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ABSTRACT

Strong gravitational lensing is a powerful tool for probing the nature of dark matter, as lensing
signals are sensitive to the dark matter substructure within the lensing galaxy. We present a compar-
ative analysis of strong gravitational lensing signatures generated by dark matter subhalo populations
using two different approaches. The first approach models subhalos using an empirical model, while
the second employs the Galacticus semi-analytic model of subhalo evolution. To date, only empir-
ical approaches have been practical in the analysis of lensing systems, as incorporating fully physical
models was computationally infeasible. To circumvent this, we utilize a generative machine learning
algorithm, known as a normalizing flow, to learn and reproduce the subhalo populations generated
by Galacticus. We demonstrate that the normalizing flow algorithm accurately reproduces the
Galacticus subhalo distribution while significantly reducing computation time compared to direct
simulation. Moreover, we find that subhalo populations from Galacticus produce comparable re-
sults to the empirical model in replicating observed lensing signals under the fiducial dark matter
model. This work highlights the potential of machine learning techniques in accelerating astrophysi-
cal simulations and improving model comparisons of dark matter properties.
Subject headings: First, second

1. INTRODUCTION

Dark matter is an unknown form of non-baryonic mat-
ter that composes up to 85% of all matter in the universe
(Ade et al. 2016; Aghanim et al. 2020). Given that dark
matter constitutes the majority of matter in the universe,
it plays a significant role in the formation and evolution
of structure throughout the universe’s history. Quantum
fluctuations in the early universe produced slight over-
densities in an otherwise homogeneous matter density
field, and these overdensities eventually formed gravita-
tionally bound structures known as dark matter halos
(Spergel et al. 2003; Hinshaw et al. 2013). These halos
merged over time, resulting in a present-day hierarchical
distribution of matter (Davis et al. 1985; Cole & Lacey
1996; Makishima 1998). The current cosmological model
is the Lambda cold dark matter (ΛCDM) which accu-
rately models the large-scale structure of the universe
(Frenk et al. 1985; Peebles 2020). The fiducial model be-
gins to experience tensions with observations on smaller,
galactic scales, however, and many studies have proposed
models to accurately replicate the distribution of dark
matter to match observations on these scales (see Bul-
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lock & Boylan-Kolchin 2017, for a review of problems
and proposed solutions).
A wide range of techniques for simulating the forma-

tion and evolution of dark matter substructure in galax-
ies have been developed, ranging from analytic models
(Zentner et al. 2005; Giocoli et al. 2008; Yang et al.
2011) to N-body simulations (Moore et al. 1999; Springel
et al. 2008; Nadler et al. 2023). Analytic models offer
an efficient way to model a broad range of halos at the
cost of making simplifying physical assumptions to al-
low the model to be solved analytically. N-body simu-
lations, on the other hand, numerically solve the equa-
tions governing an evolving matter density field in an ex-
panding universe. The development of such simulations
has allowed us to replicate the distribution of matter at
high resolutions over large time intervals, providing a de-
tailed picture of the evolution of the universe (Mikkola &
Aarseth 1993; Bertschinger 1998; Bagla 2005). Solving
these equations numerically, however, demands signifi-
cant computational resources, making the computational
cost one of the main drawbacks of N-body simulations
(Dehnen & Read 2011). One middle-ground approach
between analytic models and simulations is the class of
semi-analytic models (SAMs) of subhalo evolution. As
with N -body simulations, these models perform simu-
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lations with the modification that, in SAMs, the funda-
mental objects are halos themselves, rather than individ-
ual mass particles. These halos take on simple geome-
tries (i.e., spherical halos), which allows for some solu-
tions to become analytic and greatly reduces the com-
putational cost where analytic solutions are unavailable
(Taylor & Babul 2001; Benson et al. 2004; Zentner et al.
2005; Pullen et al. 2014; Jiang et al. 2021; Dekker et al.
2022). Each method presents a trade-off between compu-
tational cost and accuracy, so different models are chosen
depending on the specific requirements of their applica-
tion.
In addition to a wide variety of approaches to mod-

eling dark matter, there are also many ways in which
we can detect dark matter, despite its lack of interac-
tions with electromagnetic radiation. Here, we specif-
ically focus on one such method—strong gravitational
lensing of quasar images—which can be used to constrain
dark matter particle properties (Gilman et al. 2020; Veg-
etti & Vogelsberger 2014; Hezaveh et al. 2016). As light
passes by a galaxy and its dark matter halo, its path is
deflected by the gravitational potential of that galaxy,
its halo, and the population of subhalos. The result-
ing distortion of the quasar image can be quantified to
constrain the underlying population of subhalos, their
distribution of masses, spatial distribution, and density
profiles. While strong gravitational lensing of galaxies is
merely one method for constraining dark matter models,
it is considered advantageous over other methods such
as analyzing the Lyman-α forest or counting of galax-
ies because the effect of gravitational lensing only de-
pends on the total gravitational potential, which, in the
low mass (sub)halos to which this method is sensitive,
is dominated by dark matter and is not expected to be
significantly altered by baryonic processes (Dutton et al.
2016). As such, strong gravitational lensing bypasses the
need to understand the complex, baryonic physics of the
system (Treu 2010; Gannon et al. 2025). Additionally,
there are typically high degrees of uncertainty when at-
tempting to distinguish the gravitational effects of dark
matter when also accounting for baryonic matter (Fitts
et al. 2019), making it convenient to work with measure-
ments that are largely unaffected by baryonic physics.
Previous studies have shown that dark matter mod-

