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Abstract

Motivation: Comparing mathematical models offers a means to evaluate competing scientific theories.

However, exact methods of model calibration are not applicable to many probabilistic models which simulate

high-dimensional spatio-temporal data. Approximate Bayesian Computation is a widely-used method for

parameter inference and model selection in such scenarios, and it may be combined with Topological Data

Analysis to study models which simulate data with fine spatial structure.

Results: We develop a flexible pipeline for parameter inference and model selection in spatio-temporal models.

Our pipeline identifies topological summary statistics which quantify spatio-temporal data and uses them to

approximate parameter and model posterior distributions. We validate our pipeline on models of tumour-

induced angiogenesis, inferring four parameters in three established models and identifying the correct model

in synthetic test-cases.

Availability and implementation: Simulation code for all models, data analyses, parameter inference and

model selection is available online at https://github.com/rmcdomaths/tms/.

Supplementary information: Supplementary Information will be available online.
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1. Introduction

Given multiple mathematical models which aim to reproduce the

same biological data, determining which model and parameters

give the best fit presents a theoretical and computational

challenge. For example, spatio-temporal models often simulate

complex high-dimensional data which is difficult to quantify and

compare to observed data. Such models do not in general yield

tractable likelihood functions, which significantly hinders the use

of exact methods for parameter inference and model selection

(Kirk et al., 2013).

Many mathematical models have been developed to study

the mechanisms underlying tumour-induced angiogenesis (Scianna

et al., 2013; Vilanova et al., 2017), a hallmark of cancer

(Hanahan and Weinberg, 2011). Tumour cells use chemical

signals to stimulate the growth of new blood vessels from

existing vasculature (Ferrara, 2002), which provide a tumour

mass with oxygen and nutrients that it requires to grow.

However, instead of concise equations determining the growth of

angiogenic networks, such models often comprise multiple agents

and heterogeneous environments whose interactions depend non-

deterministically on their spatial organisation. Discrete models of

tumour-induced angiogenesis, for example, use multiple model

rules and parameters to reproduce the branches, loops, and

multiple components that characterise real vascular networks.

We use Topological Data Analysis (TDA), Approximate

Bayesian Computation (ABC), and Random Forests (RFs) to

develop a pipeline for parameter inference and model selection

applicable to spatio-temporal models. TDA offers a toolkit of

methods for quantifying spatial data and has previously been
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used to study multi-agent temporal systems (Topaz et al., 2015;

Bhaskar et al., 2019; Stolz et al., 2024). In related work, TDA has

been used to compare models of insect locomotion (Ulmer et al.,

2019) and pattern formation in zebrafish (Cleveland et al., 2023).

ABC provides a statistical framework for using model simulations

to approximate posterior distributions when likelihood functions

are not available (Lintusaari et al., 2016). RFs are an ensemble

estimation method from machine learning which have previously

been combined with ABC to estimate parameter values (Raynal

et al., 2018) and rank candidate models (Pudlo et al., 2015).

We begin by outlining three existing models of tumour-induced

angiogenesis in which exact methods of parameter inference and

model selection are not applicable. We show how TDA can be

used to characterise spatial data simulated by the models and

briefly describe methods from ABC and RF. We then present a

three-step pipeline for parameter inference and model selection

which we apply to the angiogenesis models. Commenting on the

applicability of our pipeline to experimental data, we discuss

how topological summaries may be used to evaluate a variety of

modelling approaches in biology.

2. Model data and analysis

2.1. Angiogenesis models

Discrete models of tumour-induced angiogenesis simulate the

movement of individual Endothelial Cells (ECs). Vascular

Endothelial Growth Factors (VEGF) produced by tumour cells

initiate a cascade of chemical reactions which drive ECs towards

the tumour. Early models employed the snail-trail model (Balding

and McElwain, 1985) in which tip ECs migrate up spatial gradients

of VEGF and fibronectin, while stalk ECs proliferate in their path

to produce a contiguous line of cells. When two separate trails of

ECs meet they fuse together to form a loop, in a process known

as anastomosis. A tip EC may also split into two tip ECs, which

thereafter move independently. Migrating, branching and looping

tip ECs eventually reach the tumour mass and the connecting

trails of stalk EC form a blood vessel network. Recent models

reflect modern discoveries of cell mixing and phenotype switching

(Stepanova et al., 2024), where ECs change type and overtake

each other before forming a stable blood vessel network. Other

models view ECs as a continuous population density rather than

individual cells (Martinson et al., 2021) and account for blood

flow and nutrient delivery when simulating vascular networks

(Hormuth et al., 2021). We develop our pipeline of parameter

inference and model selection on discrete angiogenesis models due

to their simulation of finely resolved spatial data.

The Anderson-Chaplain (AC) (Anderson and Chaplain, 1998),

Stokes-Lauffenberger (SL) (Stokes et al., 1991), and Plank-

Sleeman (PS) (Plank and Sleeman, 2004) models employ the

snail-trail model to simulate movement of individual ECs in a two-

dimensional, square domain. We assume that VEGF levels increase

from the bottom of the domain to a tumour at the top, guiding

ECs to move upwards. Each model initalises multiple distinct tip

ECs along the bottom of the domain, simulating their trajectories

according to model-specific movement rules. Figure 1 illustrates

the movement rules and model parameters in each model. See

Supplementary Information Section A for full statements of each

model and their parameters.

2.2. Data Generation and Analysis

Each angiogenesis model described in Section 2.1 simulates EC

movement in a square domain, and we wish to quantify the

spatial properties of each simulation. To do so, we overlay a

regular grid onto the simulation domain at the final simulation

timestep and compute a collection of statistics on the point cloud

consisting of the grid locations of ECs. We compute the mean,

standard deviation, minimum, maximum, range, interquartile

range, and the 10th, 25th, 75th and 90th percentiles of the x and

y co-ordinates of the EC grid locations. These spatially-averaged

statistics measure how simulated ECs are distributed along the

vertical and horizontal axes of the simulation domain, and were

previously used for comparison to topological statistics by Nardini

et al. (2021) to distinguish the AC model’s behaviour in different

parameter regimes. To quantify spatial structures in simulated

vasculature which may be obscured by spatially-averaged statistics

(such as loops, branches and separated components) we use

Extended Persistent Homology (EPH).

EPH arises from Persistent Homology (PH), a common pipeline

within TDA for quantifying spatial features in data. To compute

PH, spatial data must be converted into a sequence of simplicial

complexes known as a filtration (see, for example, Otter et al.

(2017)). Intuitively, a simplicial complex is a graph that includes

nodes, edges, and higher-order connections such as triangles or

tetrahedra. A filtration is a sequence of embedded simplicial

complexes Σk such that Σk ⊆ Σk+1 for k = 0, 1, . . . ,K − 1. The

dimension-p PH of a filtration is the sequence (1) of F-vector spaces
Hp(Σk) referred to as homology groups. Throughout this analysis,

we work with the field F = Z/2Z, which is widely adopted in

applications for its simplicity and interpretability. The homology

group Hp(Σk) captures topological features of dimension p in Σk.

Intuitively, H0 detects connected components, H1 detects loops

and, in general, Hp detects p-dimensional holes (Carlsson, 2009).

The inclusion maps between successive simplicial complexes in the

filtration induce linear maps in sequence (1) which allow us to track

p-dimensional holes across the filtration.

Hp(Σ0) → · · · → Hp(Σk) → · · · → Hp(ΣK) (1)

Sequence (1) uniquely decomposes which allows us to represent

each topological feature as a persistence pair (b, d) (Zomorodian

and Carlsson, 2005). The birth b corresponds to the filtration index

k in the sequence at which a p-dimensional hole is first created in

the simplicial complex, and the death d is the filtration index in

which this hole is filled in. The persistence d−b measures how long

the corresponding feature persists through the filtration. Note that

persistence may be infinite if the p-dimensional hole is never filled

in (and d = ∞). The interpretation of (b, d) depends on how the

filtration was constructed from the underlying spatial data. For

example, Nardini et al. (2021) used a sweeping-plane filtration to

analyse the AC model, in which persistence pairs quantified the

location of loops and components in simulated vascular networks

(measured in distance from the tumour).

Instead of using a standard PH pipeline, we compute Extended

Persistent Homology (EPH) (Cohen-Steiner et al., 2009). Like PH,

EPH uses a filtration to compute the sequence (1). In contrast

to PH, EPH uses additional simplicial complexes to extend the

sequence of vector spaces providing refined topological descriptors

of spatial data. Specifically, EPH uses a sequence of simplicial

complexes Σk containing those simplices that are in ΣK but not

in Σk. The relative homology Hp(ΣK ,Σk) detects topological
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features in the quotient complex ΣK/Σk (Edelsbrunner and Harer,

2022), and since Σk ⊇ Σk+1 for k = K−1, . . . , 1, 0, quotient maps

between these complexes induce linear maps tracking topological

features through sequence (2).

