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Abstract

Denote by µ the maximal entropy measure for the shift σ acting on Ω = {0, 1}N,
by L the associated Ruelle operator and by K = L† the Koopman operator, both acting
on L2(µ). Using a diagonal representation π, the Ruelle-Koopman pair can be used for
defining a dynamical Dirac operator D, as in [6]. D plays the role of a derivative. In [10],
the notion of a spectral triple was generalized to Lp-operator algebras; in consonance,
here, we generalize results for D to results for a Dirac operator Dp , and the associated
Connes distance dp, to this new Lp context, p ≥ 1. Given the states η, ξ:

dp(η, ξ) := sup{ |η(a)− ξ(a)|, where a ∈ A and ∥[Dp, π(a)]∥ ≤ 1}.
In the setting of operator algebras a function f ∈ A = C(Ω) is represented by the operator
Mf , where Mf (g) = f g. The operator Mf acts on Lp(µ). We explore the relationship of
Dp with dynamics, in particular with f ◦σ−f , the discrete-time derivative of a continuous
f : Ω → R. Take p, p′ > 0 satisfying 1

p
+ 1

p′ = 1. We show for any continuous function f :

∥
[
Dp, π(Mf )

]
∥ = | λ

√
L |f ◦ σ − f |λ|∞, where λ = max{p, p′}.

Denote by P(σ) the set of σ-invariant probabilities; then we get:

∥[Dp, π(M(f))]∥ ≥ λ
√
2 supµ∈P(σ) exp(

∫
log |f ◦ σ − f | dµ+

hµ(σ)

λ
).

When p = 2, the equality holds. We analyze the connection of dp with transport theory.
Let µ, ν be probabilities on Ω, d∞ a certain metric on Ω and Wd∞ its Wasserstein distance:

Wd∞ (µ, ν) ≤ dp(µ, ν) ≤ λ
√
2Wd∞ (µ, ν).

Moreover, d1(µ, ν) = d∞(µ, ν) = Wd∞ (µ, ν). d∞ is not compatible with the usual metric.

Furthermore, we show ∥[Dp, π(KnLn)]]∥ = 1 for all n ≥ 1. We also prove a formula

analogous to the Kantorovich duality formula for minimizing the cost of tensor products.

1 Introduction

Our main goal here is to introduce a dynamical Dirac operator Dp, p ≥ 1
(associated to the Ruelle-Koopman pair) and to study its action on Lp-spaces
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of functions f defined on the symbolic space Ω = {0, 1}N. The Lp(µ) space
concerns the maximal entropy measure µ. In the case of the space L2(µ),
the Dirac operator D2 plays the role of a derivative acting on self-adjoint
operators.

We will present results for the associated Connes distance and the cor-
responding spectral triple. We will also present some explicit estimates de-
scribing the interplay of all these concepts with the dynamics of the symbolic
space. Given a continuous function f : Ω → R, the function f ◦ σ − f de-
notes the discrete-time derivative of f , where σ is the shift acting on Ω. The
discrete-time derivative plays an important role in our reasoning.

The Koopman operator K and the Ruelle operator L are defined in (1).
Also, dp will denote the Connes distance for the dynamical Dirac operator
Dp, p ≥ 1 (see expressions (6) and (7)). P(Ω) denotes the set of probabilities
on Ω, and P(σ) the set of σ-invariant probabilities.

Some of the results we will present here generalize our previous work [6]
(see also [5]), which considered the case p = 2. Furthermore, we will estimate
the Connes distance from Dp in terms of the Wasserstein distance from a cost
function described in Section 6 .

In another previous work [4] (a Master dissertation), a “noncommutative
generalization” of the optimal transport problem was considered and it was
shown to satisfy a duality formula analogous to the Kantorovich duality for-
mula (see the Appendix). The dual form of this noncommutative optimal
transport problem is of interest to us in the present context because it can be
related to the Connes distance. More precisely, the Connes distance between
two states is bounded above by the noncommutative optimal transport cost
between the same states (for a given “noncommutative cost function”). This
is a corollary of the fact that the Connes distance is bounded above by the
optimal transport cost (for a given cost function) and that the noncommu-
tative optimal transport problem generalizes the optimal transport problem
(see [16]).

There are circumstances under which the Connes distance and the optimal
transport problem coincide. For instance, in this prototypical example of a
spectral triple, where the commutative C*-algebra of continuous complex-
valued functions of a compact manifold acts via multiplication operators
on the Hilbert space of square-integrable differential forms; and the Dirac
operator is the Hodge (or signature) operator [16]. In this example, the
states are the Borel probability measures, and the transport cost function
under consideration is the manifold’s metric distance.
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In general, it is known that even for commutative and finite-dimensional
C*-algebras A, the Connes distance between two probability vectors may not
coincide with any1 (as in, for any cost function) optimal transport problem
between the same probability vectors (see [16]).

In a more general setting, recall that A is (an unital, separable, and)
commutative (C*-algebra) precisely when it is (isometrically isomorphic to)
the C*-algebra of continuous complex-valued functions of a given compact
metric space2. The states of A can then be regarded as (Borel) probability
measures on such space. One important issue is: given µ, ν ∈ P(Ω), to
characterize when dp(µ, ν) is finite (see Corollary 33).

As a means of probing the question of how the Connes distance relates to
the optimal transport problem and our version of noncommutative optimal
transport, we are going to carry out explicit computations in a specifically
chosen example. This example concerns a form of special variation of the
classical spectral triple definition because of two exceptions; the first one be-
ing our Dirac operator Dp is bounded, and therefore does not have compact
resolvent. However, this will not be an issue, since we are interested mainly
in a metric question, for which such a hypothesis is of no pertinence. Fur-
thermore, the example will consist of a dynamically defined distance between
probability measures, which is of interest per se.

Another interesting question regarding the Connes distance is how does
it change with respect to the parameter p in the context of Lp-operator
algebras. Hence, the other exception is we will also consider our algebra as
an Lp-operator algebra. In doing this, we hope that our explicit computations
come to offer a little bit of insight into such a question.

Results relating Spectral Triples and Ergodic Theory can be found in [14],
[19], [20], [6] and [7].

2 Notation

Let Ω = {0, 1}N be equipped with the product topology and the correspond-
ing Borel σ-algebra. Typical sequences are written x, y ∈ Ω. Consider the

1This follows from the observation that in [16], the set of admissible for the Connes
distance is an ellipsoid, while the set of admissibles for the optimal transport problem is
a rectangular prism (whichever the cost).