els can be constrained using imaging of gravitationally
strongly lensed quasars (Dalal & Kochanek 2002; Nieren-
berg et al. 2014; Xu et al. 2015; Hsueh et al. 2020; Gilman
et al. 2021; Nadler et al. 2021)x . For example, Gilman
et al. (2020) used a parameterized model to generate
dark matter halo populations within the lensing galaxy
(which going forward will be referred to as the “empiri-
cal model”), repeating this process of creating halo pop-
ulations between 300,000 to 1,200,000 times for a given
lens system. This was done to obtain a statistically rep-
resentative distribution of subhalo populations respon-
sible for the lensing signature and thereby assess the
relative likelihood of a given dark matter model repro-
ducing the observed lensing statistics. While this model
accurately reproduces certain summary statistics of the
subhalo population, such as the subhalo mass function
and distribution of infall redshifts, it also makes some
substantial simplifying assumptions. Specifically, it does
not fully account for correlations between the orbital
properties of a subhalo and tidal stripping (instead it

connects tidal stripping to only the current orbital ra-
dius), growth of the host halo, and the radial distribu-
tion of subhalos. Work has been done to account for
the effects of tidal stripping in analytic models (e.g. Han
et al. 2016), yet underlying physical assumptions (such
as a mass-independent tidal stripping function) remain
present. The impact of such assumptions made in ana-
lytic models could be examined if halo populations used
in the analysis accounted for these correlations (i.e. halo
populations from SAM’s or N-body simulations). The
primary obstacle preventing such populations from be-
ing implemented is that it is computationally infeasible
to generate O(106) realizations of dark matter halos di-
rectly from either SAMs or N-body simulations.
To bypass these limitations, we propose a more com-

putationally efficient method to produce large numbers
of realizations of subhalo populations with statistical
properties as predicted from simulations. Specifically,
we make use of a generative machine learning algorithm
known as a normalizing flow. We train the normalizing
flow on a set of simulation data, and then, once trained,
we can sample new subhalo populations in a fraction of
the time it would take to generate populations of subha-
los directly from simulations. In principle, this method-
ology can be applied to any relevant simulation data
set, but here we make use of simulated data from the
Galacticus1 semi-analytic model (Benson 2012) which
has also been used to guide the construction of the em-
pirical model in Gilman et al. (2020). In addition to gen-
erating Galacticus halo populations using the normal-
izing flows algorithm, we show an example application in
which we apply the generated subhalo realizations to the
forward modeling approach of Gilman et al. (2020) for a
single lensed system.
This paper is organized as follows: In section 2, we

introduce the empirical and Galacticus halo popula-
tion models, as well as the normalizing flows algorithm.
In section 3, we detail the lensing analysis conducted in
(Gilman et al. 2020) and describe the implementation of
emulator subhalo populations into this analysis. In sec-
tion 4, we cover the emulator’s efficiency and present the
results of the forward modeling application. In section
5, we discuss the limitations of this machine learning ap-
proach and possibilities for future work. Finally, section
6 presents our general conclusions.

2. METHODS

In this section, we first describe two different mod-
els for subhalo populations. We summarize the empir-
ical model and then describe in detail the properties
of Galacticus and how it generates a realization of a
subhalo population. We then describe the specifics of
the normalizing flows based algorithm used to replicate
Galacticus realizations

2.1. Models

2.1.1. The Empirical Model

The dark matter halos in the empirical model are con-
structed from a series of analytic models—describing the
number, spatial distribution, and density profiles—for

1 https://github.com/galacticusorg/galacticus, we use revision
4313a4e2c7b68abbec547107e118ad22b33fc556.

https://github.com/galacticusorg/galacticus
https://github.com/galacticusorg/galacticus/commit/4313a4e2c7b68abbec547107e118ad22b33fc556
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both the cold dark matter and warm dark matter models,
and for both subhalos and halos along the line of sight
of the lensing galaxy. This paper, however, will focus
specifically on CDM subhalo populations. The reason
for this is that the properties of line-of-sight halos are
relatively simple as they do not undergo the strong tidal
evolution experienced by subhalos and already have accu-
rately fitting equations (Sheth & Tormen 2002; Navarro
1996). Subhalos, on the other hand, are influenced by
complicated, non-linear evolutionary processes such as
tidal stripping, tidal heating, tidal truncation, dynam-
ical friction, etc., whose intricate details are not fully
accounted for in the empirical model. So it is these halos
whose properties will be most impacted by analytic ap-
proximations. The details of the analytic model can be
found in Gilman et al. (2020), with tidal physics updated
as described in Keeley et al. (2024), but we summarize
here the main points relevant to CDM subhalos:

• Subhalo density profiles are modeled as truncated
Navarro-Frenk-White (NFW Navarro 1996) pro-
files:

ρ(r) =
ρs

x(1 + x)2
τ2

x2 + τ2
, (1)

where x = r/rs, τ = r/rt, ρs is the scale density, rs is the
scale radius, and rt is the truncation radius. Halo masses
are defined as the total mass with a spherical region of
radius r200 within which the mean density is 200 times
the critical density of the universe at the current redshift.

• The truncation radius of a given subhalo is defined
by rt = r50, where r50 denotes the radius which
encloses 50 times the critical density (Keeley et al.
2024).

• Subhalos in the empirical model are spatially dis-
tributed in 3D inside the virial radius of the host
halo. Within this volume, subhalos are assumed to
trace the mass profile of the host outside of an in-
ner radius which is set equal to half the host scale
radius. Inside that inner radius, subhalos are dis-
tributed uniformly in three dimensions, motivated
by tidal disruption simulations around lens galax-
ies (Jiang & van den Bosch 2017). This results
in a distribution that is approximately uniform in
projection in the inner region of the halo that is
relevant to lensing, in agreement with N-body sim-
ulations (Xu et al. 2015).

