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to Yuri Tschinkel, on his 60-th birtday

Abstract

We prove that the subvariety of SL(2) × SL(2) given by the matrix equation
w(X,Y ) = α, where w is a word in two letters, is closely related to an explicit
smooth conic bundle over the associated ‘trace surface’ in the 3-dimensional
affine space. When w is the commutator word, we show that this variety can
be irrational if the ground field k is not algebraically closed, answering a ques-
tion of Rapinchuk, Benyash-Krivetz, and Chernousov. When k is a number
field, it satisfies weak approximation with the Brauer–Manin obstruction.

Introduction

Let w(x, y) be a non-trivial word in two letters, that is, an element of the free group
F2 with two generators. Let k be a field of characteristic zero. For α ∈ SL(2)(k)
we define the word variety Sw,α as the closed subvariety of SL(2)× SL(2) given by
the matrix equation w(X, Y ) = α. For a survey of the extensive literature on word
equations, see [GKP18]. The motivating question of this paper concerns birational
properties of Sw,α, as well as k-rational points on Sw,α.

One much studied example is the commutator variety XYX−1Y −1 = α, see
[Tho61], [RBKC96] and, more recently, [LL21], [GS22, GMS21]. When α is semisim-
ple and non-central, we show that the commutator variety is a dense open subset
of a smooth conic bundle (a Severi–Brauer scheme of relative dimension 1) over the
Markoff surface in A

3
k with equation

s2 + t2 + u2 − stu = tr(α) + 2. (1)

The associated Brauer class is (s2−4, tr(α)−2); it generates the unramified Brauer
group of the ‘generic’ Markoff surface modulo the Brauer group of the ground field.
In particular, the commutator variety is birationally equivalent to the affine subva-
riety of A5

k given by

s2 + t2 + u2 − stu− (tr(α) + 2) = s2 − 4 + (tr(α)− 2)x2 − y2 = 0.
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We deduce that the commutator variety is k-rational if and only if the Markoff
surface (1) is k-rational, which is the case if and only if either tr(α)−2 or tr(α)2−4
is a square in k, see Theorem 3.4. In particular, for ‘general’ α ∈ SL(2)(k) the
commutator variety can be irrational over k. This gives a negative answer to a
question of Rapinchuk, Benyash-Krivetz, and Chernousov [RBKC96, p. 50]. When k
is a number field, we show that the Brauer–Manin obstruction is the only obstruction
to weak approximation on smooth and proper models of the commutator variety,
see Proposition 3.5.

Our method is based on the systematic use of the ‘trace polynomial’ of the word
w(x, y). This is very classical and goes back to Klein and Fricke. Using the Cayley–
Hamilton theorem it is easy to see that the function SL(2) × SL(2) → A1

k given
by tr(w(X, Y )) is a polynomial Pw(s, t, u) in the variables s = tr(X), t = tr(Y ),
u = tr(XY ). We define the trace surface Hw,a, for a ∈ k, as the surface in A3

k given
by Pw(s, t, u) = a. If w(x, y) belongs to the commutator subgroup of the free group
on two letters, and α ∈ SL(2)(k) is semisimple and non-central with tr(α) = a,
the word variety Sw,α is a torsor over the trace surface Hw,a for the norm 1 torus
associated to the splitting field k(

√
a2 − 4) of the characteristic polynomial of α.

This implies that Sw,α is a dense open subset of an explicit smooth conic bundle
over Hw,a, see Theorem 3.2. This largely reduces the study of solutions of the word
equation w(X, Y ) = α to the study of rational points on the affine surface Hw,a.

We are grateful to Tim Browning, Jean-Louis Colliot-Thélène, David Harari, and
Yuri Zarhin for helpful discussions and encouragement. The research of the second
named author was supported by the Israel Science Foundation grant 1994/20. The
work on this paper benefited from the authors’ visits to the Max Planck Institute
of Mathematics in Bonn and from the visit of the last named author to Pennsyl-
vania State University as a Shapiro Visitor. The hospitality and support of these
institutions are gratefully appreciated.

1 Preliminaries

1.1 Reduction of the structure group

For the reader’s convenience we recall the definition of the push-forward of torsors,
see [Sko01, §2.2] and [Gir71, Proposition III.3.2.1]. Let G1 be a closed subgroup
of an affine algebraic group G over a field k. Let Z be a variety over k and let
T1 → Z be a right Z-torsor for G1 for the étale topology. The class of this torsor
is an element [T1] of the étale cohomology set H1

ét(Z,G1). The push-forward of T1

along the morphism G1 →֒ G is the quotient T of T1 ×k G by the diagonal action
of G1, where G1 acts on T1 on the right and on G on the left. Then T → Z
inherits a right action of G making it a Z-torsor for G. This gives a map of pointed
sets H1

ét(Z,G1) → H1
ét(Z,G) that sends [T1] to [T ]. When Z is Spec(k), the étale

cohomology sets become Galois cohomology sets.

2



If a Z-torsor T → Z for G is the push-forward of some Z-torsor for G1, then one
says that T lifts to a torsor for G1, or that the structure group of T reduces to G1.

If G1 is commutative, every right Z-torsor for G1 is also a left Z-torsor for G1.
(In general, a right torsor for G1 is a left torsor for an inner form of G1.) In this
case we have the following criterion for the reduction of the structure group from G
to G1.

Proposition 1.1 Let G1 be a closed subgroup of an affine algebraic group G defined

over a field k. Assume that G1 is commutative. Let Z be a variety over k and let

T be a right Z-torsor for G. The structure group of T reduces to G1 if and only if

there is a G-equivariant morphism of Z-schemes T → (G1\G)×k Z.