2Such a metric space can then be taken to be the so-called spectrum of A. A more
detailed description of the spectrum can be found in [11].
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action of the shift map σ : Ω −→ Ω defined by x = (xn)n∈N 7−→ σ(x) =
(xn+1)n∈N, and denote by µ the maximal entropy measure. We write µ ⊔ µ
for the measure over the disjoint space Ω ⊔ Ω which restricts to either com-
ponent as µ.

Let Lp = Lp(µ) be the Banach space of p-integrable complex-valued func-
tions g : Ω → C, with respect to the maximal entropy measure µ.

In our setting a continuous function f : Ω → C is represented by the
operator Mf , given by f g 7→ Mf (g) := fg. We will introduce a Dirac
operator Dp, p ≥ 1, acting on pairs of p-integrable functions (see Section 4).
Our initial focus will be on the commutator of Dp with operators of the form
π(Mf ). That is, on:

[Dp, π(Mf )],

where [ , ] means the commutator of operators, and π is a representation to
be described in Section 4.

Denote by C(Ω) the algebra of continuous complex-valued functions f of
Ω. Let p′ ≥ 1 be the number implicitly defined given p ≥ 1 by 1

p
+ 1

p′
= 1, so

that Lp′ is the dual space of Lp. Typical continuous functions are denoted by
f ∈ C(Ω) and p-integrable functions by g ∈ Lp(µ). K denotes the Koopman
operator and L denotes the Ruelle operator.

The Koopman and Ruelle operators are characterized by:

Kf := f ◦ σ, and: L[f ](x) := 1

2
(f(0x) + f(1x)) , (1)

for all continuous functions f ∈ C(Ω); they may be closed with respect to
any p-norm, and we will use the same notation, K and L still.

General results on the Ruelle and Koopman operators can be found in
[17]. They are dual of each other in the case of L2(µ) (see [6])

One of our goals (see end of Section 4) is to show that

∥[Dp, π(KL)]]∥ = 1, (2)

which is a particular case of

∥[D, π(KnLn)]∥ = 1. (3)

3 Connes Distance

A Dirac operator D is necessary to define a spectral triple and a Connes dis-
tance. In [10] the authors pose the following generalization for the definition
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of a spectral triple:

Definition 1. An Lp-spectral triple is an ordered triple (A,Lp(µ), D), where:

1. Lp(µ) is an arbitrary Lp-space;

2. A is an Lp-operator algebra; π is a representation of A on Lp(µ).

3. D is an unbounded linear operator on Lp(µ), such that:

(a) {a ∈ A | ∥[D, π(a)]∥ < +∞} is a norm dense subalgebra of A.

(b) (Id+D2)
−1

is a compact operator.

(c) For any complex λ not in the spectrum of D, (D − λ Id)−1 is a
compact operator.

The operator D is called the Dirac operator.

We are also going to follow [10, Definition 3.3] and define the space of
states of a given Lp-operator algebra A as:

S(A) := {η ∈ A′ | ∥η∥ = η(1) = 1} . (4)

The Connes distance between a pair of states η, ξ ∈ S(A) is defined as:

dD(η, ξ) := sup
a∈A

∥[D,π(a)]∥≤1

|η(a)− ξ(a)| . (5)

It is an operator algebra version of the Wasserstein distance (see (15)).
In our setting, a continuous function f ∈ C(Ω) is represented by the

bounded linear operatorMf ∈ B(Lp(µ)) which acts on Lp(µ) byMf (g) = fg.
We will exploit this choice to introduce a form of Dirac operator D is defined
in terms of the shift dynamics over Ω (see Section 4).

Notice the parameter p governs on which space a ∈ A = C(Ω) is being
represented by π and D is acting on.

For the more precise estimates of dD in Section 5 and 6 note that the
states in (5) are Borel probabilities on Ω. In this case, when computing (5),
given η, we get that η(a) = η(f) =

∫
f d η, when a = f ∈ A = C(Ω). That

is, |η(a)− ξ(a)| = |η(f)− ξ(f)| = |
∫
fdη −

∫
fdξ|, and dD in (5) is defined

accordingly. Among other results we will estimate dp(δx, δσ(x)) and dp(δx, δy),
when x, y ∈ Ω; and also dp(η, ξ).

5



Remark 2. Note also the importance in each case to estimate whether or
not ∥[D, π(a)∥ ≤ 1 for a certain given a. This helps to find lower bounds for
dD(η, ξ).

Remark 3. In what follows we are mostly interested in explicit computations
and bounds for Connes pseudometric distance in the space of states of the
Lp-operator algebra C(Ω). In [8, Proposition 3, 4] A. Connes notes that for
the purposes of defining a pseudometric, D is not required to have compact
resolvent. In fact, in [18] M. Rieffel describes a considerably more general
setting in which an analog of the Connes distance may be defined, and we
are going to show that his setting includes ours in Section 5. In particular
[18, Proposition 1.4] can be used to show that our pseudometric induces a
strictly finer topology than the weak-∗ topology on S(C(Ω)). Section 5 will
also provide insight into this matter as it describes the connected components
of this topology.

4 The Dirac Operator

Let A := C(Ω). In this section we frequently identify a continuous function
f ∈ C(Ω) with the bounded linear operator Mf ∈ B(Lp(µ)). In this way, we
often think of π as a representation of C(Ω), while, rigorously, it is π ◦M( )

that is so.
Let B(Lp(µ)) act on Lp(µ⊔µ) ∼= Lp(µ)×Lp(µ) via a diagonal represen-

tation π : B(Lp(µ)) → B(Lp(µ)×Lp(µ)), in such away that given f ∈ C(Ω):

π(Mf ) :=

[
Mf 0
0 Mf

]
,

and let D = Dp be the linear operator acting on Lp(µ)× Lp(µ) by:

Dp :=

[
0 K
L 0

]
. (6)

In [7] the authors considered other forms of dynamically defined Dirac
operators.