Hp(ΣK ,Σ
K) → · · · → Hp(ΣK ,Σ

k) → · · · → Hp(ΣK ,Σ
0) (2)

The concatenation of sequences (1) and (2) is known as the

dimension-p EPH of the filtration. p-dimensional holes may be

detected and then filled within either sequence (1) or (2) and

the corresponding indices k may be extracted as persistence pairs

(b, d). We compute dimension p = 0 and p = 1 EPH of two

sweeping-plane filtrations to quantify spatial features in data

simulated by the AC, SL or PS models. Using these filtrations,

extended persistence pairs quantify the size and location of

components and loops in simulated vasculature, in addition to

finding branches which emerge from vessel components when

ECs bifurcate. Each sweeping-plane filtration measures these

topological features in either the horizontal (x) or vertical (y) co-

ordinate direction. See Supplementary Information Section B for

details of the filtrations we use to compute EPH and an example

computation on an angiogenesis simulation. We convert extended

persistence pairs in each dimension into fixed-length vectors using

two common vectorizations. Persistence Images (Adams et al.,

2017) assign a weight to each extended persistence pair and create

a smooth surface which is discretised over a grid to produce a

stable, fixed-length vector. Persistence statistics (Ali et al., 2023)

are vectors that consist of the mean, standard deviation, median,

interquartile range, full range, and the 10th, 25th, 75th and 90th

percentiles computed from the births b, deaths d, persistences d−b
and midpoints (b+ d)/2 of persistence pairs (b, d).

3. Methods

3.1. Approximate Bayesian Computation

ABC provides a statistical framework for using data to infer model

parameters. Suppose a model uses parameters Θ to simulate data

D according to some probability distribution p(D|Θ), called the

likelihood. Parameter inference aims to determine the posterior

distribution p(Θ|D), which is the probability that parameters

Θ generated observed data D. Using previous experiments or

assumptions about feasible parameter values, one may define a

prior distribution p(Θ) representing knowledge of the parameter

values before data has been observed. The likelihood, prior and

posterior are related by Bayes’ rule,

p(Θ|D) =
p(D|Θ)p(Θ)

p(D)
,

where the evidence p(D) is the integral
∫
Θ
p(D|Θ)p(Θ)dΘ over

parameters Θ in the support of the prior. Although Bayes’ rule

gives a closed formula for the posterior distribution, it is often

impractical to use directly. The likelihood function p(D|Θ) may be

too complicated to derive for probabilistic spatial models in which

many datasets D may be simulated from the same parameters

Θ. Instead, Bayes’ rule is used to derive Algorithm 1 which

allows sampling from the posterior, even when the likelihood and

evidence are not known. When the tolerance ϵ in Algorithm 1 is

set to zero, the distribution of accepted parameters is (a constant

multiple of) the posterior distribution p(Θ|D∗) (Frazier et al.,

2018). However, it is often not appropriate or possible to seek
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Fig. 1: In the AC model, a tip EC makes one of five possible moves

on a square lattice in each time-step according to probabilities

P0, P1, P2, P3, P4. A chemotaxis parameter biases movement

probabilities in the direction of increasing VEGF concentration,

and a haptotaxis parameter biases moves in the direction of

increasing fibronectin. In the SL model, tip ECs move in

any direction (off-lattice) with velocities modelled by a two-

dimensional Stochastic Differential Equation (SDE). Parameters

κ and σ determine how strongly an EC’s current velocity w

is affected by the VEGF gradient c and random variation r

respectively. The PS model assigns a constant speed to each EC

and, at each time-step, rotates the angle that the velocity vector

makes with the vertical by ϕ̂. The probability τ̂+n + τ̂−n of turning

is determined by a turning rate parameter, and a chemotaxis

parameter biases turns that re-orient the EC’s direction towards

the tumour. In all models, a tip EC may bifurcate into two

ECs which thereafter move independently if its age exceeds

the minimum age for branching parameter abr and the VEGF

concentration at its location exceeds the the VEGF threshold

for branching parameter cbr. We show how many spatially-

averaged and topological statistics, computed in either the x or

y co-ordinate direction, appear among the 100 most important

summary statistics to the inference of each parameter.

an exact posterior distribution from observed data, since a model

may rarely reproduce observed data D∗ exactly, and the observed

data may be noisy. It is therefore advisable to choose ν and ϵ

such that parameter values are accepted if they simulate data that

is similar to observed data. The general form of such a distance

function is ν(D∗,Di) = ∥X∗ −Xi∥2 where Xi and X∗ are vectors

of summary statistics computed from model data Di and observed

data D∗ respectively (this distance may be averaged over several

instances of observed data D∗). Summary statistics aim to capture

relevant properties of data as a low dimensional vector. As the

tolerance ϵ approaches 0, the distribution of parameters accepted
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by Algorithm 1 approaches p(Θ|X∗), which equals p(Θ|D∗) if the

summary statistics are sufficient for the model in question, or is a

close approximation if the summary statistics are insufficient but

informative (Joyce and Marjoram, 2008). However, if ϵ is too small,

few parameters will be accepted and many simulations may be

needed to approach the true posterior. To overcome the difficulty

of choosing a single tolerance, ABC with Sequential Monte Carlo

sampling (ABC-SMC) modifies Algorithm 1, and instead generates

a sequence of immediate distributions which approach the true

posterior using tolerances ϵ0 > ϵ1 > · · · > ϵfinal > 0. For example,

the ABC-SMC algorithm of Del Moral et al. (2012) generates the

schedule of tolerances by decreasing the proportion of accepted

parameters in each intermediate distribution by a fixed factor

α ∈ (0, 1). We discuss the choice of summary statistics and ν

in Section 4.

Algorithm 1 ABC with rejection sampling

Input: Observed data D∗, a model which generates data D from

parameters Θ with prior p(Θ), a distance function ν : D ×
D → R comparing simulated and observed data, and a small

tolerance ϵ > 0.

Output: A collection of samples θi from the posterior p(Θ|D∗)

1: for Candidate parameter values θi sampled from p(Θ) do

2: Simulate data Di from the model using parameter value θi
3: if ν(D∗,Di) ≤ ϵ then

4: accept θi
5: end if

6: end for

3.2. Random Forests

Random Forests (RFs) (Breiman, 2001) learn relationships

between feature vectors and response variables. Training data

comprising a collection of feature vectors Xi ∈ X and

corresponding response variables yi ∈ Y are used to train a

RF, enabling it to predict the true response variable y∗ of an

unseen feature vector X∗. Regression RFs are used when yi
are continuous values and classification RFs are used when yi
are discrete labels. Raynal et al. (2018) used a regression RF

for parameter inference by using simulated data Di to learn

the relationship between summary statistics Xi and parameter

values yi = θi. Given summary statistics X∗ of unseen data

D∗, the prediction RF (X∗) predicts the true parameter value θ∗.

In addition to predicting unseen feature vectors, a trained RF

provides useful information about the training data. The out-of-

bag prediction RFoob(Xi) estimates the (known) response variable

yi using pairs from the training data other than (Xi, yi). The out-

of-bag error rate p(RF (Xi) ̸= yi) then gives a (unbiased) measure

of how well the relationship between Xi and yi is captured by

the rest of the training data. A trained RF also gives a measure

of the importance of each co-variate j within feature vectors

Xi = (X0
i , . . . , X

j
i , . . . , X

nf

i ) to the problem of predicting response

variable yi. Intuitively, important features are those whose values

within Xi and X′
i differ when yi and y′i do, and which are hence

useful in learning the relationship between training data X and Y.

3.3. Model Selection

Given observed data D∗, the model posterior p(m|D∗) is the

probability that models m = mi generated D∗ for mi =

1, 2, . . . . Algorithm 1 and its extensions rely on the approximation

p(Θ|X∗) ≈ p(Θ|D∗), which holds as long as the vector Xi carries

a similar amount of information about the parameter value θi
as the simulated data Di itself. However, the information loss

suffered by a collection of summary statistics may vary between

models (Robert et al., 2011), so it is inadvisable simply to infermi
as a (discrete) parameter using Algorithm 1. Pudlo et al. (2015)

instead used two RFs to approximate p(m|D∗). A classification

RF learns the relationship between simulated data Xi and model

label yi = mi and gives a prediction RF (X∗) of the model m∗

which generated unseen data D∗. A regression RF is then trained

to learn the relationship between Xi and p(RFoob(Xi) ̸= mi)–the

out-of-bag error rate of the classification RF. The regression RF

is then used to estimate posterior probability p(m = m∗|D∗) as

1− p(RF (X∗) ̸= m∗).

4. Spatial Parameter Inference and Model Selection

Given observed data D∗, we wish to approximate the parameter

posterior p(Θ|D∗) for candidate models m = mi for i =

1, 2, . . . and the model posterior p(m|D∗). Informative summary

statistics may be used to define a distance function ν(D∗,Di) to

infer parameters using ABC. However, uninformative or poorly

scaled summary statistics may misrepresent the difference between

datasets generated by similar parameters (Blum et al., 2013). We

therefore seek a collection of summary statistics that quantify

simulated data and, in particular, quantify how simulated data

changes when different model rules and parameters are used to

generate it. We use informative summary statistics to approximate

parameter and model posteriors in a three-step pipeline. We test

this pipeline on toy models in Supplementary Information Section

D and apply it to the three angiogenesis models in Section 5.

Step 1: Identify informative summary statistics for each

model

We draw parameter values θi from the prior distribution p(Θ)

for each parameter in each model, simulate model data Di, and

compute spatially-averaged and topological statistics Xi from

the final simulated time-step. We train regression RFs to learn

the relationship between summary statistics Xi and parameter

values θi–one RF for each parameter in each model. We then

rank the spatially-averaged and topological statistics by their

importance according to the RF (see Section 3.2). In each RF,

feature importance decreases exponentially (as in Raynal et al.