Proof. Let T1 be a right Z-torsor for G1. Let T = (T1 ×k G)/G1 be the quotient by
the diagonal action of G1, which acts on T1 on the right and on G on the left. Thus
T has a right action of G making it a Z-torsor for G, but also a left action of G1.
Let G1\T be the quotient by this left action of G1. We have isomorphisms

G1\T ∼= G1\(T1 ×k G)/G1
∼= Z ×k (G1\G),

since the two actions of G1 obviously commute, and G1\T1 = Z.
Conversely, let ϕ : T → (G1\G)×kZ be a G-equivariant morphism of Z-schemes,

with G acting on the right. Let x0 be the k-point of G1\G given by the identity
element of G(k). Note that the right action of G1 on G1\G preserves x0. Thus
T1 := ϕ−1(x0 ×k Z) is a closed subvariety of T stable under the right action of G1

so that T1 →֒ T is compatible with the injective homomorphism G1 →֒ G. Since T
is a right Z-torsor for G, this implies that T1 is a right Z-torsor for G1 such that T
is the push-forward of T along G1 →֒ G. �

1.2 Norm 1 tori for quadratic extensions

Let k be a field of characteristic zero. For a quadratic extension L/k we write
RL/k(Gm,L) for the Weil restriction of Gm,L. The attached norm 1 torus R1

L/k(Gm,L)
is defined by the exact sequence of k-tori

1 → R1
L/k(Gm,L) → RL/k(Gm,L)

N−→ Gm,k → 1, (2)

where N is induced by the norm map L → k. As a variety, R1
L/k(Gm,L) is the affine

conic x2 − ay2 = 1, where a ∈ k× is such that L = k(
√
a). The long exact sequence

of Galois cohomology groups attached to (2), by Hilbert’s Theorem 90, gives rise to
a canonical isomorphism

H1(k, R1
L/k(Gm,L)) ∼= k×/N(L×).

This group classifies isomorphism classes of k-torsors for R1
L/k(Gm,L). Such a torsor

is an affine conic x2−ay2 = b, where b ∈ k×, with the obvious action of R1
L/k(Gm,L).

Its class in H1(k, R1
L/k(Gm,L)) is the image of b in k×/N(L×).

3



1.3 Affine and projective conics

Let Z be a k-variety and let T → Z be a right Z-torsor for PGL(n). To the class
[T ] ∈ H1

ét(Z,PGL(n)) one canonically associates an element ∂([T ]) of the Brauer
group Br(Z) = H2

ét(Z,Gm), where ∂ is the connecting map attached to the central
extension of algebraic groups

1 → Gm → GL(n) → PGL(n) → 1.

In fact, one can construct a Severi–Brauer scheme of relative dimension n−1 over Z
with class ∂([T ]) directly from the torsor T , as follows. The standard n-dimensional
representation of GL(n) gives rise to a transitive action of PGL(n) on the projective
space P

n−1
k , which we write as a left action. Let X be the quotient of T ×k P

n−1
k

by the diagonal action of PGL(n), acting on T on the right and on P
n−1
k on the

left. The Z-scheme X is étale locally isomorphic to Z ×k P
n−1
k , so X → Z is a

Severi–Brauer scheme of relative dimension n− 1. We have [X ] = ∂([T ]) ∈ Br(Z).

Lemma 1.2 Let Z be a k-variety, let T → Z be a right Z-torsor for PGL(n), and
let X = (T ×kP

n−1
k )/PGL(n) be the attached Severi–Brauer scheme over Z of relative

dimension n−1. If T lifts to a Z-torsor T1 for a maximal k-torus T ⊂ PGL(n−1),
then there is an open embedding T1 →֒ X.

Proof. Since T is the push-forward of T1, we have canonical isomorphisms

X = (T ×kP
n−1
k )/PGL(n) ∼= (T1×kPGL(n)×kP

n−1
k )/(T×kPGL(n)) ∼= (T1×kP

n−1
k )/T,

where T acts on P
n−1
k on the left as a subgroup of PGL(n). Indeed, the actions of T

and PGL(n) on T1 ×k PGL(n)×k P
n−1
k commute, as immediately follows from their

definitions.
The restriction of the action of PGL(n) on P

n−1
k to T has a dense orbit on which

T acts freely. Fixing a k-point in this orbit gives an open embedding T →֒ P
n−1
k . We

identify T with the image of this embedding, so that T acts on itself by translations.
Twisted by T1, the embedding T →֒ P

n−1
k gives rise to the desired open embedding

T1 →֒ X . �

Example 1.3 For n = 2 and Z = Spec(k) we can make Lemma 1.2 explicit. Let
T ⊂ PGL(2) be a maximal k-torus and let T ′ be its preimage in SL(2). Since the
centre µ2 of SL(2) is the 2-torsion subgroup T ′[2] ⊂ T ′, the multiplication by 2 map
gives an isomorphism T ′ ∼= T ′/µ2

∼= T . So the maximal k-tori in PGL(2) are also
the maximal k-tori in SL(2).

For an element g ∈ SL(2)(k) we write CSL(2)(g) for the centraliser of g in SL(2).
The torus T ⊂ SL(2) is the centraliser CSL(2)(g) of any non-central g ∈ T (k). It
is easy to check that for a non-central semisimple element g ∈ SL(2)(k) with trace
t = tr(g) we have

CSL(2)(g) ≃ R1
L/k(Gm,L),

4



when L = k(
√
t2 − 4) is a quadratic extension of k. When t2 − 4 is a square in k×,

we define L = k ⊕ k. In this case T = R1
L/k(Gm,L) is the split torus Gm,k.

Let T1 be a k-torsor for T given by

x2 − (t2 − 4)y2 = b,

where b ∈ k×. Let T be the push-forward of T1 along T →֒ PGL(2). The associated
Severi–Brauer variety X = (T ×k P

1
k)/PGL(2) is the projective conic given by the

homogenised equation
x2 − (t2 − 4)y2 = bz2.