Here the states are defined by

S(A) := {η ∈ A′ | ∥η∥ = η(1) = 1} ,
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and the Connes distance for η, ξ ∈ S(A) by:

dp(η, ξ) = dDp(η, ξ) := sup
a∈A

∥[Dp,π(a)]∥≤1

|η(a)− ξ(a)| . (7)

In order to compute expression (7) it helps to know which f ∈ C(Ω)
satisfies ∥[Dp, π(Mf )]∥ ≤ 1. We will present here some explicit estimates that
will allow us to derive lower bounds for the Connes distance when D = Dp.
As a first step in that direction, notice that for any f ∈ C(Ω):

[Dp, π(Mf )] =

[
0 K
L 0

] [
Mf 0
0 Mf

]
−
[
Mf 0
0 Mf

] [
0 K
L 0

]
=

[
0 KMf −MfK

LMf −MfL 0

]
=

[
0 Mf◦σ−fK

LMf−f◦σ 0

]
. (8)

Consequently:

∥[Dp, π(Mf )]∥ = max {∥Mf◦σ−fK∥p, ∥LMf−f◦σ∥p}
= max {∥Mf◦σ−fK∥p, ∥Mf◦σ−fK∥p′}
= max

λ∈{p,p′}
∥Mf◦σ−fK∥λ. (9)

Equation (8) shows that the derivative of a given function f ∈ C(Ω) with
respect toDp is completely characterized by a weighted transfer operator with
weight given by a discrete-time forward dynamical derivative of f , namely
Mf◦σ−fK. Then, the theory of weighted transfer operators applies (see [1]
and [2]). In particular, there is a lower bound for the “Lipschitz Seminorm”
∥[Dp, π(Mf )]∥ given by the variational principle for the spectral radius:

Proposition 4. For any continuous function f : Ω → R

∥[Dp, π(Mf )]∥ ≥ r(Mf◦σ−fK) =

max
λ∈{p,p′}

λ
√
2 sup
µ∈P(σ)

exp

(∫
log |f ◦ σ − f | dµ+

hµ(σ)

λ

)
. (10)

Proof. Apply [2] or [3].

7



Remark 5. When p = 2, the equality holds, since the norm of an anti-
selfadjoint operator is equal to its spectral radius. Note also that

1

p
sup

µ∈P(σ)

∫
p log |f ◦ σ − f | dµ+ h(µ)

is not exactly the classical Pressure problem (as in [17]) due to the fact that
log |f ◦ σ − f | can take the value −∞.

Remark 6. Combining Proposition 4 and Birkhoff’s ergodic theorem, it fol-
lows that for µ-almost every x ∈ Ω:

∥[Dp, π(Mf )]∥ ≥ exp

∫
log |f ◦ σ − f | dµ

= exp
+∞∑
n=0

log
∣∣f ◦ σn+1(x)− f ◦ σn(x)

∣∣
=

+∞∏
n=0

∣∣f ◦ σn+1(x)− f ◦ σn(x)
∣∣ .

Some of the present results can also be deduced from the abstract point
of view of [2], [3] or [1]. For example, the reader should compare (11) and [1,
Equation (98)]

Lemma 7. For any f ∈ C(Ω):
[Dp, π(Mf )] = 0 ⇐⇒ f ◦ σ − f = 0.

The latter implies that f is constant.

Proof. The proof is analogous to the one in [6]. If f ◦ σ − f = 0, then:

∥[Dp, π(Mf )]∥ = max
λ∈{p,p′}

∥Mf◦σ−fK∥λ = max
λ∈{p,p′}

∥M0K∥λ = 0.

In the other direction, if [Dp, π(Mf )] = 0, then:

max
λ∈{p,p′}

∥Mf◦σ−fK∥λ = 0,

and in particular:

max
λ∈{p,p′}

|Mf◦σ−fK(1)|λ = max
λ∈{p,p′}

|f ◦ σ − f |λ
= 0,

which means f ◦ σ − f = 0.
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Lemma 8. For any f ∈ C(Ω):

|f |∞ ≥ sup
|g|p=1

|fKg|p ≥ |Lf |∞ .

Furthermore, if f ∈ C(Ω) does not depend on the first coordinate (that is, if
f is σ−1(Σ)-measurable), then all above inequalities are equalities.

Proof. The proof is similar to the one in [6], except for the convex function
to which we apply Jensen’s inequality for conditional expectations is now |·|p
instead of |·|2.

Remark 9. Lemma 8 holds for p and p′ with the same bounds.

Theorem 10. Replacing f by f ◦ σ − f in Lemma 8, in view of (9) and
Remark 9, we get for any f ∈ C(Ω):

|Kf − f |∞ ≥ ∥[Dp, π(Mf )]∥ ≥ |f − Lf |∞ .

Moreover, if f ◦ σ − f does not depend on the first coordinate we get the
equalities:

|Kf − f |∞ = ∥[Dp, π(Mf )]∥ = |f − Lf |∞ .

Proposition 11. For any f ∈ C(Ω):

∥[Dp, π(Mf )]∥ = max
λ∈{p,p′}

∣∣∣∣ λ

√
L |f ◦ σ − f |λ

∣∣∣∣
∞
. (11)

Expression (11) can be written as:

max
λ∈{p,p′}

∣∣∣∣ λ

√
L |f ◦ σ − f |λ

∣∣∣∣
∞

= max
λ∈{p,p′}

sup
x∈Ω

λ

√√√√ |f(x)−f(0x)|λ
2

+

+ |f(x)−f(1x)|λ
2

. (12)

The right-hand side of (12) is a form of the supremum of mean backward
derivative.

Proof. Analogous to [5]. We have:

sup
|g|λ=1

|fKg|λ = sup
|g|λ=1

(∫
|fKg|λ dµ

) 1
λ

9



= sup
|g|λ=1

(∫
|f |λ |Kg|λ dµ

) 1
λ

= sup
|g|λ=1

(∫
|f |λ

(
K |g|λ

)
dµ

) 1
λ

= sup
|g|λ=1

(∫ (
L |f |λ

)
|g|λ dµ

) 1
λ

= sup
|g|λ=1

∣∣∣∣( λ

√
L |f |λ

)
g

∣∣∣∣
λ

=

∣∣∣∣ λ

√
L |f |λ

∣∣∣∣
∞
,

then we substitute f for f ◦ σ − f .