• The subhalo mass function is given by:

d2Nsub

dmdA
=

Σsub

m0

(
m

m0

)α

F(Mhalo, z), (2)

where Σsub is a normalization parameter characterizing
the amplitude of the mass function, the pivot is denoted
by m0 = 108M⊙, and F(Mhalo, z) accounts for how the
number density of halos depends on both the host halo
mass and redshift (Gannon et al. 2025).

2.1.2. Galacticus Model

The second model that we use to generate subhalo
populations in this work is the semi-analytic galaxy for-
mation model known as Galacticus (Benson 2012).
Galacticus is a highly modular code that simulates the
evolution of galaxies and their dark matter halos by rep-
resenting them as individual nodes in an overall merger
tree. As these nodes evolve, they undergo merging events
resulting in the hierarchical assembly of dark matter ha-
los. Constructing a set of evolved dark matter halos in
Galacticus requires two main steps: First, a merger
tree is constructed, which represents, at each point in
time, the set of progenitor halos from which the final
halo is formed. Then, each node is evolved forward in
time by numerically solving a series of differential equa-
tions that describe the relevant physics.
The initial step in setting up a halo population is to

generate the merger tree. This is done using a Monte
Carlo (MC) method to match predictions from the ex-
tended Press-Schechter (EPS) formalism (Bower 1991;
Lacey & Cole 1994). The details of how Galacticus
merger trees are constructed can be found in Cole et al.
(2000), with merger rates updated to match the cali-
brated results of Parkinson et al. (2008). These cali-
brations were shown to be in good agreement with the
measurements of progenitor mass functions from N-body
simulations. For this study, merger trees were simulated
for a host halo of mass Mlens = 1013.3M⊙ at zlens = 0.5
with a mass resolution of 106M⊙. This host mass and
lens redshift were chosen to match the conditions of a
typical strong lens galaxy. The mass resolution was cho-
sen to be 106M⊙ as halos below this mass have negligible
contributions to the overall lensing signal. As discussed
by Gilman et al. (2020), the lensing signal of a subhalo
becomes undetectable somewhere in the mass range 106–
107M⊙, so 10

6M⊙ acts as a conservative lower limit. Sub-
halos were also restricted to lie within a 20 kpc annulus
from the center of the host, as it is subhalos within the
vicinity of the Einstein radius that primarily contribute
to the observed lensing signature (Gannon et al. 2025).
Once a merger tree is constructed in Galacticus, ha-

los in the tree are evolved forward in time by numerically
solving differential equations to produce a population of
dark matter halos at the epoch of interest (in this case,
the redshift of the lens galaxy). Specifically, Galacti-
cus tracks the evolution of the total mass of a given
halo following the mass history along each branch of the
merger tree. Orbital properties of subhalos, such as their
3D position, velocity, bound mass, and density profile,
are tracked by incorporating the effects of the host halo
potential, along with dynamical friction, tidal stripping,
and tidal heating (Pullen et al. 2014; Yang et al. 2020;
Benson & Du 2022). Galacticus also computes the
evolution of the dark matter profile scale length, deter-
mined from the halo’s concentration (Diemer & Joyce
2019).
When generating subhalo realizations using Galacti-

cus directly, numerically solving differential equations
for the evolution of each halo takes substantial amounts
of time. In this work, we generated 300 merger trees in
total, with each individual tree taking between 6–8 CPU-
hours of computation time to evolve to zlens. It would be
computationally impractical to generate O(106) of these
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trees for each lens to be studied, which motivates the
search for more computationally efficient alternatives.

2.2. The Normalizing Flows Algorithm

While Galacticus is capable of simulating popula-
tions of dark matter subhalos directly, we instead propose
training a normalizing flow emulator on data generated
by Galacticus, and then using that emulator to gener-
ate populations of subhalos statistically consistent with
those produced by Galacticus. Such algorithms take
in an input data distribution and learn a mapping from
a simple, latent space to the input data space. The map-
ping between latent and data spaces has some convenient
transformation properties such as being invertible and at
least once differentiable. The invertible mapping allows
the flow-based algorithm to perform both sampling and
likelihood estimation (Papamakarios et al. 2021).
The flows-based algorithm used in this work takes in a

data distribution p(z) and generates an invertible map F
between the data distribution and a latent distribution
p̃(u). The relationship between the prior and likelihood
distributions is modeled using the change of variables
formula:

p(z) = p̃
(
F−1(z)

) ∣∣∣∣det(∂F−1

∂z

)∣∣∣∣ . (3)

Here, the final term is the determinant of the Jacobian
of F−1 evaluated at each component of z. This term
is included to account for the change in volume when
transforming between the latent and data spaces. The
mapping F is composed of n individual transformations
F = f1 ◦ f2 ◦ · · · ◦ fn, each of which is independent,
differentiable, and invertible. As the data passes through
the kth individual transformation in the mapping fk, it
satisfies wk = fk(wk−1). Here, wk represents the data
at stage k of the transformation, so w0 = u and wn = z.
In this work, our normalizing flow is composed of n =