The open embedding T1 ⊂ X of Lemma 1.2 is the natural embedding with comple-
ment the union of two k̄-points.

Remark 1.4 In the above construction we can replace a maximal torus in PGL(2)
by the centraliser of an element g ∈ SL(2)(k) such that tr(g) = ±2 and g 6= ±I. In
this case G := CPGL(2)(g) is isomorphic to the additive group Ga,k. The restriction
of the action of PGL(2) on P

1
k to G has a dense orbit isomorphic to A

1
k on which G

acts freely. Thus we have an analogue of Lemma 1.2 in the unipotent case (with the
same notation): if T lifts to a Z-torsor T1 for G, then there is an open embedding
T1 →֒ X . When Z = Spec(k) we have H1(k,Ga,k) = 0 by the additive version of
Hilbert’s Theorem 90, hence any k-torsor for G is trivial and so is isomorphic to A1

k.
This implies that X ∼= P1

k.

2 Simultaneous similarity of two matrices

2.1 Markoff surfaces and torsors for PGL(2)

Let k be a field of characteristic zero with algebraic closure k̄. Write

F (s, t, u) = s2 + t2 + u2 − stu− 4.

For d ∈ k let Md ⊂ A3
k be the affine cubic surface given by F (s, t, u) = d, called a

Markoff surface. The surface Md is smooth if and only if d 6= 0 and d 6= −4. The
singular cubic surface M0, also called the Cayley cubic, has four singular points with
coordinates s, t, u = ±2 with the product of signs equal to 1.

The Cayley cubic M0 naturally arises in the problem of classification of pairs of
(2× 2)-matrices up to simultaneous similarity. Write

f : SL(2)×k SL(2) → A
3
k

for the morphism sending A,B ∈ SL(2)(k̄) to (s, t, u) ∈ A3
k(k̄), where

s = tr(A), t = tr(B), u = tr(AB).

The action of PGL(2) by simultaneous conjugation preserves the fibres of f .
The following proposition is well-known.
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Proposition 2.1 Let A,B ∈ SL(2)(k̄). The following properties are equivalent:

(1) A and B have a common eigenvector;

(2) det(AB − BA) = 0;
(3) tr(ABA−1B−1) = 2;
(4) (s, t, u) is a k̄-point of the Cayley cubic M0.

These conditions are satisfied when the centralisers of A and B in PGL(2) have

non-trivial intersection.

Proof. The equivalence of (1) and (2) is [She84, Theorem 3.2]. The equivalence of
(2) and (3) is elementary, as both statements are equivalent to 1 being a root of
the characteristic polynomial of ABA−1B−1. The equivalence of (3) and (4) follows
from the Cayley–Hamilton theorem

A2 = sA− I, B2 = tB − I, ABAB = uAB − I, (3)

from which one obtains the Fricke identity

tr(ABA−1B−1) = s2 + t2 + u2 − stu− 2. (4)

See also [Fri83, Theorem 2.9]. For the last statement, let g 6= ±I be an element of
SL(2)(k̄) commuting with A and B. The centraliser of g in SL(2)(k̄) is commutative,
hence AB = BA, so (2) holds. �

A crucial observation is that PGL(2) acts freely on f−1(A3
k \M0).

Lemma 2.2 Let T = f−1(V ), where V = A3
k \ M0. The morphism T → V is a

torsor for PGL(2) for the étale topology.

Proof. The fibres of f : T → V are orbits of PGL(2) acting on SL(2) ×k SL(2)
by simultaneous conjugation [Fri83, Theorem 2.2]. Since k has characteristic zero,
and the varieties T and V are irreducible and normal, by [GIT94, Proposition 0.2]
the morphism f : T → V is a geometric quotient. By Proposition 2.1, the action
of PGL(2) on T is set-theoretically free. Since T and SL(2) are affine, by Luna’s
étale slice theorem [GIT94, p. 199], this implies that the action of PGL(2) on T is
scheme-theoretically free, thus T → V is a PGL(2)-torsor for the étale topology. �

The class of T is an element [T ] of the étale cohomology set H1
ét(V,PGL(2)).

2.2 Affine and projective conic bundles

As in §1.3, we associate to the torsor T → V a Severi–Brauer scheme X → V of
relative dimension 1, that is, a smooth conic bundle. We would like to compute
[X ] ∈ Br(V ).

Let K = k(s, t, u) be the field of functions on A3
k. Because of the canonical

embedding Br(V ) ⊂ Br(K) it is enough to compute the K-conic XK .
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Lemma 2.3 The structure group PGL(2)K of the generic fibre TK of T → V can

be reduced to T = R1
L/K(Gm,L), where L = K(

√
t2 − 4), and T is embedded into

PGL(2)K as the centraliser of an element of SL(2)K of trace t ∈ K.

Proof. Let g ∈ SL(2)(K) be a matrix of trace t ∈ K. The field extension L/K is
the splitting field of the characteristic polynomial of g, and thus the centraliser of
g in SL(2)K is isomorphic to T . As above, T ∼= T/µ2 is also the centraliser of g in
PGL(2)K , giving an embedding T →֒ PGL(2)K .

The projection to the second factor SL(2) ×k SL(2) → SL(2) sends the generic
fibre TK to the PGL(2)K-orbit of g ∈ SL(2)(K), where PGL(2)K acts by conjugation.
The PGL(2)K-orbit of g is PGL(2)K-equivariantly isomorphic to T\PGL(2)K so that
g is identified with the trivial coset of T . By Proposition 1.1, the preimage of g in
TK is a K-torsor for T , so that TK is the push-forward of T1 along T →֒ PGL(2)K .
�

In view of Example 1.3 it remains to compute T1. We shall do a little bit more
and describe an affine conic bundle π : Y → A3

k with generic fibre YK = T1. The
trace map tr : SL(2) → A1

k has a section σ : A1
k → SL(2) that sends t ∈ k̄ to the

companion matrix

gt =

(

0 −1
1 t

)

.