Corollary 12. Notice that:

max
λ∈{p,p′}

√√√√ |f(x)−f(0x)|λ
2

+

+ |f(x)−f(1x)|λ
2

= max{p,p′}

√√√√ |f(x)−f(0x)|max{p,p′}
2

+

+ |f(x)−f(1x)|max{p,p′}
2

,

and that max {p, p′} ≥ 2, so:

min

{
|f(x)− f(0x)| ,

|f(x)− f(1x)|

}
≤ 2

1
|f(x)−f(0x)| +

1
|f(x)−f(1x)|

≤
√

|f(x)− f(0x)| ×
× |f(x)− f(1x)|

≤ 1

2

(
|f(x)− f(0x)|+

+ |f(x)− f(1x)|

)

≤

√√√√ |f(x)−f(0x)|2
2

+

+ |f(x)−f(1x)|2
2

≤ sup
x∈Ω

√√√√ |f(x)−f(0x)|2
2

+

+ |f(x)−f(1x)|2
2

≤ ∥[D, π(Mf )]∥
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≤ sup
x∈Ω

max

{
|f(x)− f(0x)| ,

|f(x)− f(1x)|

}
= |f ◦ σ − f |∞ .

This reasoning also provides an alternative proof for the first inequality in
Theorem 10.

Remark 13. Corollary 12 shows that:

∥[Dp, π(Mf )]∥ = max
λ∈{p,p′}

∥Mf◦σ−fK∥λ

= ∥Mf◦σ−fK∥max{p,p′}.

Henceforth, we set λ := max {p, p′}, as this will cause no confusion.

To conclude the characterization of the functions f ∈ C(Ω) that have
∥[Dp, π(Mf )]∥ ≤ 1, first we will exhibit a sufficient condition:

Proposition 14. For any function f ∈ C(Ω):

|f ◦ σ − f |∞ ≤ 1 =⇒ ∥[Dp, π(Mf )]∥ ≤ 1

Proof. Apply Theorem 10.

And, lastly, we present a necessary condition:

Proposition 15. For any function f ∈ C(Ω):

∥[Dp, π(Mf )]∥ ≤ 1 =⇒ |f ◦ σ − f |∞ ≤ λ
√
2.

Proof. Notice that for any x ∈ Ω:

∥[Dp, π(Mf )]∥ ≤ 1

⇐⇒ λ

√√√√ |f(x)−f(0x)|λ
2

+ |f(x)−f(1x)|λ
2

≤ 1

⇐⇒ |f(x)− f(0x)|λ
2

≤ 1− |f(x)− f(1x)|λ
2

⇐⇒ |f(x)− f(0x)|λ ≤ 2

(
1− |f(x)− f(1x)|λ

2

)

11



⇐⇒ |f(x)− f(0x)|λ ≤ 2− |f(x)− f(1x)|λ

=⇒ |f(x)− f(0x)| ≤ λ
√
2.

Then, exchanging 0 and 1 in the previous argument we prove our main claim.

The specific form of Dp we are considering also makes it convenient to
compute the Lipschitz seminorm for operators of the form KnLn.

We will show that
∥[Dp, π(KL)]]∥ = 1, (13)

which is a particular case of

∥[D, π(KnLn)]∥ = 1. (14)

In order to get that all the elements in the above expressions are well
defined, we consider the identification of f with Mf .

In order to show (14), first notice the same computations at the end of
[5, Section 2] hold for Dp. To recall:

[Dp, π(KnLn)] =

(
0 KKnLn −KnLnK

LKnLn −KnLnL 0

)
=

(
0 KKnLn −KnLn−1

Kn−1Ln −KnLnL 0

)
=

(
0 K (KnLn −Kn−1Ln−1)

(Kn−1Ln−1 −KnLn)L 0

)
.

Furthermore:(
Kn−1Ln−1 −KnLn

)2
=

Kn−1Ln−1Kn−1Ln−1 −Kn−1Ln−1KnLn

−KnLnKn−1Ln−1 +KnLnKnLn

=
Kn−1Ln−1 −KnLn

−KnLn +KnLn

= Kn−1Ln−1 −KnLn.

Also, notice that, because µ is invariant, K : Lp → Lp is an isometry
for any 1 ≤ p ≤ +∞. Therefore, ∥KT∥ = ∥T∥ for any bounded linear
transformation T : Lp → Lp. In particular, when T is a projection, such as
Kn−1Ln−1 −KnLn, ∥KT∥ = 1. This shows ∥[D, π(KnLn)]∥ = 1.
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We consider this fact important because it could be a starting point to
eventually computing the Connes distance induced by the Dp on the space
of states of a C*-algebra such as the Exel-Lopes C*-algebra (see [12]), since
it is generated by elements of the form:

N∑
i=1

Mfni
KniLniMgni

,

where N, ni ∈ N, and fni
, gni

∈ C(Ω), for every 1 ≤ i ≤ N .

5 Pure States - dp(δx, δy)

In the particular case of the Lp-operator algebra C(Ω) the set of states (de-
fined in (4)) is exactly the same as for the C*-algebra C(Ω). That is because
the Lp-operator norm of a multiplication operator Mf is |f |∞ regardless of
which p one chooses. In this case A = C(Ω); and the states are the Borel
probability measures defined on Ω. In this section, we consider the particular
case of pure states: the Dirac deltas δx on points x ∈ Ω. In the next section,
we will consider a more general case.

A natural question is to know when dp(δx, δy) < ∞, for x, y ∈ Ω (see
Theorem 29); which is somehow related to homoclinic equivalence relations.

There is a way to fit our results into the setting of [18]: in their notation,
our normed space is A = C(Ω) equipped with the supremum norm |·|∞. All
of our elements are Lipschitz, so L = A = C(Ω). Our Lipschitz seminorm is
given by L(a) = ∥[Dp, π(a)]∥. Its zero locus is the space of constant functions
K = C1 ⊆ C(Ω), which determines η up to sign. Take it so η(1) = 1.

This means that we could apply [18, Proposition 1.4], which says our
distance induces a topology finer than weak-∗. Additionally, we will see in
Example 22 that we do have states for which the distance is +∞, which means
it induces a strictly finer topology than the weak-∗ topology in S(C(Ω)).
Notice this topology has many nontrivial connected components.

We now pass to the study of the connected components of the Connes
distance. This means we want to discriminate between the pairs of states
for which it is finite and the pairs of states for which it is not. First, we will
restrict our attention to pure states. We begin with a simple example:

13



Example 16. Let us estimate the Connes distance dp for a pair of Dirac
deltas δx, δσ(x) ∈ S(C(Ω)). Proposition 15 implies: when λ = max{p, p′}

dp(δx, δσ(x)) = sup
f∈C(Ω)

∥[Dp,π(Mf )]∥≤1

|f(x)− f ◦ σ(x)|

≤ λ
√
2

< +∞.