12 affine coupling layers, which are individual bijective
functions that construct the map. An individual affine
transformation f acting on the data wk is defined by

f(wk; s, t) = exp(s)⊙wk + t, (4)

where ⊙ represents element-wise multiplication, and s
and t are the vectors that contain the scale and trans-
lation coefficients for the affine transformation. The s, t
coefficient vectors are obtained by passing previous iter-
ations of the data w1:k−1 through a neural network of
5 dense layers: four intermediate ReLU activation func-
tions, followed by a tanh activation function. Using 5
dense layers to generate the scaling and translation coef-
ficients of the affine transformation adds complexity and
non-linearity to the model. To prevent overfitting, each
individual scaling and transformation layer has an L2
regularization metric with a regularization parameter of
0.01. The overall model is compiled using the Adam op-
timizer with a learning rate of 0.0001 (Loshchilov 2017).
The normalizing flows algorithm is specifically ap-

plied to an input data distribution that parametrizes
Galacticus subhalos. Each subhalo is character-
ized by an infall2 mass Minfall, concentration c, bound

2 “Infall” here means the time at which a halo first became a
subhalo, by falling inside the virial radius of a larger halo.

mass Mbound, infall redshift zinfall, truncation radius rt
and two dimensional projected radius3 r2D taken from
Galacticus realizations where these parameters were
computed by solving the differential equations govern-
ing subhalo evolution, and together fully characterize
the properties of a subhalo that are needed for lensing
calculations. The collection of these six parameters for
each generated subhalo forms a six-dimensional param-
eter space for the population of subhalos. Before this
6D distribution is input into the flows algorithm, the un-
normalized data x = (Minfall, c,Mbound, zinfall, rt, r2D) is
first normalized to a new vector y whose components are
defined through the following set of equations:

y1 = log10(Minfall/Mhost), (5)

y2 = c, (6)

y3 = log10(Mbound/Minfall), (7)

y4 = zinfall, (8)

y5 = log10(rt/Rvir, host), (9)

y6 = log10(r2D/Rvir, host). (10)

In these equations, the variables Mhost and Rvir, host re-
fer to the virial mass and radius, respectively, of the host
halo as computed from Galacticus. These virial quan-
tities are defined in terms of the virial density contrast
∆vir, which in this work is based on the spherical collapse
model in a universe that contains collisionless matter and
a cosmological constant (Bryan & Norman 1998). Only
subhalos along the line of sight within a double cone with
opening angle θ = 3REin, where REin is the Einstein ra-
dius, contribute to the lensing signal (Gilman et al. 2020).
To evaluate the truncation radii of Galacticus sub-

halos, the ratio ρ(r)/ρNFW(r) of a given subhalo is eval-
uated at a range of radii ranging from the innermost
regions of the halo out to the virial radius. Here, ρ(r)
is the actual density profile generated by Galacticus
including the effects of tidal stripping and heating, and
ρNFW(r) is the NFW density profile of the halo prior
to any tidal effects. A truncation fraction ftrunc(r, rt) is
then defined in terms of the truncation radius, rt:

ftrunc(r, rt) =
1

1 + (r/rt)2
. (11)

To find the best-fit truncation radius we minimize the
objective function χ2(rt):

χ2(rt) =
∑

r≤Rvir

(
log10

ρ(r)/ρNFW(r)

ftrunc(r, rt)

)2

. (12)

Once the Galacticus data has been normalized, it is
then subsequently shifted so that it lies within a hyper-
cube of side length 2, centered at the origin, with each
coordinate in the range [−1, 1]. This newly transformed
data will be referred to as the hypercube data z, and its
components are defined in terms of the normalized data

3 For the purposes of gravitational lensing, only the projected
radius is relevant as all subhalos effectively lie in plane—the extent
of the subhalo population along the line of sight (of order the virial
radius of the host halo) is negligible compared to the distance from
observer to lens, and lens to source.
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y through the following definition:

zi = 2σi − 1, σi =
yi − ymin,i

ymax,i − ymin,i
. (13)

Here, yi refers to the ith component of the normalized
data, and ymin,i, ymax,i are the minimum and maximum
values of the ith parameter, respectively. It should be
noted that equation 13 is invertible, so it is straightfor-
ward to transform the data out of the hypercube coordi-
nates back to their starting, normalized values. It is this
hypercube data, z, that is fed into the emulator as input
data. The purpose of this additional shift from y to z
is so that data points do not exponentially grow as they
pass through layers of the emulator, leading to potential
numerical instability. Keeping the data restricted to a
[−1, 1] interval makes it easy to transform as it propa-
gates through the neural network. From the total input
data, an 80/20 split is implemented between a validation
and training set for the model.
In Figure 1, we show the results for the emulator’s

subhalo population in comparison to the population from
Galacticus. The left column shows normalized 2D den-
sity plots of Galacticus subhalos. The right column
is the emulator’s attempt to replicate the distribution.
Both columns show a total of 49,633 subhalos sampled
from their respective distributions. Overall, the similari-
ties between the two columns indicate that the emulator
can accurately learn the normalized Galacticus sub-
halo distribution. A more detailed discussion quantify-
ing the accuracy of the emulator is in Appendix A. It
should be noted that the emulator’s invertible mapping,
plus the fact that the emulator knows nothing about the
physics of subhalos (it just views the input as a distribu-
tion of data points), will have some difficulties modeling
sharp edges at the boundaries of the distribution. There-
fore, the emulator plots are clipped to ensure that each
of the subhalos obeys the following physical and model
constraints:

• Subhalos must have infall masses greater than
twice the mass resolution, specifically Minfall >
2 × 106M⊙. This constraint is a result of how
Galacticus generates halos in a merger tree. A
given halo will have two progenitor halos of smaller
masses, and a halo with Minfall < 2×106M⊙ would
necessarily imply that at least one of its progeni-
tors is below the mass resolution. Since subhalos
below the mass resolution (by definition) are not
included, Galacticus’s population of (sub)halos
will start to become incomplete below this limit.