Let Y be the preimage of σ(A1
k) under the second projection SL(2)×kSL(2) → SL(2).

Thus the k̄-points of Y are pairs of (2×2)-matrices (A, gt), where A ∈ SL(2)(k̄) and
t ∈ k̄. As above, every fibre π−1(s, t, u) is a torsor for the centraliser of gt in PGL(2).
This centraliser is a torus if gt is semisimple, otherwise it is isomorphic to Ga,k. In
particular, the generic fibre YK = T1 is a K-torsor for the torus T = R1

L/K(Gm,L).

Proposition 2.4 All fibres of π : Y → A3
k are non-empty affine conics, in particu-

lar, π is flat and surjective. The fibres of π above the points of V are affine subsets

of smooth projective conics, the fibres above the smooth points of M0 are singular

conics consisting of two k̄-lines meeting at a point, and the fibres above the singular

points of M0 are double lines. The restriction of π to the open subset of A3
k given by

t2 − 4 6= 0 is isomorphic to

µ2 − (t2 − 4)ν2 = F (s, t, u). (5)

The generic fibre YK = T1 of π is a K-torsor for T = R1
L/K(Gm,L) isomorphic to

the affine conic given by (5).

Proof. The fibre π−1
(

(s, t, u)
)

consists of pairs (M, gt), where

M =

(

−x+ s y
tx+ y − u x

)

7



is subject to det(M) = −x2−y2− txy+sx+uy = 1. This shows that π is surjective
with all fibres of dimension 1, hence π is flat. Homogenising this equation, we get
the quadratic form

−x2 − y2 − z2 − txy + sxz + uyz = 0

whose discriminant is 1
4
F (s, t, u). Thus the fibres of π above the points of V =

A3
k \M0 are affine subsets of smooth projective conics. Diagonalising this quadratic

form, we set

µ =
t2 − 4

2
y +

2u− st

2
z, ν = x+

t

2
y − s

2
z, ξ = z,

and obtain µ2− (t2−4)ν2−F (s, t, u)ξ2 = 0. This linear change of variables is given
by a matrix with determinant t2 − 4. Setting ξ = z = 1 we obtain (5). �

Corollary 2.5 The class of the generic fibre of the smooth conic bundle X → V is

[XK ] = (t2 − 4, F (s, t, u)) ∈ H2(K,µ2).

Proof. This is immediate from Proposition 2.4 and Example 1.3. �

Note that the equation of the Markoff surface Md can be written as

(s2 − 4)(t2 − 4) = (2u− st)2 − 4d. (6)

For d = 0 we obtain that the class of F (s, t, u) in k[s, t, u]/(t ± 2) is a square, so
[XK ] is indeed unramified on A3

k away from M0 (which of course follows from the
construction of X from the V -torsor T ). It turns out that [XK ] is also unramified
at infinity.

Proposition 2.6 Let M ′

0 ⊂ P3
k be the Zariski closure of M0, and let V ′ = P3

k \M ′

0.

Then [X ] ∈ Br(V ) is contained in Br(V ′) ⊂ Br(V ).

Proof. Let F ′(r, s, t, u) be a homogeneous cubic polynomial such that F (s, t, u) =
F ′(1, s, t, u). The rational function ρ = r/t is a uniformiser of the local ring of P3

k

at the divisor at infinity r = 0. We have

[XK ] =

(

t2 − 4r2

r2
,
F ′(r, s, t, u)

r3

)

=

(

(

1− 4ρ2
)

ρ−2,
F ′(r, s, t, u)

t3
ρ−3

)

.

Thus [XK ] = (1−4ρ2, F ′(r, s, t, u)t−3ρ), hence the residue of [XK ] at r = 0 is trivial.
By the purity theorem for the Brauer group [CTS21, Theorem 3.7.1 (ii)], this implies
the statement. �

It would be interesting to find a conceptual explanation for the fact that the
Brauer class [X ] is unramified at infinity.
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3 Word equations

3.1 Main theorem

Let w(x, y) be a non-trivial word in two letters, i.e. a non-trivial element of the
free group F2 with two generators. We write w : SL(2) × SL(2) → SL(2) for the
PGL(2)-equivariant map defined by w(x, y). By a general theorem of Borel [Bor83,
Theorem B], the morphism w is dominant.

Using the Cayley–Hamilton theorem (3) we obtain a polynomial Pw ∈ Z[s, t, u]
such that tr(w(A,B)) = Pw(s, t, u), where s = tr(A), t = tr(B), u = tr(AB). In
other words, the following diagram commutes:

SL(2)× SL(2)
w

//

f
��

SL(2)

tr
��

A3
k

Pw
// A1

k

(7)

The composition tr ◦ w is dominant, so the polynomial Pw(s, t, u) is non-constant.
For example, if w(x, y) = xyx−1y−1, then Pw(s, t, u) = F (s, t, u) + 2. Moreover, we
have the following lemma.

Lemma 3.1 If w ∈ [F2,F2], then there is a polynomial Qw(s, t, u) ∈ k[s, t, u] such
that we have

Pw(s, t, u) = Qw(s, t, u)F (s, t, u) + 2. (8)

Proof. Take any point P = (s, t, u) ∈ M0(k̄). Let λ, µ ∈ k̄ be such that λ2−sλ+1 = 0
and µ2 − tµ+ 1 = 0. The Fricke identity (4) implies that f−1(P ) contains

A =

(

λ 0
0 λ−1

)

, B =

(

µ 0
0 µ−1

)

.