(2018)) and a small subset of summary statistics provides most

of the predictive power of each RF. We select an equal number

of informative summary statistics from each RF and collect

a total of ns for each model. We find that ns = 100 is a

good choice for the AC, SL and PS angiogenesis models. See

Supplementary Information Section C for a full definition of RF

feature importance and a discussion of how we choose ns.

Step 2: Fit each model to the observed data

We use the distance function ν(D∗,Di) = ∥x∗ − xi∥2 to compare

observed data D∗ to simulated data Di. Here, xi is the vector

of summary statistics Xi restricted to the top ns features for

each model, x∗ is computed from observed data, and the distance

is averaged over multiple instances of observed data. We scale

each summary statistic by the largest absolute value of that

summary statistic in the training data. Doing so ensures that

each summary statistic contributes approximately equally to the
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Fig. 2: We infer the minimum age for branching (abr) and VEGF threshold for branching (cbr) in each model, as well as chemotaxis and

haptotaxis parameters (χ and ρ) in the AC model, chemotaxis and randomness parameters (κ and σ) in the SL model, and chemotaxis

and turning rate parameters (dc and Dr) in the PS model. We simulate each model 10 times at known parameter values to generate

two synthetic test-cases for each model, and show the final time-step of one such simulation. We then use Steps 1-2 of Section 3 to

approximate the parameter posterior p(Θ|D∗) in each test-case. We project the approximate ABC-SMC posterior to each parameter pair

and plot the resulting distributions (fitting a Gaussian kernel to the parameter values accepted in the final population of the ABC-SMC

algorithm), along with the true parameter which generated the test-case.

distance function ν and limits the influence of poorly scaled

summary statistics. We then use the ABC-SMC algorithm of

Del Moral et al. (2012) to approximate p(Θ|D∗) for each model.

Step 3: Approximate the model posterior

Following Pudlo et al. (2015), we train a classification RF to

learn the relationship between (unscaled) summary statistics Xi
and model indices mi in the training data. We modify Xi to

contain only those summary statistics which appear among the

ns most important summary statistics for all models. We then

train a regression RF to learn the relationship between Xi and

p(RFoob(Xi) ̸= mi)–the probability that the predicted model

index is incorrect. The classification RF gives an estimate RF (X∗)

of the model m∗ that generated the observed data D∗, and the

regression RF is used to estimate p(m = m∗|D∗).

5. Results

5.1. RFs find small subsets of informative summary statistics

We sample n = 10, 000 model parameters from uniform priors

with ranges taken from existing literature, or by analysing each

model’s data generation rules (See Supplementary Information

Section A for details). We select ns = 100 summary statistics for

each model and report the type of summary statistics selected–

spatially-averaged or topological, computed in the horizontal or

vertical direction–in Figure 1. A mixture of spatially-averaged

and topological statistics are selected for each parameter, however

there is a clear preference for topological statistics. More summary

statistics computed in the vertical direction are selected than those

computed in the horizontal direction, which is unsurprising, since

most parameters moderate the movement of ECs upwards. Two

exceptions are the randomness parameter σ of the SL model and

the turning coefficient Dr in the PS model. These parameters

cause ECs to deviate from their upward trajectory, and their RFs

rely on summary statistics computed in the horizontal direction

for inference.
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Fig. 3: We approximate the model posterior p(m|D∗) using the

same four test-cases from Figure 2 (again highlighting one example

of observed data D∗). For each model, we show one example of

simulated data associated to an inferred parameter in that model’s

approximate parameter posterior. Each ‘prediction’ shows an

example of that model’s approximation of the true data generation

process.

5.2. ABC-SMC infers four parameters for each model and

reproduces observed data

We create two test-cases for each model by simulating data

at known parameter values 10 times. Each test-case exhibits

quantitatively different vascular networks that each model can

produce. We use the 100 summary statistics reported in Figure

1 to define a distance function between simulated and observed

data as described in Section 3.1, averaging this distance across

the 10 instances of observed data. We use ABC-SMC to infer four

parameters for each model and show the resulting approximate

posteriors in Figure 2. In each test-case, the approximate posterior

is unimodal and encompasses the true parameter, often close to

its densest part.

5.3. Random Forests correctly select models

Using the same test-cases, we perform Step 3, training a

classification RF to predict the model index of unseen test data D∗

and a regression RF to predict the probability of mis-classifying

each test-case. Figure 3 shows the resulting approximate model

posteriors, which identify the correct model with high probability

in each test-case. We simulate each model at a parameter

value drawn from its approximate parameter posterior and show

the resulting ‘prediction’, which is a sample from the model’s

approximation of the true data generating process. Each model

generates data that is visually similar to the observed data,

however we can identify the true model in each test-case.

6. Discussion

Using Topological Data Analysis (TDA) and Approximate

Bayesian Computation (ABC), we have developed a pipeline for

parameter inference and model selection applicable to complex

spatial models. In previous work, TDA characterised the effect of

two parameters in the AC model (Nardini et al., 2021) and was

used along with ABC to infer them (Thorne et al., 2022). We

extend this work by identifying a subset of informative summary

statistics from multiple topological filtrations and using them to

infer four parameters in three angiogenesis models using ABC-

SMC. We further show how RFs can be used with TDA to

approximate model posteriors and compare candidate models.

While we validated our pipeline using synthetic data simulated

from angiogenesis models, several previous studies used in vitro

data to inform model rules and parameters (Milde et al., 2013;

Connor et al., 2015; Vergroesen et al., 2024). ABC provides

a robust statistical framework for learning parameters and

evaluating models, and TDA provides a variety of filtrations and

vectorisations which may be adapted to different spatial data. The

present work would therefore enhance previous model analysis, and

in future work we will apply our methods to experimental data.

In this study, we considered three models in which the paths

traced by tip EC form a static blood vessel network. In reality,

sustained proliferation and vessel remodelling, where vasculature

continually evolves after it is laid down, is characteristic of

tumour-induced angiogenesis (Farnsworth et al., 2014). Indeed,

vascular renormalisation, in which vessel-targetting agents prune

small or inefficient blood vessels, is a theorised treatment

strategy (Magnussen and Mills, 2021) aiming to temporarily

enhance perfusion of the tumour to increase the effectiveness of

radiotherapy (Köry et al., 2024). Topological invariants taking into

account time-evolving data (Carlsson and de Silva, 2010), directed

flow networks (Chaplin et al., 2024) and multiparameter filtrations

(Vipond, 2020) could quantify such structural changes over time

and be used to calibrate more sophisticated models.

Although we specialised our pipeline to discrete models of

tumour-induced angiogenesis, its flexibility allows application to

a range of spatio-temporal models. Any summary statistic which

aims to quantify the desired properties of simulated data would be

identified by the RF in Step 1 if it captures the effect of changing

model parameters. In future, we will use our pipeline to robustly

compare continuum, cell-based, agent-based, and discrete models

by their ability to reproduce observed data.
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A. Angiogenesis Models

We use the Anderson-Chaplain (AC) model (Anderson and Chaplain, 1998), the Stokes-Lauffenberger (SL) model (Stokes et al., 1991),

and the Plank-Sleeman (PS) model (Plank and Sleeman, 2004) as our case-study for topological model selection. In this section, we

present the models in dimensionless form, giving formulae and simulation details for each model. We list model parameters in Table 1

and provide illustrative schematics in Figure 4.

Each model simulates the movement of multiple tip endothelial cells (ECs) in a two-dimensional square domain I = {(x, y) : x, y ∈
[0, 1]} ⊂ R2. The position of a tip EC at time t is described by a variable st = (stx, s

t
y) ∈ I. We initialise four tip ECs along the lower

edge of the domain (furthest from the tumour). We create four variables s such that s0 = (−1/8 + υ/4, 0) for υ = 1, 2, 3, 4. At discrete

time intervals ∆t, tip ECs migrate to a new position st+∆t ∈ I, which is determined by a set of model-specific movement rules. In each

model, we assume that a tumour is located along the domain’s upper boundary (y = 1), acting as a source of vascular endothelial growth

factors (VEGF). For simplicity, we prescribe the initial profile of VEGF c(x, y, t = 0) = y in which the VEGF concentration decreases

linearly with distance from the tumour. When a tip EC moves from st and st+∆t, the line segment connecting subsequent positions is

assumed to be occupied thereafter by immobile stalk EC (the snail-trail model (Balding and McElwain, 1985)). Each model simulates

EC movement over the (dimensionless) time interval T = [0, tfinal]. We set ∆t = 0.01 and tfinal = 4 meaning that model simulations

terminate after 400 time-steps.

A.1. Anderson-Chaplain (AC) model

The AC model employs an on-lattice biased random walk to simulate tip EC movement in response to local levels of VEGF and fibronectin.

A regular grid of N ×N points spaced at intervals of h is placed on the square domain I (we fix N = 200 and h = 0.05), and tip ECs

move through the domain one grid space at a time. The initial concentration of VEGF is as defined above and the initial concentration

of fibronectin is f(x, y, 0) = 1 − y. The time evolution of the VEGF and fibronectin concentrations, and the related probability that a

tip EC moves left, right, down or up on the lattice, are derived from a system of Partial Differential Equations (PDEs).