• Emulator subhalos must have bound masses within
the range [106, 109] M⊙. The lower bound is
enforced as, during the evolution of subhalos in
Galacticus, if the bound mass falls below 106M⊙,
the subhalo is removed from the calculation. The
upper bound is imposed to match the range of sub-
halo masses considered in the empirical model.

• The bound masses of a subhalo must be less than
its corresponding infall mass, since, in Galacti-
cus, subhalos can only lose mass after infall due to
tidal stripping.

• The infall redshifts of emulated subhalos must be
greater than or equal to the redshift of the lensing
galaxy, specifically zlens ≥ 0.5—by definition, for
a halo to be a subhalo by the time it is observed
at zlens it must have fallen in at some earlier time,
zinfall > zlens.

• We restrict ourselves to looking at subhalos in a
narrow region around the Einstein radius, as these
are the subhalos that predominantly contribute to
the strong gravitational lensing signal. Specifically,
this is enforced by requiring r2D ≤ 20 kpc. A sim-
ilar choice is made in the empirical model.

3. CONSTRAINING DARK MATTER FROM THE LENSING
SIGNATURE

We have shown that the normalizing flows algorithm is
able to accurately replicate the distribution of Galacti-
cus dark matter subhalos. The power of the normaliz-
ing flows algorithm, however, is not limited to its ability
to reproduce subhalo populations. The broader moti-
vation for implementing a flows-based algorithm is that
the emulated subhalos, with the same physical accuracy
as Galacticus subhalos, can be efficiently implemented
into any analysis that utilizes subhalo populations.
In this section, we describe how subhalos emulated

from Galacticus can be implemented into an analy-
sis code that measures gravitational lensing signatures.
Specifically, emulator subhalos are input into the code
pyHalo4 which outputs summary statistics describing
how well input halo realizations match observational
data from observed lensed quasar systems (Gilman et al.
2024). We extended pyHalo to support subhalos with
the emulator’s parameterization, which differs in detail
from that of the empirical model. A more detailed de-
scription of the analysis process is depicted in Gilman
et al. (2020), but we will outline the general analysis
process here.
The overall goal is to utilize a forward-generative

model that samples the target posterior distribution us-
ing an Approximate Bayesian Computing (ABC) tech-
nique. Specifically, the posterior distribution of interest
is the distribution of subhalo population parameters qs

given the data D, which comes in the form of quasar
image positions and flux ratios. Mathematically, this
distribution can be modeled by the relation:

p(qs|D) ∝ π(qs)

N∏
n=1

L(dn|qs). (14)

Here, N refers to the number of lenses in the system,
π(qs) is the prior distribution of the dark matter param-
eters, and dn is the data from the nth lens. In this work,
the target data we use is the set of image positions and
flux ratios for a smooth simulated mock lens from an el-
liptical power law mass profile with Einstein radius of 1
arc second, axis ratio of 0.73, a logarithmic power law
slope of 2.05, and an external shear strength of 0.057.
The term “smooth” here refers to a lens system with no
substructure. While equation 14 provides a straightfor-
ward approach to posterior sampling in theory, the like-
lihood is difficult to evaluate in practice due to its large

4 https://github.com/dangilman/pyHalo, we use revision
9a5d619f3feef297fce8b0a302862991dcb2bd74.

https://github.com/dangilman/pyHalo
https://github.com/dangilman/pyHalo/commit/9a5d619f3feef297fce8b0a302862991dcb2bd74
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Fig. 1.— Two dimensional density distributions of normalized subhalo parameter spaces generated from Galacticus (left column)
versus the emulator (right column). Yellow regions correspond to regions of higher number density. The parameters y1, . . . , y6 denote the
normalized infall masses, concentrations, bound masses, infall redshifts, truncation radii, and projected radii respectively.
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dimensionality. Therefore, an alternative approach can
be taken where the data itself is forward modeled.
Instead of directly sampling the likelihood, an alter-

native approach is to first create simulated data which
has lenses d′

n. This data set is composed of quasar im-
age positions and flux ratios produced from a simulated
realization of subhalos msub generated from model pa-
rameters qs. Then, in the case where dn = d′

n for some
n, we will have found values for qs which have correctly
reproduced the observational data and thus have found
a single data point in the posterior distribution. By gen-
erating many different subhalo realizations msub for dif-
ferent qs and finding which realizations most accurately
reproduce the data, we can effectively sample from the
posterior distribution without needing to calculate the
likelihood directly.
To quantify how well a given realization of subhalos

reproduces observed data, a summary statistic Slens as
follows:

Slens(f , f
′) ≡

√√√√ 3∑
i=1

(
f ′
i − fobs(i)

)2
. (15)

The vector f represents the flux ratios from the target
data, and the vector f ′ represents flux ratios produced
from the set of simulated subhalos. Given that the ob-
ject being observed is a quadruply imaged quasar, there
will naturally be four lensed images and, thus, three flux
ratios. The statistic Slens represents a discrepancy be-
tween the observed and simulated flux ratios, such that
the most accurate realizations will have the smallest val-
ues of Slens. A single Slens value corresponds to a given
subhalo population, and the distribution of Slens values
over many realizations provides insight into a model’s
relative ability to reproduce target data.

4. RESULTS AND ANALYSIS

In this section, we present two sets of results from our
study. First, we give a summary of run times needed to
generate subhalo populations and perform lensing analy-
sis. We then show the results of implementing emulator
subhalos into the gravitational lensing analysis from the
previous section.

4.1. Summary of Run Times

Table 1 presents the run times needed to produce a
subhalo population for the empirical model, direct gen-
eration from Galacticus, and the emulator trained on
Galacticus data.

TABLE 1
Run times for generating a single subhalo population.