Since w(x, y) ∈ [F2,F2] and AB = BA, we have w(AB) = I so that Pw(s, t, u) =
tr(I) = 2. Thus, the restriction of Pw(s, t, u) − 2 to the Cayley cubic M0 is zero.
Since F (s, t, u) is irreducible, we obtain (8). �

Let α ∈ SL(2)(k) be a non-central element. Let Sw,α ⊂ SL(2) × SL(2) be the
closed subset given by w(X1, X2) = α. The isomorphism class of Sw,α depends only
on the similarity class of α, and so it is determined by tr(α).

For a ∈ k let Hw,a ⊂ A
3
k be the affine surface given by Pw(s, t, u) = a. Thus we

have a natural morphism f : Sw,α → Hw,a with a = tr(α). As was pointed out in
[BZ16, Proposition 2.2], the variety Sw,α is non-empty when α is non-central and
semisimple. Indeed, Pw is non-constant, hence surjective on k̄-points. Thus the
composition Pw ◦f is surjective. Hence Sw,α′ is non-empty for some α′ ∈ SL(2) with
tr(α′) = tr(α). If α is semisimple and non-central, then α′ and α are conjugate in
SL(2)(k̄), so that Sw,α is non-empty.
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Theorem 3.2 Let k be a field of characteristic zero. Let w(x, y) be a non-trivial

word in two letters. Let α ∈ SL(2)(k) be a non-central semisimple element with

trace a = tr(α). Let Xw,a → Hw,a ∩ V be the restriction of the smooth conic bundle

X → V to Hw,a ∩ V . Then we have the following statements.

(i) The open subset Sw,α∩f−1(V ) ⊂ Sw,α is isomorphic to a dense open subset of

Xw,a as a variety over Hw,a∩V . The complement to Sw,α∩ f−1(V ) in Xw,a consists

of two sections of Xw,a → Hw,a ∩ V .

(ii) Assume that w(x, y) is contained in the commutator subgroup [F2,F2] ⊂ F2.

Then Hw,a ⊂ V so that Sw,α is isomorphic to a dense open subset of Xw,a as a

variety over Hw,a ∩ V . The complement Xw,a \ Sw,α is the union of two sections of

Xw,a → Hw,a. In particular, we have dim(Sw,α) = 3. If, moreover, the polynomial

Pw(s, t, u)− a is geometrically irreducible, then Sw,a is geometrically integral.

Proof. (i) The centraliser of α in PGL(2) is the norm 1 torus T = R1
k′/k(Gm,k′),

where k′ = k(
√
a2 − 4).

Write H ′

w,a = Hw,a∩V and let Tw,a = f−1(H ′

w,a) be the restriction to H ′

w,a of the
V -torsor f : T → V for PGL(2) defined in Lemma 2.2. We claim that the structure
group of Tw,a → H ′

w,a reduces to T .
Since α is semisimple, all elements of SL(2)(k̄) of trace a are conjugate to α.

Thus the PGL(2)-equivariant morphism w : SL(2) × SL(2) → SL(2) maps Tw,a to
the PGL(2)-orbit of α in SL(2), where PGL(2) acts by conjugation. There is a
unique PGL(2)-equivariant isomorphism of this orbit and T\PGL(2) that sends α
to the trivial coset x0 of T . We obtain a PGL(2)-equivariant morphism

Tw,a → (T\PGL(2))×k H
′

w,a

of schemes over H ′

w,a, so we can apply Proposition 1.1 (using that T is commutative).
The desired H ′

w,a-torsor for T lifting Tw,a is the preimage of x0 ×k H
′

w,a in Tw,a, but
this is exactly Sw,α ∩ f−1(V ). Now (i) follows from Lemma 1.2.

(ii) Since a 6= 2, from Lemma 3.1 we obtain that M0∩Hw,a = ∅, so thatHw,a ⊂ V
and H ′

w,a = Hw,a, hence Sw,α ∩ f−1(V ) = Sw,α. Since Hw,a ⊂ A3
k is the zero set of

a non-constant polynomial, every irreducible component of Hw,a has dimension 2.
Thus dim(Sw,α) = dim(Xw,a) = 3.

When Pw(s, t, u) − a is geometrically irreducible, the surface Hw,a is geometri-
cally integral. Since Xw,a is a smooth conic bundle over Hw,a, we see that Xw,a is
geometrically integral, so Sw,α is geometrically integral too. �

To illustrate the practical aspect of Theorem 3.2 (ii) we state the following

Corollary 3.3 Let k be a field of characteristic zero. Let w(x, y) be a non-trivial

word in two letters contained in the commutator subgroup [F2,F2] ⊂ F2. Suppose

that (s, t, u) ∈ V (k) is such that t2 − 4 is a non-zero square in k. Then for any

α ∈ SL(2)(k) with tr(α) = Pw(s, t, u) the equation w(x, y) = α has a solution

(A,B) ∈ SL(2)(k)× SL(2)(k) such that tr(A) = s, tr(B) = t, tr(AB) = u.
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Proof. By Corollary 2.5, the fibre of X → V over the k-point (s, t, u) is isomorphic
to P

1
k. Now Theorem 3.2 (ii) implies that the fibre of f : Sw,α → A

3
k over (s, t, u) is

isomorphic to P1
k with two k-points removed, so it has a k-point. �

3.2 Brauer groups of projective Markoff surfaces

For d 6= 0, d 6= −4 the Markoff surface Md is a dense open subset of the smooth
cubic surface M ′

d ⊂ P3
k given by

r(s2 + t2 + u2)− stu− (d+ 4)r3 = 0.