Example 17. Consequently, if x ∈ Ω and y ∈ Ω are two points such that
there exists two numbers m,n ∈ N for which the respective orbits meet at
σm(x) = σn(y), then:

dp(δx, δy) ≤ dp(δx, δσ(x)) + dp(δσ(x), δy)

≤ dp(δx, δσ(x)) + dp(δσ(x), δσ2(x)) + dp(δσ2(x), δy)

≤ dp(δx, δσ(x)) + · · ·+ dp(δσm−1(x), δσm(x)) + dp(δσm(x), δy)

= dp(δx, δσ(x)) + · · ·+ dp(δσm−1(x), δσm(x)) + dp(δσn(y), δy)

≤ p(δx, δσ(x)) + · · ·+ dp(δσm−1(x), δσm(x))+
uad+ dp(δσn(y), δσn−1(y)) + · · ·+ dp(δσ1(y), δy)

≤ λ
√
2 (m+ n)

< +∞.

Now let us calculate more examples. We are looking for a function of
arbitrary variation and “Lipschitz constant = 1”.

Example 18. If f := 2χ01 + 4χ11 + 2χ10, then:

f ◦ σ − f =
(χ001 + χ101 + χ010 + χ110) + 4 (χ011 + χ111)+
uad− 2 (χ010 + χ011 + χ100 + χ101)− 4 (χ110 + χ111)

= 2 (χ001 − χ100 − χ011 + χ110) + 4 (χ011 − χ110)

= 2 (χ001 − χ100 + χ011 − χ110) .

Example 19. If f := 2χ001 + 4χ011 + 6χ111 + 4χ110 + 2χ100, then:

f ◦ σ − f =

2 (χ0001 + χ1001 + χ0100 + χ1100)
+4 (χ0011 + χ1011 + χ0110 + χ1110)

+6 (χ0111 + χ1111)
−2 (χ0010 + χ0011 + χ1000 + χ1001)

−4 (χ0110 + χ0111 + χ1100 + χ1101)
−6 (χ1110 + χ1111)

14



=
2 (χ0001 + χ0100 + χ1100 − χ0010 − χ0011 − χ1000)
+4 (χ0011 + χ1011 + χ1110 − χ0111 − χ1100 − χ1101)

+6 (χ0111 − χ1110)

=
2 (χ0001 + χ0100 − χ1100 + χ0111 − χ0010 + χ0011 − χ1000 − χ1110)

+4 (χ1011 − χ1101)
.

Example 20. If f := 2 (χ001 + χ010 + χ100) + 4 (χ011 + χ101 + χ110) + 6χ111,
then:

f ◦ σ − f =

2 (χ0001 + χ1001 + χ0010 + χ1010 + χ0100 + χ1100)
+4 (χ0011 + χ1011 + χ0101 + χ1101 + χ0110 + χ1110)

+6 (χ0111 + χ1111)
−2 (χ0010 + χ0011 + χ0100 + χ0101 + χ1000 + χ1001)

−4 (χ0110 + χ0111 + χ1010 + χ1011 + χ1100 + χ1101)
−6 (χ1110 + χ1111)

=
2 (χ0001 + χ1010 + χ1100 − χ0101 − χ0011 − χ1000)
+4 (χ0011 + χ0101 + χ0110 + χ1110 − χ0110 − χ0111 − χ1010 − χ1100)

+6 (χ0111 − χ1110)

=
2 (χ0001 + χ1010 + χ1100 − χ0101 − χ0011 − χ1000 + χ0111 − χ1110)

+4 (χ0011 + χ0101 + χ0110 − χ0110 − χ1010 − χ1100)

= 2 (χ0001 − χ1010 + χ1100 + χ0101 − χ0011 − χ1000 + χ0111 − χ1110) .

15
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fγ
7 (blue) and fγ

7 ◦σ−fγ
7 (red). In this picture, the sequence x ∈ Ω corresponds

to the real number
∑

xi2
−i ∈ [0, 1].

Proposition 21. If x, y ∈ Ω are two sequences such that:

sup
n∈N

|# {i ≤ n | xi = 1} −# {i ≤ n | yi = 1}| ≥ N ,

then dp(δx, δy) ≥ N . In particular, dp(δ0∞ , δ1∞) = +∞.

Proof. Consider the following family of continuous functions of Ω:

fγ
k :=

∑
w∈Ŵk

# {i | wi = 1}χw.

16



Notice that:

∥[Dp, π(f
γ
k )]∥ ≤ |a (fγ

k ◦ σ − fγ
k )|∞

≤ |fγ
k ◦ σ − fγ

k |∞
≤ 1,

so that this family gives us a lower bound for the Connes distance. That is:

dp(δx, δy) = sup
f∈C(Ω)

∥[Dp,π(Mf )]∥≤1

|f(x)− f(y)|

≥ sup
k

|fγ
k (x)− fγ

k (y)|

≥ N .

Example 22. In particular, dp(δ0∞ , δ1∞) = +∞.

Proposition 23. If fk is a function of the form
∑

w∈Ŵk
θwχw such that

∥[Dp, π(Mf )]∥ ≤ 1, then |fk(x)− fk(y)| ≤ λ
√
2k.

Proof. Consider the point z = (x1, x2, · · · , xk, y1, y2, · · · , yk) ∈ Ω. It is clear
that fk(z) = fk(x) and fk ◦ σk(z) = fk(y). Now the values fk(x) and fk(y)
are telescopically related as:

|fk(x)− fk(y)| =
∣∣fk(z)− fk ◦ σk(z)

∣∣
=
∣∣fk(z)− fk ◦ σ(z) + fk ◦ σ(z)− fk ◦ σk(z)

∣∣
=

∣∣∣∣∣∣∣∣
fk(z)− fk ◦ σ(z)+
+fk ◦ σ(z)− fk ◦ σ2(z)+
+ · · ·+
+fk ◦ σk−1(z)− fk ◦ σn(z)

∣∣∣∣∣∣∣∣
≤

|fk(z)− fk ◦ σ(z)|+
+ |fk(σ(z))− fk ◦ σ(σ(z))|+
+ · · ·+
+
∣∣fk(σk−1(z))− fk ◦ σ(σk−1(z))

∣∣
≤ λ

√
2k,

where the last inequality follows from Proposition 15.
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We will now consider words of finite length on the alphabet {0, 1}. For
a given k ∈ N, Wk is the set of words w = [w1, w2, ..., ws], s ≤ k, of length
at most k and Ŵk

∼= {0, 1}k is the set of words w = [w1, w2, ..., ws] of length
exactly k. By abuse of language we say that σ([x1, x2, .., xk]) = [x2, .., xk], and
words [w1, w2, ..., ws] can also represent cylinder sets [w1, w2, ..., ws] ⊂ {0, 1}N.