Model CPU time [s]

Empirical model 2
Galacticus 2.6× 104

Emulator 2

Each value measures the time taken to generate a single
population of subhalos (for the specific host halo and res-
olutions described above). Here, the “Empirical model”
row refers to the amount of time needed to generate a
realization of subhalos from the empirical model, while

the “Galacticus” row refers to how much time it takes
to generate a realization of subhalos from Galacticus
directly. The “Emulator” row refers to how much time it
takes the normalizing flows algorithm to generate a single
realization of normalized subhalos (and subsequently un-
normalize them) once trained. Although not mentioned
in the table, training the emulator takes around we found
that it took around 1.8× 104 s to train the emulator on
Galacticus data. Of course, the emulator needs to be
trained only once on an input data set, after which any
number of subhalo populations can be generated.
We see that the time to train the emulator is less than

the time it takes to generate a single subhalo popula-
tion directly from Galacticus, and note that the train-
ing dataset consisted of 300 Galacticus subhalo pop-
ulation realizations. This highlights the computational
efficiency of using the emulator to generate many pop-
ulations of subhalos, as once the emulator is trained it
takes only a couple of seconds to generate subsequent re-
alizations. Moreover, we see that the time to generate
realizations from the emulator (once trained) is similar
to the time it takes to generate realizations from the em-
pirical model5. Therefore, once the emulator learns the
mapping between the latent and data spaces we can pro-
duce realizations of Galacticus subhalo populations on
timescales comparable to that of the empirical model.
Once subhalo populations are created either from ei-

ther the empirical model or the emulator, it takes similar
amounts of time for the forward modeling analysis to be
applied to these realizations. This is to be expected since
regardless of whether the empirical or emulator model is
being applied, an N×6 array is fed into Samana6 (where
N is the number of subhalos, each of which is described
by 6 parameters). It takes around 80s to run Samana
and produce a single Slens value. Therefore, producing
1,000,000 Slens values takes ∼22,000 CPU-hours. Gener-
ating 300 Galacticus trees and training the emulator
takes only ∼2,100 CPU-hours. The process of generating
training data and training the emulator is, therefore, not
the bottleneck in the overall pipeline for producing Slens

distributions7.

4.2. Forward Modeling the Data

As an example of emulated subhalos being applied in
a lensing analysis, we construct Slens distributions from
10,000 realizations of subhalo populations from both em-
pirical and emulated subhalo models. Figure 2 shows the
distributions of flux ratios between the empirical and em-
ulator models. We see that there is very good agreement
between the distribution of flux ratios, indicating that
the emulator produces subhalo populations with lensing
properties comparable to those in the empirical model.
Additionally, the red bins show the case where there is no
dark matter substructure. We see that in the f2/f1 and

5 Furthermore, this time is small compared to the time taken to
perform lensing calculations for a given subhalo population, such
that subhalo population generation is not a significant contributor
to the total time taken to analyze lensing data.

6 https://github.com/dangilman/samana, we use revision
30cdf83609e50bdc4a0a7d89877cf613951b7115.

7 Both Galacticus and Samana can be run in parallel, greatly
reducing the wall-time needed to complete these calculations, but
this does not change the overall number of CPU-hours required in
each case.

https://github.com/dangilman/samana
https://github.com/dangilman/samana/commit/30cdf83609e50bdc4a0a7d89877cf613951b7115
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f3/f1 ratios that there are noticeable differences between
the red bins and the other two models.
Looking at the f4/f1 ratios however, it appears that

the distribution of flux ratios is nearly identical, regard-
less of if the model contains substructure or not. We
investigate this further in Figure 3, which shows two di-
mensional distributions of the flux ratios. We see that the
density distributions for the no subhalos model appears
noticeably different from both the empirical and emula-
tor models. This suggests that the emulator reproduces
flux ratios more closely aligned with the empirical model
than with a model devoid of dark matter subhalos. Addi-
tionally, this suggests that the similar f4/f1 histograms
in Figure 2 are simply a consequence of marginalization,
and do not imply that the underlying flux ratio distribu-
tions are nearly identical.
Figure 4 shows the cumulative distribution of Slens val-

ues from both models. The plot on the left shows the
cumulative distribution function (CDF) of the Slens sum-
mary statistic. The plot on the right shows a zoomed-in
version of the CDFs for Slens ≤ 0.1. Subhalo realiza-
tions in the right-hand plot are especially of interest, as
these populations produce flux ratios that most closely
resemble the target data. We see that emulated subhalos
when implemented into the forward modeling analysis,
produce comparable results to the empirical model. This
is expected (assuming that our emulation procedure ac-
curately captures the distribution of subhalo properties
predicted by Galacticus) as the empirical model itself
was constructed to approximately match the results of
Galacticus simulations.
One notable difference between the empirical and em-

ulator models is the average number of subhalos per
realization. On average, the empirical model produces
around 23,000 subhalos per realization, compared to only
1,200 subhalos per realization coming from the emulator.
The reason for this difference is the choice of how the
subhalo mass resolution is implemented in each model.
For Galacticus, the mass resolution is applied to the
bound mass of subhalos—that is, any subhalo that falls
below a bound mass of 106M⊙ is removed from the pop-
ulation8. Conversely, in the empirical model, the mass
resolution is applied to infall masses, such that a subhalo
may have a bound mass much smaller than 106M⊙—such
halos are not discarded in the empirical model. We find
that ∼90% of empirical subhalos have Mbound < 106M⊙,
which is to be expected (Du et al. 2025).
A natural question to ask is whether or not the ad-

ditional subhalos from the empirical model that are ex-
cluded in the emulator model have a significant impact
on the resulting Slens distribution curves. In Figure 5, we
plot the Slens distributions for the empirical model in two
cases: One instance where we include subhalos with in-
fall masses above 106M⊙ but bound masses below 106M⊙
(black), and one instance where we exclude these halos
(green). By excluding subhalos whose bound mass falls
below the resolution, we remove the vast majority of sub-
halos from a given population. However despite remov-
ing such a large portion of the subhalo population, the

8 This choice is made for computational efficiency and because,
even if such subhalos were retained, the population of subhalos
with Mbound < 106M⊙ would be incomplete due to the missing
contribution from subhalos with Minfall < 106M⊙.

distribution curves are essentially overlapping. This fur-
ther supports the work from Gilman et al. (2020), which
shows that these low-mass subhalos do not significantly
affect the observed lensing signal.