∂e

∂t
= D∆e− χ∇ · (e∇c)− ρ∇ · (e∇f) (3)

∂f

∂t
= βe− γef (4)

∂c

∂t
= −ηec (5)

The PDEs (3)–(5) describe how the spatial distribution of ECs, VEGF and fibronectin (e, c, f : I × T → R) evolve over time. The

parameter D determines the rate of EC random motility/diffusion, and parameters χ and ρ give the strength of the ECs’ chemotactic

and haptotactic responses to spatial gradients of VEGF and fibronectin respectively. ECs produce and degrade fibronectin at rates β and

γ, and consume VEGF at rate η. The PDEs are closed by imposing no-flux boundary conditions along each side of the square domain I.
To generate update rules for the concentration of VEGF and fibronectin at lattice points, as well as movement rules for the tip ECs,

the PDE system is discretised using the Euler finite difference approximation. Let etl,m, f
t
l,m, c

t
l,m be the values of e, f and c at lattice

points (lh,mh) ∈ I at time t. Discretising Equations (3)–(5) gives:

et+∆t
l,m = etl,mP0 + etl+1,mP1 + etl−1,mP2 + etl,m+1P3 + etl,m−1P4, (6)

ft+∆t
l,m = ftl,m

(
1−∆tγetl,m

)
+∆tβetl,m, (7)

ct+∆t
l,m = ctl,m

(
1−∆tηetl,m

)
. (8)

On the lattice, the VEGF and fibronectin initial conditions become c0l,m = m/N and f0
l,m = 1 −m/N . The discretisations (7)–(8)

may then be used to update the VEGF and fibronectin concentrations ctl,m and ftl,m at grid locations (l,m) in discrete time-steps of

duration ∆t = 0.01 (using a discrete version of the no-flux boundary conditions). Rather than using (7) to compute the concentration

of ECs at lattice points, the factors P0, P1, P2, P3 and P4, whose formulae are given in (9)–(13), are used to determine the probability

that an individual EC makes a move on the square lattice.

P0 = 1−
4∆tD

h2
−

∆tχctl,m

h2

(
ctl+1,m + ctl−1,m − 4ctl,m + ctl,m+1 + ctl,m−1

)
−

∆tρ

h2

(
ftl+1,m + ftl−1,m − 4ftl,m + ftl,m+1 + ftl,m−1

) (9)

P1 =
∆tD

h2
−

∆t

4h2

(
χctl,m(ctl+1,m − ctl−1,m) + ρ(ftl+1,m − ftl−1,m)

)
(10)

P2 =
∆tD

h2
+

∆t

4h2

(
χctl,m(ctl+1,m − ctl−1,m) + ρ(ftl+1,m − ftl−1,m)

)
(11)

P3 =
∆tD

h2
−

∆t

4h2

(
χctl,m(ctl,m+1 − ctl,m−1) + ρ(ftl,m+1 − ftl,m−1)

)
(12)

P4 =
∆tD

h2
+

∆t

4h2

(
χctl,m(ctl,m+1 − ctl,m−1) + ρ(ftl,m+1 − ftl,m−1)

)
(13)
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At each time step, each EC either remains at its location (l,m), or moves to (l − 1,m), (l + 1,m), (l,m − 1) or (l,m + 1) according to

the probabilities P̂0, P̂1, P̂2, P̂3 and P̂4, where P̂j = Pj/(P0 +P1 +P2 +P3 +P4) for j = 0, 1, 2, 3, 4. To simulate this, a uniform random

number u ∼ U[0,1] is drawn for each tip EC at each time-step. If u ∈ [0, P̂0) then st+∆t = st, if u ∈ [P̂0, P̂1), the EC moves left, and so

on. If this procedure prescribes a move outside of the domain I, that tip EC terminates and is not considered for any further moves.

A.2. Stokes-Lauffenberger (SL) model

In the SL model (Stokes et al., 1991), tip ECs can move in any direction (off-lattice). The movement of each tip EC is governed by (14),

a two-dimensional Stochastic Differential Equation (SDE) for EC velocity V(t). At discrete time-steps, Equation (14) is solved using the

Euler-Maruyama method and Equation (15) is integrated via the forward Euler method to give EC position.

dV(t) = −βV(t) dt+
√
σ dW(t) +Ψ(t) dt (14)

s(t) =

∫ t

0

V(τ)dτ (15)

In the SL model, the parameter β models the cell’s resistance to movement, W(t) is a two-dimensional Wiener process (in which

increments W(t+∆t)−W(t) are independently and normally distributed), and the parameter σ represents an EC’s tendency to deviate

from its current direction. Ψ(t) = κ∇c sin
∣∣∣ψ2 ∣∣∣ models movement due to chemotaxis, where c is the VEGF concentration and ψ is the

angle that the current velocity V(t) makes with the direction of steepest increase in c. Given c(x, y) = y, the direction of increasing

VEGF concentration is always (0, 1)T , which simplifies the chemotaxis term. The parameter κ measures the strength with which the

EC velocity re-orients up spatial gradients of c (towards the tumour). ECs initialised along the bottom edge of the square domain are

assigned a small initial velocity in the y-direction: v0 = (0, 0.5)T . The discretisation (16) of Equations (14) and (15) is then used to

simulate EC velocity vt and position st at each time-step.

vt+∆t = (1− β∆t)vt + σ∆tε+ κ∆t

√
1− vty/∥vt∥

2
, st+∆t = vt +∆tvt+∆t (16)

The quantity ε ∼ N (0, 1) is drawn from a two-dimensional normal distribution so that the random velocity vector has variance σ in each

direction. Given the initial velocity, each tip EC in the SL model moves a distance 0.05 (in the vertical direction) in the first time-step,

which is the same as one grid-space in the AC model. To ensure that ECs in the SL model move roughly this distance in every time-step

(and the velocity does not grow exponentially), we fix β = 0.8/∆t.

A.3. Plank-Sleeman (PS) model

The PS model (Plank and Sleeman, 2004) assigns a constant speed ŝ to each EC and varies the angle ϕ that a tip EC’s velocity vector

makes with the horizontal direction. An EC’s position st = (stx, s
t
y) ∈ I is then modelled by the system of ordinary differential equations:

dstx
dt

= ŝ cosϕ,
dsty

dt
= ŝ sinϕ. (17)

The movement angle is assumed to be independent of speed and position, and may be viewed as a random walk on the unit circle. At

each time-step, a tip EC may turn clockwise or counter-clockwise through a fixed angle ϕ̂ or it may continue in the same direction.

Given an initial movement angle ϕ0, the movement angle of each EC after n time steps is determined by transition probabilities τ̂±n . The

transition probabilities are derived from the mean turning rate µ(ϕ), which is given by:

µ(ϕ) = −dc|∇c| sin(ϕ− ϕc). (18)

In Equation (18), the turning coefficient dc determines how often an EC angle re-orients its movement angle towards the direction of

increasing VEGF concentration ϕc = π/2. Let τ̂±n denote the probability that an EC rotates through a fixed angle of ±ϕ̂ on the n-th

time-step. It can be shown (Plank and Sleeman, 2004) that, if the mean turning rate is defined by (18), then τ̂±n are given by:

τ̂±n = 2λ
τ
((
n± 1

2

)
ϕ̂
)

τ
((
n+ 1

2

)
ϕ̂
)
+ τ

((
n− 1

2

)
ϕ̂
) , where τ(ϕ) = exp

(
dc

Dr
cos(ϕ− ϕc)

)
and λ = Dr/ϕ̂

2. (19)

Choosing a random number u ∼ U[0,1] from the standard uniform distribution, an EC turns anticlockwise through an angle of ϕ̂ if

u ∈ [0, τ̂+n ∆t), clockwise through an angle of ϕ̂ if u ∈ [τ̂+n ∆t, 2λ∆t), and continues in its current direction otherwise. Using this rule to

generate movement angles ϕt at time steps t ∈ T , the position st = (stx, s
t
y) ∈ [0, 1]2 of an individual EC is determined by solving the

ODEs (17) using the forward Euler method:

st+∆t
x = stx + ŝ∆t cosϕt, st+∆t

y = sty + ŝ∆t sinϕt. (20)

Choosing a speed of ŝ = 0.05 ensures that, in the PS model, ECs move the same distance during each time-step as ECs in the AC model,

and a similar distance as ECs in the SL model.
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A.4. Anastomosis, branching and termination rules for all models

The previous sections describe how each model determines an EC’s new position st+∆t from its current position st. The rules for EC

branching, anastomosis and termination are the same for all three models.

An active EC at location st may bifurcate into two separate EC. After branching, the original tip EC continues to move as instructed

by its model, and a new variable st is created at the branch point to represent a new tip EC, which thereafter moves independently. We

denote by abr the minimum age that a EC must reach before it can be considered for a bifurcation. A second branching parameter, cbr,

defines the minimum concentration of VEGF that must be present at st in order for the tip EC to bifurcate. In all models, EC bifurcate

into two separate EC as soon as both the minimum age for branching and the VEGF threshold for branching have been exceeded. Since

we initiate multiple ECs in the simulation domain, it is possible that a move may result in a tip EC crossing the path of an existing

stalk EC (or colliding with another tip EC). In such cases, all three models assume an anastomosis event occurs. In the AC model, if

a move requires an EC to move into a grid position that is already occupied, the EC does not make this move; it is terminated and

not considered for any subsequent moves. In the SL and PS models, if a move requires an EC to cross an existing EC path, the EC

terminates at the intersection of the proposed move and the existing path. If a model’s movement rule specifies a new position st+∆t

which is outside the simulation domain I, that tip EC terminates and is not considered for further movement.