Given x = (x1, x2, · · · , xn, · · · ), we denote by x|k the word [x1, x2, · · · , xk]
of length k.

It will be appropriate to define a metric dk which is a graph distance in
Ŵk.

Proposition 24. Consider the graph (Vk, Ek) given by:

Vk = Ŵk and Ek =
{
(u, v) ∈ Ŵk × Ŵk | (σ([u]) ∩ [v]) ∪ ([u] ∩ σ([v])) ̸= ∅

}
.

Let dk denote the graph distance in Vk = Ŵk. Then,

sup
k

dk(x|k, y|k) ≤ dp(δx, δy) ≤ λ
√
2 sup

k
dk(x|k, y|k).

Proof. Let P = ((w1 = x|k, w2), (w2, w3), · · · , (wn−1, wn = y|k)) be a path
joining x|k and y|k along Ek. Also, let f

θ
k be a function that only depends on

the first k coordinates. If f θ
k satisfies ∥

[
Dp, π(f

θ
k )
]
∥ ≤ 1, then by definition

of Ek, we have that
∣∣θwi

− θwi+1

∣∣ ≤ λ
√
2. Also notice the family of all f θ

k is
dense in C(Ω). From the above we get:

dp(δx, δy) = sup
f∈C(Ω)

∥[Dp,π(Mf )]∥≤1

|f(x)− f(y)|

= sup
k

sup
θ∈RŴk

∥[Dp,π(fθ
k )]∥≤1

∣∣f θ
k (x)− f θ

k (y)
∣∣

= sup
k,θ

∣∣f θ
k (x)− f θ

k (y)
∣∣

= sup
k,θ

∣∣θx|k − θy|k
∣∣

≤ λ
√
2 sup

k
dk(x|k, y|k).

Now define fγ
k by:

γw = dk(w, y|k).
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It is clear from the definition that:

∥
[
Dp, π(f

θ
k )
]
∥ ≤ 1 and |fγ

k (x)− fγ
k (y)| = dk(x|k, y|k),

which gives the other inequality.

Remark 25. It can happen that:

sup
n∈N

|# {i ≤ n | xi = 1} −# {i ≤ n | yi = 1}| < +∞,

and yet dp(δx, δy) = +∞. For instance, consider the sequences:

x = (0, 1, 0, 1, 0, 1, 0, 1, · · · ) and y = (0, 0, 1, 1, 0, 0, 1, 1, · · · ).

Their incidences of 1’s up to length n differ by at most 1 ≪ +∞, and yet the
distance between the truncations of this two points on the graph (Vk, Ek) is of
the same order of magnitude as k. Then Proposition 24 gives d(δx, δy) = +∞.

Proposition 26. Consider the length ℓ of the longest common subword c of
u and v, which are words of length k; that is, there exists m,n ∈ N such that:

c1 = um = vn,
c2 = um+1 = vn+1,
c3 = um+2 = vn+2,

...
cℓ = um+ℓ = vn+ℓ.

Then the kth graph distance from u ∈ Ŵk to v ∈ Ŵk satisfies

dk(u, v) = min {k, k − ℓ+m+ 2n, k − ℓ+ n+ 2m} .

Proof. From the definition of Ek it follows that two vertices w,w′ ∈ Vk =
Ŵ = {0, 1}k are “connected” if and only if they are of the form:

w1 = w′
2

w2 = w′
3

w3 = w′
4

...
wk−1 = w′

k

, or:

w2 = w′
1

w3 = w′
2

w4 = w′
3

...
wk = w′

k−1

.
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In particular, each vertex of w has four neighbours w′, uniquely characterized
by one of the alternatives: w′

1 = 0, w′
1 = 1, w′

k = 0, or w′
k = 1.

We say that c is on the same side in u and v if m ∨ n ≤ (k−ℓ)
2

or if

m ∧ n ≥ (k−ℓ)
2

. Otherwise, we say that c is on opposite sides in u and v.
Of course, the diameter of the graph is k. Now let us exhibit a shorter

path from u to v when their maximal common word c has length ℓ ≥ k
2
and

is on the same side in u and v. We are going to do the case m < n ≤ (k−ℓ)
2

;
the other possibilities are analogous.

1. Starting at w1 = u, take m − 1 steps to the neighbour wi+1 such that
wi+1

k = 0.

2. This will get us to wm = [w, u|m+ℓ+1, 0m−1].

3. Take k − ℓ− 1 steps to the neighbour wi+1 such that wi+1
1 = vn+m−i.

4. This will get us to wm+k−ℓ = [v|n−1, w, u|k−ℓ−n+1
k−n+m ].

5. Take n− 1 steps to the neighbour wi+1 such that wi+1
1 = 0.

6. This will get us to wm+k−ℓ+n = [0k−ℓ−n+1, v|n−1, w].

7. Take n− 1 steps to the neighbour wi+1 such that wi+1
1 = vk−ℓ+2n+m−i.

8. This will get us to wk−ℓ+m+2n = v.

Remark 27. In particular, dk(u, v) ≥ k − ℓ, u, v ∈ Ŵk.

Proposition 28. If x and y are two points such that dp(δx, δy) < +∞, then
there exist m,n ∈ N such that σm(x) = σn(y).

Proof. Let ℓ(k) denote the size of the largest common word between x|k and
y|k. By Proposition 24 we have that d(δx, δy) < +∞ =⇒ supk k − ℓ(k) <
+∞. But this implies that there exists a k0 such that k− ℓ(k) ≡ r = r(x, y)
for every k ≥ k0. This means that x and y only differ for finitely many terms,
so there exist m,n ∈ N such that σm(x) = σn(y).

By combining Proposition 28 with Example 17 we have just proved:
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Theorem 29. For any pair of points x, y ∈ Ω, p ≥ 1,

dp(δx, δy) < +∞ ⇐⇒ there exist m,n ∈ N such that σm(x) = σn(y).