5. LIMITATIONS/FUTURE WORK

Here, we highlight the limitations of our emulator ap-
proach as well as possibilities for future work. One limi-
tation of the emulator approach arises from how the nor-
malizing flow is constructed. Requiring that the map
between latent and data spaces be differentiable and in-
vertible restricts the possible forms that the map can
take, and thus certain distributions become difficult to
replicate (i.e. distributions with sharp edges, multimodal
distributions, regions with complex topologies, etc.). An
example of this limitation is discussed in Figure 6 in Ap-
pendix A. Another limitation of this current approach is
that the emulator knows nothing about sub-subhalos, as
this information is not provided to it during training, so
it is unable to capture correlations between these halos
and their host subhalos. While this is expected to have
only a small effect on the resulting subhalo populations
(sub-subhalos typically make up less than 10% of the to-
tal population in Galacticus), future work could avoid
this issue by using a second emulator to populate each
subhalo with sub-subhalos for example.
There are several other directions that could be ex-

plored in future work to improve upon the results of this
study. For example, in this work, we used the emulator
to generate a six-dimensional joint distribution of sub-
halo parameters for a specific host halo mass and redshift
and for the case of cold dark matter. Previous studies
have demonstrated how normalizing flow algorithms can
be used to learn conditional distributions (Winkler et al.
2019; Friedman & Hassan 2022; Abbasi et al. 2023)—
often referred to as conditional normalizing flow (CNF)
algorithms.
By implementing a CNF algorithm we could greatly

increase the flexibility of this model. This generalization
can, in principle, be applied to any set of interdepen-
dent parameters, but two specific areas of interest are
as follows. First, the emulator could be conditioned on
host halo mass and redshift, allowing a single emulator
to be trained and applied to all observed lenses. An-
other potentially powerful application of a CNF would
be to construct an emulator conditioned on the physics
of a given dark matter model. For example, perform-
ing the same lensing analysis for a warm dark matter
(WDM) model would require knowledge of the WDM
particle mass. Current studies estimating mWDM ≳ 7
keV (Nadler et al. 2021; Nierenberg et al. 2023; Keeley
et al. 2024). With our current approach, one would need
to train a separate emulator for each WDM particle mass
to be considered. If a CNF algorithm was implemented,
however, the same 6D parameter space could be learned
as a function of WDM particle mass, allowing rapid ex-
ploration of WDM models, and for constraints on WDM
particle mass to be derived. This would, of course, re-
quire the generation of Galacticus realization of sub-
halo populations for WDM models of varying masses in
order to train the CNF. Generalization to other, beyond-
CDM dark matter models (e.g., conditioning on any self-
interaction cross-section of the dark matter particle) may
also be possible.
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Fig. 2.— Histograms for the three flux ratios are plotted where fi refers to the flux of the ith lensed image. The blue bins depict the
distributions of subhalos from the empirical model, the orange bins show the subhalo distributions for the emulator model, and the red
bins show flux ratios when the lensing galaxy contains no subhalos.

6. CONCLUSIONS

In this work, we examined the strong gravitational
lensing perturbations to flux ratios of a quadruply lensed
quasar resulting from a population of subhalos produced
by the empirical model of Gilman et al. (2020) as updated
by Keeley et al. (2024), and compared the results against
same analysis conducted using subhalo population gener-
ated from Galacticus via a normalizing flow emulator.
A statistical approach was used in which many subhalo
populations were generated, but we only kept the real-
izations that most closely resembled observational data

for both the empirical and emulator models. This em-
ulation approach makes such analyses computationally
feasible—generating sufficient realizations directly from
Galacticus would be computationally impractical.
We found that the normalizing flows algorithm ac-

curately replicates subhalo populations, achieving this
in a fraction of the time required for direct generation
from Galacticus. The distributions of summary statis-
tics describing the perturbations are similar (although
not identical) from the empirical model and emulated
Galacticus—this is as expected as the empirical model
was constructed to approximately match Galacticus
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Fig. 3.— Two dimensional density distributions of flux ratios for the empirical model (left column), emulator model (middle column)
and model without substructure (right column).
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Fig. 4.— Left panel: inverted CDFs of subhalo populations from both the empirical model (black) and the emulator model (red). Right
panel: a zoom-in on the left plot for the lowest Slens values.
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Fig. 5.— Distribution of Slens values for the empirical model.
The black curve includes subhalos which have infall masses above
106M⊙ and bound masses below 106M⊙. The green curve excludes
these halos.

simulations, and serves as a demonstration that results
derived using the empirical model are not substantially
affected by the simplifications made in that approach.
In future work, we aim to extend this approach by gen-

eralizing the normalizing flows algorithm used to gener-
ate subhalo populations. We currently train the algo-
rithm to learn a joint distribution of the subhalo param-
eter space. In future work, we aim to use the emulator to
learn a conditional distribution, allowing subhalo popu-
lations to be generated as a function of, for example, the
mass of a warm dark matter particle. Doing this will
allow us to test the strong lensing signature for many
different WDM models, and thereby place accurate con-
straints on the mass of a WDM particle.
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APPENDIX