Figure 4 gives an illustration of EC movement rules, including examples of anastomosis, which can lead to loops in the simulated

network.

A.5. Model simulation, schematic and parameters

We fix all but four parameter values in each angiogenesis model and simulate the movement of tip ECs for 400 time-steps. See Table 1 for

a list of the parameters that vary and their ranges. See also the schematic at the top of Figure 4 for an illustration of model movement

rules.

We convert data simulated from the three angiogenesis models into a common format for data analysis. The common format should

retain the spatial structure of simulated networks while discretising them to allow the computation of spatially-averaged and topological

statistics. Considering a simulated network at its final timestep, we overlay a regular square grid of K = 200 points spaced in intervals

of h = 0.05 in co-ordinate directions over the simulation domain. We then say an angiogenesis dataset is the point-cloud consisting of

the (x, y) locations of ECs within this discretised image. The AC model simulates data on such a grid already, and we convert data

from the SL and PS models into the common format by populating those grid squares which intersect the (off-lattice) paths traced by

tip ECs. This common format will also be applied to observed data and ensures that summary statistics give a fair comparison between

data simulated by each model.
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Fig. 4: Schematic showing tip EC movement rules in the Anderson-Chaplain (AC), Stokes-Lauffenberger (SL) and Plank-Sleeman (PS)

models. In the AC model, tip ECs move on a grid according to probabilities P̂j = Pj/(P0 +P1 +P2 +P3 +P4) for j = 0, 1, 2, 3, 4. Higher

values of the chemotaxis and haptotaxis parameters induce a bias into those probabilities which specify a movement towards increasing

concentrations of VEGF and fibronectin respectively. The SL model updates the velocity vti of the EC at location st as a weighted sum

of the current velocity w, randomness r and chemotaxis c. Randomness and chemotaxis and parameters moderate the weight of the

corresponding terms when updating the velocity. The PS model rotates the movement angle ϕ between an EC’s velocity vector and the

horizontal by ϕ̂ with transition probabilities τ̂+n and τ̂−n and ECs move a fixed distance ŝ in the new direction at each time-step. A

turning rate parameter moderates how often the EC’s angle of movement updates, and a turning bias parameter changes how likely such

an update is to favor the direction of increasing VEGF concentration. All models use the same rules for branching–a tip EC at location

st bifurcates into two tip ECs that move independently when t is greater than the minimum age for branching parameter abr and the

concentration of VEGF at st is greater than the VEGF threshold for branching parameter cbr. If a movement rule would cause an EC

to move into a location already occupied by an EC, that EC instead anastomoses and is considered for no further movement. Created in

https://BioRender.com

https://BioRender.com
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Anderson-Chaplain (AC) model Stokes-Lauffenberger (SL) Model Plank-Sleeman (PS) Model

parameters parameters parameters

Name and

Symbol
Range Notes

Name and

Symbol
Range Notes

Name and

Symbol
Range Notes

Chemotaxis

χ
[0, 0.5] Taken from

(Nardini et al.,

2021)

Chemotaxis

κ
[0, 100]

The chemotaxis

term in (16) has

the same order of

magnitude as the

current velocity

Turning

bias

dc

[30, 150]

30 gives no turning

bias, 150 almost

always favours

turning towards

the VEGF source

Haptotaxis

ρ
[0, 0.5] Taken from

(Nardini et al.,

2021)

Randomness

σ
[0, 100]

The randomness

term in (16) has

the same order of

magnitude as the

current velocity

Turning

rate

Dr

[0, 30]

A turning rate of

30 means EC

change direction

every other

time-step

Minimum

age for

branching

abr

[0, 1]

ECs can

bifurcate after

between 0 and

100 time-steps.

Minimum

age for

branching

abr

[0, 1]

ECs can

bifurcate after

between 0 and

100 time-steps.

Minimum

age for

branching

abr

[0, 1]

ECs can

bifurcate after

between 0 and

100 time-steps.

VEGF

threshold

for

branching

cbr

[0, 1]

The concentration

of VEGF varies in

I from 0 when

y = 0 to 1 when

y = 1.

VEGF

threshold

for

branching

cbr

[0, 1]

The concentration

of VEGF varies in

I from 0 when

y = 0 to 1 when

y = 1.

VEGF

threshold

for

branching

cbr

[0, 1]

The concentration

of VEGF varies in

I from 0 when

y = 0 to 1 when

y = 1.

Table 1. The parameters inferred in each model and their values/ranges.
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B. Computation of Summary Statistics

B.1. Spatially-Averaged Statistics

An angiogenesis dataset D is a point-cloud consisting of (x, y) grid locations which contain simulated EC at the final simulation timestep.

We compute the mean, standard deviation, minimum, maximum, range, interquartile range, and the 10th, 25th, 75th and 90th percentiles

of the x and y-coordinates of points in D. Concatenating these values gives a list of 20 spatially-averaged statistics, 10 in the horizontal

(x) coordinate direction and 10 in the vertical (y) coordinate direction.

B.2. Extended Persistent Homology

We detect and quantify topological structure in angiogenesis datasets using Extended Persistent Homology (EPH). Here, we give details

of how we compute and vectorise EPH, giving a brief overview of how it arises from Persistent Homology (PH) and outlining our reasons

for using EPH instead of PH.

To compute PH, spatial data is first converted to a nested sequence of simplicial complexes {Σk}Kk=0 known as a filtration. A simplicial

complex is a collection of vertices (0-simplices), where subsets of vertices can be connected by edges (1-simplices), triangles (2-simplices),

tetrahedra (3-simplices) and their higher dimensional analogues. A face of a simplex is defined as a subset of its vertices along with the

simplices that are connected to them. Simplicial complexes satisfy the property that a face of any simplex, or the intersection of two

simplices, is also a simplex in the complex.

The dimension-p PH of the filtration is then the sequence (21) of F-vector spaces Hp(Σk) (we fix F = Z/2Z) together with maps

induced by the inclusion maps between the simplicial complexes. The basis elements of Hp(Σk) correspond to p-dimensional holes in Σk
(Carlsson, 2009), also referred to as topological features of the simplicial complex. Since each Σk ⊂ Σk+1, inclusion maps ιk : Σk → Σk+1

map simplices in Σk to their counterparts in the larger Σk+1. The inclusion maps ιk then induce linear maps ι∗k : Hp(Σk) → Hp(Σk+1)

in sequence (21) (by functoriality) which allow topological features to be tracked through the filtration.

Hp(Σ0)
ι∗
0−→ Hp(Σ1)

ι∗
1−→ . . .

ι∗
k−1−−−→ Hp(Σk)

ι∗
k−→ . . .

ι∗
K−2−−−→ Hp(ΣK−1)

ι∗
K−1−−−→ Hp(ΣK) (21)

The Structure Theorem of PH (Zomorodian and Carlsson, 2005) states that sequence (21) uniquely decomposes into a direct sum of

interval modules Ib,d, which are sequences of F-vector spaces (22), where η∗k are identity maps when b ≤ k < d and zero maps otherwise.

0
η∗

0−−→ 0 . . . 0
η∗
b−1−−−→ F

η∗
b−−→ F . . .F

η∗
d−1−−−→ 0 . . . 0

η∗
K−1−−−−→ 0 (22)

Persistence pairs (b, d) that define interval modules (22) correspond to topological features in the filtration. The birth b is the first index k

for which the corresponding p-dimensional hole appears in the filtration (and the index k in (22) for which the corresponding topological

feature is not in the image of η∗k−1). The death d is the filtration index k where the p-dimensional hole is filled in by additional simplices

(and the index k in (22) for which the corresponding topological feature is mapped to 0 by η∗k−1). The persistence d− b measures how

long the corresponding topological feature persists in the filtration. Persistence pairs may be plotted as points in birth-death coordinates

in a Persistence Diagram (PD). PDs are stable (Chazal et al., 2009) to small perturbations in the underlying point-cloud, making them

useful topological summaries of spatial data.

Nardini et al. (2021) applied PH to study angiogenesis datasets D by constructing a sweeping-plane filtration as follows. First, D is

converted to a simplicial complex Σ. Each point (x, y) in the angiogenesis dataset is represented in Σ by a vertex (0-simplex). If two

vertices represent two grid locations in D which are adjacent (in the Moore neighbourhood), they are connected with edges (1-simplices).

Collections of three edges are connected with triangle (2-simplex) if each pair of edges shares a vertex. A function f : Σ → R is then

defined such if a vertex u represents a point (x, y) ∈ D, f(u) = y. The value of f on other simplices within Σ is then simply the

maximum of the values of f on their vertices. The sweeping-plane filtration is then defined as the sublevel sets Σk = f−1(−∞, k/K],

where k = 0, 1, . . . ,K and K is the resolution of the image (e.g. K = 200).

Using this filtration, persistence pairs quantify the location of components and loops (measured in the vertical (y) coordinate direction).