The Brauer group of M ′

d was computed in [CTWX20, Proposition 3.2] and [LM21,
Lemmas 3.1, 3.2]. Let us recall this computation. Projection from the line r = t = 0
contained inM ′

d to P
1
k with coordinates (r : t) is a conic bundle φ : M ′

d → P1
k with five

geometric singular fibres. The k-fibre φ−1(∞) at the point at infinity ∞ = (0 : 1)
is the union of two k-lines given by r = s = 0 and r = u = 0. The remaining
singular fibres are above the k-points t/r = ±2 and above (t/r)2 = d+ 4, the latter
being either a degree 2 closed point or a union of two k-points. For these fibres,
the quadratic extension over which the components are defined is given by adjoining√
d. The element

A0 := ((t/r)2 − 4, d) = (1− 4(r/t)2, d) ∈ Br(k(P1
k))

has residue d at the points t/r = ±2 and is unramified at all other points of P1
k. We

also note that the value of A0 at the point at infinity (r : t) = (0 : 1) is trivial. Let
A be the image of A0 in Br(k(M ′

d)). We deduce that A is unramified on M ′

d and
hence A ∈ Br(M ′

d). Moreover, the value of A at any k-point of φ−1(∞) is trivial.
For ‘general’ d, namely, when [k(

√
d,
√
d+ 4) : k] = 4, we have Br(M ′

d)/Br(k)
∼=

Z/2 with generator A. If d+ 4 is a square in k, but d is not, then Br(M ′

d)/Br(k)
∼=

(Z/2)2 is generated by A and another element. Finally, if d or d(d+ 4) is a square
in k, then Br(M ′

d)/Br(k) = 0.

3.3 Commutator word variety

In this section w(x, y) is the commutator word xyx−1y−1. For α ∈ SL(2)(k) we
denote the variety Sw,α ⊂ SL(2)× SL(2) defined by w(X1, X2) = α simply by Sα.

Theorem 3.4 Let k be a field of characteristic zero. Let α ∈ SL(2)(k) be a non-

central semisimple element, and let d = tr(α)− 2. Let Xd → Md be the restriction

of the smooth conic bundle X → V to Md ⊂ V , d 6= 0, d 6= −4. Then we have the

following statements.

(i) The class [Xd] ∈ Br(Md) equals A ∈ Br(M ′

d) ⊂ Br(Md).
(ii) Sα is isomorphic to a dense open subset of Xd.

(iii) Sα is geometrically integral.
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(iv) Sα is k-unirational. In particular, Sα has a Zariski dense set of k-points.
(v) Sα is k-rational if and only if the Markoff surface Md is k-rational. This is

the case if and only if d or d(d+ 4) is a square in k.

Proof. (i) The Markoff surface Md is given by F (s, t, u) = d, so for d 6= 0 we have
Md ⊂ V . Corollary 2.5 implies that [Xd] = (t2 − 4, d) = A.

(ii) For w(x, y) = xyx−1y−1 we have Pw(s, t, u) = F (s, t, u)+2. The trace surface
Hw,a, where a = tr(α) = d + 2, is the zero set of Pw(s, t, u) − a = F (s, t, u) − d,
hence Hw,a = Md. Now (ii) follows from Theorem 3.2 (ii).

(iii) This follows from Theorem 3.2 (ii) as Md is geometrically integral for any d.
(iv) To prove that Sα is k-unirational, by (ii) it is enough to prove that Xd is

k-unirational. We start by recalling the well-known k-unirationality of M ′

d. For this
it is enough to construct a rational curve C ⊂ M ′

d which is a double section of the
conic bundle φ : M ′

d → P1
k, because the pullback of φ : M ′

d → P1
k to C is a conic

bundle D → C with a section, hence D is a k-rational variety dominating M ′

d. We
can take C to be the line r = t = 0. Indeed, the k̄-fibres of φ are residual conics to
this line, so C is a double section of φ.

The k-point x0 = (0 : 0 : 0 : 1) is contained in C ∩ φ−1(∞). As we have seen
above, this implies A(x0) = 0. Since x0 is in C(k), it lifts to a k-point y0 on D. Thus
we have a dominant morphism g : D → M ′

d of generic degree 2, where D is a smooth,
projective, and k-rational surface with a k-point y0 such that g(y0) = x0. The k-
rationality of D implies that the natural map Br(k) → Br(D) is an isomorphism.
Thus g∗A ∈ Br(k). But (g∗A)(y0) = A(x0) = 0, hence g∗A = 0. By (i) this implies
that the pullback of the conic bundle Xd → Md to g−1(Md) ⊂ D has a section,
hence it is birationally equivalent to D ×k P

1
k, and therefore is k-rational.

(v) If d or d(d + 4) is a square in k, then M ′

d is k-rational. (In the first case
M ′

d contains two skew lines defined over k and in the second case M ′

d contains two
skew lines conjugate over k and individually defined over k(

√
d+ 4), see [CTWX20,

Remark 3.3].) This implies Br(M ′

d)/Br(k) = 0. Since A vanishes at a k-point of
M ′

d, we have A = 0. Thus Xd is birationally equivalent to Md ×k P
1
k, and hence is a

k-rational variety. (If d(d+4) is a square in k, then the k-rationality of Xd is proved
in [RBKC96, Lemma 4] by elementary but seemingly involved calculations.)