The properties mentioned above in Theorem 29 are somehow related to
the so-called homoclinic equivalence relation as defined in Section 6 in [9];
the particular case where σm(x) = σm(y), m ∈ N (see also [12]). In this case
we get dp(δx, δy) < +∞. For the case m ̸= n see Section 9 in [13] (and also
[15]).

(Vk, Ek)-graph, truncated and cumulative distances on {0, 1}12.
Or dk(u, v), 2

−N(u,v) and
∑

ui=vi
2−i respectively, N(u, v) being the small-

est index for which u differs from v. Here, we identified the word u ∈ Ŵk

with the real number
∑

ui2
−i ∈ [0, 1]. The distance from u to v is plotted

lighter if it is close to zero and darker if it is close to the diameter of Ω (1 for
truncated and cumulative distances and k for dk). This figure shows k = 12.

6 General States - dp(µ, ν)

Now we pass to the question of computing and estimating the Connes dis-
tance dp(µ, ν), for two general states µ, ν ∈ S(C(Ω)) = P(Ω). First, we will
exhibit an analog of Example 16:

Proposition 30. If σ♯ denotes the push-forward through σ, then for any
given state µ ∈ P(Ω), Proposition 15 implies: when λ = max{p, p′}

dp(µ, σ♯(µ)) = sup
f∈C(Ω)

∥[Dp,π(Mf )]∥≤1

∣∣∣∣∫ f dµ−
∫

f dσ♯(µ)

∣∣∣∣
21



= sup
f∈C(Ω)

∥[Dp,π(Mf )]∥≤1

∣∣∣∣∫ f ◦ σ − f dµ

∣∣∣∣
≤ λ

√
2.

For the next definitions the compact metric space (X, d̃) will represent
either the set {0, 1}N, or the set Vk = {0, 1}k, k ≥ 1.

Given a metric d̃ the Wasserstein distance between the probabilities µ
and ν on X is (see [21])

Wd̃(µ, ν) = sup
f∈C(X)

|f(x)−f(y)|≤d̃(x,y)

∣∣∣∣∫ f dµ−
∫

f dν

∣∣∣∣ . (15)

Next, an analog of Proposition 24 will consider the case where d̃ = dk
and X = Vk. Later we will introduce a metric d̃ = d∞ on X = Ω.

Proposition 31. Let µ, ν ∈ P(Ω) be any two states. Then, given x, y ∈ Ω =
{0, 1}N, when λ = max{p, p′}

sup
k∈N
y∈Ω

∣∣∣∣∫ dk(x|k, y|k) d(µ− ν)

∣∣∣∣ ≤ dp(µ, ν) ≤ λ
√
2 sup

k∈N
y∈Ω

∣∣∣∣∫ dk(x|k, y|k) d(µ− ν)

∣∣∣∣ .
Or:

sup
k∈N

Wdk(µ, ν) ≤ dp(µ, ν) ≤ λ
√
2 sup

k∈N
Wdk(µ, ν),

Proof. Analogous to the proof of Theorem 32. Observe the Wasserstein dis-
tance is equal to the supremum in y for each respective k. It is also increasing
in k so that the suprema are actually limits.

Finally, we have that:

Theorem 32. Let µ, ν ∈ P(Ω) be any two states. Then, for p ≥ 1, when
λ = max{p, p′}

Wd∞(µ, ν) ≤ dp(µ, ν) ≤ λ
√
2Wd∞(µ, ν),

where d∞ is given by:

d∞(x, y) := min
m,n∈N

σm(x)=σn(y)

m+ n.
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Proof. Consider a function f ∈ C(Ω) such that ∥[Dp, π(Mf )]∥ ≤ 1. Proposi-
tion 15 shows that |f ◦ σ(x)− f(x)| ≤ λ

√
2. Now, if m,n ∈ N are such that

σm(x) = σn(y), then:

|f(x)− f(y)| =
∣∣∣∣ f(x)− f ◦ σ(x)+

+f ◦ σ(x)− f(y)

∣∣∣∣
=

∣∣∣∣∣∣
f(x)− f ◦ σ(x)+
+f ◦ σ(x)− f ◦ σ2(x)+
+f ◦ σ2(x)− f(y)

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

f(x)− f ◦ σ(x)+
+ · · ·+
+f ◦ σm−1(x)− f ◦ σm(x)+
+f ◦ σn(y)− f ◦ σn−1(y)+
+ · · ·+
+f ◦ σ(y)− f(y)

∣∣∣∣∣∣∣∣∣∣∣∣
≤ λ

√
2 (m+ n) ,

which shows that |f(x)− f(y)| ≤ λ
√
2d∞(x, y). On the other hand, if f ∈

C(Ω) is such that |f(x)− f(y)| ≤ d∞(x, y), then |f ◦ σ(x)− f(x)| ≤ 1.
Therefore:

∥[Dp, π(Mf )]∥ = λ

√√√√ |f(x)−f(0x)|λ
2

+

+ |f(x)−f(1x)|λ
2

≤ λ

√
1

2
+

1

2

= 1.

Note that the distance d∞ does not produce the same topology as the one
obtained from the usual metric on Ω.

Corollary 33. The Connes distance between two states µ, ν ∈ P(Ω) is finite
if and only if they give the same weight to each equivalence class of the relation
given by xRy ⇐⇒ ∃m,n ∈ N : σm(x) = σn(y), that is: if µ(x̄) = ν(x̄) for
any x ∈ Ω, x̄ the equivalence class of x. Each of these equivalence classes is
the connected component of each of its elements with respect to distance d∞.
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Taking the limits p in Theorem 32 gives dD1 = dD∞ = Wd∞ . Notice,
dDp = λ

√
2d∞. This shows the family dDp interpolates between the Connes

and Wasserstein distances; the Wasserstein distance corresponds to the cases
p = 1,+∞. We have numerical evidence for the inequalities in Theorem 32
being strict.
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7 Appendix

The material of this section was taken from [4]. The noncommutative gener-
alization of the optimal transport problem in [4] is a version of the Monge-
Kantorovich optimal transport problem (on compact spaces with positive
continuous cost) according to the following dictionary:

Real functions Self-adjoint elements
f ∈ C(X), g ∈ C(Y ) a ∈ A, b ∈ B

Probability measures C*-algebra states
µ ∈ P(X), ν ∈ P(Y ) η ∈ S(A), ξ ∈ S(B)