However, some persistence pairs computed using this method have infinite persistence, since topological features often persist throughout

the entirety of the sequence (21) (and d = ∞). For example, all loops persistent infinitely in this filtration. In these cases, the size of the

p-dimensional holes is not recovered by the persistence pair (b, d). Here, we wish to quantify both the size and location of topological

features in angiogenesis datasets, and we wish to precisely measure branch points, loops, anastomoses and components, which PH with

the above sweeping-plane filtration is not able to do. We therefore turn to Extended Persistent Homology (EPH).

To compute EPH, one defines Σk as the simplicial complex containing those simplices in ΣK but not Σk. With the sweeping-plane

filtration above, Σk are superlevel sets f−1[k/K,∞). The relative homology Hp(ΣK ,Σk) then quantifies topological features in the

quotient complex ΣK/Σk. Since Σk+1 ⊃ Σk, a quotient map qk : Σk+1 → Σk may be defined for k = K−1, . . . , 0. qk maps all simplices

in Σk+1 but not Σk to a single point and is the identity map when restricted to Σk. The quotient maps qk induce linear maps in sequence

(23) which track topological features through the relative homology groups.

Hp(ΣK ,Σ
K)

q∗
K−1−−−→ Hp(ΣK ,Σ

K−1)
q∗
K−2−−−→ . . .

q∗
k−−→ Hp(ΣK ,Σ

k)
q∗
k−1−−−→ . . .

q∗
1−−→ Hp(ΣK ,Σ

1)
q∗
0−−→ Hp(ΣK ,Σ

0) (23)

Since Hp(ΣK) = Hp(ΣK ,ΣK), the sequences (21) and (23) may be concatenated to give a single sequence (of length 2k + 1), which is

known as the dimension-p EPH of the filtration. The structure theorem applies to this sequence, meaning that topological features may



Topological model selection 13

be extracted as persistence pairs (b, d). Intuitively, the sweeping-plane filtration scans through Σ from bottom to top and (21) detects

topological features which are found below k/K. The complexes ΣK/Σk then scan back down from top to bottom, collapsing all simplices

above k/K to a single point, with the sequence (23) detecting topological features in the resulting complexes. In particular, all simplices

merge in ΣK/Σ0, meaning that no persistence pairs extracted from (21)–(23) have d = ∞.

Persistence pairs (b, d) representing topological features which are born and die within the sequence (21) are called ordinary persistence

pairs. The sweeping-plane filtration detects such topological features in dimension p = 0 when a path of ECs anastomoses with another

(without forming a loop). Topological features which are born and die in the sequence (23) are called relative persistence pairs. In

dimension p = 1 such topological features result from branch points where an EC bifurcates in two separate paths which do not later

anastomose to form loops. Those topological features which are born in (21) but die in (23) are extracted as extended persistence pairs.

If b < d and p = 0, extended persistence pairs represent connected components–distinct EC paths which remain separated. If b > d and

p = 1, extended persistence pairs represent loops in the simulated vasculature.

We use two functions f to create two sweeping-plane filtrations from an angiogenesis dataset D. Creating a simplicial complex Σ as

above, we define fhorizontal, fvertical : Σ → R on vertices u representing points (x, y) ∈ D by fhorizontal(u) = x, fvertical(u) = y, and

on other simplices as before. Persistence pairs resulting from the sequences (21)–(23) then represent the size and location of topological

features measured in the horizontal (x) and vertical (y) coordinate directions. Persistence pairs may be plotted on an Extended Persistence

Diagram (EPD), an example of which is given in Figure 5.

B.3. Topological Statistics

We use Persistence Images and Persistence Statistics to transform EPDs into fixed-length vectors amenable to further analysis.

Persistence images are stable vector representations of persistence diagrams (Adams et al., 2017), and they were used by Thorne

et al. (2022) as summary statistics to infer two parameters in the AC model. To obtain persistence images, persistence pairs (b, d) are

first transformed to the modified pair (b, d− b). A persistence surface is then the function Ξ : R2 → R (24), where the sum is taken over

all modified pairs.

Ξ(x, y) =
∑

(b,d−b)

w(b, d− b)Φ(b,d−b)(x, y). (24)

Here, w is a weighting function on the modified persistence pairs, and we use the standard choice w(b, d − b) = d − b/max (d− b),

which divides the persistence by the maximum persistence across all persistence pairs. The function Φ(b,d−b) must be a differentiable

probability distribution with mean (b, d − b), and we take the standard Gaussian distribution with variance 0.1. A persistence image is

then a collection of integrals (25) of Ξ over discretised regions R ⊂ R2:

Γ(Ξ)R =

∫ ∫
R

Ξdydx. (25)

The regions R must be chosen so that the integrals reflect the distribution of persistence pairs used to construct Ξ. The persistence

pairs we compute from angiogenesis datasets with sweeping-plane filtrations have birth and death values between k = 0 and k = 200.

We therefore take regions Ri,j = [20i, 20(i+1)]× [20j, 20(j+1)] for i, j = 0, 1, . . . , 9 to generate a total of 100 integrals which constitute

a persistence image. For each angiogenesis dataset we compute eight such persistence images–one for each of the four types of extended

persistence pair described in Section B.2 computed using each sweeping-plane filtration (horizontal and vertical), giving a total of 800

topological statistics.

Persistence statistics are simple summaries of EPDs that have been found to perform well on well-known classification tasks (Ali

et al., 2023). To obtain persistence statistics, we consider the births b, deaths d, persistences d− b and midpoints (b+ d)/2 of persistence

pairs (b, d) in an EPD, and compute the mean, standard deviation, median, interquartile range, full range, and the 10th, 25th, 75th

and 90th percentiles of each of these descriptors. We therefore compute a total of 36 persistence statistics for each of the four types of

persistence pairs described in Section B.2 for each sweeping-plane filtration (horizontal and vertical), for a total of 288.

B.4. Example Computation

We compute spatially-averaged and topological statistics from angiogenesis datasets and concatenate these into a long-list of summary

statistics. Each angiogenesis dataset yields 20 spatially-averaged statistics and 800 + 288 topological statistics, which we combine into

a vector of length 1108. An example of the computation of spatially-averaged statistics and EPDs for a simple angiogenesis dataset is

given in Figure 5.



14 McDonald et al.

0 0.05 0.1 0.15 0.2
x

0

0.05

0.1

0.15

0.2

0.25

0.3
y

Final simulation time-step

0 0.05 0.1 0.15 0.2
x

Angiogenesis Dataset

0 0.05 0.1 0.15 0.2
x

Simplicial Complex K

mean std min max IQR

Spatially-Averaged Statistics
range 10th pc 25th pc 75th pc 90th pc

x co-
-ordinate 0.11 0.041 0.01 0.19 0.05 0.18 0.057 0.08 0.13 0.16

y co-
-ordinate 0.14 0.092 0 0.31 0.18 0.31 0.02 0.05 0.23 0.26

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
birth

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

de
at

h

EPD (horizontal filtration)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
birth

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

de
at

h

EPD (vertical filtration)

Ordinary, p = 0
Relative, p = 1
Extended+, p = 0
Extended-, p = 1

A

B

C

Fig. 5: An example model simulation and computation of spatially-averaged statistics and EPDs. A) Data pre-processing.

We display the final time-step of a simple simulation in which two ECs migrate from the bottom of the simulation domain, branch,

anastomose and form a loop in their path upward towards the tumour. We convert the final simulation time-step into an angiogenesis

dataset by overlaying a grid of 200 × 200 pixels onto the simulation domain and colouring pixels which correspond to the location of

simulated ECs. Simplicial complexes Σk contain a vertex for each pixel location containing an EC whose x co-ordinate (or y coordinate)

is less than or equal to k/200–we plot ΣK where K = 200. B) Spatially-averaged statistics. Spatially-averaged statistics consider the

(x, y) co-ordinates of pixel locations which contain ECs. We compute the mean, standard deviation, minimum, maximum, interquartile

range, range, 10th percentile, 25th percentile, 75th percentile and 90th percentile in each co-ordinate direction. C) EPDs. We compute

EPDs to quantify the size and location of the loops (•), the branches (× and +), and components ( ) at the final time-step, where the

size and location are measured in either the horizontal (x) or vertical (y) direction. Computing EPH via the sequences (21) and (23)

using the horizontal and vertical filtration gives two EPDs containing persistence pairs (b, d) which correspond to the birth and death of

topological features within the concatenated sequence. The values b and d correspond to the location (in co-ordinate directions) of each

feature and the persistence d− b gives the size. As the final step in computing topological statistics, we vectorise EPDs into persistence

images and persistence statistics according to Section B.3. The left panel of A was created in https://BioRender.com

https://BioRender.com
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C. ABC and Random Forest Methodology

We use Random Forests (Breiman, 2001) to choose informative summary statistics, which we then use to infer spatial parameters and

select between spatial models using ABC. In this section, we give further details on each step described in Section 3 of the main text.

C.1. Step 1: Identify Informative Summary Statistics For Each Model

ABC requires a distance function ν : D×D → R to measure the discrepancy between observed data and simulated data. In Section B we

showed how to compute spatially-averaged and topological statistics from angiogenesis datasets. Combining all spatially-averaged and

topological statistics into a single vector gives a total of nf = 1108 features which may be computed from an angiogenesis dataset. We

now identify an informative subset of these summary statistics which we will use to construct the distance function ν.

