved task-specific reward detection logic
task_success_indicator = torch.tensor([0], device=kettle_spout_pos.device) #

Replace with task success condition↪→

task_completion_threshold = 0.1 # Define a threshold to reflect task
completion↪→

task_complete = kettle_to_bucket_distance < task_completion_threshold
transformed_task_score = task_complete.float()

# Total reward balancing individual components
total_reward = (

0.2 * proximity_reward +
0.3 * left_grip_reward +
0.3 * right_grip_reward +
1.0 * transformed_task_score

)

# Reward components provided for diagnosis
reward_components = {

"kettle_spout_proximity": proximity_reward,
"kettle_handle_grip": left_grip_reward,
"bucket_handle_grip": right_grip_reward,
"task_success": transformed_task_score

}
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return total_reward, reward_components

Reward for Hand Over

def hand_over_compute_reward(object_pos: torch.Tensor,
object_rot: torch.Tensor,
object_linvel: torch.Tensor,
goal_pos: torch.Tensor,
goal_rot: torch.Tensor,
fingertip_pos: torch.Tensor,
fingertip_another_pos: torch.Tensor

) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
# Constants
distance_threshold: float = 0.03
rotation_threshold: float = 0.1
catch_reward_weight: float = 30.0
toss_reward_weight: float = 10.0
toss_temperature: float = 1.5
catch_temperature: float = 0.5
penalty_weight: float = 10.0

# Compute distance and rotation differences between object and goal
object_goal_distance = torch.norm(object_pos - goal_pos, dim=-1)
object_goal_rotation_diff = torch.norm(object_rot - goal_rot, dim=-1)

# Reward for object being close to the goal position and rotation
toss_reward = torch.exp(-toss_reward_weight * (object_goal_distance /

toss_temperature))↪→

# Calculate the catch reward based on the difference between the object's
linear velocity and the goal position↪→

catch_reward = torch.norm(goal_pos - object_linvel, dim=-1)
catch_reward = torch.exp(-catch_reward_weight * (catch_reward /

catch_temperature))↪→

# Penalty for direct rolling or touching the target instead of tossing and
catching↪→

penalty = torch.zeros_like(object_goal_distance)
for i in range(fingertip_pos.shape[1]):

dist_to_fingertip = torch.norm(object_pos - fingertip_pos[:, i, :], dim=-1)
dist_to_fingertip_another = torch.norm(object_pos -

fingertip_another_pos[:, i, :], dim=-1)↪→

penalty = torch.where(
(dist_to_fingertip < distance_threshold) | (dist_to_fingertip_another

< distance_threshold),↪→

penalty + 1.0, penalty
)

penalty_ratio = torch.sigmoid(penalty * penalty_weight) * 0.5
penalty = catch_reward * penalty_ratio # Adapt the penalty to the

catch_reward's dynamic range↪→
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# Total reward
total_reward = toss_reward + catch_reward - penalty
reward_terms = {"toss_reward": toss_reward, "catch_reward": catch_reward,

"penalty": penalty}↪→

return total_reward, reward_terms

Reward for Swing Cup

def swing_cup_compute_reward(object_pos: torch.Tensor,
object_rot: torch.Tensor,
object_linvel: torch.Tensor,
cup_right_handle_pos: torch.Tensor,
cup_left_handle_pos: torch.Tensor,
left_hand_pos: torch.Tensor,
right_hand_pos: torch.Tensor,
goal_pos: torch.Tensor,
goal_rot: torch.Tensor

) -> Tuple[torch.Tensor, Dict[str, torch.Tensor]]:
object_goal_distance = torch.norm(object_pos - goal_pos, dim=-1)
distance_reward_temperature = 0.1
object_goal_distance_reward_weight = 0.1
object_goal_distance_reward = -torch.exp(-distance_reward_temperature *

object_goal_distance) * object_goal_distance_reward_weight↪→

right_cup_handle_dist = torch.norm(cup_right_handle_pos - right_hand_pos,
dim=-1)↪→

left_cup_handle_dist = torch.norm(cup_left_handle_pos - left_hand_pos, dim=-1)

cup_orientation_diff = 1 - torch.sum(torch.mul(object_rot, goal_rot), dim=-1)
** 2↪→

cup_orientation_reward_weight = 1.
cup_orientation_reward = -(cup_orientation_diff *

cup_orientation_reward_weight)↪→

grasp_temperature_1 = 0.25
grasp_temperature_2 = 0.25
right_grasp_reward = torch.exp(-grasp_temperature_1 * right_cup_handle_dist)
left_grasp_reward = torch.exp(-grasp_temperature_2 * left_cup_handle_dist)
grasp_reward = (right_grasp_reward + left_grasp_reward - 1.0)

cup_linvel_norm = torch.norm(object_linvel, dim=-1)
cup_linvel_penalty_weight = 0.2
cup_linvel_penalty = -(cup_linvel_norm * cup_linvel_penalty_weight)

touch_reward_temperature = 0.25
touch_reward_weight = 0.125
touch_reward = (torch.exp(-touch_reward_temperature * right_cup_handle_dist) +

torch.exp(-touch_reward_temperature * left_cup_handle_dist) - 1.0) *
touch_reward_weight

↪→

↪→
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total_reward = grasp_reward + object_goal_distance_reward +
cup_orientation_reward + cup_linvel_penalty + touch_reward↪→

reward_dict = {
"grasp_reward": grasp_reward,
"object_goal_distance_reward": object_goal_distance_reward,
"cup_orientation_reward": cup_orientation_reward,
"cup_linvel_penalty": cup_linvel_penalty,
"touch_reward": touch_reward

}

return total_reward, reward_dict
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