Cost function Cost element
c ∈ C(X × Y ), c ≥ 0 c ∈ A⊗ B, c ≥ 0

Coupling probabilities Coupling states
ρ ∈ P(X × Y ) ω ∈ S(A⊗ B)∫

f(x) + g(y) dρ =
∫
f(x) dµ+

∫
g(y) dν ω(a⊗ 1 + 1⊗ b) = η(a) + ξ(b)

Wc(µ, ν) := infρ
∫
c dρ Wc(η, ξ) := infω ω(c)

Therefore, it is natural to pursue the following reasoning:
Let A and B be two unital C*-algebras.
Denote by A⊗ B the maximal tensor product between A and B.
Let c ∈ (A⊗B)+ be a positive element (henceforth called cost element).
Let η ∈ S(A) and ξ ∈ S(B) be two given C*-algebra states.
Denote by Γ(η, ξ) the set of all states ω ∈ S(A⊗ B) such that:

ω(a⊗ 1B + 1A ⊗ b) = η(a) + ξ(b) ∀ a ∈ A, b ∈ B.

These states are called the admissible couplings of η and ξ.
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Denote by Γ̃(c) the set of all pairs of self-adjoint elements (a, b) ∈ A×B
such that:

a⊗ 1B + 1A ⊗ b ≤ c

These pairs are called the admissible pairings for the cost c.
The noncommutative optimal transport problem from [4] consists of min-

imizing the evaluation of the cost element among all admissible couplings of
η and ξ. We call this value the minimum optimal transport cost from η to ξ.
A value c is fixed according to convenience in each problem. Thus, we write:

Wc(η, ξ) := inf
ω∈Γ(η,ξ)

ω(c) (16)

It is possible to prove that minimizers for (16) exist by employing the
direct method of the calculus of variations (see [4]). Furthermore, and also
done in [4], it is possible to prove a formula analogous to the Kantorovich
duality formula for (16), as we will see. Notice this recovers the existence of
minimizers as a corollary.

Theorem 34. Let A, B, c ∈ (A⊗B)+, η ∈ S(A), and ξ ∈ S(B) be as above,
and consider the aforementioned definitions of Γ(η, ξ) and Γ̃(c). Then:

Wc(η, ξ) := inf
ω∈Γ(η,ξ)

ω(c) = sup
a∈A
b∈B

a⊗1+1⊗b≤c

η(a) + ξ(b).

Proof. We very closely follow [21], which amounts to employing the Fenchel-
Rockafellar duality theorem. In the notation therein, our normed vector
space E is the real vector space of self-adjoint elements of A ⊗ B, and our
convex functions Θ : E → R and Ξ : E → R are given by:

Θ(x) :=

{
0 if x ≥ −c,

+∞ otherwise.

And:

Ξ(x) :=

{
η(a) + ξ(b) if x = a⊗ 1B + 1A ⊗ b,

+∞ otherwise.

The point x0 = 1A⊗B lies in the intersection of the effective domains
of both functions (that is, Θ(1A⊗B) < +∞ and Ξ(1A⊗B) < +∞), because
1A⊗B ≥ 0 ≥ −c and:

Ξ(1A⊗B) = Ξ(1A ⊗ 1B)
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= Ξ

(
1

2
1A ⊗ 1B + 1A ⊗ 1

2
1B

)
= η

(
1

2
1A

)
+ ξ

(
1

2
1B

)
=

1

2
+

1

2
= 1.

The function Θ is continuous at the point x0 = 1A⊗B because this point
lies in the interior of its effective domain. For example, the set A ⊗ B+◦

of
all strictly positive elements of A⊗B is an open set entirely contained in the
effective domain; and 1A⊗B pertains to such set.

Applying the Fenchel-Rockafellar duality, we conclude:

inf
x∈E

Θ(x) + Ξ(x) = max
χ∈E⋆

−Θ⋆(−χ)− Ξ⋆(χ). (17)

Now we pass to the issue of computing both sides of (17). On the left
side, we have:

inf
x=a⊗1B+1A⊗b

x≥−c

η(a) + ξ(b) = − sup
x=a⊗1B+1A⊗b

x≤c

η(a) + ξ(b)

= − sup
(a,b)∈Γ̃(c)

η(a) + ξ(b).

On the right side, the Legendre transform of Θ is:

Θ⋆(−χ) = sup
x∈E

− χx−Θx = sup
x≥−c

− χx.

If χ ≱ 0, there must be some x ≥ 0 ≥ −c for which χ(x) < 0. Given such
x, the family of positive elements nx ensures that the supremum be +∞. If
otherwise χ ≥ 0, then we can compare the evaluation of χ at −c with the
evaluation of χ at any other x:

−χ(−c)− [−χ (x)] = −χ(−c− x) = χ(c+ x) ≥ 0,

and see that the supremum must be χ(c).
Still on the right side of (17), the Legendre transform of Ξ is:

Ξ⋆(χ) = sup
x∈E

χx− Ξx

27



= sup
x=a⊗1B+1A⊗b

χ(a⊗ 1B + 1A ⊗ b)− (η(a) + ξ(b)).

If, for any of these x, the quantity χ(a⊗ 1B + 1A ⊗ b)− (η(a) + ξ(b)) is not
zero, then either the family nx or −nx ensures the supremum be +∞. In
the absence of such x, Ξ⋆(χ) = 0. Synthetically:

Θ⋆(−χ) =

{
χ(c) if χ ≥ 0,

+∞ otherwise.

And:

Ξ⋆(χ) =

{
0 if χ(a⊗ 1B + 1A ⊗ b) = η(a) + ξ(b),

+∞ otherwise.

Conveniently, the intersection of the effective domains of such functions is
precisely Γ(η, ξ).

Finally, we rewrite Fenchel-Rockafellar duality in terms of the previous
observations:

inf
a⊗1B+1A⊗b≥−c

η(a) + ξ(b) = max
χ≥0

χ(a⊗1B+1A⊗b)=η(a)+ξ(b)

−χ(c),

and exchange signs, to obtain:

sup
(a,b)∈Γ̃(c)

η(a) + ξ(b) = min
ω∈Γ(η,ξ)

ω(c).

When A = B = C(X) and the cost c = d is a metric, we recover the
following form of the Kantorovich duality formula:

Wd(µ, ν) = sup
f∈C(X)

|f(x)−f(y)|≤d(x,y)

∣∣∣∣∫ f dµ−
∫

f dν

∣∣∣∣ .
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