Finally, assume that neither d nor d(d+4) is a square in k. DefineK = k(
√
d+ 4)

if d+ 4 is not a square in k, otherwise let K = k. We note that d+ 4 is a square in
K, but d is not, and this implies that Br(M ′

d,K)/Br(K) ≃ (Z/2)2 is generated by the
images of A and some other element A1 ∈ Br(M ′

d,K). By Lichtenbaum’s theorem,
the kernel of the restriction map Br(K(Md)) → Br(K(Xd)) is generated by A, see
[CTS21, Proposition 7.1.3]. Thus the image of A1 in Br(K(Xd)) is unramified over
K, and is non-zero modulo Br(K). The unramified Brauer group is a birational
invariant of smooth, proper, regular varieties [CTS21, Corollary 6.2.11], hence Xd,K

is not K-rational. Thus Xd is not k-rational. Since Br(M ′

d)/Br(k) 6= 0, the Markoff
surface Md is not k-rational too. �

The existence of a k-point in Sα is a particular case of a general result of R.C.
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Thompson [Tho61, Theorem 2]. When k is a number field, our method can be used
to prove the following local-to-global statement for rational points on Sα. Recall
that a variety over a field k is split if it contains an open geometrically integral
k-subscheme, see [CTS21, Definition 10.1.3].

Proposition 3.5 Let k be a number field. Let α ∈ SL(2)(k) be a non-central

semisimple element. The Brauer–Manin obstruction is the only obstruction to weak

approximation on any smooth and proper variety birationally equivalent to Sα. More-

over, if we exclude the case when tr(α)+2 is a square in k but tr(α)−2 is not, then

Sα satisfies weak approximation.

Proof. Using Hironaka’s theorem, we can find a smooth, proper, geometrically
integral variety X ′

d over k that contains Xd as an open subset. Moreover, we can
choose X ′

d such that there is a morphism ϕ : X ′

d → M ′

d which extends Xd → Md.
The irreducibility of X ′

d implies that the fibres of ϕ : X ′

d → M ′

d above points of
codimension 1 are curves. Thus the restriction of ϕ to Spec(R), where R is the local
ring of a codimension 1 point of X ′

d, is proper and flat. By [CTS21, Lemma 10.2.1],
using that A ∈ Br(M ′

d) ⊂ Br(R), we obtain that the generic fibre of Xd → Md

extends to a smooth conic bundle over Spec(R), so its closed fibre is split. By
[CTS21, Proposition 10.1.12], this implies that the closed fibre of the restriction of
ϕ to Spec(R) is split. We conclude that all fibres of ϕ : X ′

d → M ′

d above codimension
1 points of M ′

d are split.
Let Ω be the set of places of k and let kv be the completion of k at v ∈ Ω.

Since A ∈ Br(M ′

d) and M ′

d is proper, there exists a finite subset S0 ⊂ Ω such
that A(Pv) = 0 ∈ Br(kv) for every v /∈ S0 and every Pv ∈ M ′

d(kv), see [CTS21,
Proposition 13.3.1 (iii)].

Let S be a finite set of places of k and let Pv ∈ X ′

d(kv), v ∈ S, be local points
coming from an adelic point (Pv)v∈Ω in the Brauer–Manin set X ′

d(Ak)
Br. We want

to approximate (Pv)v∈S by a k-point. Without loss of generality we can assume that
S0 ⊂ S. After a small deformation we can arrange that Pv ∈ Xd, for v ∈ S.

By functoriality of the Brauer–Manin set we have (ϕ(Pv))v∈Ω ∈ M ′

d(Ak)
Br. Since

M ′

d is birationally equivalent to a smooth projective surface that is a conic bundle
over P1

k with four degenerate k̄-fibres, by a theorem of Salberger and Colliot-Thélène
[CT90] the Brauer–Manin obstruction is the only obstruction to weak approximation
on M ′

d. Thus there is a point Q ∈ M ′

d(k) arbitrarily close to each ϕ(Pv) in the
local topology of kv, for v ∈ S. Since ϕ(Pv) ∈ Md(kv) for v ∈ S, we can ensure
that Q ∈ Md(k). Then the fibre ϕ−1(Q) is a smooth projective conic with class
A(Q) ∈ Br(k). Since ϕ(Pv) is close to Q, this conic has a kv-point for all v ∈ S.
Since S0 ⊂ S, it also has kv-points for all v /∈ S. By the Minkowski–Hasse theorem,
ϕ−1(Q) has a k-point. Then ϕ−1(Q) ≃ P1

k, so we can find a k-point on ϕ−1(Q)
arbitrarily close to Pv for v ∈ S.

To prove the last statement note that the conditions guarantee that Br(M ′

d)/Br(k)
is generated by the image of A. Since the generic fibre of ϕ is a conic, the Brauer
group Br(X ′

d) is vertical. As the fibres of ϕ : X ′

d → M ′

d over the codimension 1
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points of M ′

d are split, we have Br(X ′

d) = Br(k). Thus there is no Brauer–Manin
obstruction on X ′

d in this case. �

3.4 Complements

Part (i) of the following proposition can be compared to a theorem of R.C. Thompson
that S−I(k) 6= ∅ if and only if −1 is a sum of two squares in k, see [Tho61, Theorem
1]. Part (ii), together with Theorem 3.4 (iv), gives a proof in the case of char(k) = 0
of [Tho61, Theorem 2] which says that if k has more than three elements, every
non-central element of SL(2)(k) is a commutator [Tho61, Theorem 2].

Proposition 3.6 Let k be a field of characteristic zero.

(i) The variety S−I is k-rational of dimension 3 if −1 is a sum of two squares

in k, otherwise S−I = ∅ so that S−I is not k-rational.
(ii) If α ∈ SL(2)(k) is a non-central element such that tr(α) = ±2, then Sα is

k-rational of dimension 3.