We train one regression Random Forest per parameter per angiogenesis model to learn the relationship between parameter values and

summary statistics. By training one Random Forest per parameter, we aim to identify the summary statistics that capture the effect

of varying each individual parameter’s value on simulated data. To generate training data, we draw n = 10, 000 parameter values θi
uniformly from the parameter ranges given in Table 1. We generate an angiogenesis dataset corresponding to each parameter value by

simulating each model up to time tfinal = 4 and consider the angiogenesis dataset at its final time-step as described in Section A. We

compute spatially-averaged and topological statistics to form a vector Xi of summary statistics corresponding to the parameter value θi,

which together form training data X and Y.

To construct decision trees that make up each Random Forest, we take bootstraps of nsamples = 2, 000 pairs (Xi, θi) sampled

independently (with replacement) from the training data. Each decision tree is made up of internal nodes which repeatedly partition

the training data and leaf nodes which contain nmin = 5 or fewer pairs from the bootstrap. At an internal node N , nf/3 features are

randomly selected and considered to create a splitting rule. Splitting rules are conditions of the form Xji > r for some co-variate j and

splitting bound r. Pairs (Xi, θi) ∈ N for which a condition is satisfied are allocated to the right daughter node NR and the others

are passed to left daughter node NL. The bootstrap of the training data is repeatedly partitioned by internal nodes in this way until

nmin = 5 or fewer pairs (Xi, θi) are allocated to a node, wherein it becomes a leaf node.

To decide the co-variate index j and splitting bound r used at each internal node, Random Forests consider a loss function with the

general form of Equation (26). Random Forests choose co-variates and splitting bounds which minimise ∆loss within each internal node.

∆loss =
|NL|
|N |

Q(NL) +
|NR|
|N |

Q(NR) (26)

Q(N ) is a measure of the impurity of samples allocated to node N and |N | is the number of samples allocated to the node. As is

common in regression Random Forests, we use the L2 impurity given by Equation (27) to decide splitting rules. The L2 purity measures

the variance in parameter values from the mean θ̄N among pairs allocated to the same daughter node.

Q(N ) =
∑

θi:(Xi,θi)∈N

(θi − θ̄N )2 (27)

To choose the number ntree of decision trees to use in each Random Forest, we follow the advice in Raynal et al. (2018) and compute

the out-of-bag mean square error of Random Forests constructed with different numbers of trees. We note in Figure 6 that the out-of-bag

error decreases when adding additional trees, but that this improvement is small when using more than 100 trees in the Random Forest

for each parameter in each model. We therefore use ntree = 100.

To select a subset of the spatially-averaged and topological statistics for use in subsequent ABC algorithms, we consider the importance

of each feature in the Random Forest for each parameter. The importance of a co-variate j in a trained Random Forest is defined as the

mean decrease in impurity Q(N )− (Q(NL) +Q(NR)) achieved by all internal nodes N which use j in their splitting rule. Features with

high importance are therefore those which are most effective in partitioning the training data, meaning they capture the effect of model

parameters on model simulations.

Ranking the nf = 1108 summary statistics by importance, we observe in Figure 7 that a small number of features carry most of the

predictive power for each parameter in each model. To construct the distance function ν used in ABC, we wish to use those statistics which

distinguish data simulated using different model parameters and omit those which do not. Therefore, we cycle through each parameter

in each model and choose the top 25 most important summary statistics for each parameter that have not already been selected, giving

a list of 100 features in total for each model. In general, we recommend computing the importance of a long-list of summary statistics

and choosing ns so that statistics with low importance are omitted.
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Fig. 6: The out-of-bag mean square error of regression Random Forests learning the relationship between summary statistics Xi and

parameter values θi (scaled by its initial value). The out-of-bag mean square error initially decreases, but negligibly after ntree = 100.

C.2. Step 2: Fit Each Model To The Observed Data

Using observed data D∗, we approximate the parameter posterior p(Θ|D∗) for each angiogenesis model. To construct the distance

function ν required by ABC algorithms to measure the discrepancy between simulated and observed data, we follow Section C.1 and

choose a subset of 100 summary statistics for each model from among the spatially-averaged and topological statistics. It is possible

that the important summary statistics may be poorly scaled. For example, connected components are generally larger than loops in the

angiogenesis datasets we consider. Small differences in the size and location of loops in angiogenesis datasets may be stronger predictors

of parameter values than the size and locations of connected components, yet this may not be reflected in the distance function ν if

the corresponding topological statistics are left unscaled. We therefore construct a scaling function which divides each summary statistic

by the maximum absolute value of that summary statistic among the training data for each model. The ABC distance function is then

ν(D∗,Di) = ∥x∗ − xi∥2 where D∗ is observed data, Di is simulated data, and x∗ and xi are the 100 summary statistics with the scaling

applied. When D∗ comprises several instances of observed data, we average the distance ν using summary statistics computed from each.

Using this distance function, we use the ABC-SMC algorithm of Del Moral et al. (2012) to approximate the parameter posterior

p(Θ|D∗). ABC-SMC outputs a series of npop intermediate distributions, which correspond to a decreasing sequence of tolerances ϵ0 >

· · · > ϵnpop
> 0. Beginning with a population of Npop parameters sampled from a prior distribution, the initial tolerance ϵ0 is chosen so

that a predetermined fraction α ∈ (0, 1) of parameters are accepted. The Effective Sample Size (ESS) of each population is a measure of

the independence of parameters within a current population. Del Moral et al. (2012) computes the ESS of each subsequent population

and chooses further tolerances such the ESS of each population decreases by α. We use α = 0.8 and generate npop = 50 populations,

each containing Npop = 1, 000 parameters, and take the final population as the approximate ABC-SMC posterior p(Θ|D∗).

C.3. Step 3: Approximate The Model Posterior

We approximate the model posterior p(m|D∗) for observed data D∗ by training two more Random Forests, following the method of

Pudlo et al. (2015). Using the training data (Xi,mi) obtained from the training data used in Step 1 by replacing the parameter θi with

the model index mi ∈ {AC, SL,PS}, we train a classification Random Forest to learn the relationship between summary statistics Xi
and model index mi.

Step 1 chooses a subset of the spatially-averaged and topological statistics which are important for each for each model. Since the

importance of each summary statistic to a model is determined by that model’s training data, it is possible that different summary

statistics are important for different models. Using summary statistics which are only informative for a single model to approximate the
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Fig. 7: Left axis: for each parameter in each model, we rank summary statistics by their importance and observe how importance

decreases. Right axis: we compare how many summary statistics appear among the top ns most important features for all models as ns

is increased and plot the expected number of common summary statistics if they were chosen randomly. Choosing ns = 100 includes

approximately the 25 most important summary statistics for each parameter. Selecting more summary statistics than this would include

those which are of little use in capturing the effect of parameter values on simulated data. Choosing ns = 100 also ensures that ñs = 30

summary statistics appear in the top ns most important summary statistics for all models. If 100 summary statistics were chosen

uniformly randomly for each model, the expected number that would be common to all three models is approximately 1.

model posterior may bias predictions in favour of that model. We therefore learn the relationship between summary statistics and model

index using only those summary statistics which are important for all angiogenesis models.

Specifically, we modify Xi to contain only those ñs ≤ 100 features which appear in the top 100 summary statistics for all three

models. We found that ñs = 30 summary statistics appear in the top 100 for all angiogenesis models, and hence the Xi are modified

to include only these entries. Figure 7 shows how the number of summary statistics that appear in the top ns summary statistics for

all models grows as ns increases. We also plot the expected number of common summary statistics among the three models if summary

statistics were selected randomly. ns should be large enough to include some common summary statistics that important for all models,

but not so large as to allow the possibility that some summary statistics are chosen for all three models by random chance. The expected

number of common summary statistics if ns = 100 are chosen randomly for each model is approximately 1, which suggests that the

ñs = 30 common summary statistics are indeed informative for all three models, and were not chosen by random chance.

As in Step 1, we bootstrap nsamples = 2, 000 pairs (Xi,mi) to train ntree = 100 decision trees, randomly choosing ñs/3 summary

statistics at each internal node to consider for splitting rules, and terminating at leaf nodes only when nmin = 5 samples remain. To

decide on the co-variate index j and splitting bound r in the partition rule Xki < r at each internal node, we use the Gini impurity

defined in Equation (28). For a node N , let pi be the proportion of pairs (Xi,mi) allocated to N . The Gini impurity is a measure of

how many different model indices are allocated to node N , which the splitting rule minimises.

Q(N ) =
∑

mi∈{AC,SL,PS}

pi(1− pi) (28)

The trained classification Random Forest provides a prediction RF (X∗) of the model m∗ which generated observed data D∗ (which

we aggregate when D∗ contains multiple instances of observed data). The Random Forest also provides an out-of-bag error for each

pair (Xi,mi), which is the proportion of those decision trees which did not use this pair in their training bootstrap which predict the

incorrect model index mi. Following Pudlo et al. (2015), we train another regression Random Forest using the same training data to

learn the relationship between summary statistics Xi and this mis-classification error rate p(RF (Xi) ̸= mi) of the first Random Forest.