A. ACCURACY OF THE EMULATOR

Here, we describe tests that quantify the accuracy
of the emulator in its ability to replicate Galacticus
subhalo populations. We first conducted a two-sample
Kolmogorov-Smirnov (KS) test, where a test statistic
Dm,n is defined by:

Dm,n = sup
x

|Fm(x)−Gn(x)| , (A1)

where m,n are the sizes of the two data sets, and
Dm,n represents the maximum absolute difference be-
tween two distributions. Table 2 shows a summary of
the Dm,n statistics comparing the Galacticus and em-
ulator (trained on Galacticus) distributions:
The Dm,n values from Table 2 imply that the

Galacticus and emulator distributions are not iden-
tical. While this may seem problematic, the goal is not
necessarily for the emulator to exactly replicate the dis-
tribution of Galacticus subhalos. Rather, the goal is
for the emulator to produce a strong lensing signal that
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TABLE 2
Results from the two-sample KS test.

Parameter Dm,n

Infall mass 0.008
Concentration 0.023
Bound mass 0.016
Infall redshift 0.008
Truncation radius 0.013
2D projected radius 0.009
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Fig. 6.— CDFs of the concentration parameter for both the
Galacticus and emulator distributions, zoomed in to the region
around the minimum allowed concentration in Galacticus, which
is where the maximum discrepancy occurs between distributions.
The vertical dashed line represents the value of c at which the max-
imum discrepancy between distributions occurs.

is sufficiently close to the strong lensing signature that
would have been produced by Galacticus subhalos.
Here, “sufficiently close” means that remaining differ-
ences should be small compared to other approximations
made in the Galacticus modeling, which are at least
of order 10% (Nadler et al. 2023).
We investigate the source of the discrepancy between

distributions by comparing their CDFs. For example,
Figure 6 shows the CDF of the concentration parameter,
the parameter with the largest Dm,n value. Figure 6
compares CDFs of the concentration parameter c be-
tween the Galacticus (black) and emulator (red) sub-
halo distributions, and is zoomed in on a region around
c = 3.795 (grey dashed line) where Dm,n is maximized.
There is a relatively steep increase in the number of
Galacticus subhalos around c = 3.795, which is the
minimum concentration of subhalos in the simulation9.
The emulator CDF does not replicate this sharp increase
perfectly, which can be attributed to the inherent limita-
tions of a normalizing flows algorithm. Such models tend
to have difficulties accurately replicating sharp changes
in distribution due to the requirements of invertibility
and differentiability of the mapping between latent and
data spaces.
To test if the emulator is able to produce a lensing

9 Galacticus imposes a minimum concentration of cvir = 4,
defined relative to the spherical collapse virial radius. Here we
show concentration, c, defined relative to the R200 definition of
virial radius, which results in a small, redshift-dependent shift in
the cut-off, causing the cut-off to be somewhat smoothed out.
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Fig. 7.— A comparison of the Slens CDFs between the empirical
model (black curve) and the emulator trained on the empirical
model (red curve). For reference, the blue curve shows results if
no subhalos are included.

signal statistically equivalent to the subhalo population
it replicates, we performed a separate test in which we
trained the emulator on subhalo realizations from the
empirical model. Since the lensing signature, Slens, from
the empirical model can be computed directly (by sim-
ply generating larger numbers of subhalo populations
from the empirical model—something we can not do for
Galacticus because of the computational cost), we can
assess how accurately the emulator is able to reproduce
this signature. The results can be seen in Figure 7.
In Figure 7, the black curve shows the empirical model,

while the red curve shows the emulator trained on sub-
halos generated by the empirical model. For comparison,
the blue curve shows the result obtained if no subhalos
are included. The blue curve lies notably lower than the
red and black curves, implying that there is a higher frac-
tion of realizations with low Slens values. This is to be
expected, as the smooth mock baseline model contains
no substructure, so the model with no subhalos is the
correct model in this case. There is a slight discrepancy
between the red and black curves, indicating that the
emulator does not perfectly capture the distribution of
subhalos in the empirical model. However, the offset be-
tween red and black curves is substantially smaller than
the offset between either of these curves and the no sub-
halos model (blue curve), indicating that the inclusion of
subhalos produces a noticeable effect on the Slens curves
and that the magnitude of this effect is similar between
empirical subhalos and emulated subhalos.
Lastly, we examine the model loss over the course of

the emulator training in Figure 8. The model loss here
is the quantity that the algorithm seeks to minimize over
the course of the training period to produce an emulator
that matches the input data.
In Figure 8, the blue and orange curves represent the

model loss as a function of the total number of epochs for
the training and validation data sets respectively. There
is an 80/20 split across 300 input Galacticus trees be-
tween the training and validation sets respectively. The
validation loss starts to flatten out around epochs 50–75,
with only a slow decline at further epochs. Neverthe-
less, the validation model loss does still slowly decrease,
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Fig. 8.— The emulator model loss as a function of training epoch.
The blue curve shows the model loss for the training data set, and
the orange curve shows the model loss on the validation data set.

indicating that our emulator is not strongly affected by
overfitting.

This paper was built using the Open Journal of As-
trophysics LATEX template. The OJA is a journal which
provides fast and easy peer review for new papers in the
astro-ph section of the arXiv, making the reviewing pro-
cess simpler for authors and referees alike. Learn more
at http://astro.theoj.org.
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