Proof. (i) If A,B ∈ SL(2)(k̄) are such that ABA−1B−1 = −I, then tr(B) = tr(−B),
hence tr(B) = 0. Similarly, we obtain tr(A) = 0. The Fricke identity (4) implies that
tr(AB) = 0. Thus f(S−I) is a subset of {(0, 0, 0)}. By Lemma 2.2, f−1

(

(0, 0, 0)
)

is a
k-torsor for PGL(2). In particular, it is not empty with transitive action of PGL(2),
thus f−1

(

(0, 0, 0)
)

= S−I .
By Corollary 2.5 the class of this torsor in the Brauer group Br(k) is (−4,−4) =

(−1,−1). By a basic property of quaternion algebras, (−1,−1) = 0 if and only if
−1 is a norm of the quadratic extension k(

√
−1), that is, if and only if −1 a sum of

two squares in k, cf. [CTS21, Proposition 1.1.8].
In the k-torsor S−I is trivial, it is isomorphic to PGL(2), in particular, it is

k-rational. In the opposite case, it has no k-points, and hence is not k-rational.
(ii) The case tr(α) = 2, α 6= I, can be dealt with by an explicit computation.

We can find a basis in which

α =

(

1 1
0 1

)

.

Suppose that A,B ∈ SL(2)(k) are (2 × 2)-matrices such that ABA−1B−1 = α. We
have tr(B) = tr(ABA−1) = tr(αB), and this implies that B is upper-triangular.
Likewise, we obtain that A is also upper-triangular. Writing

A =

(

λ x
0 λ−1

)

, B =

(

µ y
0 µ−1

)

,

we obtain that the matrix equation ABA−1B−1 = α is equivalent to

xλ(1− µ2)− yµ(1− λ2) = 1.

We conclude that Sα is birationally equivalent to A3
k.
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If tr(α) = −2, α 6= −I, then our method still works. Let us explain how to
adjust the proof of Theorem 3.2 to this case. We have a = tr(α) = d+2 which gives
d = −4, so Hw,a = M−4 ⊂ V . Let M♯ := M−4 \ {(0, 0, 0)}. Let T♯ → M♯ be the
restriction of T → V and let X♯ → M♯ be the restriction of X → V .

The commutator gives a PGL(2)-equivariant map w : SL(2) × SL(2) → SL(2)
sending T♯ to the subvariety of SL(2) whose k̄-points are matrices of trace −2. All
such matrices, except −I, are conjugate to α. The preimage w−1(−I) = S−I is
f−1

(

(0, 0, 0)
)

, by the proof of (i). Thus w(T♯) is contained in the PGL(2)-orbit
of α in SL(2), where PGL(2) acts by conjugation. Let G be the centraliser of α
in PGL(2). Thus G ∼= Ga,k, in particular, G is commutative. There is a unique
PGL(2)-equivariant isomorphism of this orbit of α and G\PGL(2) that sends α to
the trivial coset x0 of G. We obtain a PGL(2)-equivariant morphism

T♯ → (G\PGL(2))×k M♯

of schemes over M♯, so we can apply Proposition 1.1 (using that G is commutative).
The desired M♯-torsor for G lifting T♯ is the preimage of x0 ×k M♯ in T♯, but this
is exactly Sα because f(Sα) does not contain (0, 0, 0). We know that Sα is a dense
open subset of X♯ by Remark 1.4. Moreover, by the same remark, the generic fibre
of X−4 → M−4 is isomorphic to the projective line over the function field of M−4,
so Sα is birationally equivalent to M−4 ×k P

1
k. Finally, M−4 is k-rational as a cubic

surface with a double k-point. Thus Sα is birationally equivalent to A3
k. �

When n is prime, for any field k, Larsen and Lu showed that the commutator
morphism w : SL(n) ×k SL(n) → SL(n) is flat over the complement to the identity
in SL(n), see [LL21]. Without using [LL21] we have the following by-product of our
method.

Corollary 3.7 Let k be a field of characteristic zero.

(i) Let w(x, y) be a non-trivial word in two letters contained in the commutator

subgroup [F2,F2] ⊂ F2. Then the restriction of the morphism

w : SL(2)×k SL(2) → SL(2)

to the open subset of non-central semisimple elements in SL(2) is faithfully flat.

(ii) The commutator map SL(2) ×k SL(2) → SL(2) is faithfully flat over the

complement to the identity in SL(2).

Proof. Since the source and the target are smooth, by miracle flatness it is enough
to check that all fibres have the same dimension. Thus (i) holds by Theorem 3.2
(ii), whereas (ii) holds by Theorem 3.4 and Proposition 3.6. �

It is well-known that SI has dimension 4, so the result of Corollary 3.7 (ii) is
best possible. For the sake of completeness we note that SI is k-rational.

Proposition 3.8 The variety SI of commuting pairs of elements of SL(2) is k-
rational of dimension 4.
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Proof. T.S. Motzkin and O. Taussky proved that the variety of commuting pairs of
(n×n)-matrices contains the set of commuting pairs of regular semisimple matrices
as a dense open subset [MT55, Theorems 5, 6]. This implies that SI is geometrically
integral. Hence SI is birationally equivalent to the centraliser of the generic point
of SL(2). The generic point is a regular semisimple element, so its centraliser is a
maximal torus in SL(2) defined over the function field of SL(2). On the one hand,
SL(2) is k-rational of dimension 3. On the other hand, any maximal torus of SL(2)K
defined over a field extension K/k is K-rational of dimension 1. This finishes the
proof. �
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43–55.

[CTS21] J.-L. Colliot-Thélène and A.N. Skorobogatov, The Brauer–Grothendieck Group,
Springer, Cham, 2021.

[CTWX20] J.-L. Colliot-Thélène, D. Wei, and F. Xu, Brauer–Manin obstruction for
Markoff surfaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 21 (2020) 1257–1313.

[Fri83] S. Friedland. Simultaneous similarity of matrices. Adv. Math. 50 (1983) 189–265.

[Gir71] J. Giraud. Cohomologie non abélienne. Springer-Verlag, 1971.
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