Predicting the out-of-bag error p(RF (X∗) ̸= m∗) for the observed data D∗ gives an estimate 1 − p(RF (X∗) ̸= m∗) for the model

posterior p(m = m∗|D∗).
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D. Toy Model Example

D.1. Two Two-Parameter Toy Models

We verify our pipeline for parameter inference and model selection on two toy models which can simulate angiogenesis datasets similar

to the simple vascular network in Figure 5. While the likelihood functions for the angiogenesis models analysed in the main text are

unavailable, we construct simple toy models from which we can derive a likelihood function. Using appropriate priors and Bayes’ rule,

we can then derive the exact parameter posterior for each toy model, and compare it to the approximate parameter posterior produced

using our pipeline (Steps 1-2 of Section 3 of the main text). We then test our method of model selection (Step 3 of Section 3 of the main

text) on the two toy models.

Both toy models initialise two tip EC along the bottom of a the square domain I = [0, 1]2, which move diagonally upwards. The tip

ECs anastomose, branch, and then anastomose again, forming a central loop before reaching the VEGF source at the top of the domain.

We derive two stochastic spatial models from this simple construction by parametrising the size and shape of the central loop. The first

model, Toy-Circle (TC), has two parameters r and c which define the centre and radius of a circular loop in the middle of the domain.

Given a parameter pair (r, c), the TC model produces a blood vessel network whose central loop is a circle of radius r + ε and centre

(0.5, c + ε), where each ε is identically and independently drawn from U[−0.03,0.03], the uniform distribution between −0.03 and 0.03.

The randomly sampled ε are added to each parameter to introduce random variation into the model which is simple enough to allow

derivation of the model’s likelihood function. The second model, Toy Ellipse (TE), uses a similar construction to produce a vascular

network. However, the TE model uses parameters a and b, to define the size of the horizontal radius and vertical radius of an ellipse

which makes up the loop in the centre of the domain. Given a parameter pair (a, b), the TE model produces a blood vessel network

whose central loop is an ellipse centred at (0.5, 0.5) with horizontal radius a+ ε and vertical radius b+ ε. The noise ε is sampled in the

same way as in the TC model. Each toy model, including the range of each parameter, is summarised in Table 2.

D.2. Computing The Exact Likelihood and Posterior

Suppose an angiogenesis dataset Di is simulated from the TC model using parameters (r, c) and has radius ri and centre ci. The

likelihood of Di is the product of uniform distributions: p(Di|r, c) = p(ri, ci|r, c) = U[r−0.03,r+0.03](ri)× U[c−0.03,c+0.03](ci). Assume

that uniform priors p(r) = U[rmin,rmax](r) and p(c) = U[cmin,cmax](c) are used for r and c respectively, with the maximum and minimum

value of each parameter taken from Table 2. Given observed data D∗ = {D∗
1 , . . . ,D∗

n∗} consisting of n∗ angiogenesis datasets whose

central loops have centres c∗1 , . . . , c
∗
n∗ and radii r∗1 , . . . , r

∗
n∗ , the parameter posterior can be computed exactly by (29)–(33).

p(r, c|D∗) =
n∗∏
i=1

p(r, c|D∗
i ) ∝

n∗∏
i=1

p(D∗
i |r, c)× p(r, c) (29)

=
n∗∏
i=1

p(r∗i , c
∗
i |r, c)× p(r)× p(c) (30)

=
n∗∏
i=1

[
U[r−0.03,r+0.03](r

∗
i )× U[c−0.03,c+0.03](c

∗
i )
]
× U[rmin,rmax](r)× U[cmin,cmax](c) (31)

=
n∗∏
i=1

[
U[r∗

i
−0.03,r∗

i
+0.03](r)× U[c∗

i
−0.03,c∗

i
+0.03](c)

]
× U[rmin,rmax](r)× U[cmin,cmax](c) (32)

= U[max{rmin,maxn
∗
i=1

r∗
i
−0.03},min{rmax,minn

∗
i=1

r∗
i
+0.03]}(r)×

U[max{cmin,maxn
∗
i=1

c∗
i
−0.03},min{cmax,minn

∗
i=1

c∗
i
+0.03])}(c)

(33)

Line (29) uses Bayes’ rule and factors out the evidence p(D∗
i ). We assume throughout that r∗i and c∗i have values within the ranges

given in Table 2 (plus or minus 0.03) and are within 0.06 of each other (otherwise the likelihood and posterior are both 0). For the TE

model, assuming that observed data D∗ = {D∗
1 , . . . ,D∗

n∗} is a collection of angiogenesis datasets where the central loops are ellipses with

horizontal radii a∗1 , . . . , a
∗
n∗ and vertial radii b∗1 , . . . , b

∗
n∗ , a similar computation gives the parameter posterior p(a, b|D∗) as (34).

p(a, b|D∗) = U[max{amin,maxn
∗
i=1

a∗
i
−0.03},max{amax,minn

∗
i=1

a∗
i
+0.03}](a)×

U[max{bmin,maxn
∗
i=1

b∗
i
−0.03},min{bmax,minn

∗
i=1

b∗
i
+0.03]}(b)

(34)

D.3. Parameter Inference and Model Selection

We generate four synthetic test-cases for each toy model by choosing parameter pairs which cover a range of circles/ellipses. We generate

n∗ = 2 simulations at each test parameter pair and use them as observed data D∗. Following Steps 1-2 of Section 3 of the main text, we

approximate the parameter posteriors p(r, c|D∗) for the TC model and p(a, b|D∗) for the TE model in each test-case.

In Figure 8, we plot the true posterior, calculated using Equations (33) and (34), as a light blue square, and the approximate posterior

resulting from our pipeline in dark blue. The true parameter value falls within the true posterior, but not necessarily at its centre, since
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Toy-Circle (TC) model Toy-Ellipse (TE) model

parameters parameters

Name and

Symbol
Range

Name and

Symbol
Range

Loop radius

r
[0.07, 0.23]

Loop horizontal radius

a
[0.07, 0.43]

Loop center

c
[0.34, 0.66]

Loop vertical radius

b
[0.07, 0.43]

Table 2. The parameters of each toy model. Given parameter pair (r, c), the TC model simulates a network whose central loop is a circle with radius

r + ε and center c + ε, where each ε is sampled from U[−0.03,0.03](ε) independently and identically. The TE model uses the parameter pair (a, b) to

simulate a network whose central loop is an ellipse with horizontal radius a+ ε and vertical radius b+ ε with each ε also sampled from U[−0.03,0.03)](ε).

the true posterior depends on n∗ = 2 simulations of the toy model (used as observed data) which contain random noise. In all four

test-cases for each model, the approximate posterior closely matches the true posterior.

To test our method of spatial model selection, we perform Step 3 of Section 3 of the main text and approximate the model posterior

p(m|D∗) for the same four test-cases, giving results in Figure 9. Since test-cases 1 and 2 of the TC model contain circles not centred at

(0.5, 0.5), and test-cases 1 and 2 of the TE model contain ellipses with unequal horizontal and vertical radii, only the true model can

produce their observed data. In these test-cases, we successfully infer the true model and correctly approximate posterior probabilities

as 1 for the true model and 0 for the other model. The observed data in test-cases 3 and 4 of each toy model, however, could have been

generated by either model. In these test-cases, the central loop in the observed data is is either a circle with centre c = (0.5, 0.5), or an

ellipse with equal horizontal and vertical radii, which either toy model can reproduce. We therefore expect a non-zero posterior probability

for each model in these test-cases, and we successfully approximate this. The approximate model posterior is still able to identify the

true model in these cases, and we estimate only a small posterior probability of the incorrect mode in each test-case. While both models

can simulate data similar to the observed data in each test-case, the true model will do so more often (for more parameter values). The

training data from which we learn the relationship between summary statistics and model index therefore contains more simulations

similar to the observed data when the true model is used, which may be why it predicts the true model with higher probability.
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Fig. 8: Parameter inference in the TC and TE models. To generate observed data, we fix a set of parameter values and simulate the

model in question n∗ = 2 times. For each model, we pick four parameter sets to generate four test-cases and show one example of the

angiogenesis datasets they simulate. We then use Steps 1-2 of Section 3 to find informative summary statistics which we use to fit each

model to the observed data in each test-case. The output of ABC-SMC is a population of parameter values which approximate the

parameter posterior p(Θ|D∗). We plot the resulting distributions (fitting a Gaussian kernel to the parameter values accepted in the final

population of the ABC-SMC algorithm). We also plot the true parameter which generated the observed data and the true parameter

posterior, which we can compute exactly since the toy models are simple.
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Fig. 9: Model selection among the TC and TE toy models. We use the same test-cases as in Figure 8 in which we generated observed

data D∗ by simulating each model at known parameter values. Again we show one example of the angiogenesis datasets they simulate.

Performing Step 3 of Section 3 of the main text gives an approximation of the model posterior p(m|D∗), which we show for each test-case.

The approximate posterior selects the correct model in each test-case, giving the other model 0 posterior probability in test-cases 1 and

2 (where the observed data could only have been generated by the true model) and non-zero posterior probability in test-cases 3 and

4 (where either model could have generated the observed data). We fit each model to the observed data using Step 2 of Section 3 of

the main text, and show one simulation of each model using a parameter value sampled from the approximate parameter posterior for

each model. This prediction represents each model’s best approximation to the observed data. In test-cases 1 and 2, only the true model

predicts data similar to the observed data, whereas in test-cases 3 and 4, both models produce a visually similar approximation.
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